
Quantum circuits for the CSIDH:
optimizing quantum evaluation of isogenies

Daniel J. Bernstein1, Tanja Lange2, Chloe Martindale2, Lorenz Panny2

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

tanja@hyperelliptic.org
chloemartindale@gmail.com

lorenz@yx7.cc

Abstract. Choosing safe post-quantum parameters for the new CSIDH
isogeny-based key-exchange system requires concrete analysis of the cost
of quantum attacks. The two main contributions to attack cost are the
number of queries in hidden-shift algorithms and the cost of each query.
This paper analyzes algorithms for each query, introducing several new
speedups while showing that some previous claims were too optimistic
for the attacker. This paper includes a full computer-verified simulation
of its main algorithm down to the bit-operation level.

Keywords: Elliptic curves, isogenies, circuits, constant-time computa-
tion, reversible computation, quantum computation, cryptanalysis.

1 Introduction

Castryck, Lange, Martindale, Panny, and Renes recently introduced CSIDH [15],
an isogeny-based key exchange that runs efficiently and permits non-interactive
key exchange. Like the original CRS [20, 64, 68] isogeny-based cryptosystem,
CSIDH has public keys and ciphertexts only about twice as large as traditional
∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was supported in part by the Com-
mission of the European Communities through the Horizon 2020 program under
project number 643161 (ECRYPT-NET), 645622 (PQCRYPTO), 645421 (ECRYPT-
CSA), and CHIST-ERA USEIT (NWO project 651.002.004); the Netherlands Or-
ganisation for Scientific Research (NWO) under grants 628.001.028 (FASOR) and
639.073.005; and the U.S. National Science Foundation under grant 1314919. “Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation” (or other funding agencies). Permanent ID of this document:
9b88023d7d9ef3f55b11b6f009131c9f. Date of this document: 2018.10.31.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

elliptic-curve keys and ciphertexts for a similar security level against all pre-
quantum attacks known. CRS was accelerated recently by De Feo, Kieffer, and
Smith [23]; CSIDH builds upon this and chooses curves in a different way, ob-
taining much better speed.

For comparison, the SIDH (and SIKE) isogeny-based cryptosystems [37, 22,
36] are somewhat faster than CSIDH, but they do not support non-interactive
key exchange, and their public keys and ciphertexts are 6 times larger3 than
in CSIDH. Furthermore, there are concerns that the extra information in SIDH
keys might allow attacks; see [58].

These SIDH disadvantages come from avoiding the commutative structure
used in CRS and now in CSIDH. SIDH deliberately avoids this structure because
the structure allows quantum attacks that asymptotically take subexponential
time; see below. The CRS/CSIDH key size thus grows superlinearly in the post-
quantum security level. For comparison, if the known attacks are optimal, then
the SIDH key size grows linearly in the post-quantum security level.

However, even in a post-quantum world, it is not at all clear how much
weight to put on these asymptotics. It is not clear, for example, how large the
keys will have to be before the subexponential attacks begin to outperform the
exponential-time non-quantum attacks or an exponential-time Grover search.
It is not clear when the superlinear growth in CSIDH key sizes will outweigh
the factor 6 mentioned above. For applications that need non-interactive key
exchange in a post-quantum world, the SIDH/SIKE family is not an option, and
it is important to understand what influence these attacks have upon CSIDH
key sizes. The asymptotic performance of these attacks is stated in [15], but it is
challenging to understand the concrete performance of these attacks for specific
CSIDH parameters.

1.1. Contributions of this paper. The most important bottleneck in the
quantum attacks mentioned above is the cost of evaluating a group action, a
series of isogenies, in superposition. Each quantum attack incurs this cost many
times; see below. The goals of this paper are to analyze and optimize this cost.
We focus on CSIDH because CSIDH is much faster than CRS.

Our main result has the following shape: the CSIDH group action can be
carried out in B nonlinear bit operations (counting ANDs and ORs, allowing
free XORs and NOTs) with failure probability at most ε. (All of our algorithms
know when they have failed.) This implies a reversible computation of the CSIDH
group action with failure probability at most ε using at most 2B Toffoli gates
(allowing free NOTs and CNOTs). This in turn implies a quantum computation
of the CSIDH group action with failure probability at most ε using at most 14B

3 When the goal is for pre-quantum attacks to take 2λ operations (without regard to
memory consumption), CRS, CSIDH, SIDH, and SIKE all choose primes p ≈ 24λ.
The CRS and CSIDH keys and ciphertexts use (approximately) log2 p ≈ 4λ bits,
whereas the SIDH and SIKE keys and ciphertexts use 6 log2 p ≈ 24λ bits for 3
elements of Fp2 . There are compressed variants of SIDH that reduce 6 log2 p to
4 log2 p ≈ 16λ (see [1]) and to 3.5 log2 p ≈ 14λ (see [19] and [75]), at some cost in
run time.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 3

T -gates (allowing free Clifford gates). Appendix A reviews these cost metrics
and their relationships.

We explain how to compute pairs (B, ε) for any given CSIDH parameters.
For example, we show how to compute CSIDH-512 for uniform random exponent
vectors in {−5, . . . , 5}74 using

• 1118827416420 ≈ 240 nonlinear bit operations using the algorithm of Sec-
tion 7, or

• 765325228976 ≈ 0.7 · 240 nonlinear bit operations using the algorithm of
Section 8,

in both cases with failure probability below 2−32. CSIDH-512 is the smallest
parameter set considered in [15]. For comparison, computing the same action
with failure probability 2−32 using the Jao–LeGrow–Leonardi–Ruiz-Lopez algo-
rithm [38], with the underlying modular multiplications computed by the same
algorithm as in Roetteler–Naehrig–Svore–Lauter [63], would use approximately
251 nonlinear bit operations.

We exploit a variety of algorithmic ideas, including several new ideas pushing
beyond the previous state of the art in isogeny computation, with the goal of
obtaining the best pairs (B, ε). We introduce a new constant-time variable-degree
isogeny algorithm, a new application of the Elligator map, new ways to handle
failures in isogeny computations, new combinations of the components of these
computations, new speeds for integer multiplication, and more.

1.2. Impact upon quantum attacks. Kuperberg [46] introduced an algo-
rithm using exp

(
(logN)1/2+o(1)

)
queries and exp

(
(logN)1/2+o(1)

)
operations on

exp((logN)1/2+o(1)) qubits to solve the order-N dihedral hidden-subgroup prob-
lem. Regev [61] introduced an algorithm using only a polynomial number of
qubits, although with a worse o(1) for the number of queries and operations. A
followup paper by Kuperberg [47] introduced further algorithmic options.

Childs, Jao, and Soukharev [17] pointed out that these algorithms could be
used to attack CRS. They analyzed the asymptotic cost of a variant of Regev’s
algorithm in this context. This cost is dominated by queries, in part because the
number of queries is large but also because the cost of each query is large. Each
query evaluates the CRS group action using a superposition of group elements.

We emphasize that computing the exact attack costs for any particular set of
CRS or CSIDH parameters is complicated and requires a lot of new work. The
main questions are (1) the exact number of queries for various dihedral-hidden-
subgroup algorithms, not just asymptotics; and (2) the exact cost of each query,
again not just asymptotics.

The first question is outside the scope of our paper. Some of the simpler
algorithms were simulated for small sizes in [46], [10], and [11], but Kuperberg
commented in [46, page 5] that his “experiments with this simulator led to a
false conjecture for algorithm’s precise query complexity”.

Our paper addresses the second question for CSIDH: the concrete cost of
quantum algorithms for evaluating the action of the class group, which means
computing isogenies of elliptic curves in superposition.

4 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

1.3. Comparison to previous claims regarding query cost. Bonnetain
and Schrottenloher claim in [11, online versions 4, 5, and 6] that CSIDH-512
can be broken in “only” 271 quantum gates, where each query uses 237 quantum
gates (“Clifford+T” gates; see Appendix A.4).

We work in the same simplified model of counting operations, allowing any
number of qubits to be stored for free. We further simplify by counting only T -
gates. We gain considerable performance from optimizations not considered in
[11]. We take the best possible distribution of input vectors, disregarding the 22

overhead estimated in [11]. Our final gate counts for each query are nevertheless
much higher than the 237 claimed in [11]. Even assuming that [11] is correct
regarding the number of queries, the cost of each query pushes the total attack
cost above 280.

The query-cost calculation in [11] is not given in enough detail for full re-
producibility. However, some details are provided, and given these details we
conclude that costly parts of the computation are overlooked in [11] in at least
three ways. First, to estimate the number of quantum gates for multiplication in
Fp, [11] uses a count of nonlinear bit operations for multiplication in F2[x], not
noticing that all known methods for multiplication in Z (never mind reduction
modulo p) involve many more nonlinear bit operations than multiplication in
F2[x]. Second, at a higher level, the strategy for computing an `-isogeny requires
first finding a point of order `, an important cost not noticed in [11]. Third,
[11] counts the number of operations in a branching algorithm, not noticing the
challenge of building a non-branching (constant-time) algorithm for the same
task, as required for computations in superposition. Our analysis addresses all
of these issues and more.

1.4. Memory consumption. We emphasize that our primary goal is to min-
imize the number of bit operations. This cost metric pays no attention to the
fact that the resulting quantum algorithm for, e.g., CSIDH-512 uses a quantum
computer with 240 qubits.

Most of the quantum-algorithms literature pays much more attention to the
number of qubits. This is why [17], for example, uses a Regev-type algorithm
instead of Kuperberg’s algorithm. Similarly, [15] takes Regev’s algorithm “as a
baseline” given “the larger memory requirement” for Kuperberg’s algorithm.

