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Abstract
Machine/Deep Learning (M/DL) as a Service stands as a promising solution for cloud-

based inference applications. In this setting, the cloud has a pre-learned model and large
computing capacity whereas the user has the samples on which she wants to run the model.
The main concern with these systems is related to the privacy of the input data. Our work
offers secure, efficient and non-interactive privacy-preserving solution by employing high-end
technologies such as modern cryptographic primitives, advanced DL techniques and high-
performance computing hardware. Namely, we use Fully Homomorphic Encryption (FHE),
Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs).
FHE, with its widely-known feature of non-interactively computing on encrypted data, em-
powers a wide range of privacy-concerned cloud applications including M/DLaaS. This comes
at a high cost since FHE includes highly-intensive computation that requires enormous com-
puting power. Although the literature includes a number of proposals to run CNNs on
encrypted data, the performance is still far from satisfactory. In this paper, we push the
level up and show how to accelerate the performance of running CNNs on encrypted data
using GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-
10 datasets into 10 classes. We used a number of techniques such as low-precision training,
unified training and testing network, optimized FHE parameters and a very efficient GPU
implementation to achieve high performance. Our solution achieved high security level (> 80
bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10,
respectively. In terms of performance, our best results show that we could classify the entire
testing datasets in 6.46 seconds (resp. 3044 seconds), with per-image amortized time (0.788
milliseconds) (resp. 371 milliseconds) for MNIST and CIFAR-10, respectively.

Fully Homomorphic Encryption, Deep Learning, Encrypted Convolutional Neural Networks,
Privacy-preserving Computing, GPU Acceleration

1 Introduction

Machine/Deep Learning (M/DL) has empowered a wide range of applications from labelling
systems, web searches, content filtering to recommendation systems on entertainment and e-
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commerce systems. The prominent feature of this technology is its ability to perform tasks that
we humans can do seamlessly such as labelling, identification and recommendation. In order to
do that, this technology relies on complex models that are able to capture specific features from
input data. Building these models is a complex task that requires substantial domain expertise
of several disciplines starting from neurology to computer science. Therefore, there is an evolving
trend toward leasing instead of building these models, which made Machine/Deep Learning as a
Service (M/DLaaS) an indispensable solution.

The cloud stands as a good platform to either create or host pre-learned models as it offers
cheap data storage, near-zero deployment cost and high computational services [23]. However, it
has some drawbacks and raises important questions that need to be resolved. One of the main
questions is that cloud platforms do not guarantee data privacy. In the DLaaS setting, the user
uploads her data to the cloud which in turn evaluates the model on the input data and sends
the results back to the user. At every step along this process, there are numerous opportunities
for attackers and other malicious actors to compromise the data.

As a motivating example, suppose there is a financial service provider who claims to invalidate
the efficient market hypothesis and owns a model that can be used to predict the market value
of a designated class of companies with high accuracy rate. The service provider would ideally
want to monetize their service by hosting it on the cloud and providing paid inferences according
to certain service agreements with the clients. Moreover, a potential client may feel reluctant to
use the service and share her confidential data with the cloud despite the potential return value.
An ideal solution to this problem shall protect both the model and private data. Moreover,
it has to reveal nothing about the prediction result. Besides, the solution is preferred to be
non-interactive, i.e., does not require the client to be involved in the computation except for
providing input and receiving output. Finally, the solution has to be efficient with reasonable
response time.

The main objective of our work is to provide secure, efficient and non-interactive solution
to the aforementioned scenario. Our solution reveals nothing about the input, say x, to the
cloud nor it does about the model, say f , to the client except what can be learned from input
x and f(x). The system is also secure against passive adversaries sniffing the communication
between the cloud and the client. However, we assume that the cloud is semi-honest, i.e., it
follows the protocol with the exception that it tries to learn the private inputs from clients. Our
solution is also efficient and reasonably practical especially if multiple predictions are to be made
simultaneously. Lastly, it is non-interactive since the client needs only to interact with the cloud
to provide the input data and receive the output.

There are at least three possible methods to tackle the aforementioned problem: 1) Trusted
Computing Base (TCB) [36], such as INTEL Software Guard Extensions (SGX) or AMD Secure
Encrypted Virtualization (SEV), which provides hardware-based primitives that can be used to
execute private data and/or code in shielded environments, called enclaves, 2) Multi-Party Com-
putation (MPC) protocols which are algorithmic solutions that employ cryptography to jointly
evaluate a certain function between multiple parties without revealing any party’s private input
and 3) Fully Homomorphic Encryption (FHE) that allows anyone to evaluate a certain function
on encrypted data without decryption. TCB-based solutions are very efficient and suitable for
the cloud computing paradigm. However, several attacks have been recently found to affect TCB
by allowing unprivileged programs to extract memory content that is only accessible to privi-
leged programs [27, 32, 13] which raises more concerns about this technology. MPC solutions
are interactive solutions that require a fair amount of communication between the participat-
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ing parties, i.e., they are communication-bound. On the other hand, FHE-based solutions are
similar to MPC solutions except that they are non-interactive. However, they are considered
compute-bound as they require an enormous amount of computation. As computation is typi-
cally simpler to tackle than communication, this work employs a combination of technologies to
design a FHE-based solution that is secure, efficient and non-interactive.

FHE-based Privacy-preserving machine learning was considered previously by Graepel et
al. [19] and Aslett et al. [6]. Following them, Dowlin et al. [16] proposed CryptoNets, the first
neural network over encrypted data, providing a method to do the inference phase of privacy-
preserving deep learning. Since then, others [33, 10, 25, 22, 24] have applied a variety of cryp-
tographic techniques, such as secure MPC and oblivious transfers, to achieve similar goals. The
main drawback of these FHE-based solutions is the computational overhead. For instance, Cryp-
toNets required 570 seconds to evaluate a FHE-friendly model on encrypted samples from the
MNIST dataset [30] at security level (80-bit). In addition, their network required a high plaintext
modulus (t ≈ 280) which had to be decomposed via the Chinese Remainder Theorem (CRT) into
two smaller (240) moduli. Therefore, they had to run the network twice to evaluate the model.
Moreover, the scheme they used (YASHE′) is not recommended to use due to recent lattice sub-
field attacks [4]. To this end, we design a solution that overcomes the aforementioned problems.
For instance, our solution is more efficient and requires only 6.46 seconds to evaluate the MNIST
model with security level > 91 bits. Also, it requires a much smaller plaintext modulus (t ≈ 243)
that can be used directly without CRT decomposition.

Just as AlexNet by Krizhevsky et al. [29] showed how image classification is viable by running
Convolutional Neural Networks (CNN) on GPUs, our main contribution in this work is to show
that privacy-preserving deep learning is not only possible on GPUs but can also be dramatically
accelerated and offers a way towards efficient DLaaS. We follow the framework put forward in
CryptoNets [16] and apply our GPU-accelerated FHE techniques to realize efficient Homomorphic
Convolutional Neural Networks (HCNNs).

Although the framework is available, there are still a number of challenges to be addressed
to realize practical HCNNs. FHE, first realized by Gentry [18] almost 10 years ago, allows
arbitrary computation on encrypted data. Informally, it works as follows. Encryption masks the
input data, called a plaintext, by a random error sampled from some distribution, resulting in a
ciphertext that reveals nothing about what it encrypts. Decryption uses the secret key to filter
out the noise and retrieve the plaintext as long as the noise is within a certain bound. Note that
during computation, the noise in ciphertexts grows but in a controlled manner. At some point,
it grows to a point where no further computation can be done without resulting in a decryption
failure. Bootstrapping can be used to refresh a ciphertext with large noise into one with less
noise that can be used for further computation. By doing this indefinitely, theoretically, any
function can be computed on encrypted data.

