Security Analysis for Randomness Improvements for
Security Protocols

Liliya Akhmetzyanova Cas Cremers
lah@cryptopro.ru cremers@cispa.saarland
Luke Garratt Stanislav V. Smyshlyaev
lgarratt@cisco.com smyshsv@gmail.com

v1.0 — November 1st, 2018

Abstract

Many cryptographic mechanisms depend on the availability of secure random numbers.
In practice, the sources of random numbers can be unreliable for many reasons. There
exist ways to improve the reliability of randomness, but these often do not work well with
practical constraints. One proposal to reduce the impact of untrusted randomness is the
proposal by Cremers et al. [3], which aims to be effective in existing deployments.

In this document, we provide a security analysis of the construction in [3] (Revision 3)
and elaborate on design choices and practical interpretations.

1 Introduction

All key exchange protocols (e.g., SSL/TLS, SSH, IKE, etc.) depend on the generation of secure
random numbers. At the core of all of these protocols is a Diffie-Hellman key exchange of the
following basic form: Alice chooses random number x, computes g* and sends it to Bob. Bob
similarly chooses random number y, computes g¥ and sends it to Alice. Of course, each particular
protocol has other essential details such as certificates, signatures, key derivation, comparing of
transcripts and so on, but at the heart of all these protocols is the shared secret g*¥. Therefore,
it is essential that x and y are generated as securely as possible.

In many operating systems, raw entropy comes in the form of events such as mouse move-
ments or keystrokes. As large amounts of raw entropy is difficult to accumulate, Alice and Bob do
not generate truly random numbers = and y for their key exchanges. Instead, they use the prim-
itive of a cryptographically secure pseudorandom number generator (CSPRNG), which takes as
input a seed, continually harvests more raw entropy and produces arbitrary many pseudorandom
numbers as required. Since CSPRNGs are used to provide the essential secret ¢*¥, they clearly
need to be as secure as possible.

However, the current problem we face is that all CSPRNGs depend on raw entropy in some
form or another. Therefore, if the underlying randomness is not good, the secret ¢*¥ is not
secure. Real-world examples of poor random number generation include:

e The Debian OpenSSL random number generator vulnerability [T [7];

e Predictable random numbers in Android’s Java OpenSSL [6] leading to theft of bitcoins;

e The Dual EC random number generator backdoor [2];
e Random number generator on hardware that degrades over time;

e Servers that are deployed in settings where good randomness generation cannot be guar-
anteed;

e Internet of Things (IoT) devices with good (factory) keys but no good randomness gener-
ation after deployment.

We propose a solution to this problem. Our solution is inspired by the so-called “NAXOS
trick” for key exchange protocols. In contrast to the NAXOS trick, our design is more generic
and applies outside of the AKE domain, and we follow a much more conservative approach that
enables the re-use of existing infrastructure and improved graceful degradation if it turns out the
hash function’s output may reveal partial information from the output.

From the academic literature on authenticated key exchange protocols, the NAXOS protocol
[5] does not just compute pseudorandom numbers x and y from raw entropy and send ¢g* and g¥,
but instead sends g!(#%<4) and g (¥5) where H is a random oracle, and sk and skp are the
long-term secret keys of Alice and Bob respectively. Intuitively we can see that securely in this
case should now depend on the pairs (z, sk ;) and (y, skj) being secure, as opposed to just x
and y being secure. What is more, a protocol that uses g"(#%€4) can behave in exactly the same
way as one that uses g”. The only essential difference is that H(x,sk ;) is a safer secret than x.

In this note, we take an alternative approach for real-world protocols. In particular, often
the long-term term sk is in trusted hardware so it is impossible to have direct access to it to
compute H(z,sk). For many HSM deployments, this prevents the application of the NAXOS
trick. Moreover, a choice needs to be made as to what function implements the random oracle H.
We will also need to know precisely what security guarantees our construction provides. We will
answer these questions and provide proofs that are construction meet precisely definition security
guarantees under standard cryptographic assumptions. We will show that our construction
improves the generation of pseudorandom numbers and provides concrete security guarantees for
a generic class of protocols including SSL/TLS, SSH, IKE, etc. at negligible cost to efficiency.