An obvious reason to keep the number of qubits under control is the difficulty
of scaling quantum computers up to a huge number of qubits. Post-quantum
cryptography starts from the assumption that there will be enough scalability
to build a quantum computer using thousands of logical qubits to run Shor’s
algorithm, but this does not imply that a quantum computer with millions of
logical qubits will be only 1000 times as expensive, given limits on physical chip
size and costs of splitting quantum computation across multiple chips.

On the other hand, [11] chooses Kuperberg’s algorithm, and claims that the
number of qubits used in Kuperberg’s algorithm is not a problem:

The algorithm we consider has a subexponential memory cost. More
precisely, it needs exactly one qubit per query, plus the fixed overhead
of the oracle, which can be neglected.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 5

Concretely, for CSIDH-512, [11, online versions 1, 2, 3] claim 229.5 qubits, and
[11, online versions 4, 5, 6] claim 231 qubits. However, no justification is provided
for the claim that the number of qubits for the oracle “can be neglected”. There
is no analysis in [11] of the number of qubits used for the oracle.

We are not saying that our techniques need 240 qubits. On the contrary:
later we mention various ways that the number of qubits can be reduced with
only moderate costs in the number of operations. However, one cannot trivially
extrapolate from the memory consumption of CSIDH software (a few kilobytes)
to the number of qubits used in a quantum computation. The requirement of
reversibility makes it more challenging and more expensive to reduce space, since
intermediate results cannot simply be erased. See Appendix A.3.

Furthermore, even if enough qubits are available, simply counting qubit oper-
ations ignores critical bottlenecks in quantum computation. Fault-tolerant quan-
tum computation corrects errors in every qubit at every time step, even if the
qubit is merely being stored; see Appendix A.5. Communicating across many
qubits imposes further costs; see Appendix A.6. It is thus safe to predict that
the actual cost of a quantum CSIDH query will be much larger than indicated
by our operation counts. Presumably the gap will be larger than the gap for,
e.g., the AES attack in [28], which has far fewer idle qubits and much less com-
munication overhead.

1.5. Acknowledgments. Thanks to Bo-Yin Yang for suggesting factoring the
average over vectors of the generating function in Section 7.3. Thanks to Joost
Renes for his comments.

2 Overview of the computation

We recall the definition of the CSIDH group action, focusing on the computa-
tional aspects of the concrete construction rather than discussing the general
case of the underlying algebraic theory.

Parameters. The only parameter in CSIDH is a prime number p of the form
p = 4 · `1 · · · `n − 1, where `1 < · · · < `n are (small) odd primes and n ≥ 1. Note
that p ≡ 3 (mod 8) and p > 3.

Notation. For each A ∈ Fp with A2 6= 4, define EA as the Montgomery curve
y2 = x3 + Ax2 + x over Fp. This curve EA is supersingular, meaning that
#EA(Fp) ≡ 1 (mod p), if and only if it has trace zero, meaning that #EA(Fp) =
p + 1. Here EA(Fp) means the group of points of EA with coordinates in Fp,
including the neutral element at ∞; and #EA(Fp) means the number of points.

Define Sp as the set of A such that EA is supersingular. For each A ∈ Sp and
each i ∈ {1, . . . , n}, there is a unique B ∈ Sp such that there is an `i-isogeny
from EA to EB whose kernel is EA(Fp)[`i], the set of points Q ∈ EA(Fp) with
`iQ = 0. Define Li(A) = B. One can show that Li is invertible: specifically,
L−1i (A) = −Li(−A). Hence Lei is defined for each integer e.

Inputs and output. Given an element A ∈ Sp and a list (e1, . . . , en) of integers,
the CSIDH group action computes Le11 (Le22 (· · · (Lenn (A)) · · ·)) ∈ Sp.

6 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

2.1. Distribution of exponents. The performance of our algorithms de-
pends on the distribution of the exponent vectors (e1, . . . , en), which in turn
depends on the context.

Constructively, [15] proposes to sample each ei independently and uniformly
from a small range {−C, . . . , C}. For example, CSIDH-512 in [15] has n = 74
and uses the range {−5, . . . , 5}, so there are 1174 ≈ 2256 equally likely exponent
vectors. We emphasize, however, that all known attacks actually use consid-
erably larger exponent vectors. This means that the distribution of exponents
(e1, . . . , en) our quantum oracle has to process is not the same as the distribution
used constructively.

The first step in the algorithms of Kuperberg and Regev, applied to a finite
abelian group G, is to generate a uniform superposition over all elements of G.
CRS and CSIDH define a map from vectors (e1, . . . , en) to elements le11 · · · lenn
of the ideal-class group G. This map has a high chance of being surjective but
it is far from injective: its kernel is a lattice of rank n. Presumably taking, e.g.,
1774 length-74 vectors with entries in the range {−8, . . . , 8} produces a close-to-
uniform distribution of elements of the CSIDH-512 class group, but the literature
does not indicate how Kuperberg’s algorithm behaves when each group element
is represented as many different strings.

In his original paper on CRS, Couveignes [20] suggested instead generating
a unique vector representing each group element as follows. Compute a basis
for the lattice mentioned above; on a quantum computer this can be done using
Shor’s algorithm [67] which runs in polynomial time, and on a conventional
computer this can be done using Hafner and McCurley’s algorithm [29] which
runs in subexponential time. This basis reveals the group size #G and an easy-
to-sample set R of representatives for G, such as {(e1, 0, . . . , 0) : 0 ≤ e1 < #G}
in the special case that l1 generates G; for the general case see, e.g., [50, Section
4.1]. Reduce each representative to a short representative, using an algorithm
that finds a close lattice vector. If this algorithm is deterministic (for example, if
all randomness used in the algorithm is replaced by pseudorandomness generated
from the input) then applying it to a uniform superposition over R produces a
uniform superposition over a set of short vectors uniquely representing G.

The same idea was mentioned in the Childs–Jao–Soukharev paper [17] on
quantum attacks against CRS, and in the description of quantum attacks in the
CSIDH paper. However, close-vector problems are not easy, even in dimensions
as small as 74. Bonnetain and Schrottenloher [11] estimate that CSIDH-512
exponent vectors can be found whose 1-norm is 4 times larger than vectors
used constructively. They rely on a very large precomputation, and they do not
justify their assumption that the 1-norm, rather than the∞-norm, measures the
cost of a class-group action in superposition. Jao, LeGrow, Leonardi, and Ruiz-
Lopez [38] present an algorithm that guarantees (log p)O(1) bits in each exponent,
i.e., in the∞-norm, but this also requires a subexponential-time precomputation,
and the exponents appear to be rather large.

Perhaps future research will improve the picture of how much precomputation
time and per-vector computation time is required for algorithms that find vectors

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 7

of a specified size; or, alternatively, will show that Kuperberg-type algorithms
can handle non-unique representatives of group elements. The best conceivable
case for the attacker is the distribution used in CSIDH itself, and we choose this
distribution as an illustration in analyzing the concrete cost of our algorithms.

2.2. Verification of costs. To ensure that we are correctly computing the
number of bit operations in our group-action algorithms, we have built a bit-
operation simulator, and implemented our algorithms inside the simulator. The
simulator is available for free from https://quantum.isogeny.org/software.
html.

The simulator has a very small core that implements—and counts the number
of—NOT, XOR, AND, and OR operations. Higher-level algorithms, from basic
integer arithmetic up through isogeny computation, are built on top of this core.

The core also encapsulates the values of bits so that higher-level algorithms
do not accidentally inspect those values. There is an explicit mechanism to break
the encapsulation so that output values can be checked against separate compu-
tations in the Sage computer-algebra system.

2.3. Verification of failure probabilities. Internally, each of our group-
action algorithms moves the exponent vector (e1, . . . , en) step by step towards
0. The algorithm fails if the vector does not reach 0 within the specified num-
ber of iterations. Analyzing the failure probability requires analyzing how the
distribution of exponent vectors interacts with the distribution of curve points
produced inside the algorithm; each ei step relies on finding a point of order `i.

We mathematically calculate the failure probability in a model where each
generated curve point has probability 1 − 1/`i of having order divisible by `i,
and where these probabilities are all independent. The model would be exactly
correct if each point were generated independently and uniformly at random. We
actually generate points differently, so there is a risk of our failure-probability
calculations being corrupted by inaccuracies in the model. To address this risk,
we have carried out various point-generation experiments, suggesting that the
model is reasonably accurate. Even if the model is inaccurate, one can compen-
sate with a minor increase in costs. See Sections 4.3 and 5.2.

There is a more serious risk of errors in the failure-probability calculations
that we carry out within the model. To reduce this risk, we have carried out
107 simple trials of the following type for each algorithm: generate a random
exponent vector, move it step by step towards 0 the same way the algorithm
does (in the model), and see how many iterations are required. The observed
distribution of the number of iterations is consistent with the distribution that we
calculate mathematically. Of course, if there is a calculation error that somehow
affects only very small probabilities, then this error will not be caught by only
107 experiments.

2.4. Structure of the computation. We present our algorithms from bot-
tom up, starting with scalar multiplication in Section 3, generation of curve
points in Section 4, computation of Li in Section 5, and computation of the
entire CSIDH group action in Sections 6, 7, and 8. Lower-level subroutines for

https://quantum.isogeny.org/software.html
https://quantum.isogeny.org/software.html

8 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

basic integer arithmetic and modular arithmetic appear in Appendix B and Ap-
pendix C respectively.