As bootstrapping is extremely expensive, this approach is still impractical and bootstrapping
is usually avoided in most practical settings. Instead, the class of functions that can be eval-
uated is restricted to depth L arithmetic circuits, yielding a levelled FHE scheme that can be
parameterized to support circuits of depth leqL. For performance, L should be minimized which
means that we have to carefully design HCNNs with this in mind. Furthermore, the model of
computation in FHE, arithmetic circuits with homomorphic addition (HAdd) and multiplication
(HMult) gates, is not compatible with non-polynomial functions such as sigmoid, ReLU and max.
This means that we should use polynomial approximations to the activation functions where
possible.
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Besides that, we have to encode decimals in a form that is compatible with FHE plaintext
data, which are usually integers. These can have high precision which means that they will
require integers of large bit-size to represent them in the commonly used scalar encoding. In
this encoding, decimals are transformed into integers by multiplying them with a scaling factor
∆ and then operated on with HAdd and HMult normally. The main drawback of this encoding
is that we cannot re-scale encoded data mid-computation; therefore, successive homomorphic
operations will cause data size to increase rapidly. Managing this scaling expansion is a necessary
step towards scaling HCNNs to larger datasets and deeper neural networks.

Our Contributions.

1. We present the first GPU-accelerated Homomorphic Convolutional Neural Networks (HCNN)
that runs a pre-learned model on encrypted data from the MNIST and CIFAR-10 datasets.

2. We provide a rich set of optimization techniques to enable easy designs of HCNN and reduce
the overall computational overhead. These include low-precision training, optimized choice
of FHE scheme and parameters, and a GPU-accelerated implementation.

3. We reduced the HCNN for the MNIST dataset to only 5 layers deep for both training and
inference, smaller than CryptoNets [16] which used 9 layers during training. For CIFAR-
10, we provide an 11-layer FHE-friendly network which can be used for both training and
inference as well.

4. Our implementations shows high performance in terms of runtime and accuracy. On the
MNIST dataset, our HCNN can evaluate the entire dataset in 8.10 seconds, 3.53× faster
than E2DM [24]. On CIFAR-10 dataset, our HCNN requires 3044 seconds, 3.83× faster
than CryptoDL [21].

Related Work. The research in the area of privacy-preserving deep learning can be roughly
divided into two camps: those using homomorphic encryption or combining it with secure multi-
party computation (MPC) techniques. Most closely related to our work are CryptoNets by
Dowlin et al. [16], FHE-DiNN by Bourse et al. [10] and E2DM by Jiang et al. [24], who focus
on using only fully homomorphic encryption to address this problem. Dowlin et al. [16] were
the first to propose using FHE to achieve privacy-preserving deep learning, offering a framework
to design neural networks that can be run on encrypted data. They proposed using polynomial
approximations of the most widespread ReLU activation function and using pooling layers only
during the training phase to reduce the circuit depth of their neural network. However, they used
the YASHE′ scheme by Bos et al. [9] which is no longer secure due to attacks proposed by Albrecht
et al. [4]. Also, they require a large plaintext modulus of over 80 bits to accommodate the output
result of their neural network’s. This makes it very difficult to scale to deeper networks since
intermediate layers in those networks will quickly reach several hundred bits with such settings.

Following them, Bourse et al. [10] proposed a new type of neural network called discretized
neural networks (DiNN) for inference over encrypted data. Weights and inputs of traditional
CNNs are discretized into elements in {−1, 1} and the fast bootstrapping of the TFHE scheme
proposed by Chilotti et al. [14] was exploited to double as an activation function for neurons. Each
neuron computes a weighted sum of its inputs and the activation function is the sign function,
sign(z) which outputs the sign of the input z. Although this method can be applied to arbitrarily
deep networks, it suffers from lower accuracy, achieving only 96.35% accuracy on the MNIST
dataset with lower amortized performance. Very recently, Jiang et al. [24] proposed a new method
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for matrix multiplication with FHE and evaluated a neural network on the MNIST data set using
this technique. They also considered packing an entire image into a single ciphertext compared
to the approach of Dowlin et al. [16] who put only one pixel per ciphertext but evaluated large
batches of images at a time. They achieved good performance, evaluating 64 images in slightly
under 29 seconds but with worse amortized performance.

Some of the main limitations of pure FHE-based solutions is the need to approximate non-
polynomial activation functions and high computation time. Addressing these problems, Liu et
al. [33] proposed MiniONN, a paradigm shift in securely evaluating neural networks. They take
commonly used protocols in deep learning and transform them into oblivious protocols. With
MPC, they could evaluate neural networks without changing the training phase, preserving
accuracy since there is no approximation needed for activation functions. However, MPC comes
with its own set of drawbacks. In this setting, each computation requires communication between
the data owner and model owner, thus resulting in high bandwidth usage. In a similar vein,
Juvekar et al. [25] designed GAZELLE. Instead of applying levelled FHE, they alternate between
an additive homomorphic encryption scheme for convolution-type layers and garbled circuits for
activation and pooling layers. This way, communication complexity is reduced compared to
MiniONN but unfortunately is still significant.

Organization of the Paper. Section 2 introduces fully homomorphic encryption and neural
networks, the main components of HCNNs. Following that, Section 3 discusses the challenges
of adapting convolutional neural networks to the homomorphic domain. Next, we describe the
components that were used in implementing HCNNs in Section 4. In Section 5, we report the
results of experiments done using our implementation of HCNNs on MNIST and CIFAR-10
datasets. Lastly, we conclude with Section 6 and discuss some of the obstacles that will be faced
when scaling HCNNs to larger datasets and deeper networks.

2 Preliminaries

In this section, we review a set of notions that are required to understand the paper. We start
by introducing FHE, thereby describing the BFV scheme, an instance of levelled FHE schemes.
Next, we introduce neural networks and how to tweak them to become compatible with FHE
computation model.

2.1 Fully Homomorphic Encryption

First proposed by Rivest et al. [35], (FHE) was envisioned to enable arbitrary computation on
encrypted data. FHE would support operations on ciphertexts that translate to functions on
the encrypted messages within. It remained unrealized for more than 30 years until Gentry [18]
proposed the first construction. The blueprint of this construction remains the only method to
design FHE schemes. The (modernized) blueprint is a simple two-step process. First, a somewhat
homomorphic encryption scheme that can evaluate its decryption function is designed. Then, we
perform bootstrapping, which decrypts a ciphertext using an encrypted copy of the secret key.
Note that the decryption function here is evaluated homomorphically, i.e., on encrypted data
and the result of decryption is also encrypted.

As bootstrapping imposes high computation costs, we adopt a levelled FHE scheme instead,
which can evaluate functions up to a pre-determined multiplicative depth without bootstrapping.
We chose the Brakerski-Fan-Vercauteren (BFV) scheme [11, 17], whose security is based on the
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Ring Learning With Errors (RLWE) problem proposed by Lyubashevsky et al. [34]. This problem
is conjectured to be hard even with quantum computers, backed by reductions (in [34] among
others) to worst-case problems in ideal lattices.