Our wrapper construction

We propose a “wrapper” function around existing pseudorandom number generators, in contexts
that have access to a party’s signing algorithm. Let y be the output of the pseudorandom number
generator. As in the main document [3], we define the wrapper to be:

PRF(KDF (y, H(Sig(sk, tag,))), tag,, n),

where tag; and tag, are public and are chosen from some fixed sets 77 and 73 correspondingly
and where PRF and KDF and instantiated with HKDF-expand and HKDF-extract respectively.
We assume that the size of 73 and 73 is negligible in the size of the security parameter. We
encourage the reader to see the main document [3] for full details.

Overview

In Section [2| we recall the standard properties of a CSPRNG. In Section [3| we define the security
properties we will need for our primitives in our wrapper construction. In Section [l we define our
security model for our wrapper construction. In Section |5l we give a security theorem and formal
game hopping security proof it fulfils the security properties we claim. We make additional notes
on the real-world security of our wrapper construction in Section [6]

2 Background on CSPRNGs

Forward secure cryptographically secure pseudorandom number generators (CSPRNG) are al-
ready used as primitives in TLS and other protocols. Let Rand be a forward secure CSPRNG.
By this we mean Rand satisfies the following two properties:

Property 1. Indistinguishable from random (CSPRNG)

A family of deterministic polynomial time computable functions Randy,: {0, 1}* — {0,1}P(*) for
some polynomial p is a CSPRNG, if it stretches the length of its input (p(k) > k for any k) and
if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic
polynomial time algorithm A, which outputs 1 or 0 as a distinguisher,

P A(Rand(@) =1 = Pr | [44) = 1] < (k)
for some negligible function .

All this is saying is that, no efficient algorithm (with knowledge of how Rand works) can
distinguish the output of Rand from randomness, when the initial seed is unknown and uni-
formly random. Note that achieving this property is non-trivial: many pseudorandom number
generators may achieve output that looks statistically random, but does not satisfy this prop-
erty. For instance, the function that hashes the initial seed to produce x. Then hashes x. Then
hashes again, and so on, could produce statistically random output, but an efficient adversary
that knows how this algorithm works can clearly distinguish this from purely random behaviour
after seeing the first two blocks of output (the second being the hash of the first).

Andrew Yao showed that this definition is equivalent to the next-bit test (below).

Property 2. Resistance to state compromise extensions (forward secure)

Another property we want is for the CSPRNG to be forward secure. A forward-secure CSPRNG
with block length ¢(k) is a Randy: {0,1}% — {0,1}* x {0, 1}*®), where the input string s; with
length k is the current state at period ¢, and the output (s;41,¥;) consists of the next state s;41
and the pseudorandom output block y; of period i, such that it withstands state compromise
extensions in the following sense. If the initial state s; is chosen uniformly at random from {0, 1}*,
then for any 4, the sequence (y1,ya, ..., Yi, Si+1) must be computationally indistinguishable from
(r1,72,...,74,8i+1), in which the 7; are chosen uniformly at random from {0, 1}*(*).

The next-bit test (equivalent definition of CSPRNG)

By satisfying the next-bit test, we mean that given the first k bits of outputs from Rand sequence,
there is no polynomial-time algorithm that can predict the (k+1)th bit with probability of success
better than 50% (without knowing the seed). Andrew Yao proved in 1982 that a generator passing
the next-bit test will pass all other polynomial-time statistical tests for randomness.

Let P be a polynomial, and S = {Si} be a collection of sets such that Sj contains (k)-bit
long sequences. Moreover, let p; be the probability distribution of the strings in Sk.

Let M be a probabilistic Turing machine, working in polynomial time. Let p% be the
probability that M predicts the (i + 1)st bit correctly, i.e.

pm =P[M(s1...8;) = si+1|s € Sk with probability u(s)]

We say that collection S = {Si} passes the next-bit test if for all polynomial @, for all but
finitely many k, for all 0 < i < k:

1 1
M
i <5t 54
Pri =3 Q(k)

3 Security definitions

Here we will precisely define the security properties we need of our primitives for our construction
to be proven secure in our security model.

