
Efficient Multi-key FHE with short extended
ciphertexts and less public parameters

Tanping Zhou1,2, Ningbo Li1, Xiaoyuan Yang1,2, Yiliang Han1, and Wenchao
Liu1

1 College of Cryptography Engineering, Engineering University of People’s Armed
Police, Xi’an, 710086, China

372726936@qq.com,850301775@qq.com
2 Key Laboratory of Network & Information Security under the People’s Armed
Police, College of Cryptography Engineering, Engineering University of People’s

Armed Police, Xi’an, 710086, China
yxyangyxyang@163.com

Abstract. Multi-Key Full Homomorphic Encryption scheme (MKFHE)
can perform arbitrary operation on encrypted data under different public
keys (users), and the final ciphertext can be jointly decrypted. There-
fore, MKFHE has natural advantages and application value in security
multi-party computation (MPC). For BGV-type MKFHE scheme, the
amount of ciphertexts and keys are relatively large, and the process of
generating evaluation keys is complicated. In this paper, we presented
an efficient BGV-type MKFHE scheme with short extended ciphertexts
and less public parameters. Firstly, we construct a nested ciphertext
extension for BGV and separable ciphertext extension for GSW, which
can reduce the amount of the extended ciphertext. Secondly, we con-
struct a hybrid homomorphic multiplication between RBGV ciphertext
and RGSW ciphertext, which can reduce the size of input ciphertext and
improve the computational efficiency. Finally, the coefficient of user’s se-
cret key is limited to {−1, 0, 1}, which can reduce the ciphertext size in
key switching process. Comparing to CZW17 proposed in TCC17, anal-
ysis shows that the our scheme reduces the amount of ciphertext from
2k to (k + 1), and the evaluation key generation materials are reduced
from

∑L
l=0 24β

2
l to

∑L
l=0 4βB + 4βl, and the amount of evaluation keys

are reduced from 4k2βl to (k + 1)2βB , where k is the number of users
participating in the homomorphic evaluations, L is a bound on the cir-
cuit depth, βl and βB relatively denotes the bit length of modulus ql
and the noise bound B. The reduction in the amount of data may lead
to improvement in computational efficiency. Further more, the separable
ciphertext extension for GSW can also be used in GSW-type MKFHE
scheme such as CM15 to reduce the amount of ciphertext and improve
the efficiency of homomorphic operations.

Keywords: Multi-key FHE, BGV scheme, ciphertext extension, public
parameter, evaluation key, hybrid homomorphic multiplication.

1 Introduction

Full-homomorphic encryption (FHE), which can perform arbitrary operations on
encrypted data without knowing the secret key, has the exchangeable property
for encryption and computation. It has high research value in the current cloud
computing environment, and can be widely used in ciphertext retrieval, secure
multi-party computing (MPC), cloud data analysis, etc.

Since the first ideal-based FHE scheme Gen09 was proposed in 2009, many
FHE schemes [DGHV10, BV11a, BV11b, BGV12, GSW13, AP14] was proposed
following Gentry’s blueprint.

Multi-key FHE (MKFHE) allows computations on ciphertexts under dif-
ferent secret keys, which is an extension of FHE in secure MPC. The concept
of MKFHE was first introduced in [LATV12], and proposed a MKFHE scheme
based on NTRU cryptosystem. However, the security of the NTRU-based cryp-
tosystem can’t be reduced to hard problems in lattice strictly. Its security has
not been fully proved and needs to be further verified.

Clear and McGoldrick [CM15] proposed the first GSW-type MKFHE scheme
based on the learning with error (LWE) problem whose security can be reduced
to the worst-case hardness of problems on ideal lattices. Mukherjee and Wichs
[MW16] simplified [CM15] and gave a construction of MKFHE scheme based on
LWE. [MW16] can be used to construct a simple 1-round threshold decryption
protocol and a two-round MPC protocol.

Both [CM15] and [MW16] need to determine the parties involved in homo-
morphic computation in advance and any new party cannot be allowed to join
in during the homomorphic computation. This type of MKFHE is called single-
hop in [PS16], comparing to multi-hop MKFHE whose result ciphertext can be
employed to further evaluation with new parties, i.e. any new party can dynam-
ically join the homomorphic evaluation at any time. Another similar concept
named fully dynamic MKFHE was proposed in [BP16], which means that the
bound of number of users does not need to be input during the setup procedure.

In TCC2017, Chen et al. proposed a BGV-type multi-hop MKFHE scheme
[CZW17], which supports the Chinese Remainder Theorem (CRT)-based ci-
phertexts packing technique, and simplifies the ciphertext extension process in
MKFHE. What’s more, [CZW17] admits a threshold decryption protocol and
two-round MPC protocol.

Our Contributions. At present, the BGV-type MKFHE scheme supporting
batched multi-hop operations is represented by CZW17. This type of MKFHE
scheme has the weaknesses of large ciphertexts and public parameters, and com-
plicated computation for the generation of evaluation keys. In this paper, we
improve these weaknesses as follows:

(1) We optimize the ciphertext extension process to transform BGV and
GSW ciphertexts under different secrets keys to ciphertexts under the combina-
tion of all involving secrets keys, thus reduce the size of extended ciphertext by
about a half.