The BFV scheme has five algorithms (KeyGen, Encrypt, Decrypt, HAdd, HMult). KeyGen
generates the keys used in a FHE scheme given the parameters chosen. Encrypt and Decrypt
are the encyption and decryption algorithms respectively. The differentiation between FHE and
standard public-key encryption schemes is the operations on ciphertexts; which we call HAdd
and HMult. HAdd outputs a ciphertext that decrypts to the sum of the two input encrypted
messages while HMult outputs one that decrypts to the product of the two encrypted inputs.

We informally describe the basic scheme below and refer to [17] for the complete details.
Let k, q, t > 1 with N = 2k, t prime and R = Z[X]/〈XN + 1〉, we denote the ciphertext space
as Rq = R/qR and message space as Rt = R/tR. We call ring elements “small” when their
coefficients have small absolute value.

• KeyGen(λ, L): Given security parameter λ and level L as inputs, choose k, q so that security
level λ is achieved. Choose a random element a ∈ Rq, “small” noise e ∈ Rq and secret key
s ∈ R2, the public key is defined to be pk = (b = e− as, a).

• Encrypt(pk,m): Given public key pk and message m ∈ Rt as input, the encryption of m is
defined as c = (br′ + e′ + bq/tcm, ar′), for some random noise e′, r′ ∈ Rq.
• Decrypt(sk, c): Given secret key sk and ciphertext c = (c0, c1) ∈ R2

q as inputs, the decryp-
tion of c is

m = d(t/q)(c0 + c1s mod q)c mod t.

• HAdd(c1, c2): Given two ciphertexts c1 = (c0,1, c1,1), c2 = (c0,2, c1,2) as inputs, the opera-
tion is simply component-wise addition, i.e. the output ciphertext is c′ = (c0,1 + c0,2, c1,1 +
c1,2).

• HMult(c1, c2): Given two ciphertexts c1 = (c0,1, c1,1), c2 = (c0,2, c1,2) as inputs, proceed as
follows:

1. (Tensor) compute
c∗ = (c0,1c0,2, c0,1c1,2 + c1,1c0,2, c1,1c1,2); (1)

2. (Scale and Relinearize) output

c′ = dRelinearize(d(t/q)c∗c)c mod q. (2)

Where Relinearize(c∗) is used to shrink the size of c∗ from three back to two terms.

2.1.1 Correctness of the Scheme.

For the scheme to be correct, we require that Decrypt(sk, c) for c output from Encrypt(pk,m),
where (pk, sk = s) is a correctly generated key-pair from KeyGen. We characterize when decryp-
tion will succeed in the following theorem. Let c = (c0 = bq/tcm′ + e− c1s, c1) be a ciphertext.
Then, Decrypt outputs the correct message m = m′ if ‖e‖∞ < q/2t, where ‖e‖∞ is the largest
coefficient of the polynomial e ∈ Rq.
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Proof. Recall that the decryption procedure computes m = d(t/q)(c0 + c1s) mod qc mod t.
Therefore, to have m = m′, we first require c0 + c1s < q which means that bq/tcm′ + e < q.
Finally, we need the rounding operation to output m′ after scaling by t/q which requires that
‖e‖∞ < q/2t since (t/q) · e must be less than 1/2.

To see why HAdd works, part of the decryption requires computing

c0,1 + c0,2 + (c1,1 + c1,2)s = (c0,1 + c1,1s) + (c0,2 + c1,2s)

= dq/tcm1 + e1 + dq/tcm2 + e2

= dq/tc (m1 +m2) + e1 + e2.

This equation remains correct modulo q as long as the errors are small, i.e. ‖e1 + e2‖∞ < q/2t.
Therefore, scaling by (t/q) and rounding will be correct which means that we obtain the desired
message.

For HMult, the procedure is more complicated but observe that

(c0,1 + c1,1s)(c0,2 + c1,2s) =

c0,1c0,2 + (c0,1c1,2 + c1,1c0,2)s+ c1,1c1,2s
2

(3)

This means that we need s as well as s2 to recover the desired message from c∗. However,
with a process called relinearization (Relinearize), proposed by Brakerski and Vaikuntanathan [12]
and applicable to the BFV scheme, c∗ can be transformed to be decryptable under the original
secret key s.

2.1.2 Computation Model with Fully Homomorphic Encryption.

The set of functions that can be evaluated with FHE are arithmetic circuits over the plaintext
ringRt. However, this is not an easy plaintext space to work with; elements inRt are polynomials
of degree up to several thousand. Addressing this issue, Smart and Vercauteren [38] proposed a
technique to support single instruction multiple data (SIMD) by decomposing Rt into a product
of smaller spaces with the Chinese Remainder Theorem over polynomial rings. For prime t ≡
1 mod 2N , XN + 1 ≡

∏N
i=1(X − αi) mod t for some αi ∈ {1, 2, . . . , t − 1}. This means that

Rt =
∏N
i=1 Zt[X]/〈X − αi〉 ∼=

∏N
i=1 Zt. Therefore, the computation model generally used with

homomorphic encryption is arithmetic circuits with modulo t gates.
For efficiency, the circuits evaluated using the HAdd and HMult algorithms should be levelled.

This means that the gates of the circuits can be organized into layers, with inputs in the first
layer and output at the last, and the outputs of one layer are inputs to gates in the next layer. In
particular, the most important property of arithmetic circuits for FHE is its depth. The depth
of a circuit is the maximum number of multiplication gates along any path of the circuit from
the input to output layers.

A levelled FHE scheme with input level L can evaluate circuits of at most depth L which
affects the choice of parameter q due to noise in ciphertexts. In particular, the HMult operation
on ciphertext is the main limiting factor to homomorphic evaluations. By multiplying two
ciphertexts results, we have:

c0,1c0,2 = (dq/tcm1 + e1)(dq/tcm2 + e2)

= (dq/tcm1)(dq/tcm2)+

dq/tcm1e2 + dq/tcm2e1 + e1e2︸ ︷︷ ︸
e′

.
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Even after scaling by t/q, the overall noise (≈ t/q · e′) in the output c′ is larger than that of the
inputs, c1 and c2. Successive calls to HMult have outputs that steadily grow. Since decryption
only succeeds if the error in the ciphertext is less than q/2t, the maximum depth of a circuit
supported is determined by the ciphertext modulus q. To date, the only known method to
sidestep this is with the bootstrapping technique proposed by Gentry [18].

2.2 Neural Networks

A neural network can be seen as an arithmetic circuit comprising a certain number of layers.
Each layer consists of a set of nodes, with the first being the input of the network. Nodes in the
layers beyond the first take the outputs from a subset of nodes in the previous layer and output
the evaluation of an activation function over them. The values of the nodes in the last layer are
the outputs of the neural network.

The most widely-used layers can be grouped into three categories:

1. Activation layers: Each node in this layer takes the output, z, of a single node of the
previous layer and outputs f(z) for some function z.

2. Convolution-Type layers: Each node in this layer takes the outputs, z, of some subset of
nodes from the previous layer and outputs a weighted-sum 〈w, z〉+b for some weight vector
w and bias b.

3. Pooling layers: Each node in this layer takes the outputs, z, of some subset of nodes from
the previous layer and outputs f(z) for some function f .

The functions used in the activation layers are quite varied, including sigmoid (f(z) = 1
1+e−z ),

softplus (f(z) = log(1 + ez)) and ReLU, where

ReLU(z) =

{
z, if z ≥ 0;

0, otherwise.

To adapt neural networks operations over encrypted data, we use the following layers:

• Convolution (weighted-sum) layer : at each node, we take a subset of the outputs of the
previous layer, also called a filter, and perform a weighted-sum on them to get its output.

