
Ouroboros-BFT:
A Simple Byzantine Fault Tolerant Consensus Protocol

Aggelos Kiayias∗ Alexander Russell†

October 30, 2018

Abstract
We present a simple, deterministic protocol for ledger consensus that tolerates Byzantine

faults. The protocol is executed by n servers over a synchronous network and can tolerate any
number t of Byzantine faults with t < n/3. Furthermore, the protocol can offer (i) transaction
processing at full network speed, in the optimistic case where no faults occur, (ii) instant con-
firmation: the client can be assured in a single round-trip time that a submitted transaction
will be settled, (iii) instant proof of settlement: the client can obtain a receipt that a submitted
transaction will be settled. A derivative, equally simple, binary consensus protocol can be easily
derived as well. We also analyze the protocol in case of network splits and temporary loss of
synchrony arguing the safety of the protocol when synchrony is restored. Finally, we examine
the covert adversarial model showing that Byzantine resilience is increased to t < n/2.

1 Introduction

The consensus problem, introduced by seminal work of Shostak, Pease and Lamport [10, 7], is one
of the fundamental problems in computer science. The problem has received renewed interest over
the last decade due to its application to cryptocurrencies such as Bitcoin [8], where a particular
variant of consensus known as ledger consensus plays a crucial role, cf. [3]. A hallmark feature of
such protocols is their Byzantine fault tolerance (BFT), i.e., their ability to tolerate participants
that arbitrarily deviate from the specification of the protocol, even when these deviations may be
orchestrated by an adversarial entity.

The demand to deploy these protocols in the real world—especially in high-assurance settings—
has motivated the design of simple protocols with accessible structure and analyses. This is exem-
plified by the RAFT protocol [9], a consensus protocol proven to be secure in the fail-stop model
(a strictly weaker model than BFT).

Ouroboros-BFT is a new BFT ledger consensus protocol inspired by the design of the Ouroboros
protocol [5], a proof-of-stake blockchain protocol. Ouroboros-BFT is a deterministic protocol with
simplicity as one of its prime design criteria. It provides the ledger consensus properties of consis-
tency and liveness assuming a number of Byzantine corruptions t < n/3. The protocol is analysed
in the synchronous setting, though we also show that it is resilient to synchrony failures resulting
from either network splits or unanticipated delays; in particular, it has the ability to converge back
to safety once synchrony is restored. The protocol provides instant confirmation in the sense that
honest clients can receive instant assurance that a transaction will be eventually settled. The pro-
tocol can be also augmented to offer a proof of settlement, in the sense that a transferable receipt

∗University of Edinburgh and IOHK. akiayias@inf.ed.ac.uk.
†University of Connecticut and IOHK. acr@cse.uconn.edu.

1

can be produced that ensures that settlement will take place. A binary consensus protocol based
on Ouroboros-BFT can be easily derived that is also resilient to t < n/3 faults. Additionally, the
protocol can be advantageously analysed in the covert adversary model [1], which may be enforced
through a penalty mechanism; in this setting its resilience is t < n/2. In our exposition, we first
provide a description of the protocol when parties have access to a global synchronized clock. Then,
we show how the parties can simulate access to such a clock and as a result of this, the ledger can
optimistically run at the maximum speed supported by the network.

Protocol Overview. Ouroboros-BFT is a simple, deterministic, blockchain-based protocol where
servers take turns in a predetermined round-robin fashion diffusing blocks of transactions that ex-
tend the longest chain that is available to them. Servers can respond to clients with the (speculative)
outcome of a transaction immediately, thus the outcome of a transaction can be obtained by a client
in the optimal time of one round-trip. Transactions acquire their final sequence in the ledger after
5t+ 2 clock ticks, where t is the number of Byzantine nodes.