(2) We optimize the generation process of evaluation keys. The hybrid ho-
momorphic multiplication between RBGV ciphertexts and RGSW ciphertexts

2

are adopted in our scheme instead of homomorphic multiplication between two
RBGV ciphertexts, thus reduce the size of the public parameters.

(3) We limit the coefficient of user’s secret key to {−1, 0, 1}, thus reduce
the amount and size of ciphertexts in the generation process of evaluation keys.
These improvements can efficiently reduce the amount of data during the ho-
momorphic operations, which may further reduce the homomorphic operations’
computational complexity.

2 Preliminaries

In this paper, the bold upper case letters denote matrices, and the bold lower
case letters denote vectors, and all the vectors are represented as columns. For
a vector a,we use a[i] to denote the i-th element in a. For a matrice,we use
A[i, j] to denote the element of the i-th row and j-th column in A, and use
A[i, :](A[:, j]) to denote the element of the i-th row (j-th column) in A.

For security parameter I, let Φm(X) be the m-th cyclotomic polynomial
which the degree n = ϕm, where ϕ(·) is the Euler’s function. We define the ring
R = [X]/Φm, and Rq = R/qR denotes the residue ring of R modulo an integer
q = plot(n), which means that the coefficients in Rq are in [−q/2, q/2)(except
for q = 2). For a ∈ R, we use ∥a∥∞ = max0⩽i⩽n−1 |ai| to denote the standard
l∞-norm and use ∥a∥1 =

∑ n−1
i=0 |aj | to denote the standard l1-norm.

2.1 GLWE problem

GLWE problem. For security parameter , the GLWE problem is to distin-
guish the following two distributions: First distribution is the uniform samples
(ai, bi) ∈ Rn+1

q . In the second distribution, sampled ai ← Rn
q and s ← Rn

q

uniformly, ei ← c , and the second distribution is the samples (ai, bi) ∈ Rn+1
q

where bi =< ai, s > +ei. The GLWE assumption is that the GLWE problem is
infeasible.
LWE problem. The LWE problem is simply GLWE problem instantiated with
d = 1.
RLWE problem. The RLWE problem is GLWE problem instantiated with
n = 1.

2.2 Modulus switching

Modulus switching technique, which is proposed in [BGV12], is used to decrease
the noise involved in the ciphertext by changing the original modulus ql to
another smaller ql−1 without change the corresponding plaintext. A randomized
rounding function [·]ql:ql−1

: Zql → Zql−1
is used in modulus switching process.

Given an integer x, the rounding process is defined as

[x]ql:ql−1
= ⌊(ql−1/ql)x⌉

3

Where ⌊·⌉ is the rounding function. Actually the rounding error [c]ql:ql−1
−

(ql−1/ql)c is a sub-Gussian distribution with parameter
√
2π. Once given a

RLWE ciphertext c = (b,a) ∈ Rn+1
ql

with a modulus ql and another modulus
ql−1, the plaintext modulus p, compute

ModulusSwitch(c, ql, ql−1, p) = [b,a]ql:ql−1
= ([b]ql:ql−1

, [a1]ql:ql−1
, ..., [an]ql:ql−1

) ∈ Rn+1
ql

Lemma 1. On input the secret key s ∈ Rn
q , a ciphertext c ∈ Rn

q in which
the noise is a sub-Gussian distribution with the parameter σ, the output of
ModulusSwitch(c, ql, ql−1, p) contains the noise which is a sub-Gussian distribu-
tion with parameter

√
(ql−1/qlσ)

2
+ 2π(||s||2 + 1).

2.3 Key Switching

The key switching technique can be used to not only reduce the dimension
of the ciphertext, but more generally can be used to transform a ciphertext c1
under one secret key vector s1 to a different ciphertext c2 that encrypts the same
message, but is now decryptable under a second secret key vector s2. Given a
ciphertext c1 ∈ Rn1

q under the secret key s1 = (1,−z1) ∈ Rn1
2 and another secret

key s2 = (1,−z2) ∈ R2
2, let β = ⌊log q⌋+1, the key switching process consists of

two procedures:

– SwitchKeyGen(s1 ∈ Rn1
2 , s2 ∈ Rn2

2): Sample n1 · β RLWE instances (aiz2 +
pei,ai) ∈ Rn2

q , i = 1, ..., n1β, compute s̄ = Powersof 2(s1) ∈ Rn1·β
q , and

output the switching keys:

τs1→s2 := {Ki = (aiz2 + pei + s̄[i],ai) ∈ Rn2
q }i=1,...,n1β

Notice that ⟨Ki, s2⟩ = pe+ Powersof2(s1)[i] mod q.
– SwitchKey(τs1→s2 , c1): Compute c̄1 = BitDecomp(c1) ∈ Rn1·β

q , and output
the new ciphertext c2 under the secret key s2:

c2 =
∑n1β

i=1
Ki · c̄1[i] ∈ Rn2

q

Lemma 2. On input z ∈ Zn
q , a message m ∈ Zt, a ciphertext c ∈ LWEt/q

z (m)
in which the noise is a sub-Gussian distribution with parameter α, an evaluation
key ki,j,v ∈ LWEq/q

s (v · ziBj
ks) in which the noise is a sub-Gussian distribution

with parameter σ, the output of key switching KeySwitch(c, {ki,j,v}) contains the
noise which is a sub-Gussian distribution with parameter

√
α2 +Ndksσ2.