• Average-Pooling layer : at each node, we take a subset of the outputs of the previous layer
and compute the average on them to get its output.

• Square layer: each node linked to a single node z of the previous layer; its output is the
square of z’s output.

• Fully Connected layer: similar to the convolution layer, each node outputs a weighted-sum,
but over the entire previous layer rather than a subset of it.

3 Homomorphic Convolutional Neural Networks

Homomorphic encryption (HE) enables computation directly on encrypted data. This is ideal to
handle the challenges that M/DL face when it comes to questions of data privacy. We call CNNs
that operate over encrypted data as Homomorphic CNNs (HCNNs). Although FHE promises
a lot, there are several challenges, ranging from the choice of plaintext space to translating
neural network operations, that prevent straightforward translation of standard techniques for
traditional CNNs to HCNNs. These challenges are described below.
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3.1 Plaintext Space

The first problem is the choice of plaintext space for HCNN computation. Weights and inputs
of a neural network are usually decimals, which are represented in floating-point. Unfortunately,
these cannot be directly encoded and processed in most FHE libraries and thus require special
treatment. For simplicity and to allow inference on large datasets, we pack the same pixel of
multiple images in a single ciphertext as shown in Figure 1. Note that the BFV scheme can
be instantiated such that ciphertexts may contain a number of slots to store multiple plaintext
messages. It should be remarked that this packing scheme was first proposed by CryptoNets [16].

0 0 0

1 1 1

0 1 2 0 1 2 0 1 2

image 0 image 1 image 9999 

. . .

. 

. 

. 

783 783 783

ciphertext 0

ciphertext 1

ciphertext 783 

Figure 1: Packing MNIST testing dataset. Ciphertext i contains pixel i from all images.

Encoding into the Plaintext Space. We adopt the scalar encoding, which approximates
these decimals with integers. It is done by multiplying them with a scaling factor ∆ and rounding
the result to the nearest integer. Then, numbers encoded with the same scaling factor can be
combined with one another using integer addition or multiplication. For simplicity, we normalize
the inputs and weights of HCNNs in between [0, 1] and ∆ (initially) corresponds to the number
of bits of precision of the approximation, as well as the upper bound on the approximation.

Although straightforward to use, there are some downsides to this encoding. The scale factor
cannot be adjusted mid-computation and mixing numbers with different scaling factors is not
straightforward. For example, suppose we have two messages ∆1m1,∆2m2 with two different
scaling factors, where ∆1 < ∆2:

∆1m1 + ∆2m2 = ∆2(m2 + ∆2/∆1m1)

∆1m1 ×∆2m2 = ∆1∆2(m1m1).

Multiplication will just change the scaling factor of the result to ∆1∆2 but the result of adding
two encoded numbers is not their standard sum. This means that as homomorphic operations
are done on encoded data, the scaling factor in the outputs increases without a means to control
it. Therefore, the plaintext modulus t has to be large enough to accommodate the maximum
number that is expected to result from homomorphic computations.

With the smallest scaling factor, ∆ = 2, 64 multiplications will suffice to cause the result to
potentially overflow the space of 64-bit integers. Unfortunately, we use larger ∆ in most cases
which means that the expected maximum will be much larger. Thus, we require a way to handle
large plaintext moduli of possibly several hundred bits, which is described next.
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Input

[x]/ (x)ℤt Φm

[x]/ (x)ℤt0
Φm [x]/ (x)ℤt1

Φm [x]/ (x)ℤt
r−1

Φm
...

Encryption Encryption  Encryption 

Homomorphic
Evaluation

Homomorphic
Evaluation

Homomorphic
Evaluation

Decryption Decryption Decryption

Output

[x]/ (x)ℤt Φm

...

...

...

Channel 0 Channel 1 Channel r − 1

Figure 2: Plaintext CRT decomposition for a FHE arithmetic circuit

Plaintext Space CRT Decomposition. One way to achieve this is to use a composite
plaintext modulus, t =

∏r−1
i=0 ti for some primes t0, . . . , tr−1 such that t is large enough to

accommodate the maximum intermediate result the network may generate. Recall that the
Chinese Remainder Theorem (CRT) gives us an isomorphism between Zt and

∏r−1
i=0 Zti :

CRT : Zt0 × · · · × Ztr−1 −→ Zt
m = (m0, . . . , mr−1) 7−→ m,

where mi ∈ Zti and m ∈ Zt. The inverse map is:

ICRT : Zt −→ Zt0 × · · · × Ztr−1

m 7−→m = (m0, . . . , mr−1);

where for any m ∈ Zt, we have CRT(ICRT(m)) = m.
For such moduli, we can decompose any integer m < t into a length-r vector with ICRT.

Arithmetic modulo t is replaced by component-wise addition and multiplication modulo the
prime ti for the i-th entry of m. We can recover the output of any computation with CRT.

As illustrated in Figure 2, for homomorphic operations modulo t, we separately encrypt each
entry of m in r FHE instances with the appropriate ti and perform modulo ti operations. At the
end of the homomorphic computation of function f , we decrypt the r ciphertexts, which gives
us f(m). The actual output f(m) is obtained by applying the CRT map to f(m).
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3.2 Neural Network Layers

Computation in FHE schemes are generally limited to addition and multiplication operations
over ciphertexts. As a result, it is easy to compute polynomial functions with FHE schemes.
As with all FHE schemes, encryption injects a bit of noise into the data and each operation on
ciphertexts increases the noise within it. As long as the noise does not exceed some threshold,
decryption is possible. Otherwise, the decrypted results are essentially meaningless.

Approximating Non-Polynomial Activations. For CNNs, a major stumbling block
for translation to the homomorphic domain is the activation functions. These are usually not
polynomials, and therefore unsuitable for evaluation with FHE schemes. The effectiveness of the
ReLU function in convolutional neural networks means that it is almost indispensable. Therefore,
it should be approximated by some polynomial function to try to retain as much accuracy as
possible. The choice of approximating polynomial depends on the desired performance of the
HCNN. For example, in this work, we applied the square function, z 7→ z2, which Dowlin et al. [16]
found to be sufficient for accurate results on the MNIST dataset with a five-layer network.

The choice of approximation polynomial determines the depth of the activation layers as well
as its complexity (number of HMults). The depth and complexity of this layer will be dlog de
and d− 1 respectively, where d is the degree of the polynomial. However, with the use of scalar
encoding, there is another effect to consider. Namely, the scaling factor on the output will be
dependent on the depth of the approximation, i.e. if the scaling factor of the inputs to the
activation layer is ∆, then the scaling factor of the outputs will be roughly ∆1+dlog de, assuming
that the approximation is a monic polynomial.

Handling Pooling Layers. Similar to activations, the usual functions used in pooling
layers, maximum (max(z) = max1≤i≤n zi), `2-norm and mean (avg(z) = 1

n

∑n
i=1 zi) for inputs

z = (z1, . . . , zn), are generally non-polynomial. Among these, avg is the most FHE-friendly
as it requires a number of additions and scaling by a known constant. We note that several
works [40, 26] have shown that pooling is not strictly necessary and good results can be obtained
without it. We found that pooling layers are not necessary for our MNIST network. On the
other hand, pooling gave better accuracy results with the CIFAR-10 network.