3.1 Pseudorandom function

A pseudorandom function is an algorithm PRF. This algorithm implements a deterministic
function z = PRF(k, z,n), taking as input a key k and some bit string x, and returning a string
z € {0,1}"™. For brevity we will omit the parameter n assuming that the PRF algorithm returns
the values of the maximum permitted size.

We define a security game between an adversary and challenger as follows.

1. The challenger uniformly randomly samples ¢ secret keys ki,...,k; independently from
each other.

2. The adversary is allowed to query the challenger with adaptively chosen values (i,), i €
[1,...,t]. The challenger replies with PRF(k;, x).

3. Eventually the adversary queries a special symbol T to indicate the so-called test query
with value (¢,z) that was not queried before. At this point, the challenger computes
z0 = PRF(k;,x) and samples z; uniformly randomly. The challenger then flips a coin
b+<+s{0,1} and responds with z,. Note that after the test query the adversary is not
allowed to query (i,x).

4. The adversary then outputs a guess b’ for b and wins the game if b = b’ and loses otherwise.

The advantage of any probabilistic polynomial time adversary winning the above security
game with polynomial number of keys should be negligible in the security parameter. In other
words,

1
Pr(b=1') - 2’ < €pRF

3.2 Key derivation function

The security property we require of KDF is as follows. Intuitively, we require KDF(y,x) to be
indistinguishable from uniform random if at least one of x or y in unknown. In other words
we assume that the KDF(-, z) and KDF(y, -) functions, where x and y are chosen uniformly inde-
pendently at random from the corresponding sets, are computationally indistinguishable from
two “ideal” functions chosen uniformly independently at random from the sets of all functions
with corresponding domains and ranges. Let expr denote the probability that any probabilistic
polynomial time adversary is able to distinguish between these distributions.

In our concrete construction, we instantiate KDF with HKDF-extract. The HKDF-Extract
scheme is proved to be a secure extractor that takes as inputs a value a salt and long-term key. In
[4], the scheme is not analyzed in the case where the long-term key is compromised but the salt is
not. For HKDF-extract based on HMAC, we believe it is reasonable to expect the above security

guarantee. Certainly in many cryptographic security proofs such a KDF is merely modeled as a
random oracle and in those cases our assumption trivially follows.

3.3 Hash function and signature scheme

A signature scheme is a triple (KGen, Sig, Vf). KGen is a probabilistic algorithm which takes as
input the security parameter 1* and outputs a public signature verification key pk and secret
signing key sk. Sig is a signing algorithm which generates a signature o for message m using secret
key sk. In the current paper we consider only deterministic Sig algorithms. Vf is a deterministic
signature verification algorithm which, given input (pk, o, m), outputs 1 if ¢ is a valid signature
of m under key pk, and 0 otherwise. It is required that for every k, every (sk,pk) output by
KGen(1%), and every message m, it holds that

Vf(m, Sig(sk,m)) =1

In our construction, we will not want to use the long-term key sk directly. We will instead use
the hash of a signature of tag,, signed with sk. For our security proof, we require the combined
hash function and signature scheme to fulfil the following security property.

Consider the following game between a challenger and a polynomial time adversary:

1. The challenger generates a public/private key pair (pk,sk) using KGen and gives the ad-
versary the public key pk. Then the adversary sends the tag, value to the challenger.

2. The adversary is allowed to query adaptively chosen messages mq,...,mq for some ¢ € N
to the challenger so long as none of the queries m; are tag,. The challenger responds to
each query with o; = Sig(sk, m;).

3. When the adversary decides to, it outputs a so-called test query. At this point, the chal-
lenger flips an unbiased coin b <«—s{0,1}. If heads, it returns with H(Sig(sk, tag,). If tails,
it responds with a uniformly random string of the same length.

4. The adversary is allowed to keep asking for signatures, but eventually it must output a
guess b’ for the coin flip b, at which point the game ends. The adversary wins if it guesses
the coin flip correctly and loses otherwise.

We require that the advantage of any probabilistic polynomial time adversary winning the
above game is negligible in the security parameter. In other words,

1
Pr(b=1V") — 2’ < €sigH

This security property can be instantiated with routine cryptographic assumptions such as
a hash function behaving as a random oracle and an existentially unforgeable signature scheme
(where tag, is not allowed to be queried).