2.4 Cryptographic Definitions for Leveled MKFHE Scheme

Definition 1. A leveled multi-key FHE scheme consists of a set of algorithms
described as follows:

– Setup(1λ, 1K , 1L): Given the security parameter λ, a bound K on the number
of keys, a bound L on the circuit depth,output the public parameter pp.

4

– Gen(pp): Given the public parameter pp,output the public key and secret key
of party i(i = 1, ...,K),and output the materials which are required for the
generation of evaluation keys evk.

– Enc(pp,pki,m): Given the public key pki of party i and a message µ, output
the ciphertext cti which contains the index of the corresponding secret key
and the level tag.

– Dec(pp, (ski1 , ski2 , ..., skik), ctS): Given a ciphertext ctS corresponding to
a set of parties S = {i1, i2, ..., ik} ⊆ [K],and their secret keys skS =
{ski1 , ski2 , ..., skik}, output the message µ.

– Eval(pp, evk, C, (ctS1 , pkS1), ..., (ctSt , pkSt)): Given t tuples {(ctSi , pkSi)}i=1,...,t

and a boolean circuit C which is needed to be evaluated,each tuple con-
tains a ciphertext ctSi

corresponding to a set of secret keys indexed by
Si = i1, ..., iki

⊆ [K] and a set of public keys pkSi
= {pkj ,∀j ∈ Si}.

Output a ciphertext ct corresponding to a set of secret keys indexed by
S = ∪ti=1Si ⊆ [K].

If the input ciphertext of Eval(·) can be fresh ciphertext or intermediate
results after any homomorphic operation, the MKFHE scheme satisfies the multi-
hop property.

Definition 2 (Correctness). A leveled multi-hop MKFHE scheme is correct
if for any circuit C of depth at most L with t input wires and a set of tuples
{(ctSi , pkSi)}i∈{1,...,t}, letting µi = Dec(skSi , ctSi), where skSi = {skj ,∀j ∈ Si},
i = 1, ..., t, it holds that

Pr[Dec(skS , Eval(C, (ctS1
, pkS1

), ..., (ctSt
, pkSt

))) ̸= C(µ1, ..., µt)] = negl(λ)

where S = ∪ti=1Si ⊆ [K], pp ← Setup(1λ, 1K , 1L), (pkj , skj) ← Gen(pp) for
j ∈ [S].

Definition 3 (Compactness). A leveled multi-hop MKFHE scheme is compact
if there exists a polynomial poly(·, ·, ·) such that |ct| ⩽ poly(λ,K,L), which means
that the length of ct is independent of the circuit C, but can depend of λ, K and
L.

2.5 The Ring-GSW Scheme

In this section, we describe a variant of ring-LWE based GSW scheme with ring
element plaintext.

– RGSW.Setup(1λ): For the security parameter λ, let Φm(X) be the m-th
cyclotomic polynomial which the degree n = ϕm, where ϕ(·) is the Euler’s
function. Given a modulus q = ploy(n), a small constant integer p, a B-
bound discrete distribution χ in ring R = Z[X]/Φm[X] for B ≪ q, and an
integer N = O(nlogq). Let β = ⌊log q⌋+ 1, we use ring Rq = R/qR.

– RGSW.KeyGen(1n): Sample z ← R3, choose a random vector a ∈ R2β
q and

e ← χ2β uniformly,output the secret key s = (1,−z)T ∈ R2
3 and public key

P = [az + pe,a] = [b,a] ∈ R2β×2
q .

5

– RGSW.EncRand(r,P): This procedure is to generate the encryption of ran-
domness which is used in the real encryption. On inputs the message r ← Rq,
sample ri ← χ(i = 1, ..., β) and two vectors e′1, e

′
2 ← χβ , output the en-

cryption of the randomness:

RGSW .EncRands(r) = F = [f1, f2] ∈ Rβ×2
q

where for i = 1, ..., β, f1[i] = b[i]ri + pe′1[i] + Powersof 2(r)[i] ∈ Rq, f2[i] =
a[i]ri + pe′2[i] ∈ Rq. Notice that Fs = [pẽ + Powersof 2(r)] ∈ Rβ

q for some
small ẽ = e[i]ri + e′1[i]− e′2[i]z.
RGSW .Enc(µ,P): On inputs µ ∈ Rq and the public key P = [b,a] ∈
R2β×2

q ,sample a random element r ← χ and an error matrix E = [e1, e2]←
χ2β×2, output the ciphertext

RGSW.Encs(µ) = C = rP+ pE+ µG

= r[b,a] + pE+ µG

= [raz + p(re+ e1), ra+ pe2] + µG ∈ R2β×2
q

where G = (I, 2I, ..., 2β−1I)T ∈ R2β×2
q . Notice that C ·s = pẽ+µG ·s ∈ R2β

q .