Convolution-Type Layers. Lastly, we have the convolutional-type layers. Since these are
weighted sums, they are straightforward to compute over encrypted data; the weights can be
multiplied to encrypted inputs with HMultPlain and the results summed with HAdd. Nevertheless,
we still have to take care of the scaling factor of outputs from this layer. At first thought, we
may take the output scaling factor as ∆w∆i, multiply the scaling factor of the weights and the
inputs, denoted with ∆w and ∆i respectively. But, there is actually the potential for numbers
to increase in bit-size from the additions done in weighted sums. Recall that when adding two
∆-bit numbers, the upper bound on the sum is ∆+1 bits long. Therefore, the maximum number
that can appear in the worst-case in the convolutions is about ∆w∆i × 2dlogne bits long, where
n is the number of terms in the summands. In practice, this bound is usually not achieved
since the summands are almost never all positive. With negative numbers in the mix, the actual
contribution from the summation can be moderated by some constant 0 < c < 1.

4 Implementation

Implementation is comprised of two parts: 1) training on unencrypted data and 2) classifying
encrypted data. Training is performed using the 5-layer (for MNIST) and 11-layer (for CIFAR-
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10) networks whose details are shown in Table 1 and 2. We use the Tensorpack framework [41] to
train the network and compute the model. This part is quite straightforward and can be simply
verified by classifying the unencrypted test dataset. For neural networks design, one of the
major constraints posed by homomorphic encryption is the limitation of numerical precision of
layer-wise weight variables. Training networks with lower precision weights would significantly
prevent the precision explosion in ciphertext as network depth increases and thus speed up
inference rate in encrypted domain. To this end, we propose to train low-precision networks
from scratch, without incurring much loss in accuracy compared to networks trained in floating
point precision. Following [42], for each convolutional layer, we quantize floating point weight
variables w to k bits numbers wq using simple uniform scalar quantizer shown below:

wq =
1

2k − 1
round(w ∗ (2k − 1))

This equation is a non-differentiable function, we use Straight Through Estimator (STE) [8]
to enable the back-propagation. We trained the 5-layer network on MNIST training set with
a precision of weights at 2, 4, 8 and 32 bits, and evaluated on MNIST test set with reported
accuracy 96%, 99%, 99% and 99% respectively. In view of this, we choose the 4-bit network
for the following experiments. It’s worth noting that CryptoNets [16] requires 5 to 10 bits of
precision on weights to hit 99% accuracy on MNIST test set, while our approach further reduces
it to 4 bits and still maintains the same accuracy with both floating-point and scalar encoding.
For CIFAR-10, as the problem is more challenging and the network is deeper, our network
shown in Table 2 uses 8 bits and achieves 77.80% and 77.55% classification accuracy with the
floating-point and scalar encoding, respectively.

The second part is more involved as it requires running the network (with the pre-learned
model) on encrypted data. First, we need to fix FHE parameters to accommodate for both the
network multiplicative depth and precision. We optimized the scaling factors in all aspects of the
HCNN. For the MNIST network, inputs were normalized to [0, 1], scaled by 4 and then rounded
to nearest integer. With the low-precision network trained from scratch, we convert the weights
of the convolution-type layers to short 4-bit integers, using a small scaling factor of 15; no bias
was used in the convolutions. Similarly, inputs to the CIFAR-10 network were normalized to
[0, 1] but we used much larger scale factors for the convolution layers. Moreover, padding has
been used as it provided better accuracy. The scaling factors for both networks are shown in
Tables 1 and 2.

Next, we implement the networks (with scalar encoding) using NTL [37] (a multi-precision
number theory C++ library). NTL is used to facilitate the treatment of the scaled inputs and
accommodate for precision expansion of the intermediate values during the network evaluation.
We found that the largest precision needed is less than (243) for MNIST and (2218) for CIFAR-
10. Note that for MNIST, it is low enough to fit in a single word on 64-bit platforms without
overflow. On the other hand, we use the plaintext CRT decomposition to handle the large
plaintext modulus required for CIFAR-10. By estimating the maximum precision required by
the networks, we can estimate the FHE parameters required by HCNN.

The next step is to implement the network using a FHE library. We implement MNIST HCNN
using two FHE libraries: SEAL [1] and GPU-accelerated BFV (A∗FV) that is described in [3]. On
the other hand, we implement CIFAR-10 HCNN only using A∗FV as it is more computationally
intensive and would take a very long time. The purpose of implementing MNIST HCNN in
SEAL is to facilitate a more unified comparison under the same system parameters and show

12



4.1 HCNN Complexity 4 IMPLEMENTATION

Table 1: HCNN architecture for training and testing MNIST dataset with the scale factor used
in scalar encoding. Inputs are scaled by 4.

Layer Type Description Layer Size Scale

Convolution 5 filters of size 5× 5 and stride (2, 2) without
padding. 12× 12× 5 15

Square Outputs of the previous layer are squared. 12× 12× 5 1

Convolution 50 filters of size 5× 5 and stride (2, 2)
without padding. 4× 4× 50 15

Square Outputs of the previous layer are squared. 4× 4× 50 1

Fully Connected
Weighted sum of the entire previous layer
with 10 filters, each output corresponding to
1 of the possible 10 digits.

1× 1× 10 15

the superiority of the GPU implementation. In addition, we would like to highlight a limitation
in the Residue Number Systems (RNS) variant that is currently implemented in SEAL.

4.1 HCNN Complexity

In this section, we break down the complexity of both HCNNs layers and calculate the total
number of operations required for homomorphic evaluation. We also compare our MNIST HCNN
with CryptoNets’s network [16].

Table 3 shows the computational complexity of each layer in MNIST HCNN and CryptoNets.
The convolution and fully connected layers require homomorphic multiplication of ciphertext by
plaintext (HMultPlain). Suppose the input to the convolution or fully connected layers is vector
i of length l and the output is vector o of length m. Let fw and fh denote the filter width and
height, respectively. The total number of HMultPlain in the convolution layer can be found by
m ·fw ·fh. The fully connected layer requires l ·m HMultPlain operations. On the other hand, the
square layer requires l = m ciphertext by ciphertext multiplications (HMult). It should be noted
that most of FHE libraries provide an additional procedure for homomorphic squaring (HSquare)
which has slightly lower computational complexity compared to HMult, (see Table 8). It can be
clearly noticed that HCNN requires much lower number of HMultPlain compared to CryptoNets
(46,000 vs 106,625). In CryptoNets, the third layer combines 4 linear layers (2 scaled mean pool,
convolution and fully connected layers) for efficiency reasons, whereas it is simply a convolution
layer in HCNN. On the other hand, CryptoNets requires less HSquare (945 vs 1,520).

Table 4 shows the computational complexity for CIFAR-10 HCNN. It can be clearly seen
that CIFAR-10 HCNN is more computationally intensive compared to MNIST. For instance,
6,952,332 HMultPlain and 57,344 HMult operations are required compared to 46,000 and 1,520,
respectively for MNIST HCNN.

4.2 Choice of Parameters

Similar to other cryptographic schemes, one needs to select FHE parameters to ensure that
known attacks are computationally infeasible. We denote to the desired security parameter by
λ measured in bits. This means that an adversary needs to perform 2λ elementary (or bit)
operations to break the scheme with probability one. A widely accepted estimate for λ in the
literature is ≥ 80 bits [39], which is used here to generate the BFV parameters.
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Table 2: HCNN architecture for training and testing CIFAR-10 dataset with the scale factor
used in scalar encoding. Inputs are scaled by 255.

Layer Type Description Layer Size Scale

Convolution 32 filters of size 3 ÃŮ 3 x 3 and stride (1, 1)
with padding.