Comparison with other deterministic BFT protocols. Ouroboros-BFT introduces a block-
chain based approach in the context of deterministic BFT protocols. Compared to PBFT [2],
Ouroboros-BFT (i.) processes speculatively all transactions and issues an instant confirmation or
proof of settlement while it serializes the transactions “lazily” using its blockchain-based mechanism;
the protocol has total communication complexity Θ(n) per round in the optimistic case, where no
omission of messages occurs, and Θ(nt) in the worst-case. In PBFT, transactions are settled through
a three-phase commit, full-server interaction protocol with communication complexity Θ(n2) per
block of transactions. (ii.) Servers in Ouroboros-BFT are executing the same basic protocol logic
in each slot independently of their view: each server receives blocks and transactions, updates
its local blockchain and finally issues responses to clients as well as the next block in case the
server is eligible for that slot. Instead, in PBFT there are different steps that each server performs
depending on its current view: pre-prepare, prepare, commit, reply, view-change, view-change-
acknowledgement and new-view. (iii.) Both Ouroboros-BFT and PBFT provide liveness for final
settlement that spans O(t) network time-outs. In the first case, this stems from the fact that
the blockchain-based mechanism will require that many rounds to settle. In the second case, this
stems from the worst-case setting where t consecutive views are assigned to faulty nodes. (iv.)
PBFT provides consistency with unbounded delays, while consistency is shown for Ouroboros-BFT
assuming a worst case upper bound on network delay. It should be noted though that the protocol
does not need to slow down to this bound in the case that no faults occur; furthermore, if the
upper bound is violated, the views of servers may fork but they are guaranteed to return back to a
unique view once the upper bound becomes respected again by the network. (v.) In the optimistic
case, PBFT will provide the transaction outcome in 5 rounds and Θ(n2) communication. In the
optimistic case, Ouroboros-BFT will provide a (speculative) transaction outcome and a proof that
a transaction will settle in 2 rounds and Θ(n) communication, while it will assign to a transaction
its final sequence after 5t+2 rounds. Speculative execution is also performed by Zyzzyva, [6] which
also produces 2 round responses to clients with total Θ(n) communication. However Zyzzyva and
Ouroboros-BFT use a different mechanism for aligning the view of the servers: Zyzzyva involves an
active client who is responsible for collecting server responses and retransmitting them. Contrary
to this, Ouroboros-BFT, as also is the case for PBFT, has clients that are completely passive from
the perspective of ledger maintenance. The above provide a first overview of how Ouroboros-BFT
compares to previous deterministic BFT protocols. A more thorough comparison is deferred for
the next version of the paper.

2

2 Protocol Description

The protocol treats time as divided into discrete slots, sl1, sl2, . . . and is executed by a set of servers
S1, . . . , Sn. We first describe the protocol in a setting where servers are equipped with synchronized
clocks which reliably report to them the current slot; in Section 10 we show how to simulate such
clocks using a local timer and a conservative estimate of network delay. Furthermore, servers can
“diffuse” a message in each slot which will be delivered to all servers in the next slot. At the
discretion of the adversary, messages from adversarial parties may be selectively delivered to only
a subset of the servers (and with arbitrary delays). Note that these network assumptions can be
obtained by synchronous multicast; in particular, broadcast is not required.

The protocol is executed by n servers who each maintain a blockchain: this is a sequence of
blocks B0, B1, . . . beginning with a special “genesis” block B0 which contains the servers’ public-
keys (vk1, . . . , vkn). (The corresponding secret-keys sk1, . . . , skn are stored locally by each server.)
Each subsequent block Bi, i > 0, is a quintuple of the form (h, d, sl, σsl, σblock), where h is the hash
of the previous block, sl is a (slot) time-stamp, d is a set of transactions, σsl is a signature of the
slot number, and σblock is a signature (of the entire block). While the blocks must have strictly
increasing timestamps (slots), there may be slots that are not the timestamp of any block. In fact,
the protocol places additional constraints on the blockchain; see the definition of validity below.

Each server maintains a mempool of valid transactions with respect to its local blockchain
B0B1 . . . Bl and executes iteratively the program shown in Figure 1.

Ledger states, transactions and receipts. We assume a deterministic parser that maps a
given blockchain to a value q that captures the current state of the ledger. If the ledger is at a state
q, a transaction tx added to the ledger will transition the state to q′ based on the blockchain parser.
We write q tx→ q′. The outcome of a transaction is defined by the function Rtx(q′). We will assume
that the function R has the property that if Rtx(q) 6= ⊥ for some state q then Rtx(q) = Rtx(q′),
for any q′ such that q ∗→ q′, i.e., the output of a transaction, once it is defined at a certain state
q, remains stable and is independent of other transactions being added to the ledger. A receipt
for a transaction includes three values: the hash of tx, the hash of q and Rtx(q′). A transaction is
invalid for state q if Rtx(q) = ⊥ and in this case we insist that q tx→ q. Two transactions commute
in case it holds that if q tx→ q′

t̂x→ q′′ and q
t̂x→ q̂′

tx→ q̂′′, then q′′ = q̂′′. A transaction t̂x is in conflict
with tx at state q if q tx→ q′

t̂x→ q′′ and q
t̂x→ q̂′ implies that q′ = q′′, Rt̂x(q′) = ⊥ and Rt̂x(q̂′) 6= ⊥. A

transaction tx is consistent with the ledger at state q and a sequence of transactions tx1, . . . , txk
in the mempool, if q tx1→ q1 . . .

txk→ qk and tx is valid at state qk (we remark that some transactions
in the mempool may be invalid for the state they are applied to; this does not affect the validity of
tx).

3 Security Analysis

We will show that the Ouroboros-BFT protocol satisfies the properties of ledger consensus, namely
persistence (or safety) and liveness. For a definition of these properties we refer to [4]. An execution
of the protocol is fully determined by an adversary A and an environment Z that provides the
input transactions to the nodes. To analyse the protocol we use the forkable strings formalism from
[5]. For completeness we recall this below.