3 Efficient Techniques for Homomorphic Operations

This section introduces some efficient functions and algorithms for homomorphic
operations, which are our main innovations. Mainly includes: nested ciphertext
extension for BGV, separable ciphertext extension for GSW, generation of eval-
uation keys and the hybrid homomorphic multiplication between RBGV cipher-
text and RGSW ciphertext.

3.1 The Process of Homomorphic Operations

The process of homomorphic operation in MKFHE scheme is shown in Fig.1.
The purpose of the system is to perform homomorphic operations on ciphertexts
of different users in the cloud. In the initialization phase, the user uploads his
own BGV ciphertext and the encrypted GSW and BGV ciphertext pieces of his
secret key to the cloud.

Step 1(ciphertext extension): run the ciphertext extension function to
the BGV ciphertext participating in the homomorphic operation, and get the
extended ciphertext corresponding to the user set S.

Step 2(homomorphic operation): do homomorphic operation on the
user’s extended ciphertext and get a high-dimensional BGV ciphertext.

Step 3(hybrid homomorphic multiplication): respectively select the
BGV/GSW ciphertext of secret key from different users and do ciphertext exten-
sion and hybrid homomorphic multiplication between these ciphertext to obtain
the evaluation keys.

Step 4(key switching): perform key switching operation on the ciphertext
outputted in the third step using the evaluation keys.

6

Step 5(modulus switching): perform modulus switching operation on
the result ciphertext of step four and output the final ciphertext.

The first two steps and the third step in the system can be performed
simultaneously.

Fig. 1. The process of homomorphic operation in MKFHE scheme

3.2 Ciphertext Extension

Nested ciphertext extension for BGV BGV.CTExt(cl, S
′): Input a ci-

phertext tuple ct = {c ∈ Rk+1
ql

, S = {i1, ..., ik}, l} corresponding to k users
and a set of parties S′ = {j1, ..., jk′} for S ∈ S′, output an extended tuple
ct′ = {c̄ ∈ Rk′+1

ql
, S′ = {j1, ..., jk′}, l}. The extending algorithm is as follows:

(a) Divide the ciphertext c into k + 1 sequential sub-vectors, which can be
indexed by S = {i1, ..., ik} (except for the first sub-vector), i.e.,

c = (ci0 |ci1 | · · · |cik) ∈ Rk+1
ql

where the corresponding secret key is sl = (1,−zl,i1 , ...,−zl,ik) ∈ Rk+1
ql

.
(b) The extended ciphertext c̄ consists of k′+1 sequential sub-vectors, which

can be indexed by S′ = {j1, ..., jk′} (except for the first sub-vector), i.e.,

c̄ = (ci0 |cj1 | · · · |cjk′) ∈ Rk+1
ql

where cjx =

{
0 , jx /∈ S
cix , jx ∈ S

, x ∈ {1, ..., k′}, and the corresponding secret key is

s̄l = (1,−zl,j1 , ...,−zl,jk′) ∈ Rk′+1
ql

. It’s easy to verify that ⟨c, sl⟩ = ⟨c̄, s̄l⟩.

7

Separable ciphertext extension for GSW RGSW.CTExt(Ci,Fi, {Pj , j =
1, ..., k}): On input the i-th party’s ciphertext Ci ∈ R2β×2

q , an encryption Fi

of randomness ri and the public keys of all involved parties Pj = [bj ,aj], j =
1, ..., i− 1, i+ 1, ...k. Output the extended ciphertext:

C̄i =

X1,0 +Ci,0 Ci,1 X1,1 0 0

X2,0 +Ci,0 0
. 0

...
... Ci,1

...

Xk−1,0 +Ci,0

... . . .
Xk,0 +Ci,0 0 Xk,1 Ci,1

∈ R2kβ×(k+1)

q

where Ci = RGSW .Encsi(µi) = [Ci,0,Ci,1] = ri[azi + pei,a] + pEi + µiG ∈
R2β×2

q , Xj = [Xj,0,Xj,1] = [BitDecomp(b̃j [u])Fi] ∈ R2β×2
q , b̃j [u] = bj [u] −

bi[u], u = 1, ..., 2β, β = ⌊log q⌋ + 1 and the corresponding secret key s̄ =
(1,−z1, . . .− zk).

Correctness of Ciphertext Extension for GSW. In order to ensure the
correctness of the extending algorithm of GSW ciphertext (C̄is̄ = pẽ + µiḠs̄),
it is necessary to verify that the j-th row in C̄i satisfies:

(Xj,0 +Ci,0)−Ci,1zj −Xj,1zi = Cisj +Xjsi = pẽ+ µiGsj

where ẽ ∈ R2β is a small noise vector, and the analysis process is as follows:

Cisj = ri[azi + pei − azj] + pEsj + µiGsj

= pẽ+ µiGsj − rib̃j

Xjsi = BitDecomp(b̃j)Fi · si
= BitDecomp(b̃j)[pẽ+ Powersof 2(ri)]

= pẽ+ rib̃j

Then we can get Cisj + Xjsi = pẽ + µiGsj , thus C̄is̄ = pẽ + µiḠs̄, where
G = (I2k, 2I2k, ..., 2

β−1I2k)
T ∈ R2kβ×2k

q .