Various sections and subsections mention ideas for saving time beyond what
we have implemented in our bit-operation simulator. These ideas include low-
level speedups such as avoiding exponentiations in inversions and Legendre-
symbol computations (see Appendix C.4), and higher-level speedups such as
using division polynomials (Section 9) and/or modular polynomials (Section 10)
to eliminate failures for small primes. All of the specific bit-operation counts
that we state, such as the 1118827416420 nonlinear bit operations mentioned
above, are fully implemented.

3 Scalar multiplication on an elliptic curve

This section analyzes the costs of scalar multiplication on the curves used in
CSIDH, supersingular Montgomery curves EA : y2 = x3 +Ax2 + x over Fp.

For CSIDH-512, our simulator shows (after our detailed optimizations; see
Appendices B and C) that a squaring S in Fp can be computed in 349596 nonlin-
ear bit operations, and that a general multiplication M in Fp can be computed in
447902 nonlinear bit operations, while addition in Fp takes only 2044 nonlinear
bit operations. We thus emphasize the number of S and M in scalar multipli-
cation (and in higher-level operations), although in our simulator we have also
taken various opportunities to eliminate unnecessary additions and subtractions.

3.1. How curves are represented. We consider two options for representing
EA. The affine option uses A ∈ Fp to represent EA. The projective option uses
A0, A1 ∈ Fp, with A0 6= 0, to represent EA where A = A1/A0.

The formulas to produce a curve in Section 5 naturally produce (A0, A1) in
projective form. Dividing A1 by A0 to produce A in affine form costs an in-
version and a multiplication. Staying in projective form is an example of what
Appendix C.5 calls “eliminating inversions”, but this requires some extra com-
putation when A is used, as we explain below.

The definition of the class-group action requires producing the output A
in affine form at the end of the computation. It could also be beneficial to
convert each intermediate A to affine form, depending on the relative costs of
the inversion and the extra computation.

3.2. How points are represented. As in [51, page 425, last paragraph] and
[53, page 261], we avoid computing the y-coordinate of a point (x, y) on EA. This
creates some ambiguity, since the points (x, y) and (x,−y) are both represented
as x ∈ Fp, but the ambiguity does not interfere with scalar multiplication.

We again distinguish between affine and projective representations. As in
[5], we represent both (0, 0) and the neutral element on EA as x = 0, and
(except where otherwise noted) we allow X/0, including 0/0, as a projective
representation of x = 0. The projective representation thus uses X,Z ∈ Fp to
represent x = X/Z if Z 6= 0, or x = 0 if Z = 0. These definitions eliminate
branches from the scalar-multiplication techniques that we use.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 9

3.3. Computing nP . We use the Montgomery ladder to compute nP , given
a b-bit exponent n and a curve point P . The Montgomery ladder consists of b
“ladder steps” operating on variables (X2, Z2, X3, Z3) initialized to (1, 0, x1, 1),
where x1 is the x-coordinate of P . Each ladder step works as follows:

• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit in itera-
tion i is bit nb−1−i of n. This means computing X2 ⊕X3, ANDing each bit
with the condition bit, and XORing the result into both X2 and X3; and
similarly for Z2 and Z3.

• Compute Y = X2 − Z2, Y 2, T = X2 + Z2, T 2, X4 = T 2Y 2, E = T 2 − Y 2,
and Z4 = E(Y 2+((A+2)/4)E). This is a point doubling: it uses 2S+3M
and a few additions (counting subtractions as additions). We divide A+2 by
4 modulo p before the scalar multiplication, using two conditional additions
of p and two shifts.

• Compute C = X3 + Z3, D = X3 − Z3, DT , CY , X5 = (DT + CY)2, and
Z5 = x1(DT −CY)2. This is a differential addition: it also uses 2S+3M
and a few additions.

• Set (X2, Z2, X3, Z3)← (X4, Z4, X5, Z5).
• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit is again
nb−1−i. We merge this conditional swap with the conditional swap at the
beginning of the next iteration by using nb−i−i ⊕ nb−i−2 as condition bit.

Then nP has projective representation (X2, Z2) by [9, Theorem 4.5]. The overall
cost is 4bS+ 6bM plus a small overhead for additions and conditional swaps.

Representing the input point projectively as X1/Z1 means computing X5 =
Z1(DT +CY)2 and Z5 = X1(DT −CY)2, and starting from (1, 0, X1, Z1). This
costs bM extra. Beware that [9, Theorem 4.5] requires Z1 6= 0.

Similarly, representing A projectively as A1/A0 means computing X4 =
T 2(4A0Y

2) and Z4 = E(4A0Y
2 + (A1 + 2A0)E), after multiplying Y 2 by 4A0.

This also costs bM extra.

Other techniques. The initial Z2 = 0 and Z3 = 1 (for an affine input point)
are small, and remain small after the first conditional swap, saving time in the
next additions and subtractions. Our framework for tracking sizes of integers
recognizes this automatically. The framework does not, however, recognize that
half of the output of the last conditional swap is unused. We could save some bit
operations by incorporating dead-value elimination and other standard peephole
optimizations.

Montgomery [53, page 260] considered carrying out many scalar multiplica-
tions at once, using affine coordinates for intermediate points inside each scalar
multiplication (e.g., x2 = X2/Z2), and batching inversions across the scalar mul-
tiplications. This could be slightly less expensive than the Montgomery ladder
for large b, depending on the S/M ratio. Our computation of a CSIDH group
action involves many scalar multiplications, but not in large enough batches
to justify considering affine coordinates for intermediate points. Computing the
group action for a batch of inputs might change the picture, but for simplicity
we focus on the problem of computing the group action for one input.

10 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

A more recent possibility is scalar multiplication on a birationally equivalent
Edwards curve. Sliding-window Edwards scalar multiplication is somewhat less
expensive than the Montgomery ladder for large b; see generally [8] and [34].
On the other hand, for constant-time computations it is important to use fixed
windows rather than sliding windows. Despite this difficulty, we estimate that
small speedups are possible for b = 512.

3.4. Computing P, 2P, 3P, . . . , kP . An important subroutine in isogeny
computation (see Section 5) is to compute the sequence P, 2P, 3P, . . . , kP for
a constant k ≥ 1.

We compute 2P by a doubling, 3P by a differential addition, 4P by a dou-
bling, 5P by a differential addition, 6P by a doubling, etc. In other words, each
multiple of P is computed by the Montgomery ladder as above, but these compu-
tations are merged across the multiples (and conditional swaps are eliminated).
This takes 2(k − 1)S + 3(k − 1)M for affine P and affine A. Projective P adds
b(k − 1)/2cM, and projective A adds bk/2cM.

We could instead compute 2P by a doubling, 3P by a differential addition,
4P by a differential addition, 5P by a differential addition, 6P by a differential
addition, etc. This again takes 2(k− 1)S+ 3(k− 1)M for affine P and affine A,
but projective P and projective A now have different effects: projective P adds
(k−2)M if k ≥ 2, and projective A adds M if k ≥ 2. The choice here also has an
impact on metrics beyond bit operations: doublings increase space requirements
but allow more parallelism.

4 Generating points on an elliptic curve

This section analyzes the cost of several methods to generate a random point on
a supersingular Montgomery curve EA : y2 = x3 +Ax2 + x, given A ∈ Fp. As in
Section 2, p is a standard prime congruent to 3 modulo 8.

Sometimes one instead wants to generate a point on the twist of the curve.
The twist is the curve −y2 = x3+Ax2+x over Fp; note that −1 is a non-square
in Fp. This curve is isomorphic to E−A by the map (x, y) 7→ (−x, y). Beware
that there are several slightly different concepts of “twist” in the literature; the
definition here is the most useful definition for CSIDH, as explained in [15].

4.1. Random point on curve or twist. The conventional approach is as
follows: generate a uniform random x ∈ Fp; compute x3 + Ax2 + x; compute
y = (x3 +Ax2 + x)(p+1)/4; and check that y2 = x3 +Ax2 + x.

One always has y4 = (x3 + Ax2 + x)p+1 = (x3 + Ax2 + x)2 so ±y2 =
x3 + Ax2 + x. About half the time, y2 will match x3 + Ax2 + x; i.e., (x, y) will
be a point on the curve. Otherwise (x, y) will be a point on the twist.

Since we work purely with x-coordinates (see Section 3.2), we skip the com-
putation of y. However, we still need to know whether we have a curve point or
a twist point, so we compute the Legendre symbol of x3 +Ax2 + x as explained
in Appendix C.4.

The easiest distribution of outputs to mathematically analyze is the uniform
distribution over the following p+ 1 pairs:

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 11

• (x,+1) where x represents a curve point;
• (x,−1) where x represents a twist point.

One can generate outputs from this distribution as follows: generate a uniform
random u ∈ Fp ∪ {∞}; set x to u if u ∈ Fp or to 0 if u = ∞; compute the
Legendre symbol of x3 +Ax2 + x; and replace symbol 0 with +1 if u = 0 or −1
if u =∞.

For computation it is slightly simpler to eliminate the two pairs with x =
0: generate a uniform random x ∈ F∗p and compute the Legendre symbol of
x3 + Ax2 + x. This generates a uniform distribution over the remaining p − 1
pairs.

4.2. Random point on curve. What if twist points are useless and the goal
is to produce a point specifically on the curve (or vice versa)? One approach is
to generate, e.g., 100 random curve-or-twist points as in Section 4.1, and select
the first point on the curve. This fails with probability 1/2100. If a computation
involves generating 210 points in this way then the overall failure probability
is 1 − (1 − 1/2100)2

10 ≈ 1/290. One can tune the number of generated points
according to the required failure probability.