Definition 3.1 (Characteristic string). Fix an execution with genesis block B0, adversary A, and
environment Z. Let S = {sli, . . . , slj} where i < j be a sequence of slots of length |S| = `. The

3

The i-th server locally maintains a blockchain B0B1 . . . Bl, an ordered sequence of transactions
called mempool and carries out the following protocol:

Clock update and network delivery. With each advance of the clock to a slot slj , a collection
of transactions and blockchains are pushed to the server by the network layer. Following this,
the server proceeds as follows:

1. Mempool update. Whenever a transaction tx is received it is added to the mempool as
long as it is consistent with the existing transactions in the mempool and the contents of
the local blockchain. The transaction is maintained in the mempool for u rounds, where
u is a parameter. Optionally, when the transaction enters the mempool the server can
return a signed receipt back to the client that is identified as the sender.

2. Blockchain update. Whenever the server becomes aware of an alternative blockchain
B0B

′
1 . . . B

′
s with s > l, it replaces its local chain with this new chain provided it is valid,

i.e., each one of its blocks (h, d, slj , σsl, σblock) contains proper signatures—one for time
slot slj and one for the entire block—by server i such that i − 1 = (j − 1) mod n, h is
the hash of the previous block and d is a valid sequence of transactions w.r.t. the ledger
defined by the transactions found in the previous blocks.

3. Blockchain Extension. Finally, the server checks if it is responsible to issue the next
block by testing if i − 1 = (j − 1 mod n). In such case, this i-th server is the slot
leader. It collects the set d of all valid transactions from its mempool and appends the
block Bl+1 = (h, d, slj , σsl, σblock) to its blockchain, where σsl = Signski(slj), σblock =
Signski(h, d, slj , σsl) and h = H(Bl). It then diffuses Bl+1 as well as any requested blocks
from the suffix of its blockchain that covers the most recent 2t+ 1 slots.

Ledger Reporting. Whenever queried, the server reports as “finalised” the ledger of transactions
contained in the blocks B0 . . . Bm, m ≤ l, where Bm has a slot time stamp more than 3t+ 1
slots in the past. Blocks Bm+1 . . . Bl are reported as “pending”.

Figure 1: The Ouroboros-BFT protocol with parameters n, t, u corresponding to the total number
of servers and maximum number of Byzantine servers, respectively and u corresponding to the
“time to live” of a transaction in the mempool.

characteristic string w ∈ {0, 1}` associated with this execution (and this sequence of slots) is defined
so that wk = 1 if and only if the adversary controls the slot leader of slot slk.

Definition 3.2 (Fork). Let w ∈ {0, 1}n be a characteristic string and let H = {i | wi = 0} denote
the set of honest indices. A fork for the string w is a directed, rooted tree F = (V,E) with a labeling
` : V → {0, 1, . . . , n} so that

F1. each edge of F is directed away from the root;

F2. the root r ∈ V is given the label `(r) = 0;

F3. the labels along any directed path in the tree are strictly increasing;

F4. each honest index i ∈ H is the label of exactly one vertex of F ;

F5. the function d : H → {1, . . . , n}, defined so that d(i) is the depth in F of the unique vertex v
for which `(v) = i, is strictly increasing. (Specifically, if i, j ∈ H and i < j, then d(i) < d(j).)

4

As a matter of notation, we write F ` w to indicate that F is a fork for the string w. We say that
a fork is trivial if it contains a single vertex, the root.

Observe that any execution of the Ouroboros-BFT protocol that corresponds to a characteristic
string w gives rise to a specific fork F such that F ` w. Each node of F corresponds to a block
produced by one of the parties in the execution. The labeling `(·) corresponds to the slot time stamp
of each block. Property F4 is derived from the fact that honest nodes will never issue two blocks
with the same slot timestamp. Property F5 follows from the longest chain rule and synchronicity:
an honest party will never issue a block on a shorter chain than the current best available, which
must necessarily include all chains diffused by prior honest parties.

Definition 3.3 (Tines, depth, and height; the ∼ relation). A path in a fork F originating at the
root is called a tine. For a tine t we let length(t) denote its length, equal to the number of edges
on the path. For a vertex v, we let depth(v) denote the length of the (unique) tine terminating at
v. The height of a fork (as usual for a tree) is defined to be the length of the longest tine.

We overload the notation `() so that it applies to tines, by defining `(t) , `(v), where v is the
terminal vertex on the tine t. For two tines t1 and t2 of a fork F , we write t1 ∼ t2 if they share an
edge. Note that ∼ is an equivalence relation on the set of nontrivial tines; on the other hand, if tε
denotes the “empty” tine consisting solely of the root vertex then tε 6∼ t for any tine t.

The fundamental blockchain property associated with (a failure of) persistence is the existence
of two chains (tines) which substantially diverge from each other, but appear equally valid to a
honest observer. This notion of divergence and the precise formulation of “appearing valid to an
honest observer” are reflected in the next definition.

Definition 3.4 (Viability; divergence). Let F ` w be a fork for a characteristic string w. We say
that a tine t is viable if for all honest slots h ≤ `(t),

length(t) ≥ d(h) .