32 x 32 x 32 10000

Square Outputs of the previous layer are squared. 32 x 32 x 32 1

Pooling Average pooling with extent 2 and stride 2. 16 x 16 x 32 4

Convolution 64 filters of size 3 ÃŮ 3 x 32 and stride (1, 1)
with padding.

16 x 16 x 64 4095

Square Outputs of the previous layer are squared. 16 x 16 x 64 1

Pooling Average pooling with extent 2 and stride 2. 8 x 8 x 64 4

Convolution 128 filters of size 3 ÃŮ 3 x 64 and stride (1,
1) with padding.

8 x 8 x 128 10000

Square Outputs of the previous layer are squared. 8 x 8 x 128 1

Pooling Average pooling with extent 2 and stride 2. 4 x 4 x 128 4

Fully Connected Weighted sum of the entire previous layer
with 256 filters 1 x 1 x 256 1023

Fully Connected Weighted sum of the entire previous layer
with 10 filters. 1 x 1 x 10 63

Table 3: MNIST HCNN vs CryptoNets [16] complexity for homomorphic inference

MNIST HCNN CryptoNets

Layer #
Input Neurons Output Neurons # of Multiplications Input Neurons Output Neurons # of Multiplications

HMultPlain HMult HMultPlain HMult

1 28×28 = 784 5×12×12 = 720 25×720 = 18,000 - 29×29 = 841 5×13×13 = 845 25×845 = 21,125 -
2 5×12×12 = 720 5×12×12 = 720 - 720 5×13×13 = 845 5×13×13 = 845 - 845
3 5×12×12 = 720 4×4×50 = 800 25×800 = 20,000 - 5×13×13 = 845 1×1×100 = 100 100×845 = 84,500 -
4 4×4×50 = 800 4×4×50 = 800 - 800 1×1×100 = 100 1×1×100 = 100 - 100
5 4×4×50 = 800 1×1×10 = 10 10×800 = 8,000 - 1×1×100 = 100 1×1×10 = 10 10×100 = 1,000 -

Total 46,000 1,520 Total 106,625 945

Table 4: CIFAR-10 HCNN complexity for homomorphic inference

CIFAR-10 HCNN

Layer #
Input Neurons Output Neurons No. of Multiplications

HMultPlain HMult

1 32 x 32 x 3 = 3072 32 x 32 x 32 = 32768 589,824 -
2 32 x 32 x 32 =

32768
32 x 32 x 32 = 32768 - 32,768

3 32 x 32 x 32 =
32768

16 x 16 x 32 = 8192 0 -

4 16 x 16 x 32 = 8192 16 x 16 x 64 = 16384 2,594,048 -
5 16 x 16 x 64 =

16384
16 x 16 x 64 = 16384 - 16,384

6 16 x 16 x 64 =
16384

8 x 8 x 64 = 4096 0 -

7 8 x 8 x 64 = 4096 8 x 8 x 128 = 8192 3,308,544 -
8 8 x 8 x 128 = 8192 8 x 8 x 128 = 8192 - 8,192
9 8 x 8 x 128 = 8192 4 x 4 x 128 = 2048 0 -
10 4 x 4 x 128 = 2048 1 x 1 x 256 = 256 457,398 -
11 1 x 1 x 256 = 256 1 x 1 x 10 = 10 2518 -

Total 6,952,332 57,344
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Table 5: HE parameters for MNIST and CIFAR-10 HCNNs with different parameter sets. Depth
refers to the supported multiplicative depth and λ denotes the security level in bits.

HCNN Param ID N log q Plaintext moduli Depth λ

MNIST
1 213 330 5522259017729 4 82
2 213 360 5522259017729 5 76
3 214 330 5522259017729 4 175
4 214 360 5522259017729 5 159

CIFAR-10 5 213 300

2424833, 2654209, 2752513,
3604481, 3735553, 4423681,
4620289, 4816897, 4882433,
5308417

7 91

In this work, we used a levelled BFV scheme that can be configured to support a known
multiplicative depth L, which can be controlled by three parameters: q, t and noise growth. The
first two are problem dependent whereas noise growth depends on the scheme. As mentioned in
the previous section, we found that t should be at least 43 (resp. 218) bit integer for MNIST
(resp. CIFAR-10) to accommodate the precision expansion in HCNN evaluation.

For our HCNNs, 5 (resp. 11) multiplicative depth is required: 2 (resp. 3) ciphertext by
ciphertext (in the square layers) and 3 (resp. 8) ciphertext by plaintext (in convolution, pooling
and fully connected layers) operations for MNIST and CIFAR-10 HCNNs, respectively. It is
known that the latter has a lower effect on noise growth. This means that L needs not to be set
to 5 for MNIST and 11 for CIFAR-10. We found that L = 4 and 7 are sufficient to run MNIST
and CIFAR-10 HCNNs, respectively in A∗FV. However, SEAL required higher depth (L = 5) to
run our MNIST HCNN. The reason is that SEAL implements the Bajard-Enyard-Hasan-Zucca
(BEHZ) [7] RNS variant of the BFV scheme that slightly increases the noise growth due to
approximated RNS operations. Whereas in A∗FV, the Halevi-Polyakov-Shoup (HPS) [20] RNS
variant is implemented which has a lower effect on the noise growth. For a detailed comparison
of these two RNS variants, we refer the reader to [2].
Having L and t fixed, we can estimate q using the noise growth bounds enclosed with the BFV
scheme. Next, we try to estimate N to ensure a certain security level. To calculate the security
level, we used the LWE hardness estimator in [5] (commit 76d05ee).
The above discussion suggests that the design space of HCNN is not limited depending on the
choice of the plaintext coefficient modulus t. We identify a set of possible designs that fit different
requirements. The designs vary in the number of factors in t (i.e., number of CRT channels) and
the provided security level. We provide four sets of parameters for MNIST and one for CIFAR-
10. Parameter sets 2 and 4 are shown here to enable running our MNIST HCNN with SEAL. As
will be shown later in the subsequent section, SEAL requires a higher q due to the higher noise
growth in its underlying FHE scheme. Table 5 shows the system parameters used for each HCNN
with the associated security level. Note that we use 10 primes for the plaintext moduli, each of
size 22/23 bits, to run the CIFAR-10 HCNN. The product of these small primes gives us a 219-
bit plaintext modulus which is sufficient to accommodate any intermediate result in CIFAR-10
HCNN. Note that we have to run 10 instances of CIFAR-10 HCNN to obtain the desired result.
However, these instances are embarrassingly parallel and can be run simultaneously.

It is worth noting also that the choice of the primes in the plaintext modulus is not arbitrary
especially if one wants to do the inference for multiple images at once. To enable the packed
encoding described in Section 3.1, one has to ensure that 2N |(t− 1).
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4.3 HCNN Inference Library

As most deep learning frameworks do not use functions that fit the restrictions of FHE schemes,
we designed an inference library using standard C++ libraries that implement some of the CNN
layers using only additions and multiplications. Support for arbitrary scaling factors per layer is
included for flexibility and allows us to easily define neural network layers for HCNN inference.
We give a brief summary of the scaling factor growth of the layers we used in Table 6.

Table 6: Scaling Factor Growth by Layer

Layer Type Output Scaling Factor

Convolution-Type (
∑n

i=1 wizi) ∆o = ∆w∆i · 2cdlogne, for some 0 < c < 1.

Square Activation (f(z) = z2) ∆o = ∆2
i .

where ∆i and ∆w are the input and weight scaling factors respectively.