4 Security model

Here we define the security property we expect from our wrapper in terms of a game between a
challenger and an adversary.

We run a game between the challenger and the adversary as follows. At the beginning of
the game the challenger uniformly randomly chooses a secret key sk and returns a public key pk

to the adversary. Receiving the public key the adversary chooses a set T' C 77 consisting of [
pairwise different values ¢, ...,% and sends it to the challenger. We assume that the maximum
size n of the PRF output and the size [of the set T" are polynomial.

The adversary is allowed to make the following queries to the challenger.

e The adversary can make output queries of two types:
— tag,,tag, (in this case the challenger chooses the y value uniformly randomly by
itself);

— tagy,tag,,y (in this case the y value is chosen by the adversary).

Note that the adversary is allowed to make queries where tag, € T

The challenger produces
PRF(KDF(y7 H(Slg(5k7 tagl))a tag2)

and returns this value as a response to the corresponding output query.

The challenger indexes queries and locally saves the corresponding inputs to the wrapper
for each query, i.e. the challenger saves records of the form (i, tag},tag),y;). We assume
that i« < M for some M that is also polynomial.

e The adversary can make sign queries for signatures with sk of messages m. The challenger
produces and returns the value Sig(sk, m).

e The adversary can make corrupt query for sk at any time. The challenger must respond
with sk to this query.

e The adversary is also allowed to make reveal queries for the y; value used in the ith
output query at any time (the adversary makes the query with the index of the target
output query). The challenger must respond with the y; value used in generating the
response to the ith output query.

e We say that the ith output query is fresh if one of the values y; and signature stay secret.
That is, if one of the following conditions is satisfied:

— the adversary has not made the corrupt query or the sign query for m = tagj.

— this query contains only tag;, tag, and the adversary has not made the reveal query
for y;.

We also say that an output query is “non-trivial” if one of the following conditions is
satisfied

— this query is of the type tag;, tag,,y and this query has not been made before.
— this query is of the type tag,, tag,.

At some point in time, the adversary must make a so-called test output query. This is
the same as a normal non-trivial output query except the challenger flips an unbiased coin
and either responds with the genuine output using the wrapper, or a uniformly randomly
chosen string of the same length. The adversary is allowed to query for the y used in the
test if it wants to, as well as to continue making other queries. The adversary may also
query for the sk value or for the signature of tag, if it has not already done so. However,
the test output query must remain fresh at all times during the game.

e At some point in time after the test query, the adversary must output a single bit as a
guess. The adversary wins the game if it is able to guess the coin flip with non-negligible
advantage over 1.

5 Proof of security

Theorem 5.1. If PRF, KDF, Sig and H satisfy the security definitions above, then any probabilistic
polynomial time adversary has only negligible advantage in winning the security game.

Proof. Let Game 0 denote the original security game as defined in our security model definition.
Let S; denote the event of the adversary winning Game i. Our goal in this proof is to bound
Pr(Sp) to show that it is only at most negligibly above % Although the security argument is very
intuitive (“the adversary must surely need both y and sk to guess the secret”) we will formally
prove it in a game hopping proof.

At some point in time, the adversary must issue a test query. Let tagi,tagb,y; denote
the values used by the challenger for this query. We prove this theorem in a case partition on
whether the adversary has revealed Sig(sk, tag?) or y;. (If the adversary has queried for neither,
then it is clearly in an even worse position to win the game.)

Let Game 1 be identical to Game 0 except the challenger guesses in advance an integer
i* €[1,..., M] and aborts (and the adversary loses) unless i* = i. In other words, the challenger
needs to guess in advance which of the possible output queries will be the test. This is a large
failure event game hop and it is easy to see that

Pr(Sy) < M Pr(Sy)

We now proceed with our case partition.

Case 1: The adversary has revealed y; or has chosen y; by itself.

In this case, the adversary is not allowed to query for sk or for the signature of tagi, otherwise
the test output query would not be fresh.