For two viable tines t1 and t2 of F , define their divergence to be the quantity

div(t1, t2) , min{length(t1), length(t2)} − length(t1 ∩ t2) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation to the fork F by
maximizing over viable tines: div(F) , maxt1,t2 div(t1, t2), taken over all pairs of viable tines of
F . We likewise define the divergence of a characteristic w with the convention that

div(w) = max
F`w

div(F) .

Using the above definitions, we define the notion of forkable strings.

Definition 3.5. We say that a fork is flat if it has two tines t1 6∼ t2 of length equal to the height
of the fork. A string w ∈ {0, 1}∗ is said to be forkable if there is a flat fork F ` w.

Theorem 3.6 (Theorem 4.26 of [5]). Let w ∈ {0, 1}∗. Then there is forkable substring w̌ of w with
|w̌| ≥ div(w).

We proceed to show that that low Hamming weight strings are not forkable. For a string
w ∈ {0, 1}`, we let H(w) = |{i | wi = 1}| denote the Hamming weight.

Proposition 3.7. A string of {0, 1}n with Hamming weight less than n/3 is not forkable.

5

Proof. We prove the contrapositive, i.e., any forkable string has Hamming weight at least n/3.
Consider a sequence of slots that has as characteristic string the string w ∈ {0, 1}n that is forkable.
Let t be the Hamming weight of w. It follows that there is a flat fork F and two tines t1, t2, with
t1 6∼ t2 with length(t1) = length(t2) equal to the height of the fork.

We first observe that F has height at least n− t. This follows directly from the F5 property. It
follows that length(t1) = length(t2) ≥ n− t.

Second observe that in each tine there is at most one block that can have index corresponding
to a particular 1 in the characteristic string. This follows from the F3 property. Given this we
derive the fact that each 1 in the characteristic string can account for at most two nodes in the
tines t1, t2.

We conclude the proof by a simple counting argument. First, by the length of the tines, the total
number of nodes of F that belong in the tines t1, t2 are at least 2(n − t). Second, by assumption
there are at most 2t nodes that can be derived by the 1 positions of the characteristic string. Third,
the 0 positions of the characteristic string contribute n− t nodes in F by the F4 property.

It follows that the total number of nodes of F that are available for t1, t2 is at most n− t+ 2t =
n+ t. As a result 2(n− t) ≤ n+ t i.e., t ≥ n/3, as desired.

Theorem 3.8. Ouroboros-BFT satisfies persistence and liveness with liveness parameter 5t + 2
under the assumption there are at most t < n/3 Byzantine parties and the security of the underlying
digital signature scheme.

Proof. (Sketch) We first consider persistence. Suppose the property is violated. It follows that
at two different slots sl1, sl2 for which sl1 ≤ sl2, the transaction logs LOG1, L̃OG2 do not satisfy
LOG1 � L̃OG2 where LOG1 is the ordered sequence of transactions in the blockchain of S1 that is
reported as finalised and L̃OG2 is the ordered sequence of transactions in the blockchain of S2 (at
slot sl2) including pending transactions. It follows that there is a slot sl in this period when some
honest server S switched chains resulting in a fork that spans the last 3t+ 1 slots. This contradicts
Proposition 3.7.

We then consider liveness. Consider a period of 2(3t+ 1)− t = 5t+ 2 slots and n ≥ 3t+ 1. The
chain of any honest server is guaranteed to advance by t + 1 blocks during the first 2t + 1 slots.
Moreover given there are t malicious parties at least one of those blocks will be produced by an
honest party. It follows that such block will have a time stamp more than 3t+ 1 slots prior and as
a result we obtain liveness with the desired parameter.

4 Instant Confirmation

In this section we study the protocol from the perspective of instant confirmation of transactions.
This operates as follows: whenever a server accepts a transaction in its mempool it issues a signed
receipt to the client that includes the transaction outcome (if any) and the hash of the most recent
block in the server’s blockchain. A client terminates, accepting a transaction, provided that it
receives r receipts where r is a parameter of the protocol. Note that the receipt does not guarantee
the position of the transaction in the ledger but it does ensure that the transaction will be included
eventually. We stress that instant confirmation is not transferrable and acts as a promise to settle
assuming no other transaction occurs that invalidates the given transaction. As a result, a client
cannot implicate the servers in case a transaction that was issued a receipt was not eventually
included.

Instant confirmation with parameter u is a liveness property that indicates the following: any
transaction broadcast by an honest client that has been issued r receipts will be eventually settled

6

in the ledger after u slots. So instant confirmation is a promise of settlement in the near future.

Theorem 4.1. Ouroboros-BFT satisfies persistence and instant confirmation with parameter 5t+
2 + n − r under the assumption there are at most t < n/3 Byzantine parties, r ∈ (2t, n] and the
security of the underlying digital signature scheme.