In Section 2.2, we introduced several types of layers that are commonly used in designing
neural networks, namely activation, convolution-type and pooling. Now, we briefly describe how
our library realizes these layers. For convolution-type layers, they are typically expressed with
matrix operations but only require scalar additions and multiplications. Our inference library
implements them using the basic form, b +

∑n
i=1wi · zi, for input z = (z1, . . . , zn) and weights

w = (w1, . . . , wn).
For the activation, some modifications had to be done for compatibility with FHE schemes.

In activation layers, the most commonly used functions are ReLU, sigmoid (f(z) = 1
1+e−z ) and

softplus (f(z) = log(1 + ez)). These are non-polynomial functions and thus cannot be directly
evaluated over FHE encrypted data. Our library uses integral polynomials to approximate these
functions; particularly for our HCNN, we used the square function, f(z) = z2, as a low-complexity
approximation of ReLU.

The pooling layers used are average-pooling and they are quite similar to the convolution
layers except that the weights are all ones and a scale factor that is equal to the reciprocal of
the number of averaged values.

4.4 GPU-Accelerated Homomorphic Encryption

The FHE engine includes an implementation of an RNS variant of the BFV scheme [20] that
is described in [3, 2]. The BFV scheme is considered among the most promising FHE schemes
due to its simple structure and low overhead primitives compared to other schemes. Moreover,
it is a scale-invariant scheme where the ciphertext coefficient modulus is fixed throughout the
entire computation. This contrasts to other scale-variant schemes that keep a chain of moduli
and switch between them during computation. We use a GPU-based BFV implementation as
an underlying FHE engine to perform the core FHE primitives: key generation, encryption,
decryption and homomorphic operations such as addition and multiplication.

Our FHE engine (shown in Figure 3) is comprised of three main components:

1. Polynomial Arithmetic Unit (PAU): performs basic polynomial arithmetic such as addition
and multiplication.

2. Residue Number System Unit (RNSU): provides additional RNS tools for efficient polyno-
mial scaling required by BFV homomorphic multiplication and decryption.
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3. Random Number Generator Unit (RNG): used to generate random polynomials required
by BFV key generation and encryption.

In addition, the FHE engine includes a set of Look-Up Tables (LUTs) that are used for fast
modular arithmetic and number theoretic transforms required by both PAU and RNSU. For
further details on the GPU implementation of BFV, we refer the reader to the aforementioned
works.

GPU

CPU

RNG

LUT

PAU

RNSU

Add

Mul

FBC

SaR

Figure 3: Top-Level Structure of the GPU-Accelerated A∗FV Crypto-Processor.

4.4.1 Fitting HCNN in GPU Memory

Another major challenge facing FHE applications is memory requirements due to data expansion
after encryption. The ciphertext size can be estimated as 2∗N ∗ log2 q bits, this is approximately
1.28 MB and 0.59 MB for MNIST and CIFAR-10 HCNNs parameters, respectively. Moreover,
due to homomorphic multiplication, ciphertext size may expand 3× its original size due to
intermediate computation [2]. As we basically encrypt one pixel - from multiple images - in
one ciphertext, this means that in our HCNNs the number of ciphertexts for each layer is equal
to the number of pixels in the feature map. For MNIST HCNN, the GPU memory (16 GB)
was sufficient to store or generate all the ciphertexts in each layer. On the other hand, the
memory was not enough to hold the first convolution layer in CIFAR-10 HCNN. Therefore, we
had to process the feature map in batches by uploading parts of the feature map to the GPU
memory when needed. An illustrative trajectory of how we span the feature map is shown in
Figure 4. Note that we try to minimize the amount of CPU-GPU communication by caching the
ciphertexts to be used in subsequent batches.

5 Experiments and Comparisons

In this section, we describe our experiments to evaluate the performance of our HCNNs using
the aforementioned designs. We start by describing the hardware configuration. Next, we list
the main FHE primitives used to run HCNN alongside benchmarks to provide more insight into
their computational complexity. We also present the results of running MNIST HCNN in both
SEAL version 2.3.1 and A∗FV together with discussion and remarks on performance and noise
growth.
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Figure 4: A batched processing of convolution and pooling layers for CIFAR-10 HCNN. Items
in red are newly fetched items.

5.1 Hardware Configuration

The experiments were performed on a server with an Intel R© Xeon R© Platinum 8170 CPU @ 2.10
GHz with 26 cores, 188 GB RAM and an NVIDIA R© GPU cluster that includes one V100 and
three P100 Tesla cards with 4 × 16 GB on-board memory. Table 7 shows the configuration of
the testbed server used for all experiments.

Table 7: Hardware configuration of the testbed servers

Feature CPU GPU Cluster

Model Intel(R) Xeon(R) Platinum V100 P100
Compute Capability − 7.0 6.0
# of processing units 2 1 3
# Cores (total) 26 5120 3584
Core Frequency 2.10 GHz 1.380 GHz 1.328 GHz
Memory Type 72-bit DDR4 4096-bit HBM2 4096-bit HBM2
Memory Bandwidth 30 GB/sec 732 GB/sec 900 GB/sec
Memory Capacity 187.5 GB 16 GB 3× 16 GB

PCI-e Bandwidth 16 GB/sec

5.2 Datasets

MNIST. The MNIST dataset [30] consists of 60,000 images (50,000 in training dataset and
10,000 in testing dataset) of hand-written digits, each is a 28× 28 array of values between 0 and
255, corresponding to the gray level of a pixel in the image.
CIFAR-10. The CIFAR-10 dataset [28] consists of 60,000 colour images (50,000 in training
dataset and 10,000 in testing dataset) of 10 different classes. Each images consists of 32 × 32 ×
3 pixels of values between 0 and 255.

18



5.3 Micro-Benchmarks 5 EXPERIMENTS AND COMPARISONS

5.3 Micro-Benchmarks

Our HCNNs use 6 FHE primitives: 1) Key generation (KeyGen), 2) Encryption (Enc), 3) De-
cryption (Dec), 4) Homomorphic addition (HAdd), 5) Homomorphic squaring (HSquare) and 6)
Homomorphic multiplication of ciphertext by plaintext (HMultPlain). Table 8 shows these prim-
itives and their latency in milliseconds using SEAL and A∗FV on CPU and GPU, respectively.
It can be clearly seen that A∗FV outperforms SEAL by at least one order of magnitude. On
average, A∗FV provides 22.36×, 18.67×, 91.88×, 4.40×, 48.07×, 334.56× and 54.59× speedup
for KeyGen, Enc, Dec, HAdd, HSquare, HMultPlain and HMult.

The results show that HSquare, which is used in the activation layers, is the most time-
consuming operation in our HCNNs. In contrast, both HAdd and HMultPlain, which are used in
the convolution and fully connected layers, are very cheap. Note that our HCNNs can be modified
to run an encrypted model on encrypted data. This can be done by replacing HMultPlain by
HMul. However, this can have a severe effect on performance as HMult is the most expensive
primitive in FHE.

Table 8: FHE primitives benchmarks using SEAL and A∗FV on CPU and GPU, respectively.
Time unit is millisecond. Note that HMult was not used in HCNN.