3.3 Generation of Evaluation Key

In this paper, we optimize the generation of evaluation keys during the key-
switching process in [CZW17]. We admit the hybrid homomorphic multiplica-
tion between RBGV ciphertexts and RGSW ciphertexts instead of homomor-
phic multiplication between two RBGV ciphertexts, thus the noise involved in
the evaluation keys is decreased. What’s more, we limit the coefficient of user’s
secret key to {−1, 0, 1}, thus the BitDecomp(·) and Powersof 2(·) techniques
are no longer required in the key-switching process, thus reduce the number of
ciphertexts during key-switching process.

MKFHE.EVKGen(emS ,pkS): Given a level-l extended secret key ŝl = s̄l ⊗
s̄l ∈ R

(k+1)2

3 ,where s̄l = (1,−zl,j1 , ...,−zl,jk) ∈ Rk+1
3 , and all the level-(l − 1)

8

public keys [bl−1,j ,al−1,j]j∈{j1,...,jk} involved in S = {j1, ..., jk}. For the user
j ∈ {1, ..., k}, define the ciphertexts Ψl,j ≜ RGSW.Encsl−1,j

(zl,j) and Φl,j,m ≜
RBGV.Encsl−1,j

(2m ·zl,j), where m ∈ {0, ..., βl−1}. Output the evaluation keys
evk = {Km,ξ ∈ R2

ql
}m∈{0,...,βl−1};ξ∈{1,...,(k+1)2}

The generation process of the evaluation keys is presented in Algorithm1.

Algorithm 1 the generation of evk = {Km,ξ}
Input:Ψl,j ,F′

l,j ,Φl,j,m,m ∈ {0, ..., βl − 1},j ∈ {1, ..., k},ζ ∈ {0, ..., k}
for ζ′ ∈ {0, ..., k} do

Ψ̄l[ζ
′] ≜

{
RGSW.Encs̄l−1(1) ζ

′ = 0
RGSW .CTExts̄l−1(Ψl,ζ′) else

for ζ ∈ {0, ..., k} do
for m ∈ {0, ..., βl − 1} do

Φ̄l,m[ζ] ≜
{

RBGV.Encs̄l−1(2
m) ζ = 0

RBGV .CTExts̄l−1(Φl,ζ,m) else
for ζ′ = [0, ..., k] do

for ζ = [0, ..., k] do
for m = [1, ..., βB] do

Km,(k+1)ζ′+ζ = Ψ̄l,j [ζ
′]⊡ Φ̄l,j′,m[ζ]

Output evk = {Km,ξ}m∈{0,...,βl−1};ξ∈{1,...,(k+1)2}

3.4 Hybrid Homomorphic Multiplication

Definition 4 (Hybrid homomorphic multiplication). We define the prod-
uct ⊡ as

⊡ : RGSW ×RBGV → RBGV

(C2, c1)→ C2 ⊡ c1 = BD(c1) ·C2

Corollary 1. Let C2 be a valid RGSW sample of message µ2 and let c1 be a
valid RBGV sample of message µ1. Then C2⊡ c1 is a RBGV sample of message
µ2 · µ1 and ∥Err(C2 ⊡ c1)∥∞ ⩽ (2β)N · 2σ||Err(C2)||∞ + ∥µ2∥∞||Err(c1)||∞,
V ar(Err(C2 ⊡ c1)) ⩽ 2pβ(2N +1)V ar(e) + pNV ar(e1), where pe1 is the noise
of c1, e← χ is the noise involved in C2.

4 New Construction of BGV-type MKFHE Scheme

In this section, we present the details of our MKFHE scheme based on [BGV12].
For convenience, in the following we use RGSW .Encs(µ) to denote a GSW ci-
phertext (which may not be fresh) that can be decrypted to µ with the secret key
s. Also we adopt the same subroutines such as ModulusSwitch and SwitchKey
in [BGV12] scheme. For details of the original BGV scheme, see Appendix 1.

9

4.1 Basic Scheme

– MKFHE.Setup(1λ, 1K , 1L): For the security parameter λ, let Φm(X) be the
m-th cyclotomic polynomial which the degree n = ϕm, where ϕ(·) is the
Euler’s function. Given a bound K on the number of keys, a bound L on
the circuit depth with L decreasing modulus for each level and a small
integer p coprime with all ql, a B-bound discrete distribution χ in ring
R = Z[X]/Φm(X) for B ≪ ql. Let β = ⌊log q⌋ + 1, βl = ⌊log ql⌋ + 1,
βB = ⌊logB⌋ + 1 and choose L + 1 random public vectors al ∈ R2βl

ql
for

l ∈ {0, . . . , L}. All the following algorithms implicitly take the public pa-
rameter pp = (R,B, χ, {ql,al}l∈{0,...,L}, p) as input.
Let S be an ordered set containing all indexes of the parities that the ci-
phertext corresponding to. Without loss of generality, we assume that the
indexes in S are always arranged from small to large and S has no dupli-
cate elements. Usually, the ciphertext tuple ct = {c, S, l} contains the real
ciphertext c, the user set S and a level tag l.