Proof. We just prove the liveness part. Consider a certain slot which is after 5t + 2 + n − r slots
from the slot where a client has received r > 2t mempool confirmations for a certain transaction tx;
we examine the blockchain C of an arbitrary honest server at that moment. Let y = n+ t− r + 1;
we examine the period of 5t+ 2 +n− r = (t+ y) + (3t+ 1) slots. During the first t+ y slots of this
period we know C has advanced by y blocks since y ≤ n− t. Furthermore, it must be that y − t of
those blocks are honestly produced by distinct honest parties (all these blocks were produced in a
sequence of n consecutive slots; uniqueness follows from the round-robin structure of the protocol).
Since r+ y > n+ t (by definition of y), we have that (r− t) + (y− t) > n− t and as a result at least
one of these y − t honest blocks belongs to an honest party that has issued one of the r receipts
given to the client; it follows that the transaction will be included in the block this honest party
issues. Finally the remaining 3t + 1 slots will ensure the transaction will be in the settled part of
the C. As a result the honest party possessing C will report tx as confirmed.

5 Security Analysis in the Covert Setting

The covert setting refers to the scenario when the adversary does not want to produce any indepen-
dently verifiable evidence of its misbehaviour. The covert setting significantly simplifies forkable
string analysis as shown in [5]. In more detail a covert fork is a fork where the labeling ` in Defi-
nition 3.2 is injective, which means that the adversary also does not sign with respect to the same
slot twice. Given this we have the following.

Proposition 5.1. ([5]) A string w ∈ {0, 1}n with Hamming weight less than n/2 is not covertly
forkable.

Armed with the above proposition, the following theorem can be easily shown as in the case of
Theorem 3.8.

Theorem 5.2. Ouroboros-BFT, in the covert setting, satisfies persistence and liveness with liveness
parameter 5t+2 under the assumption there are at most t < n/2 Byzantine parties and the security
of the underlying digital signature scheme.

We note that, in practice, enforcing covert behaviour can also be achieved by imposing penalties
to the misbehaving parties. For instance, submitting the two conflicting signatures to a smart
contract can produce a payment to the submitter drawn from an initial escrow deposit that was
made by the server.

6 A Binary Consensus Protocol

In the previous section we showed how we can solve ledger consensus. It is also easy to extract an
analogous, simple standard (binary) consensus protocol from our construction using the reduction
of consensus to ledger consensus suggested by the first construction of [4].

The protocol is as follows. Each server i starts with some input value vi ∈ {0, 1}. When they
produce a block they add their input to the data of the block (transactions are ignored). The

7

protocol will terminate after 2n slots. The parties will observe their ledger state (excluding any
blocks with slot time stamp n + 1, . . . , 2n) and output the majority bit. Based on Lemma 3.7,
we can easily derive that the honest parties will agree on the same sequence of blocks B1, . . . , Bm
and hence the same majority bit; this implies agreement. Furthermore we know that m ≥ n − t.
The number of blocks that are contributed by Byzantine parties is at most t as a result there are
m− t blocks contributed by honest parties. Given that t < n/3, we have that m− t ≥ n− 2t > t.
It follows that if all honest parties initially agree on a value v ∈ {0, 1}, this value will have the
majority vote among B1, . . . , Bm and hence will be the output. This implies validity.

7 Alternative Threat Models

We analysed Ouroboros-BFT in the Byzantine synchronous setting showing its resiliency for any
number of malicious parties t < n/3. It is worth considering how the protocol behaves in alternative
threat models.

Fail-stop corruptions. In the fail-stop model, servers simply fail and stop operating. It is easy
to see that in this model the protocol can tolerate any number of failures f < n. Namely, as long as
one server is still operational consistency is achieved and transactions will continue to be processed
with liveness parameter 2n.

Network splits. In the case of a network split, the network is temporarily partitioned into s
connected components for some s ≥ 2, each one containing n1, . . . , ns servers for a sequence of slots
D. Assuming no other failures, it is easy to see that transaction processing will continue normally
in each connected component. Furthermore, by slot maxD+n, all servers will be activated and the
system will converge to a unique blockchain. Indeed, let i be the maximal connected component
that includes the server that controls the earliest time slot in the n slots that follow D, say slj .
It easy to see that after slj all servers will converge to the blockchain emitted by this server. It
follows that Ouroboros-BFT is resilient to network splits. Note that transactions processed within
any other connected component other than the maximal component with the winning server may
be lost and hence they have to be resubmitted.

Partial Synchrony. In partial synchrony there is an unknown parameter ∆ that determines the
maximum delay in message delivery between two honest nodes and the scheduling of messages is
adversarial. If ∆ still fits within the selected slot length the protocol is unaffected. If it is exceeded
and the protocol is allowed to advance, a simple adversarial strategy can create two alternative
blockchains: assuming w.l.o.g. that n is even and partition the servers in two sets; then delivery
messages with a delay ∆ that amounts to two slots, giving a preference w.r.t. parity for each
receiving server (i.e., odd parity servers hear from odd parity servers first and likewise for even
parity servers). This will produce two blockchains advancing in parallel akin to a network split. In
case the ∆ delay returns within the normal range though the protocol converges back to a single
blockchain in a similar fashion as described in the network split case.