Function Parameter
ID

SEAL
CPU

A∗FV
GPU Speedup

KeyGen
2 272.142 12.377 21.99×
4 542.920 21.392 25.38×

Enc
2 12.858 0.935 13.75×
4 25.991 1.496 17.37×

Dec
2 5.171 0.075 68.95×
4 10.408 0.098 106.20×

HAdd
2 0.126 0.052 2.42×
4 0.281 0.054 5.20×

HSquare
2 69.588 1.679 41.45×
4 138.199 2.371 58.29×

HMultPlain
2 7.680 0.033 232.73×
4 15.694 0.035 448.40×

HMult∗
2 86.270 2.014 42.84×
4 173.167 2.769 62.54×

5.4 HCNNs Performance

Table 9 shows the runtime of evaluating our MNIST and CIFAR-10 HCNNs. As mentioned
previously, we did not run CIFAR-10 with SEAL as it will take a huge latency and resources.
We include the timing of all the aforementioned parameter sets. It can be clearly seen that
A∗FV outperforms SEAL significantly for all parameter sets. In particular, the speedup factors
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achieved are 109.86× at 76-bit security level and 182.67× at 159-bit security level. The results
show that A∗FV is superior at handling large FHE parameters where the maximum speedup is
recorded. The amortized time represents the per-image inference time. As the number of slots in
ciphertext is equal to N , note that in parameter sets (3 and 4) we can classify the entire testing
dataset of MNIST in a single network evaluation. On the other hand, with parameter sets (1
and 2) we can classify 8192 images in a single network evaluation time.

Table 9: Latency (in seconds) of running HCNNs with SEAL and A∗FV on multi-core CPU and
GPU, respectively. PIT refers to per-image time if packing is used.

HCNN Param multi-core CPU GPU Speedup

ID SEAL PIT A∗FV PIT

MNIST1G

1 Failure − 6.46 0.78×10−3 −
2 739.90 90.32×10−3 6.73 0.82×10−3 109.86×
3 Failure − 8.10 0.81×10−3 −
4 1563.85 156.38×10−3 8.56 0.85×10−3 182.67×

CIFAR-101G 5 − − 553.89 67.61× 10−3 −
CIFAR-104G 5 − − 304.43 37.162× 10−3 −

The table also includes the latency of running our CIFAR-10 HCNN using A∗FV. We show
the results of running our CIFAR-10 HCNN on 1 and 4 GPU cards. The latency shown here
is per 1 plaintext modulus prime, i.e., 1 CRT channel. Note that we use 10 primes to evaluate
CIFAR-10 HCNN. As our HCNNs will typically be hosted by the cloud, one may assume that
10 machines can evaluate CIFAR-10 HCNN in 304.430 seconds.

The results also show the importance of our low-precision training which reduced the required
precision to represent MNIST HCNN output. This allows running a single instance of the network
without plaintext decomposition, i.e., single CRT channel. We remark that CryptoNets used
higher precision training and required plaintext modulus of higher precision (280). Therefore,
they had to run the network twice using two CRT channels.

We also note that our timing results shown here for SEAL are much higher than those re-
ported in CryptoNets (570 seconds at 80-bit security). This can be attributed to the following
reasons: 1) CryptoNets used the YASHE′ levelled FHE scheme which is known to be less com-
putationally intensive compared to BFV that is currently implemented in SEAL [31]. It should
be remarked that YASHE′ is no more considered secure due to the subfield lattice attacks [4],
and 2) CryptoNets include a smaller number of HMult as shown in Table 3.

Lastly, we compare our best results with the currently available solutions in the literature.
Table 10 shows the reported results of previous works that utilized FHE to evaluate HCNNs on
different datasets. As we can see, our solution outperforms all solutions in total and amortized
time. For instance, our MNIST HCNN is 70.29×, 3.53× and 4.83× faster than CryptoNets,
E2DM and Faster CryptoNets, respectively. Note that E2DM classifies 64 images in a single
evaluation. Similarly, our CIFAR-10 HCNN is 3.83× and 7.35× faster than CryptoDL and
Faster CryptoNets, respectively.

5.5 Noise Growth

In this experiment, we show the noise growth behaviour in both SEAL and A∗FV. We recall that
SEAL version (2.3.1) implements the BEHZ [7] RNS variant of the BFV scheme. On the other
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Table 10: Comparison of running time (seconds) between prior FHE-based HCNNs and our
HCNNs.

Model Runtime λ Dataset Platform

Total Amortized time

CryptoNets [16] 570 69.580×10−3 80 MNIST CPU
E2DM [24] 28.590 450.0×10−3 80 MNIST CPU
Faster CryptoNets [15] 39.100 39.100 128 MNIST CPU
A∗FV 8.100 0.008×10−3 175 MNIST GPU

CryptoDL [21] 11686 − 80 CIFAR-10 CPU
Faster CryptoNets [15] 22372 22372 128 CIFAR-10 CPU
A∗FV 3044 0.372 91 CIFAR-10 GPU
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Figure 5: Noise budget (in bits) and how it is consumed by SEAL and A∗FV

hand, A∗FV implements another RNS variant known as the HPS [20]. Although both variants
implement the same scheme, it was found by Al Badawi et al. [2] that these variants exhibit
different noise growth behaviour. Figure 5 shows the noise growth behaviour in both SEAL and
A∗FV for the parameter sets 3 and 4. The vertical axis represents the noise budget which can be
viewed as the “signal-to-noise” ratio. Once the noise budget reaches 0 in a ciphertext, it becomes
too noisy to compute further or to decrypt successfully. It should be remarked that the noise
budget can be only calculated given the secret key. As seen in the figure, parameter set 3 is
not sufficient to provide SEAL with sufficient noise budget to evaluate the MNIST HCNN. The
ciphertexts generated by the fully connected layer include noise budget 0. Although no further
computation is required after the fully connected layer, decryption fails due to the high noise
level. On the other hand, A∗FV has lower noise budget consumption rate that is sufficient to
run MNIST HCNN with some left out noise budget (21 bits in parameter set 3 and 49 bits in
parameter set 4). Parameter set 4 provides higher noise budget that is sufficient to run the
MNIST HCNN in both SEAL and A∗FV successfully.
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6 Conclusions

In this work, we presented a fully FHE-based CNN that is able to homomorphically classify
the encrypted images with FHE. The main motivation of this work was to show that privacy-
preserving deep learning with FHE is dramatically accelerated with GPUs and offers a way to-
wards efficient M/DLaaS. Our implementation included a set of techniques such as low-precision
training, unified training and testing network, optimized FHE parameters and a very efficient
GPU implementation to achieve high performance. We managed to evaluate our MNIST HCNN
in one CRT channel in contrast to previous works that required at least two channels. Our
solution achieved high security level (> 80 bit) and reasonable accuracy (99%) for MNIST and
(77.55%) for CIFAR-10. In terms of performance, our best results show that we could classify
the entire testing dataset in 6.46 and 3044 seconds for MNIST and CIFAR-10 respectively, with
per-image amortized time (0.78 milliseconds) and (371 milliseconds), respectively.

In its current implementation, our HCNNs have adopted the simple encoding method of
packing the same pixel of multiple images into one ciphertext, as described in Section 3.1. This
packing scheme is ideal for applications that require the inference of large batches of images
which can be processed in parallel in a single HCNN evaluation. Other application may have
different requirements such as classifying 1 or a small number of images. For this particular case,
other packing methods that pack more pixels of the same image in the ciphertext can be used. As
future work, we will investigate other packing methods that can fit a wider range of applications.
Moreover, we will target more challenging problems with larger datasets and deeper networks.

In addition, we noticed that training deep CNNs using polynomially-approximated activation
functions does not maintain high prediction accuracy. Further research is required to find the
best methods to approximate activation functions in FHE.
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