Game 2. Let Game 2 be identical to Game 1 except the challenger guesses in advance an integer
j €[1,...,1] and aborts (and the adversary loses) unless tag? = ¢;. This is a large failure event
game hop and it is easy to see that

PI‘(Sl) é l PT(SQ)

Game 3. Define Game 3 to be identical to Game 2 except H(Sig(sk, tag?)) is replaced with a
value z; sampled uniformly at random for each output query with tag, = tagi. Here we claim
that

PI‘(SQ) S PI‘(Sg) + €H,Sig

In particular, no probabilistic polynomial time distinguisher algorithm can distinguish be-
tween Game 2 and Game 3, since this would imply a way to beat the hash-signature game with
better than ey si; advantage. Precisely, an adversary in the hash-signature game could beat it
with better than ey sz advantage as follows.

It acts as a challenger in the hybrid game and inserts the value of pk from the hash-signature
game. As an adversary in the hash-signature game, it inserts the known tag; value from the
previous game and asks a test query straight away, receiving either H(Sig(sk, tag}) or a uniformly
randomly chosen value as per the rules of the hash-signature game. It inserts this value as the
value for H(Sig(sk, tag?) in the hybrid game. Because of Game 2, the adversary knows where to

make this swap in the game. The output queries with tag; # t; are processed by the adversary
using queries for signature to its challenger. The adversary can now simulate output and test
queries as normal using this value. The adversary does not have to worry about simulating a
corrupt query because we are in case 1. Finally, it can simulate signature queries by merely
forwarding them along into the hash-signature game. This perfectly simulates the hybrid game:
it is literally Game 2 if the test returns H(Sig(sk,tagi)), and it is literally Game 3 if it is a
uniformly randomly chosen value. The adversary follows the coin flip choice in the simulated
hybrid game as its guess for the hash-signature game. By assumption of the hardness of the
hash-signature game, all adversaries can only win with at most advantage ey sig. Therefore, the
difference in advantages of adversaries across Game 2 and Game 3 can also only be separated by
at most ey sig. Thus the claim above is proven.

Game 4. Define Game 4 to be identical to Game 3 except KDF(-, ;) is replaced with an ideal
random function p(-) for each output query with tag, = ¢;. Here we claim that

Pr(S3) < Pr(S4) + expr

Here we present the simulation argument for the KDF game. Because of Game 2, the adver-
sary knows where to make this swap in the game precisely for output queries with tag, = t;.
The KDF adversary chooses to attack KDF for the second argument x and makes queries y to
compute KDF(y,z;) for required y. If the adversary has made the (tag,,tag,) query, then the
KDF adversary chooses y value uniformly randomly by itself and locally saves it. Note that it
can answer the reveal query in this case. All other queries are simulated in the normal way.
Game 5. Define Game 5 to be identical to Game 4 except PRF(p(y;), tagh) is replaced with a
value chosen uniformly randomly for the test query.

Here we claim that

PT(S4) S PI‘(S5) + €pPRE

Here we present the simulation argument for the PRF game with at most m keys. The
output queries with tag, = ¢; and different y are processed with the different keys by asking
the PRF challenger with the suitable indexes in queries. Since the test query should be non-
trivial, y; or tagh should be new (we neglect the probability that for the output query of the
type (tag;,tag,) the y; value chosen by the challenger itself collides with the previous values).
Therefore, the PRF adversary can use its test query to swap the PRF(p(y;), tagh) with the value
obtained as a response on the test query in the PRF game. All other queries are simulated in
the normal way.

It is clearly impossible for the adversary to have any advantage in guessing the secret bit in
Game 5 (in either case, the wrapper generates a uniformly randomly chosen string). As such,
Pr(S5) = 1. Thus in this case Pr(Sy) < 1 + Ml(ewsig) + €xor + epre) which is negligibly close to
1

5
Case 2: The adversary has revealed sk or Sig(sk, tag}).

In this case, the adversary is not allowed to reveal y; or to choose y; by itself, otherwise the test
output query would not be fresh. Thus, y; is chosen uniformly randomly.
Game 2. This game is identical to Game 1 except KDF(y;, H(Sig(sk, tag;))) is replaced with a
value k sampled uniformly at random.

We claim that

Pr(S1) < Pr(S2) + exor

In the simulation the adversary chooses to attack KDF for the first argument y and makes
query H(Sig(sk, tag?)) to compute KDF(y;, H(Sig(sk, tag?))). All other queries are simulated in
the normal way.