– MKFHE.KeyGen(j ∈ K): Generate keys for the j-th party. For l from L
down to 0, do the following:
(a) Sample zl,j ← χ, and set sl,j = (1,−zl,j)T ∈ R2

ql
. The secret key for the

j-th party is skj = {sl,j}, l ∈ {L, ..., 0}.
(b) Choose a random vector el,j ← χ2βl , and generate 2βl ring-LWE in-
stances:

pl,j := [al,jzl,j + pel,j ,al,j] = [bl,j ,al,j] ∈ R2βl×2
q

The public key for the j-th party is pkl,j = {pl,j}, l ∈ {L, ..., 0}.
(c) For j ∈ {1, ..., k}, compute the materials used in the generation of eval-
uation keys.

emj = {(Φl,j ∈ R2βB
ql

), (Ψl,j ∈ R2βl×2
ql

,F′
l,j ∈ Rβl×2

ql
)}l={L,...,0}

(i) For m ∈ {0, ..., βl − 1}, j ∈ {1, ..., k}, ζ ∈ {0, ..., k} , compute

Φl,j,m ≜ RBGV.Encsl−1,j
(2m · zl,j)

= {rl,j,mbl−1,j + 2el,j,m + 2m · zl,j , rl,j,mal−1 + 2e′l,j,m} ∈ R2
ql

Φ̄l,m[ζ] ≜
{

RBGV.Encs̄l−1
(2m) ζ = 0

RBGV.CTExts̄l−1
(Φl,ζ,m) else

(ii) For i ∈ {0, ..., βl − 1}, j ∈ {1, ..., k}, ζ ∈ {0, ..., k} compute

Ψl,j ≜ RGSW.Encs̄l−1
(zl,j)

= {r′l,j [bl−1,al−1] + pE′
l,j + zl,jG} ∈ R2βl×2

ql

Ψ̄l[ζ
′] ≜

{
RGSW.Encs̄l−1

(1) ζ ′ = 0
RGSW.CTExts̄l−1

(Ψl,ζ′) else

F′
l,j = RGSW.EncRand(r′l,j , pkl−1,j) ∈ Rβl×2

ql

10

– MKFHE.Enc(pkj , µ): Set S = {j}, and input the public key of the j-th party
pL,j and a message µ ∈ Rp, choose a random and an error matrix , generate
the level-L ciphertext of the message µ ∈ Rp:

c = (cj,0, cj,1) = (rbL,j [1] + pe+ µj , raL[1] + pe′) ∈ R2
qL

And output the tuple ct = {c, {j}, L}.
– MKFHE.Dec(skS , ct = {c, S, l}): Suppose that S = {j1, ..., jk} and skS

consist of all the parties’ secret keys whose indexes are contained in S, i.e.
skS = {skj1 , skj2 , ..., skjk}. Let

s̄l = (1,−zl,j1 , . . .− zl,jk)

Once given a level-l ciphertext c, we can get the message

µ =< c, s̄l > modql mod p

– MKFHE.Eval((pkl,j1 , . . . , pkl,jk), emS , C, (ct1, . . . ctt)): Assume that the se-
quence of ciphertexts cti = {ci, Si, l}i∈{1,...,t} are at the same level-l (If
needed, use SwitchKey and ModulusSwitch to make it so). Let S = ∪ti=1Si =
(j1, . . . , jk). Then the outline of evaluation of the Boolean circuit C is as fol-
lows.
(a) For i ∈ {1, . . . , t}, compute BGV.CTExt(ci, S) to get an extended cipher-
text c̄i which encrypt the same message under s̄l. Here s̄l := (1,−zl,j1 , . . .−
zl,jk) is indexed by S.
(b) Compute evkS = MKFHE.EvkGen(emS) to generate the evaluation key
for the extended ciphertext.
(c) Evaluate each gate of the circuit C by using the two basic homomorphic
operations MKFHE.EvalAdd(evkS , c̄i1 , c̄i2) and MKFHE.EvalMult(evkS , c̄i1 , c̄i2).

In the following subsections, we will detail how to perform the two basic
homomorphic operations MKFHE.EvalAdd(·) and MKFHE.EvalMult(·) on
two (extended) ciphertext c̄1, c̄2 ∈ Rk+1

ql
corresponding to the user set S =

{j1, ..., jk}. The evaluation key is defined as :

evkl = τŝl→s̄l−1
= {Km,ξ}m=1,...,βl,ξ=1,...,(k+1)2

where s̄l = (1,−zl,j1 , ...,−zl,jk) ∈ Rk+1
3 , ŝl = s̄l⊗s̄l, s̄l−1 = (1,−zl−1,j1 , ...,−zl−1,jk) ∈

Rk+1
3 and Km,ξ ∈ Rk+1

ql
such that ⟨Km,ξ, s̄l−1⟩ = pem,ξ + 2m−1ŝl[ξ] ∈ Rql

,
and the canonical form of em,ξ is small.