We save time by applying “Elligator” [7], specifically the Elligator 2 map.
Elligator 2 is defined for all the curves EA that we use, except the curve E0,
which we discuss below. For each of these curves EA, Elligator 2 is a fast injective
map from {2, 3, . . . , (p− 1)/2} to the set EA(Fp) of curve points. This produces
only about half of the curve points; see Section 5.2 for analysis of the impact of
this nonuniformity upon our higher-level algorithms.

Here are the details of Elligator 2, specialized to these curves, further sim-
plified to avoid computing y, and adapted to allow twists as an option:

• Input A ∈ Fp with A2 6= 4 and A 6= 0.
• Input s ∈ {1,−1}. This procedure generates a point on EA if s = 1, or on

the twist of EA if s = −1.
• Input u ∈ {2, 3, . . . , (p− 1)/2}.
• Compute v = A/(u2 − 1).
• Compute e, the Legendre symbol of v3 +Av2 + v.
• Compute x as v if e = s, otherwise −v −A.

To see that this works, note first that v is defined since u2 6= 1, and is nonzero
since A 6= 0. One can also show that A2 − 4 is nonsquare for all of the CSIDH
curves, so v3+Av2+v 6= 0, so e is 1 or −1. If e = s then x = v so x3+Ax2+x is a
square for s = 1 and a nonsquare for s = −1. Otherwise e = −s and x = −v−A
so x3+Ax2+x = −u2(v3+Av2+v), which is a square for s = 1 and a nonsquare
for s = −1. This uses that v and −v − A satisfy (−v − A)2 + A(−v − A) + 1 =
v2 +Av + 1 and −v −A = −u2v.

The (p− 3)/2 different choices of u produce (p− 3)/2 different curve points,
but we could produce any particular x output twice since we suppress y.

The case A = 0. One way to extend Elligator 2 to E0 is to set v = u when
A = 0 instead of v = −A/(1 − u2). The point of the construction of v is that

12 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

x3+Ax2+x for x = −v−A is a non-square times v3+Av2+v, i.e., that (−v−A)/v
is a non-square; this is automatic for A = 0, since −1 is a non-square.

We actually handle E0 in a different way: we precompute a particular base
point on E0 whose order is divisible by (p + 1)/4, and we always return this
point if A = 0. This makes our higher-level algorithms slightly more effective
(but we disregard this improvement in analyzing the success probability of our
algorithms), since this point guarantees a successful isogeny computation start-
ing from E0; see Section 5. The same guarantee removes any need to generate
other points on E0, and is also useful to start walks in Section 10.

4.3. Derandomization. Rather than generating random points, we generate
a deterministic sequence of points by taking u = 2 for the first point, u = 3 for
the next point, etc. We precompute the inverses of 1 − 22, 1 − 32, etc., saving
bit operations.

An alternative, saving the same number of bit operations, is to precompute
inverses of 1 − u2 for various random choices of u, embedding the inverses into
the algorithm. This guarantees that the failure probability of the outer algorithm
for any particular input A, as the choices of u vary, is the same as the failure
probability of an algorithm that randomly chooses u upon demand for each A.

We are heuristically assuming that failures are not noticeably correlated
across choices of A. To replace this heuristic with a proof, one can generate
the u sequence randomly for each input. This randomness, in turn, is indistin-
guishable from the output of a cipher, under the assumption that the cipher is
secure. In this setting one cannot precompute the reciprocals of 1− u2, but one
can still batch the inversions.

5 Computing an `-isogenous curve

This section analyzes the cost of computing a single isogeny in CSIDH. There
are two inputs: A, specifying a supersingular Montgomery curve EA over Fp;
and i, specifying one of the odd prime factors `i of (p + 1)/4 = `1 · · · `n. The
output is B = Li(A). We abbreviate `i as ` and Li as L.

Recall that B is characterized by the following property: there is an `-isogeny
from EA to EB whose kernel is EA(Fp)[`]. Beyond analyzing the costs of com-
puting B = L(A), we analyze the costs of applying the `-isogeny to a point on
EA, obtaining a point on EB . See Section 5.4.

The basic reason that CSIDH is much faster than CRS is that the CSIDH
construction allows (variants of) Vélu’s formulas [72, 18, 62] to use points in
EA(Fp), rather than points defined over larger extension fields. This section
focuses on computing B via these formulas. The cost of these formulas is ap-
proximately linear in `, assuming that a point of order ` is known. There are
two important caveats here:

• Finding a point of order ` is not easy to do in constant time. See Section 5.1.
We follow the obvious approach, namely taking an appropriate multiple of
a random point; but this is expensive—recall from Section 3 that a 500-bit

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 13

Montgomery ladder costs 2000S + 3000M when A and the input point are
affine—and has failure probability approximately 1/`.

• In some of our higher-level algorithms, i is a variable. Then ` = `i is
also a variable, and Vélu’s formulas are variable-time formulas, while we
need constant-time computations. Generic branch elimination produces a
constant-time computation taking time approximately linear in `1 + `2 +
· · · + `n, which is quite slow. However, we show how to do much better,
reducing `1 + `2 + · · ·+ `n to max{`1, `2, . . . , `n}, by exploiting the internal
structure of Vélu’s formulas. See Section 5.3.

There are other ways to compute isogenies, as explored in [42, 23]:

• The “Kohel” strategy: Compute a univariate polynomial whose roots are the
x-coordinates of the points in EA(Fp)[`]. Use Kohel’s algorithm [45, Sec-
tion 2.4], which computes an isogeny given this polynomial. This strategy is
(for CSIDH) asymptotically slower than Vélu’s formulas, but could neverthe-
less be faster when ` is very small. Furthermore, this strategy is deterministic
and always works.

• The “modular” strategy: Compute the possible j-invariants of EB by factor-
ing modular polynomials. Determine the correct choice of B by computing
the corresponding isogeny kernels or, on subsequent steps, simply by not
walking back.

We analyze the Kohel strategy in Section 9, and the modular strategy in Sec-
tion 10.

5.1. Finding a point of order `. We now focus on the problem of finding
a point of order ` in EA(Fp). By assumption (p + 1)/4 is a product of distinct
odd primes `1, . . . , `n; ` = `i is one of those primes; and #EA(Fp) = p+ 1. One
can show that EA(Fp) has a point of order 4 and is thus cyclic:

EA(Fp) ∼= Z/(p+ 1) ∼= Z/4× Z/`1 × · · · × Z/`n .

We try to find a point Q of order ` in EA(Fp) as follows:

• Pick a random point P ∈ EA(Fp), as explained in Section 4.
• Compute a “cofactor” (p+ 1)/`. To handle the case ` = `i for variable i, we

first use bit operations to compute the list `′1, . . . , `′n, where `′j = `j for j 6= i
and `′i = 1; we then use a product tree to compute `′1 · · · `′n. (Computing
(p + 1)/` by a general division algorithm could be faster, but the product
tree is simpler and has negligible cost in context.)

• Compute Q = ((p+ 1)/`)P as explained in Section 3.

If P is a uniform random element of EA(Fp) then Q is a uniform random element
of EA(Fp)[`] ∼= Z/`. The order of Q is thus the desired ` with probability 1−1/`.
Otherwise Q is ∞, the neutral element on the curve, which is represented by
x = 0. Checking for x = 0 is a reliable way to detect this case: the only other
point represented by x = 0 is (0, 0), which is outside EA(Fp)[`].

14 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Different concepts of constant time. Beware that there are two different
notions of “constant time” for cryptographic algorithms. One notion is that the
time for each operation is independent of secrets. This notion allows the CSIDH
user to generate a uniform random element of EA(Fp)[`] and try again if the
point is ∞, guaranteeing success with an average of `/(` − 1) tries. The time
varies, but the variation is independent of the secret A.

A stricter notion is that the time for each operation is independent of all
inputs. The time depends on parameters, such as p in CSIDH, but does not
depend on random choices. We emphasize that a quantum circuit operating on
many inputs in superposition is, by definition, using this stricter notion. We
thus choose the sequence of operations carried out by the circuit, and analyze
the probability that this sequence fails.

Amplifying the success probability. Having each 3-isogeny fail with prob-
ability 1/3, each 5-isogeny fail with probability 1/5, etc. creates a correctness
challenge for higher-level algorithms that compute many isogenies.

A simple workaround is to generate many points Q1, Q2, . . . , QN , and use
bit operations on the points to select the first point with x 6= 0. This fails if
all of the points have x = 0. Independent uniform random points have overall
failure probability 1/`N . One can make 1/`N arbitrarily small by choosing N
large enough: for example, 1/3N is below 1/232 for N ≥ 21, and is below 1/2256

for N ≥ 162.
We return to the costs of generating so many points, and the costs of more

sophisticated alternatives, when we analyze algorithms to compute the CSIDH
group action.

5.2. Nonuniform distribution of points. We actually generate random
points using Elligator (see Section 4.2), which generates only (p− 3)/2 different
curve points P . At most (p+1)/` of these points produce Q =∞, so the failure
chance is at most (2/`)(p+ 1)/(p− 3) ≈ 2/`.

This bound cannot be simultaneously tight for ` = 3, ` = 5, and ` = 7
(assuming 3 · 5 · 7 divides p + 1): if it were then the Elligator outputs would
include all points having orders dividing (p+1)/3 or (p+1)/5 or (p+1)/7, but
this accounts for more than 54% of all curve points, contradiction.