8 Instant Proof of Settlement

Earlier we showed how the protocol can instantly produce a confirmation to a client that a trans-
action will settle. However, such statement is not transferable since another conflicting transaction
may change the outcome of the transaction (e.g., a double-spending client can cause a transaction

8

to be reverted). Ouroboros-BFT can be amended in the following way to produce an instant proof
of settlement.

First the structure of blocks is slightly different. Each block will feature an endorsed-input
component which is issued and signed by the block producer and contains all transactions the
server is able to include at that slot; in addition to that, the block will be able to carry endorsed
input components from previous time slots up to n + 2t + 1 slots in the past. Consider next the
following definition: a sequence of transactions tx1, . . . , txk is permutation safe at state q, if for any
permutation π, it holds that in the sequence of updates q

txπ(1)→ q1 . . .
txπ(k)→ qk, the k transactions

maintain the same k outputs. We describe the protocol in a setting where permutation-safety can
be checked efficiently.

• Ledger Reporting. A transaction tx may be entered multiple times in the ledger as part of
various endorsed inputs; moreover, the ledger may contain endorsed inputs with transactions
that are in conflict with tx. Each entry of a given tx in the ledger counts as a vote for tx.
Parsing the ledger counts only transactions that are finalised; these are the transactions that
have received t+ 1 of the votes in the settled part of the ledger. If two finalised transactions
are conflicting, only the first one reaching t+ 1 votes in the order determined by the ledger is
retained. Recall that the settled part of the ledger contains all the blocks that are more than
3t+ 1 slots in the past.

• Mempool Update. The server collects transactions as well as endorsed-inputs of previous
slots up to n+ 2t+ 1 slots in the past. A transaction tx enters the updated mempool as long
as it is valid and the mempool remains permutation-safe with respect to the ledger state.
Recall that the state of the ledger is determined based on finalised transactions only. Thus a
transaction may enter the mempool as long as no other transaction has reached t+ 1 votes in
the settled part of the ledger despite the fact that some conflicting transactions may be part
of some endorsed inputs.

• Blockchain Extension. Each server checks if it is responsible for extending the ledger, in which
case it operates as before, except for the fact that it prepares the endorsed-input with the
set of transactions first and also caches it for n + 2t + 1 slots. In the case the server is not
responsible for extending the blockchain, it checks whether it should resubmit its endorsed
input. This will happen only in case the local blockchain does not include its endorsed-input.

The instant proof of settlement is n− t signatures that a transaction has been included in the
mempool of the same number of servers and produces the same output.

Instant proof of settlement with parameter u is a liveness property that indicates the following:
any transaction by a client that has been issued n − t receipts will be eventually settled in the
ledger after u slots, or the client will obtain a proof that a server is corrupt.

Theorem 8.1. Ouroboros-BFT satisfies persistence and instant proof of settlement with parameter
n + 5t + 2 under the assumption there are at most t < n/3 Byzantine parties, and the security of
the underlying digital signature scheme.

Proof. We only need to prove the liveness part. Consider a certain slot which is after n + 5t + 2
slots from the slot where a client has received n− t mempool receipts for a certain transaction tx.
We examine the blockchain C of an arbitrary honest server at that moment and specifically how it
progressed during the period of n + (2t + 1) + (3t + 1) slots after the receipts were issued. After
the first n slots of this period we know all honest parties that have issued a receipt for tx had the

9

chance to include it in their endorsed-inputs. In the next 2t+ 1 slots, we know that the chain has
advanced by t + 1 blocks and at least one of these blocks is honest. Given the cache time-out for
endorsed-inputs is n+ 2t+ 1, it holds that up to this honest block, C will carry all endorsed-inputs
of the honest parties that include this transaction. Consider now the case that none of the servers
who issued a mempool receipt includes any transaction that invalidates tx in its endorsed input.
We call this the non-violation case. (In the case of a violation, the transaction tx may not settle
but the client will obtain a proof of server misbehaviour). Since the transaction tx is backed up
by n − t mempool receipts, it holds that honest servers will provide at least n − 2t ≥ t + 1 votes
for tx up to this block. Consider now another transaction tx′ that is in conflict with tx and also
receives at least t+ 1 votes. It follows that at least one server who issued a mempool receipt for tx
also voted for tx′ conflicting with the non-violation case. It follows that tx will settle after the last
3t+ 1 slots; moreover, it will produce the same output as the one promised: indeed if the output of
tx is different it will be because a conflicting transaction tx′ has settled first receiving t+ 1 votes.
This means that at least one server that voted for tx also produced a receipt for tx′ hence violating
the permutation safety of its mempool.