– MKFHE.EvalAdd(evkS , c̄1, c̄2): On input two (extended) ciphertext c̄1, c̄2 ∈
Rk+1

ql
at the same level-l under the same secret key s̄l ∈ Rk+1

3 (If needed,
use SwitchKey and ModulusSwitch to make it so).
(a) Compute c̄′3 ≜ c̄1 + c̄2 mod ql under the secret key s̄l−1 ∈ Rk+1

3 .
(b) Compute c̄′′3 ≜ SwitchKey(c̄′3, τŝl→s̄l−1

, ql) under the secret key s̄l−1 ∈
Rk+1

3 .
(c) Compute c̄3 ≜ ModulusSwitch(c̄′′3 , ql−1).

11

– MKFHE.EvalMult(evkS , c̄1, c̄2): On input two (extended) ciphertext c̄1, c̄2 ∈
Rk+1

3 at the same level-l under the same secret key s̄l ∈ Rk+1
3 (If needed,

use SwitchKey and ModulusSwitch to make it so).
(a) Compute c̄′3 ≜ c̄1⊗ c̄2 mod ql under the secret key ŝl = s̄l⊗ s̄l ∈ R

(k+1)2

3 .
(b) Compute c̄′′3 ≜ SwitchKey(c̄′3, τŝl→s̄l−1

, ql) under the secret key s̄l−1 ∈
Rk+1

3 .
(c) Compute c̄3 ≜ ModulusSwitch(c̄′′3 , ql−1).

4.2 Analysis

Security analysis. The basic encryption scheme in this paper and CZW17
adopt the same BGV encryption scheme and GSW encryption scheme. There are
two main differences between our scheme and CZW17: on the one hand, we pro-
pose the nested ciphertext extension for BGV and separable ciphertext extension
for GSW, and construct a hybrid homomorphic multiplication between RBGV
ciphertext and RGSW ciphertext. The input and output of these three functions
are ciphertext, and the homomorphic operations are all performed in ciphertext,
so the security of our scheme will not be reduced comparing to CZW17. On the
other hand, we limit the coefficient of user’s secret key to {-1,0,1} (comparing
to a B-bound discrete distribution χ in ring R), which can greatly reduce the
ciphertext size generated by key switching process. So the dimension of polyno-
mial in ring R is needed to increase to some extent to ensure the security of the
scheme.

Efficiency analysis. Table 1 shows that our scheme has obvious advantages
in terms of the three main factors which will affecting the scheme’s efficiency:
ciphertext size (for k users), size of evaluation key generation materials and
evaluation keys. For homomorphic operations on large-scale users, our scheme
improve the efficiency obviously. From the process of homomorphic operation in
the whole MKFHE scheme we can see that, as we limit the coefficient of user’s
secret key to {-1,0,1} , thus the ciphertext size of the secret key is reduced to βB

and the efficiency of our scheme is improved, which can make up for the increase
of computational complexity caused by the increase of polynomial dimension N .

12

5 Conclusion

In this paper, we proposed an efficient multi-key FHE by constructing some ef-
ficient techniques such as nested ciphertext extension for BGV and separable
ciphertext extension for GSW, and the hybrid homomorphic multiplication be-
tween RBGV ciphertext and RGSW ciphertext, which reduce the size of public
parameters, and evaluation keys, and thus improve the efficiency of BGV-type
MKFHE scheme. Furthermore, the separable ciphertext extension for GSW can
also be used in GSW-type MKFHE scheme such as CM15 to improve the effi-
ciency of homomorphic operations.

Appendix

1 BGV Scheme

– BGV.Setup(1λ, 1L): For the security parameter λ, let Φm(X) be the m-th
cyclotomic polynomial which the degree n = ϕm, where ϕ(·) is the Euler’s
function. Given a bound K on the number of keys, a bound L on the circuit
depth with L decreasing modulus qL ≫ qL−1 ≫ · · · ≫ q0 for each level and
a small integer p coprime with all q1, a B-bound discrete distribution χ in
ring R = Z[X]/Φm[X] for B ≪ ql, N = n · polylog(q). We use Rq = R/qR.

– BGV.KeyGen(1n, , 1L): For l from L down to 0, do the following:
(a) Sample zl ← χn, the secret key is defined as sk = sl ← (1,−zl[1], ...,−zl[n]) ∈
Rn+1

ql
.

(b) Sample a random matrix A′
l ← RN×n

ql
and an error vector el ← χN , com-

pute bl ← A′
lzl + 2el ∈ RN

ql
, output the public key pk := Al = [bl |A′

l] ∈
R

N×(n+1)
ql .