Game 3. This is the same as Game 5 from the other case but here is enough to make queries
only for one key in the PRF game. O

6 Real-world considerations

6.1 Design choices

Which of our primitives are chosen for real-world reasons and which are useful for the secu-
rity proof? Our security proof could be done even more easily by using directly sk instead of
Sig(sk, tag,). However, in the real-world it is preferable to keep the secret key in an HSM and
only perform certain operations on it such as making signatures. There is no guarantee that the
signature is uniformly distributed as a key, so this is why we hash it and chose HSig(sk, tag,) over
sk. Consequently, this also is why one of the security assumptions of our theorem is the difficulty
of the “hash-signature game”. The practical interpretation we are asking of the challenger is
merely that the signature is a secret the adversary cannot guess, just like sk.

The XDF and PRF constructions are useful in practice because they are easily available, and
they help in the security proof. In fact, the security assumptions we require of them for the proof
are very minimal indeed. The security argument is extremely trivial if they are instantiated
as random oracles, as is common in many security proofs. In our concrete construction, we
recommend to implement them as HKDF-extract and HKDF-expand respectively. As mentioned
in Section [3.2] one should be aware of our assumption regarding the security of the HKDF scheme
when the long-term key is compromised while the salt is not.

The tags are assumed to be known in our security model. In practice they may not be, which
only adds an extra layer of protection in practice.

In no case can our wrapper construction be worse than not having it all. In the usual case, we
merely depend on y; being secret. With our wrapper construction, we essentially use KDF(y;||x)
for an z which may or may not be known. One may wonder how the signature is generated:
probabilistic or deterministic? Could this be a chicken and egg problem, noting that in many
signature schemes, if random numbers are bad and the signature is leaked, then the secret key
is leaked? Thus, if random numbers are bad in the first place, the signature will be bad, and
thus the construction will not be of any use. This is why we require that the signature scheme
is deterministic.

6.2 Practical interpretations

The security model and consequent proof refers heavily to the concept of “freshness”, which
intuitively encodes the adversary not winning the game trivially by making the obvious reveal
queries. The practical interpretation of our security theorem is as follows. If the adversary
learns only one of the signature or the usual randomness generated on one particular instance,
then under the security assumptions on our primitives, the wrapper construction should output
randomness that is indistinguishable from a random string.

Our security model also explicitly assumes that Sig(sk,tag;) never appears externally else-
where in the protocol so that the adversary has no hope of seeing it and using it. Otherwise,
security degrades to the normal case of generating pseudorandom numbers. Of course, in practice
actually forcing Sig(sk, tag,) to appear may still be difficult. Note furthermore that these sig-
natures are agent-specific, which improves containment. Thus, leaking or forging Sig(sk 4, tag;)

for a specific agent A only affects A, and has no consequences for other agents. The fact that
in reality tag, is separate for each application and tag, changes also helps to prevent repeated
random numbers when there is a poor entropy source.

References

1]

2]

Paolo Abeni, Luciano Bello, and Maximiliano Bertacchini. Exploiting DSA-1571: How to
break PFS in SSL with EDH, July 2008.

Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A Standardized Back
Door. Technical report, Cryptology ePrint Archive, Report 2015/767, 2015.

C. Cremers, L. Garratt, S. Smyshlyaev, N. Sullivan, and C. Wood. Randomness Im-
provements for Security Protocols — Revision 3, 2018. |https://www.ietf.org/id/
draft-irtf-cfrg-randomness-improvements-03.txt.

Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Annual
Cryptology Conference, pages 631-648. Springer, 2010.

Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Provable Security, pages 1-16. Springer, 2007.

Rob Marvin. Google admits an android crypto PRNG flaw led to Bitcoin heist (August
2013).

Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage. When
private keys are public: results from the 2008 Debian OpenSSL vulnerability. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement conference, pages 15-27.
ACM, 2009.

10

https://www.ietf.org/id/draft-irtf-cfrg-randomness-improvements-03.txt
https://www.ietf.org/id/draft-irtf-cfrg-randomness-improvements-03.txt

	Introduction
	Background on CSPRNGs
	Security definitions
	Pseudorandom function
	Key derivation function
	Hash function and signature scheme

	Security model
	Proof of security
	Real-world considerations
	Design choices
	Practical interpretations