9 Bootstrapping from Genesis

Consider a client that wants to connect to the ledger. It asks for blocks and collects as many as pos-
sible in ∆max local clock ticks. (See below for a discussion about appropriate values for ∆max.) Sub-
sequently it builds the forest of blocks received and searches for a blockchain segment Bs−1Bs . . . Bl
that satisfies the following (i) time(Bl) − time(Bs) < 3t + 1, (ii) time(Bl) − time(Bs−1) ≥ 3t + 1,
and (iii) l − s+ 1 ≥ 2t+ 1, what we call a dense witness. If multiple such segments are found the
one with the latest time(Bs−1) is chosen. If no dense witness is found, the client collects blocks
for another ∆max period. Subsequently, the local chain is set to B0⊥Bs−1 . . . Bl where ⊥ expresses
the gap in the knowledge of the client w.r.t. the public blockchain. The client continues to operate
following the servers’ programs (executing only steps 2 and 4).

Theorem 9.1. For any client performing the bootstrapping from genesis process above, it holds that
that Bs−1 is a finalised block according to the view of all honest parties assuming ∆max is sufficient
time to receive 3t+ 1 blocks from an honest party.

Proof. First, observe that in the period of 3t+ 1 slots prior to the bootstrapping event for a client,
the number of blocks added to any particular honest party’s chain is at least 2t + 1 and at most
3t+1. As a result each honest party has added a dense witness to its chain and thus such a witness
will be transmitted to the client in ∆max steps. Second, suppose that the bootstrapping client
disagrees with an honest server P regarding a block that the client considers as finalised. It follows
that the chain of P is disjoint from the chain fragment selected by the client over the period of the
3t + 1 slots of the segment. Given that the segment has at least 2t + 1 blocks, it follows that it
includes t + 1 blocks from honest parties and as a result the chain of P has at most 2t blocks in
this period of slots, which is a contradiction: all honest parties’ chains advance by 2t+ 1 slots in a
period of 3t+ 1 slots.

10 Logical Clocks

We next consider an enhancement of the protocol that does not require synchronized clocks, can
safely tolerate message delays of ∆, and can optimistically proceed at maximum network speed.

10

The protocol will substitute “real-time” slots with “logical” slots determined on-the-fly by mes-
sage delivery.

The logical clock layer. Specifically, the clock update and network delivery step of the protocol
(of Figure 1) is now implemented by a new logical clock layer which interacts with both the network
and the protocol. This layer is responsible for receiving all data from the network (including
transactions and posted blocks) and is responsible for delivering “clock advance” events to the
blockchain protocol along with appropriate network traffic. The layer will additionally generate
(and process) a new type of multicast message: specifically, upon receiving any block from the
network, the layer immediately multicasts the block’s signature, thus echoing this portion of the
block. These messages are used to approximately synchronize the logical clock layers of various
parties. More precisely, the logical clock layer maintains a “logical” slot number L, an infinite
table D(s) with one entry for each positive integer, and a set of transactions Tx. The layer also
depends on a local timer. Initially, the layer sets its logical slot number L to sl0, initializes Tx = ∅,
initializes its “delivery table” so that D(0) contains the genesis block, D(s) = ∅ for each s > 1, and
sets its local timer to 0. It then repeatedly carries out the following (written in an event-driven
style):

Block delivery event. If the network delivers a valid block B with timestamp sls, add the block
B to D(s). Extract the slot signature σ from this block, and treat σ as a newly delivered
signature; see below.

Signature delivery event. If the network delivers a valid slot signature σ for timeslot sls,
determine whether σ ∈ D(s). If not, immediately multicast the signature σ and add the
signature to the set D(s). If L = sls, this generates a logical fast forward; see below.

Transaction delivery event. If the network delivers a transaction tx, this is added to the
transaction set Tx.

Timeout event. If the local timer reaches ∆max, this triggers a logical clock tick; see below.

Logical fast forward event. If D(L) 6= ∅, this triggers a logical clock tick; see below.

Logical clock tick (and protocol update) event. A clock advancement event is delivered
to the blockchain protocol. Writing L = sl`, all blocks appearing in ⋃

s≤`D(s) are delivered
to the blockchain protocol and removed from D(s). (Signatures are retained in D to avoid
re-broadcasting previous signatures.) All transactions appearing in Tx are delivered to the
blockchain protocol and Tx is set to ∅. The timer is set to 0 and the logical clock L is set
to sl`+1. Any message sent by the blockchain protocol is multicast to the network (and the
blocks of this message immediately generate block delivery events).

In the theorem below we show that as long as actual network delays ∆ are less than ∆max/2
then the logical clocks as described above can simulate a common global clock with enough accuracy
to guarantee liveness and persistence (as long as the underlying digital signature is secure). We
remark that an adversary can arrange for the logical clocks of various honest parties to be—at
least momentarily—very far out of synchrony. As an example, if the first t slots of the round robin
schedule happen to be associated with adversarial participants, the adversary can immediately
deliver t blocks to a particular honest party P , thus instantaneously advancing its logical clock to
slt+1. Other honest parties’ clocks may not “catch up” until they finally receive the signature echo
messages from P . Despite this, the proof below will argue that the blockchains broadcast by honest
participants of this system still satisfy the fork axioms, and hence that security is maintained.