(c) Let s′l = sl ⊗ sl ∈ R
(n+1)2

ql , the evaluation keys is defined as
evk = τs′l→sl−1

← SwitchKeyGen(s′l, sl−1)(omit this step when l = 0)
– BGV.Enc(pk, µ): On input a message m ∈ Rp, set m← (m, 0, ..., 0) ∈ Rn+1

p ,
choose a random vector rl ∈ RN

2 , output the ciphertext

cl = m+Al
T rl ∈ Rn+1

ql

– BGV.Dec(sl, cl): On input the ciphertext cl ∈ Rn+1
ql

and its corresponding
secret key sl ∈ Rn+1

ql
, output the message:

µ← [[< cl, sl >]ql]p

– BGV.HomAdd(evk, c1, c2): On input two (extended) ciphertext c1, c2 ∈
Rn+1

ql
at the same level-l under the same secret key sl ∈ Rn+1

ql
(If needed,

use SwitchKey and ModulusSwitch to make it so).
(a) Compute c̄3 = c1+c2 ∈ Rn+1

ql
under the secret key s′l = sl⊗sl ∈ R

(n+1)2

ql �

13

(b) Pad zeros to c̄3 and get c′3 ∈ R
(n+1)2

ql , and compute c′′3 = SwitchKey(c′3, τs′l→sl−1
) ∈

Rn+1
ql

under the secret key sl−1 ∈ Rn+1
ql

.
(c) Compute c3 = Modulus Switch(c′3, ql−1) ∈ Rn+1

ql−1
.

– BGV.HomMult(evk, c1, c2): On input two (extended) ciphertext c1, c2 ∈
Rn+1

ql
at the same level-l under the same secret key sl ∈ Rn+1

ql
(If needed,

use SwitchKey and ModulusSwitch to make it so).
(a) Compute c̄3 = c1 ⊗ c2 ∈ R

(n+1)2

ql under the secret key s′l = sl ⊗ sl ∈
R

(n+1)2

ql ;
(b) Compute c′3 = SwitchKey(c̄3, τs′l→sl−1

) ∈ Rn+1
ql

under the secret key
sl−1 ∈ Rn+1

ql
.

(c) Compute c3 = Modulus Switch(c′3, ql−1) ∈ Rn+1
ql−1

.

2 Two Subroutines

Here introduce two subroutines BitDecomp(·) and Powersof 2(·) which are widely
used in FHE schemes. Let β = ⌊log q⌋+1. We describe these two subroutines as
follows.

BitDecomp(x ∈ Rn
q , q): Decomposes x ∈ Rn

q into its bit representation.
Namely write x =

∑β−1
j=0 2juj with all uj ∈ {0, 1}n×d, and output [u0,u1, ...,uβ−1] ∈

{0, 1}n·β . Powersof 2(x ∈ Rn
q , q): Let vj = 2jx mod q ∈ Rn

q , j ∈ {0, 1, ..., β− 1},
and output [v0,v1, ...,vβ−1] ∈ Rn·β

q . It’s obviously to verify that for U,V ∈
Rn×d

q , we have

⟨BitDecomp(x, q),Powersof 2(y, q)⟩ = ⟨x,y⟩ mod q

References

[AP13] ALPERIN-SHERIFF J, PEIKERT C. Practical bootstrapping in quasilinear
time. In: Advances in Cryptology—CRYPTO 2013. Springer Berlin Heidelberg,
2013: 1–20.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In Advances in Cryptology-CRYPTO 2014, pages 297-314. Springer, 2014.

[Bra12] BRAKERSKI Z. Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Advances in Cryptology—CRYPTO 2012. Springer
Berlin Heidelberg, 2012: 868–886.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference, pages 309-325.ACM, 2012.

[BP16] BRAKERSKI Z, PERLMAN R. Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Advances in Cryptology—CRYPTO 2016. Springer Berlin
Heidelberg, 2016: 190–213.

14

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) LWE. Foundations of Computer Science Annual Sympo-
sium on, 2011(2):97-106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in Cryptology-
CRYPTO 2011, pages 505-524. Springer, 2011.

[CGG16] Chillotti I, Gama N, Georgieva M, et al. Faster Fully Homomorphic En-
cryption: Bootstrapping in Less Than 0.1 Seconds. International Conference on the
Theory and Application of Cryptology and Information Security—ASIACRYPT
2016. Springer, Berlin, Heidelberg, 2016:3-33.

[CGGI17] Chillotti I, Gama N, Georgieva M, et al. Faster Packed Homomorphic Oper-
ations and Efficient Circuit Bootstrapping for TFHE. International Conference on
the Theory and Application of Cryptology and Information Security—ASIACRYPT
2016. Springer, Cham, 2017:377-408.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Advances in Cryptology - CRYPTO 2015, Pro-
ceedings, Part II, pages 630-656, 2015.

[CZW17] Chen L, Zhang Z, Wang X. Batched Multi-hop Multi-key FHE from Ring-
LWE with Compact Ciphertext Extension, Theory of Cryptography Conference.
Springer, Cham, 2017:597-627.

[DGHV10] Dijk M V, Gentry C, Halevi S, et al. Fully homomorphic encryption over
the integers, International Conference on Theory and Applications of Cryptographic
Techniques. Springer-Verlag, 2010:24-43.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169-178, 2009.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attributebased. In
Advances in Cryptology-CRYPTO 2013, pages 75-92. Springer, 2013.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ringbased
public key cryptosystem. In International Symposium on Algorithmic Number The-
ory, pages 267-288, 1998.

[LATV12] Adriana L´opez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1219-1234. ACM, 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Advances in Cryptology - EUROCRYPT 2016 , Proceedings,
Part II, pages 735-763, 2016.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. In Theory
of Cryptography - 14th International Conference, TCC 2016-B, Proceedings, Part
II, pages 217-238, 2016.

15