Points generated by Elligator actually appear to be much better distributed
modulo each `, with failure chance almost exactly 1/`. Experiments support this
conjecture. Readers concerned with the gap between the provable 2/` and the
heuristic 1/` may prefer to add or subtract a few Elligator 2 outputs, obtaining
a distribution provably close to uniform (see [70]) at a moderate cost in perfor-
mance. A more efficient approach is to accept a doubling of failure probability
and use a small number of extra iterations to compensate.

We shall later see other methods of obtaining rational `-torsion points, e.g.,
by pushing points through `′-isogenies. This does not make a difference in the
analysis of failure probabilities.

For comparison, generating a random point on the curve or twist (see Sec-
tion 4.1) has failure probability above 1/2 at finding a curve point of order `.
See Section 6.2 for the impact of this difference upon higher-level algorithms.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 15

5.3. Computing an `-isogenous curve from a point of order `. Once
we have the x-coordinate of a point Q of order ` in EA(Fp), we compute the
x-coordinates of the points Q, 2Q, 3Q, . . . , ((`− 1)/2)Q. We use this information
to compute B = L(A), the coefficient determining the `-isogenous curve EB .

Recall from Section 3.4 that computing Q, 2Q, 3Q, . . . , ((` − 1)/2)Q costs
(`− 3)S+1.5(`− 3)M for affine Q and affine A, and just 1M extra for affine Q
and projective A. The original CSIDH paper [15] took more time here, namely
(` − 3)S + 2(` − 3)M, to handle projective Q and projective A. We decide,
based on comparing ` to the cost of an inversion, whether to spend an inversion
converting Q to affine coordinates.

Given the x-coordinates of Q, 2Q, 3Q, . . . , ((` − 1)/2)Q, the original CSIDH
paper [15] took approximately 3`M to compute B. Meyer and Reith [49] pointed
out that CSIDH benefits from Edwards-coordinate isogeny formulas from Moody
and Shumow [54]; we reuse this speedup. These formulas work as follows:

• Compute a = A+ 2 and d = A− 2.
• Compute the Edwards y-coordinates of Q, 2Q, 3Q, . . . , ((` − 1)/2)Q. The

Edwards y-coordinate is related to the Montgomery x-coordinate by y =
(x − 1)/(x + 1). We are given each x projectively as X/Z, and compute y
projectively as Y/T where Y = X − Z and T = X + Z. Note that Y and T
naturally occur as intermediate values in the Montgomery ladder.

• Compute the product of these y-coordinates: i.e., compute
∏
Y and

∏
T .

This uses a total of (`− 3)M.
• Compute a′ = a`(

∏
T)8 and d′ = d`(

∏
Y)8. Each `th power takes a loga-

rithmic number of squarings and multiplications; see Appendix C.4.
• Compute, projectively, B = 2(a′ + d′)/(a′ − d′). Subsequent computations

decide whether to convert B to affine form.

These formulas are almost three times faster than the formulas used in [15]. The
total cost of computing B from Q is almost two times faster than in [15].

Handling variable `. We point out that the isogeny computations for ` = 3,
` = 5, ` = 7, etc. have a Matryoshka-doll structure, allowing a constant-time
computation to handle many different values of ` with essentially the same cost
as a single computation for the largest value of `.

Concretely, the following procedure takes approximately `nS+ 2.5`nM, and
allows any ` ≤ `n. If the context places a smaller upper bound upon ` then one
can replace `n with that upper bound, saving time; we return to this idea later.

Compute the Montgomery x-coordinates and the Edwards y-coordinates of
Q, 2Q, 3Q, . . . , ((`n − 1)/2)Q. Use bit operations to replace each Edwards y-
coordinate with 1 after the first (`− 1)/2 points. Compute the product of these
modified y-coordinates; this is the desired product of the Edwards y-coordinates
of the first (`− 1)/2 points. Finish computing B as above. Note that the expo-
nentiation algorithm in Appendix C.4 allows variable `.

5.4. Applying an `-isogeny to a point. The following formulas define an
`-isogeny from EA to EB with kernel EA(Fp)[`]. The x-coordinate of the image

16 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

of a point P1 ∈ EA(Fp) under this isogeny is

x(P1)
∏

j∈{1,2,...,(`−1)/2}

(
x(P1)x(jQ)− 1

x(P1)− x(jQ)

)2

.

Each x(jQ) appearing here was computed above in projective form X/Z. The
ratio (x(P1)x(jQ) − 1)/(x(P1) − x(jQ)) is (x(P1)X − Z)/(x(P1)Z − X). This
takes 2M to compute projectively if x(P1) is affine, and thus (`−1)M across all
j. Multiplying the numerators takes ((`−3)/2)M, multiplying the denominators
takes ((`−3)/2)M, squaring both takes 2S, and multiplying by x(P1) takes 1M,
for a total of (2`− 3)M+ 2S.

If x(P1) is instead given in projective form as X1/Z1 then computing X1X−
Z1Z and X1Z −Z1X might seem to take 4M, but one can instead compute the
sum and difference of (X1 −Z1)(X +Z) and (X1 +Z1)(X −Z), using just 2M.
The only extra cost compared to the affine case is four extra additions. This
speedup was pointed out by Montgomery [53] in the context of the Montgomery
ladder. The initial CSIDH software accompanying [15] did not use this speedup
but [49] mentioned the applicability to CSIDH.

In the opposite direction, if inversion is cheap enough to justify making x(P1)
and every x(jQ) affine, then 2M drops to 1M, and the total cost drops to
approximately 1.5`M.

As in Section 5.3, we allow ` to be a variable. The cost of variable ` is the
cost of a single computation for the maximum allowed `, plus a minor cost for
bit operations to select relevant inputs to the product.

6 Computing the action: basic algorithms

Jao, LeGrow, Leonardi, and Ruiz-Lopez [38] suggested a three-level quantum
algorithm to compute Le11 · · · Lenn . This section shows how to make the algorithm
an order of magnitude faster for any particular failure probability.

6.1. Baseline: reliably computing each Li. The lowest level in [38] reliably
computes Li as follows. Generate r uniform random points on the curve or twist,
as in Section 4.1. Multiply each point by (p + 1)/`i, as in Section 5.1, hoping
to obtain a point of order `i on the curve. Use Vélu’s formulas to finish the
computation, as in Section 5.3.

Each point has success probability (1/2)(1 − 1/`i), where 1/2 is the proba-
bility of obtaining a curve point (rather than a twist point) and 1− 1/`i is the
probability of obtaining a point of order `i (rather than order 1). The chance
of all r points failing is thus (`i + 1)r/(2`i)

r, decreasing from (2/3)r for `i = 3
down towards (1/2)r as `i grows . One chooses r to obtain a failure probability
as small as desired for the isogeny computation, and for the higher levels of the
algorithm.

The lowest level optionally computes L−1i instead of Li. The approach in [38],
following [15], is to use points on the twist instead of points on the curve; an
alternative is to compute L−1i (A) as −Li(−A).

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 17

The middle level of the algorithm computes Lei , where e is a variable whose
absolute value is bounded by a constant C. This level calls the lowest level
exactly C times, performing a series of C steps of L±1i , using bit operations on
e to decide whether to retain the results of each step. The ±1 is chosen as the
sign of e, or as an irrelevant 1 if e = 0.

The highest level of the algorithm computes Le11 · · · Lenn , where each ei is
between −C and C, by calling the middle level n times, starting with Le11 and
ending with Lenn . Our definition of the action applied Lenn first, but the Li oper-
ators commute with each other, so the order does not matter.

Importance of bounding each exponent. We emphasize that this algorithm
requires each exponent ei to be between −C and C, i.e., requires the vector
(e1, . . . , en) to have ∞-norm at most C.

We use C = 5 for CSIDH-512 as an illustrative example, but all known
attacks use larger vectors (see Section 2.1). C is chosen in [38] so that every
input, every vector in superposition, has ∞-norm at most C; smaller values of
C create a failure probability that needs to be analyzed.

We are not saying that the ∞-norm is the only important feature of the
input vectors. On the contrary: our constant-time subroutine to handle variable-
` isogenies creates opportunities to share work between separate exponents. See
Section 5.3 and Section 7.

Concrete example. For concreteness we consider uniform random input vec-
tors e ∈ {−5, . . . , 5}74. The highest level calls the middle level n = 74 times,
and the middle level calls the lowest level C = 5 times. Taking r = 70 guar-
antees failure probability at most (2/3)70 at the lowest level, and thus failure
probability at most 1− (1− (2/3)70)74·5 ≈ 0.750 · 2−32 for the entire algorithm.

This type of analysis is used in [38] to select r. We point out that the failure
probability of the algorithm is actually lower, and a more accurate analysis
allows a smaller value of r. One can, for example, replace (1 − (2/3)r)74 with∏
i(1−(`i+1)r/(2`i)

r), showing that r = 59 suffices for failure probability below
2−32. With more work one can account for the distribution of input vectors e,
rather than taking the worst-case e as in [38]. However, one cannot hope to do
better than r = 55 here: there is a 10/11 chance that at least one 3-isogeny is
required, and taking r ≤ 54 means that this 3-isogeny fails with probability at
least (2/3)54, for an overall failure chance at least (10/11)(2/3)54 > 2−32.

With the choice r = 70 as in [38], there are 74 · 5 · 70 = 25900 iterations,
in total using more than 100 million multiplications in Fp. In the rest of this
section we will reduce the number of iterations by a factor 30, and in Section 7
we will reduce the number of iterations by another factor 3, with only moderate
increases in the cost of each iteration.