11

Theorem 10.1. The logical clock implementation provides no advantage to the adversary, provided
that digital signature security holds and ∆max > 2∆, where ∆ time is sufficient to enable the
complete propagation of 2t+ 1 blocks in the network.

In preparation for the proof we set down some notation. For an execution of Ouroboros-BFT
with logical clocks and an absolute time t, we let LP (t) denote the value of the logical clock L of
participant P at this time and let timerP (t) denote the value of the timer of participant P at this
time. It is convenient to treat these quantities together: Define

L̂P (t) = LP (t) + timerP (t)
∆max

and note that LP (t) = bL̂P (t)c .

Similarly, let OP (t) denote the set of slots which player P considers to have been “occupied” by
this time t; that is, the set of all slots for which the player’s logical clock layer has received a valid
signature.

Lemma 10.2. Consider an execution of Ouroboros-BFT with logical clocks. Then for all pairs of
honest players P and P ′ and all t ≥ 0, OP ′(t) ⊂ OP (t+ ∆) and L̂P (t+ ∆) ≥ L̂P ′(t).

Proof. Considering that honest participants immediately multicast any signature they receive and
that messages propagate in time ∆, it is clear that OP ′(t) ⊂ OP (t+ ∆) for all pairs P, P ′ of honest
participants. Consider now the logical clocks L̂P (t) and L̂P

′(t) for a pair of honest participants
P, P ′. In general, the behavior of a logical clock L̂P (t) over an interval t ∈ [0, tmax) is determined
entirely by the schedule of delivery of signatures to P over this interval (as these can cause the
logical clock to instantaneously “fast forward” over slots “occupied” by signatures). In particular,
(assuming a finite number of signature deliveries) a logical clock function may have a finite number of
discontinuities between which the function is simply linear with slope 1/∆max. For concreteness, we
define these functions so that they are left continuous (which is to say that at points of discontinuity
the logical clock is set to the larger of the relevant times associated with the fast forward events).
Note then that L̂P (∆) ≥ L̂P

′(0), as any delivered signatures that may have affected L̂P
′ at time

0 have been delivered to P by time ∆. To complete the proof, we must show that there is no
positive time t for which L̂P

′(t) > L̂P (t + ∆); if such a time exists we may consider the infimum
M = inf{t | L̂P ′(t) > L̂P (t+∆)}. Considering that the functions are piecewise linear (with common
slope) as described above it follows that L̂P ′(M) > L̂P (M + ∆) and that a signature σ must have
been delivered to P ′ at this time M , causing a logical clock tick event. Note, however, that any
signatures delivered to P ′ at time M have been delivered to P by time M + ∆, and hence that
any signatures “fast-forwarded over” by P ′ (at M) must also be fast-forwarded over by P at time
M + ∆ or previously. Hence L̂P (M + ∆) ≥ L̂P ′(M), a contradiction.

Proof of Theorem 10.1. In order for the collection of blockchains held by honest participants during
an execution of the protocol to satisfy the fork axioms, it suffices to ensure that if honest participant
P appears prior to honest participant P ′ in the round robin schedule then any message multicast
by P will be delivered to P ′ “in time”. (Note that the other fork axioms will necessarily be satisfied,
as the protocol still ensures that honest participants sign no more than one blockchain block per
slot, and that valid blockchains must consist of blocks with increasing slot numbers.)

Consider, then, two slots sl < sl′ associated with honest participants P and P ′. We must ensure
that any message multicast by P associated with slot sl will arrive at P ′ before the logical clock of P ′
reaches sl′. Let t be the absolute time at which L̂P ′(t) = sl′; for the sake of contradiction, suppose
that the message generated by P for slot sl has not yet arrived at P ′. In this case, sl 6∈ OP ′(t) and
it must have taken the logical clock of P ′ at least ∆max time just to cross the slot sl. In particular,

12

L̂P
′(t −∆max) ≥ sl and, in light of Lemma 10.2, L̂P (t −∆max + ∆) ≥ L̂P

′(t −∆max) ≥ sl. Thus
the message generated by P for slot sl will be delivered to P ′ by time t−∆max + 2∆ < t so long as
2∆ < ∆max, a contradiction. Note that the proof implicitly demands secure signatures; it is critical
that P is the only participant that can generate a signature that will induce P ′ to fast-forward over
the slot sl.

Acknowledgements

We are grateful to Peter Gaži and Roman Oliynykov for comments and helpful discussions.

References

[1] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[3] Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. Cryptol-
ogy ePrint Archive, Report 2018/754, 2018. https://eprint.iacr.org/2018/754.

[4] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume
9057 of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

[5] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401 of
Lecture Notes in Computer Science, pages 357–388. Springer, 2017.

[6] Ramakrishna Kotla, Allen Clement, Edmund L. Wong, Lorenzo Alvisi, and Michael Dahlin.
Zyzzyva: speculative byzantine fault tolerance. Commun. ACM, 51(11):86–95, 2008.

[7] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.

[9] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm.
In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual Technical Confer-
ence, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., pages 305–319. USENIX
Association, 2014.

[10] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, 1980.

13