6.2. Fewer failures, and sharing failures. We now introduce Algorithm 6.1,
which improves upon the algorithm from [38] in three important ways. First, we
use Elligator to target the curve (or the twist if desired); see Section 4.2. This
reduces the failure probability of r points from (2/3)r to, heuristically, (1/3)r
for `i = 3; from (3/5)r to (1/5)r for `i = 5; from (4/7)r to (1/7)r for `i = 7; etc.

18 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Algorithm 6.1: Basic class-group action evaluation.
Parameters: Odd primes `1 < · · · < `n, a prime p = 4`1 · · · `n − 1, and positive

integers (r1, . . . , rn).
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for i← 1 to n do
for j ← 1 to ri do

Let s = sign(ei) ∈ {−1, 0,+1}.
Find a random point P on EsA using Elligator.
Compute Q← ((p+ 1)/`i)P .
Compute B with EB ∼= EsA/〈Q〉 if Q 6=∞.
Set A← sB if Q 6=∞ and s 6= 0.
Set ei ← ei − s if Q 6=∞.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

Second, we allow a separate ri for each `i. This lets us exploit the differences
in failure probabilities as `i varies.

Third, we handle failures at the middle level instead of the lowest level. The
strategy in [38] to compute Lei with −C ≤ e ≤ C is to perform C iterations,
where each iteration builds up many points on one curve and reliably moves to
the next curve. We instead perform ri iterations, where each iteration tries to
move from one curve to the next by generating just one point. For C = 1 this
is the same, but for larger C we obtain better tradeoffs between the number of
points and the failure probability.

As a concrete example, generating 20 points on one curve with Elligator has
failure probability (1/3)20 for `i = 3. A series of 5 such computations, overall
generating 100 points, has failure probability 1− (1− (1/3)20)5 ≈ 2−29.37. If we
instead perform just 50 iterations, where each iteration generates one point to
move 1 step with probability 2/3, then the probability that we move fewer than
5 steps is just 3846601/350 ≈ 2−57.37; see Section 6.3. Our iterations are more
expensive than in [38]—next to each Elligator computation, we always perform
the steps for computing an `i-isogeny, even if Q = ∞—but (for CSIDH-512
etc.) this is not a large effect: the cost of each iteration is dominated by scalar
multiplication.

We emphasize that all of our algorithms take constant time. When we write
“Compute X ← Y if c” we mean that we always compute Y and the bit c, and
we then replace the jth bit Xj of X with the jth bit Yj of Y for each j if c is set,
by replacing Xj with Xj ⊕ c(Xj ⊕ Yj). This is why Algorithm 6.1 always carries
out the bit operations for computing an `i-isogenous curve, as noted above, even
if Q =∞.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 19

Table 6.1. Examples of choices of ri for Algorithm 6.1 for three levels of failure
probability for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 5 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1− (1− (2/3)r)74·5

at most 2−1 or 2−32 or 2−256. Compare Table 6.2 for {−10, . . . , 10}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.499 · 2−1 11 9 8 7 7 6 . . . 5 5 5 5 406 5920
0.178 · 2−32 36 25 21 18 17 16 . . . 10 10 10 9 869 25900
0.249 · 2−256 183 126 105 85 80 73 . . . 37 37 37 34 3640 167610

6.3. Analysis. We consider the inner loop body of Algorithm 6.1 for a fixed
i, hence write ` = `i, e = ei, and r = ri for brevity.

Heuristically (see Section 5.2), we model each point Q as independent and
uniform random in a cyclic group of order `, so Q has order 1 with proba-
bility 1/` and order ` with probability 1 − 1/`. The number of points of or-
der ` through r iterations of the inner loop is binomially distributed with pa-
rameters r and 1 − 1/`. The probability that this number is |e| or larger is
prob`,e,r =

∑r
t=|e|

(
r
t

)
(1− 1/`)

t
/`r−t. This is exactly the probability that Algo-

rithm 6.1 successfully performs the |e| desired iterations of Lsign(e).
Let C be a nonnegative integer. The overall success probability of the algo-

rithm for a particular input vector (e1, . . . , en) ∈ {−C, . . . , C}n is

n∏
i=1

prob`i,ei,ri ≥
n∏
i=1

prob`i,C,ri .

Average over vectors to see that the success probability of the algorithm for a
uniform random vector in {−C, . . . , C}n is

∏n
i=1

(∑
−C≤e≤C prob`i,e,ri/(2C+1)

)
.

6.4. Examples of target failure probabilities. The acceptable level of fail-
ure probability for our algorithm depends on the attack using the algorithm. For
concreteness we consider three possibilities for CSIDH-512 failure probabilities,
namely having the algorithm fail for a uniform random vector with probabilities
at most 2−1, 2−32, and 2−256.

Our rationale for considering these probabilities is as follows. Probabilities
around 2−1 are easy to test, and may be of interest beyond this paper for con-
structive scenarios where failing computations can simply be retried. If each
computation needs to work correctly, and there are many computations, then
failure probabilities need to be much smaller, say 2−32. Asking for every input
in superposition to work correctly in one computation (for example, [38] asks for
this) requires a much smaller failure probability, say 2−256. Performance results

20 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Table 6.2. Examples of choices of ri for Algorithm 6.1 for three levels of failure prob-
ability for uniform random CSIDH-512 vectors with entries in {−10, . . . , 10}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 10 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1− (1− (2/3)r)74·10

at most 2−1 or 2−32 or 2−256. Compare Table 6.1 for {−5, . . . , 5}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.521 · 2−1 20 15 14 13 12 12 . . . 10 10 10 10 786 13320
0.257 · 2−32 48 34 30 25 24 22 . . . 15 15 15 14 1296 52540
0.215 · 2−256 201 139 116 96 90 82 . . . 43 43 43 41 4185 335960

for these three cases also provide an adequate basis for estimating performance
in other cases.

Table 6.1 presents three reasonable choices of (r1, . . . , rn), one for each of the
failure probabilities listed above, for the case of CSIDH-512 with uniform random
vectors with entries in {−5, . . . , 5}. For each target failure probability δ and each
i, the table chooses the minimum ri such that

∑
−C≤e≤C prob`i,e,ri/(2C + 1) is

at least (1 − δ)1/n. The overall success probability is then at least 1 − δ as
desired. The discontinuity of choices of (r1, . . . , rn) means that the actual failure
probability ε is actually somewhat below δ, as shown by the coefficients 0.499,
0.178, 0.249 in Table 6.1. We could move closer to the target failure probability
by choosing successively rn, rn−1, . . ., adjusting the probability (1−δ)1/n at each
step in light of the overshoot from previous steps. The values ri for ε ≈ 0.499 ·
2−1 have been experimentally verified using a modified version of the CSIDH
software. To illustrate the impact of larger vector entries, we also present similar
data in Table 6.2 for uniform random vectors with entries in {−10, . . . , 10}.

The “total” column in Table 6.1 shows that this algorithm uses, e.g., 869
iterations for failure probability 0.178 · 2−32 with vector entries in {−5, . . . , 5}.
Each iteration consists mostly of a scalar multiplication, plus some extra cost for
Elligator, Vélu’s formulas, etc. Overall there are roughly 5 million field multipli-
cations, accounting for roughly 241 nonlinear bit operations, implying a quantum
computation using roughly 245 T -gates.

As noted in Section 1, using the algorithm of [38] on top of the modular-
multiplication algorithm from [63] would use approximately 251 nonlinear bit
operations for the same distribution of input vectors. We save a factor 30 in
the number of iterations compared to [38], and we save a similar factor in the
number of bit operations for each modular multiplication compared to [63].

We do not analyze this algorithm in more detail: the algorithms we present
below are faster.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 21

7 Reducing the top nonzero exponent

Most of the iterations in Algorithm 6.1 are spent on exponents that are already 0.
For example, consider the 869 iterations mentioned above for failure probability
0.178 · 2−32 for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}.
Entry ei has absolute value 30/11 on average, and needs (30/11)`i/(`i − 1) iter-
ations on average, for a total of

∑
i(30/11)`i/(`i − 1) ≈ 206.79 useful iterations

on average. This means that there are 662.21 useless iterations on average, many
more than one would expect to be needed to guarantee this failure probability.

This section introduces a constant-time algorithm that achieves the same
failure probability with far fewer iterations. For example, in the above scenario,
just 294 iterations suffice to reduce the failure probability below 2−32. Each
iteration becomes (for CSIDH-512) about 25% more expensive, but overall the
algorithm uses far fewer bit operations.

7.1. Iterations targeting variable `. It is obvious how to avoid useless
iterations for variable-time algorithms: when an exponent reaches 0, move on to
the next exponent. In other words, always focus on reducing a nonzero exponent,
if one exists.

What is new is doing this in constant time. This is where we exploit the
Matryoshka-doll structure from Section 5.3, computing an isogeny for variable
` in constant time. We now pay for an `n-isogeny in each iteration rather than
an `-isogeny, but the iteration cost is still dominated by scalar multiplication.
Concretely, for CSIDH-512, an average `-isogeny costs about 600multiplications,
and an `n-isogeny costs about 2000 multiplications, but a scalar multiplication
costs about 5000 multiplications.

We choose to reduce the top exponent that is not 0. “Top” here refers to
position, not value: we reduce the nonzero ei where i is maximized. See Algo-
rithm 7.1.

7.2. Upper bounds on the failure probability. One can crudely estimate
the failure probability of Algorithm 7.1 in terms of the 1-norm E = |e1|+· · ·+|en|
as follows. Model each iteration as having failure probability 1/3 instead of
1/`i; this produces a loose upper bound for the overall failure probability of the
algorithm.

In this model, the chance of needing exactly r iterations to find a point of
order `i is the coefficient of xr in the power series

(2/3)x+ (2/9)x2 + (2/27)x3 + · · · = 2x/(3− x).

The chance of needing exactly r iterations to find all E points is the coefficient
of xr in the Eth power of that power series, namely cr =

(
r−1
E−1

)
2E/3r for r ≥ E.

See generally [74] for an introduction to the power-series view of combinatorics;
there are many other ways to derive the formula

(
r−1
E−1

)
2E/3r, but we make

critical use of power series for fast computations in Sections 7.3 and 8.3.
The failure probability of r iterations of Algorithm 7.1 is at most the failure

probability of r iterations in this model, namely f(r, E) = 1−cE−cE+1−· · ·−cr.

22 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Algorithm 7.1: Evaluating the class-group action by reducing the top
nonzero exponent.
Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1,

and a positive integer r.
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for j ← 1 to r do
Let i = max{k : ek 6= 0}, or i = 1 if each ek = 0.
Let s = sign(ei) ∈ {−1, 0,+1}.
Find a random point P on EsA using Elligator.
Compute Q← ((p+ 1)/`i)P .
Compute B with EB ∼= EsA/〈Q〉 if Q 6=∞, using the `i-isogeny formulas from
Section 5.3 with maximum degree `n.

Set A← sB if Q 6=∞ and s 6= 0.
Set ei ← ei − s if Q 6=∞.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

The failure probability of r iterations for a uniform random vector with entries
in {−C, . . . , C} is at most

∑
0≤E≤nC f(r, E)g[E]. Here g[E] is the probability

that a vector has 1-norm E, which we compute as the coefficient of xE in the nth
power of the polynomial (1+ 2x+2x2 + · · ·+2xC)/(2C +1). For example, with
n = 74 and C = 5, the failure probability in this model (rounded to 3 digits after
the decimal point) is 0.999 · 2−1 for r = 302; 0.965 · 2−2 for r = 319; 0.844 · 2−32
for r = 461; and 0.570 · 2−256 for r = 823. As a double-check, we observe that a
simple simulation of the model for r = 319 produces 241071 failures in 1000000
experiments, close to the predicted 0.965 · 2−2 · 1000000 ≈ 241250.

7.3. Exact values of the failure probability. The upper bounds from the
model above are too pessimistic, except for `i = 3. We instead compute the exact
failure probabilities as follows.

The chance that Le11 · · · Lenn requires exactly r iterations is the coefficient of
xr in the power series(

(`1 − 1)x

`1 − x

)|e1|
· · ·
(
(`n − 1)x

`n − x

)|en|
.

What we want is the average of this coefficient over all vectors (e1, . . . , en) ∈
{−C, . . . , C}n. This is the same as the coefficient of the average, and the average
factors nicely as ∑
−C≤e1≤C

1

2C + 1

(
(`1 − 1)x

`1 − x

)|e1| · · ·
 ∑
−C≤en≤C

1

2C + 1

(
(`n − 1)x

`n − x

)|en| .

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 23

We compute this product as a power series with rational coefficients: for example,
we compute the coefficients of x0, . . . , x499 if we are not interested in 500 or more
iterations. We then add together the coefficients of x0, . . . , xr to find the exact
success probability of r iterations of Algorithm 7.1.

As an example we again take CSIDH-512 with C = 5. The failure probability
(again rounded to 3 digits after the decimal point) is 0.960 · 2−1 for r = 207;
0.998 · 2−2 for r = 216; 0.984 · 2−32 for r = 294; 0.521 · 2−51 for r = 319;
and 0.773 · 2−256 for r = 468. We double-checked these averages against the
results of Monte Carlo calculations for these values of r. Each Monte Carlo
iteration sampled a uniform random 1-norm (weighted appropriately for the
initial probability of each 1-norm), sampled a uniform random vector within
that 1-norm, and computed the failure probability for that vector using the
single-vector generating function.

7.4. Analysis of the cost. We have fully implemented Algorithm 7.1 in our
bit-operation simulator. One iteration for CSIDH-512 uses 9208697761 bit op-
erations, including 3805535430 nonlinear bit operations. More than 95% of the
cost is explained as follows:

• Each iteration uses a Montgomery ladder with a 511-bit scalar. (We could
save a bit here: the largest useful scalar is (p + 1)/3, which is below 2510.)
We use an affine input point and an affine A, so this costs 2044S+ 3066M.

• Each iteration uses the formulas from Section 5.3 with ` = 587. This takes
602S+1472M: specifically, 584S+876M for multiples of the point of order
` (again affine); 584M for the product of Edwards y-coordinates; 18S+10M
for two `th powers; and 2M to multiply by two 8th powers. (We merge the
6S for the 8th powers into the squarings used for the `th powers.)

• Each iteration uses two inversions to obtain affineQ and A, each 507S+97M,
and one Legendre-symbol computation, 506S+ 96M.

This accounts for 4166S+4828M per iteration, i.e., 4166·349596+4828·447902 =
3618887792 nonlinear bit operations.

The cost of 294 iterations is simply 294 · 3805535430 = 1118827416420 non-
linear bit operations. This justifies the first (B, ε) claim in Section 1.

7.5. Decreasing the maximum degrees. Always performing isogeny com-
putations capable of handling degrees up to `n is wasteful: With overwhelming
probability, almost all of the 294 iterations required for a failure probability
of less than 2−32 with the approach discussed so far actually compute isoge-
nies of degree (much) less than `n. For example, with e uniformly random in
{−5, . . . , 5}, the probability that 10 iterations are not sufficient to eliminate all
587-isogenies is approximately 2−50. Therefore, using smaller upper bounds on
the isogeny degrees for later iterations of the algorithm will not do much harm
to the success probability while significantly improving the performance. We
modify Algorithm 7.1 as follows:

• Instead of a single parameter r, we use a list (r1, . . . , rn) of non-negative in-
tegers, each ri denoting the number of times an isogeny computation capable
of handling degrees up to `i is performed.

24 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

• The loop iterating from 1 through r is replaced by an outer loop on u from n
down to 1, and inside that an inner loop on j from 1 up to ru. The loop body
is unchanged, except that the maximum degree for the isogeny formulas is
now `u instead of `n.

For a given sequence (r1, . . . , rn), the probability of success can be computed
as follows:

• For each i ∈ {1, . . . , n}, compute the generating function

φi(x) =
∑

−C≤ei≤C

1

2C + 1

(
(`i − 1)x

`i − x

)|ei|

of the number of `i-isogeny steps that have to be performed.
• Since we are no longer only interested in the total number of isogeny steps to

be computed, but also in their degrees, we cannot simply take the product
of all φi as before. Instead, to account for the fact that failing to compute a
`i-isogeny before the maximal degree drops below `i implies a total failure,
we iteratively compute the product of the φi from k = n down to 1, but
truncate the product after each step. Truncation after some power xt means
eliminating all branches of the probabilistic process in which more than t
isogeny steps are needed for the computations so far. In our case we use
t =

∑n
j=i rj after multiplying by φi, which removes all outcomes in which

more isogeny steps of degree ≥ `i would have needed to be computed.
• After all φi have been processed (including the final truncation), the proba-

bility of success is the sum of all coefficients of the remaining power series.

Note that we have only described a procedure to compute the success probabilty
once r1, . . . , rn are known. It is unclear how to find the optimal values ri which
minimize the cost of the resulting algorithm, while at the same time respecting a
certain failure probability. We tried various reasonable-looking choices of strate-
gies to choose the ri according to certain prescribed failure probabilities after
each individual step. Experimentally, a good rule seems to be that the failure
probability after processing φi should be bounded by ε · 22/i−2, where ε is the
overall target failure probability. The results are shown in Table 7.1.

The average degree of the isogenies used constructively in CSIDH-512 is
about 174.6, which is not much smaller than the average degree we achieve.
Since we still need to control the error probability, it does not appear that one
can expect to get much closer to the constructive case.

Also note that the total number of isogeny steps for ε ≈ 2−32 and ε ≈ 2−256 is
each only one more than the previous number r of isogeny computations, hence
one can expect significant savings using this strategy. Assuming that about 1/4 of
the total time is spent on Vélu’s formulas (which is close to the real proportion),
we get a speedup of about 16% for ε ≈ 2−32 and about 17% for ε ≈ 2−256.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 25

Table 7.1. Examples of choices of ri, . . . , ri for Algorithm 7.1 with reducing the
maximal degree in Vélu’s formulas for uniform random CSIDH-512 vectors with entries
in {−5, . . . , 5}. Failure probabilities ε are rounded to three digits after the decimal point.

ε rn . . . r1
∑
ri avg. `

0.594 · 2−1
5 3 4 5 3 5 5 4 3 5 4 3 4 4 3 4 3 4 3 3 3 4 3 3 3 4 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 3 3 3 3 2 3 3 3 2 3
3 2 3 2 3 2 3 2 2 3 2 2 2 1 1 1 0 0

218 205.0

0.970 · 2−32
9 5 5 5 5 5 4 5 5 5 4 5 4 5 5 4 5 4 4 5 5 4 4 4 5 4 4 4
4 4 3 5 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 3 4 3 3 4 4
3 3 4 3 3 4 3 4 3 3 4 3 3 3 4 3 3 4

295 196.0

0.705 · 2−256
34 8 6 6 5 6 6 5 5 6 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 6 5 5 5 5 5 4 6
5 5 5 5 5 5 5 6 5 5 6 6 6 6 7 7 11 16 38

469 182.7

8 Pushing points through isogenies

Algorithms 6.1 and 7.1 spend most of their time on scalar multiplication. This
section pushes points through isogenies to reduce the time spent on scalar mul-
tiplication, saving time overall.

The general idea of balancing isogeny computation with scalar multiplication
was introduced in [22] in the SIDH context, and was reused in the variable-
time CSIDH algorithms in [15]. This section adapts the idea to the context of
constant-time CSIDH computation.

8.1. Why pushing points through isogenies saves time. To illustrate
the main idea, we begin by considering a sequence of just two isogenies with the
same sign. Specifically, assume that, given distinct `1 and `2 dividing p+ 1, we
want to compute L1L2(A) = B. Here are two different methods:

• Method 1. The method of Algorithm 6.1 uses Elligator to find P1 ∈ EA(Fp),
computes Q1 ← [(p+ 1)/`1]P1, computes EA′ = EA/〈Q1〉, uses Elligator to
find P2 ∈ EA′(Fp), computes Q2 ← [(p + 1)/`2]P2, and computes EB =
EA′/〈Q2〉. Failure cases: if Q1 = ∞ then this method computes A′ = A,
failing to compute L1; similarly, if Q2 = ∞ then this method computes
B = A′, failing to compute L2.

• Method 2. The method described in this section instead uses Elligator to
find P ∈ EA(Fp), computes R ← [(p + 1)/`1`2]P , computes Q ← [`2]R,
computes ϕ : EA → EA′ = EA/〈Q〉 and Q′ = ϕ(R), and computes EB =
EA′/〈Q′〉. Failure cases: if Q =∞ then this method computes Q′ = R (which
has order dividing `2) and A′ = A, failing to compute L1; if Q′ = ∞ then
this method computes B = A′, failing to compute L2.

For concreteness, we compare the costs of these methods for CSIDH-512. The
rest of this subsection uses approximations to the costs of lower-level operations
to simplify the analysis. The main costs are as follows:

26 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

• For p a 512-bit prime, Elligator costs approximately 600M.
• Given P ∈ E(Fp) and a positive integer k, the computation of [k]P via

the Montgomery ladder, as described in Section 3.3, costs approximately
10(log2 k)M, i.e., approximately (5120− 10 log2 `)M if k = (p+ 1)/`.

• The computation of a degree-` isogeny via the method described in Sec-
tion 5.3 costs approximately (3.5`+ 2 log2 `)M.

• Given an `-isogeny ϕ` : E → E′ and P ∈ E(Fp), the computation of ϕ`(P)
via the method described in Section 5.4 costs approximately 2`M.

Method 1 costs approximately

(1200 + 10240 + 3.5`1 + 3.5`2 − 8 log2 `1 − 8 log2 `2)M,

while Method 2 costs approximately

(600 + 5120 + 5.5`1 + 3.5`2 − 8 log2 `1 + 2 log2 `2)M.

The savings of (600 + 5120)M clearly outweighs the loss of (2`1 + 10 log2 `2)M,
since the largest value of `i is 587.

There are limits to the applicability of Method 2: it cannot combine two
isogenies of opposite signs, it cannot combine two isogenies using the same prime,
and it cannot save time in applying just one isogeny. We will analyze the overall
magnitude of these effects in Section 8.3.

8.2. Handling the general case, two isogenies at a time. Algorithm 8.1
computes Le11 · · · Lenn (A) for any exponent vector (e1, . . . , en). Each iteration of
the algorithm tries to perform two isogenies: one for the top nonzero exponent
(if the vector is nonzero), and one for the next exponent having the same sign
(if the vector has another exponent of this sign). As in Section 7, “top” refers to
position, not value.

The algorithm pushes the first point through the first isogeny, as in Sec-
tion 8.1, to save the cost of generating a second point. Scalar multiplication,
isogeny computation, and isogeny application use the constant-time subroutines
described in Sections 3.3, 5.3, and 5.4 respectively. The cost of these algorithms
depends on the bound `n for the prime for the top nonzero exponent and the
bound `n−1 for the prime for the next exponent. The two prime bounds have
asymmetric effects upon costs; we exploit this by applying the isogeny for the
top nonzero exponent after the isogeny for the next exponent.

Analyzing the correctness of Algorithm 8.1—assuming that there are enough
iterations; see Section 8.3—requires considering three cases. The first case is that
the exponent vector is 0. Then i, i′, s are initialized to 0, 0, 1 respectively, and i, i′
stay 0 throughout the iteration, so A does not change and the exponent vector
does not change.

The second case is that the exponent vector is nonzero and the top nonzero
exponent ei is the only exponent having sign s. Then i′ is 0 throughout the
iteration, so the “first isogeny” portion of Algorithm 8.1 has no effect. The point
Q = R in the “second isogeny” portion is cP where c = (p+1)/`i, so `iQ =∞. If
Q =∞ then i is set to 0 and the entire iteration has no effect, except for setting

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 27

Algorithm 8.1: Evaluating the class-group action by reducing the top
nonzero exponent and the next exponent with the same sign.
Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1,

and a positive integer r.
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for j ← 1 to r do
Set I ← {k : 1 ≤ k ≤ n and ek 6= 0}.
Set i← max I and s← sign(ei) ∈ {−1, 1}, or i← 0 and s← 1 if I = {}.
Set I ′ ← {k : 1 ≤ k < i and sign(ek) = s}.
Set i′ ← max I ′, or i′ ← 0 if I ′ = {}.
Twist. Set A← sA.
Isogeny preparation. Find a random point P on EA using Elligator.
Compute R← cP where c = 4

∏
1≤j≤n,j 6=i,j 6=i′ `j .

First isogeny. Compute Q← `iR, where `0 means 1.
[Now `i′Q =∞ if i′ 6= 0.] Set i′ ← 0 if Q =∞.
Compute B with EB ∼= EA/〈Q〉 if i′ 6= 0, using the `i′ -isogeny formulas from
Section 5.3 with maximum degree `n−1.

Set R to the image of R in EB if i′ 6= 0, using the `i′ -isogeny formulas from
Section 5.4 with maximum degree `n−1.

Set A← B and ei′ ← ei′ − s if i′ 6= 0.
Second isogeny. Set Q← R.
[Now `iQ =∞ if i 6= 0.] Set i← 0 if Q =∞.
Compute B with EB ∼= EA/〈Q〉 if i 6= 0, using the `i-isogeny formulas from
Section 5.3 with maximum degree `n.

Set A← B and ei ← ei − s if i 6= 0.
Untwist. Set A← sA.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

A to sA and then back to s(sA) = A. If Q 6= ∞ then i stays nonzero and A
is replaced by Li(A), so A at the end of the iteration is Lsi applied to A at the
beginning of the iteration, while s is subtracted from ei.

The third case is that the exponent vector is nonzero and that ei′ is the next
exponent having the same sign s as the top nonzero exponent ei. By construction
i′ < i ≤ n so `i′ ≤ `n−1. Now R = cP where c = (p+1)/(`i`i′). The first isogeny
uses the point Q = `iR, which is either ∞ or a point of order `i′ . If Q is ∞ then
i′ is set to 0; both A and the vector are unchanged; the point R must have order
dividing `i; and the second isogeny proceeds as above using this point. If Q has
order `i′ then the first isogeny replaces A with Li′(A), while subtracting s from
ei′ and replacing R with a point of order dividing `i on the new curve (note that

28 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

the `i′-isogeny removes any `i′ from orders of points); again the second isogeny
proceeds as above.

8.3. Analysis of the failure probability. Consider a modified dual-isogeny
algorithm in which the isogeny with a smaller prime is saved to handle later:

• Initialize an iteration counter to 0.
• Initialize an empty bank of positive isogenies.
• Initialize an empty bank of negative isogenies.
• For each ` in decreasing order:
• While an `-isogeny needs to be done and the bank has an isogeny of the

correct sign: Withdraw an isogeny from the bank, apply the isogeny, and
adjust the exponent.
• While an `-isogeny still needs to be done: Apply an isogeny, adjust the

exponent, deposit an isogeny with the bank, and increase the iteration
counter.

This uses more bit operations than Algorithm 8.1 (since the work here is not
shared across two isogenies), but it has the same failure probability for the same
number of iterations. We now focus on analyzing the distribution of the number
of iterations used by this modified algorithm.

We use three variables to characterize the state of the modified algorithm
before each `:

• i ≥ 0 is the iteration counter;
• j ≥ 0 is the number of positive isogenies in the bank;
• k ≥ 0 is the number of negative isogenies in the bank.

The number of isogenies actually applied so far is 2i−(j+k) ≥ i. The distribution
of states is captured by the three-variable formal power series

∑
i,j,k si,j,kx

iyjzk

where si,j,k is the probability of state (i, j, k). Note that there is no need to track
which primes are paired with which; this is what makes the modified algorithm
relatively easy to analyze.

If there are exactly h positive `-isogenies to perform then the new state after
those isogenies is (i, j−h, k) if h ≤ j, or (i+h− j, h− j, k) if h > j. This can be
viewed as a composition of two operations on the power series. First, multiply
by y−h. Second, replace any positive power of y−1 with the same power of xy;
i.e., replace xiyjzk for each j < 0 with xi−jy−jzk.

We actually have a distribution of the number of `-isogenies to perform. Say
there are h isogenies with probability qh. We multiply the original series by∑
h≥0 qhy

−h, and then eliminate negative powers of y as above. We similarly
handle h < 0, exchanging the role of (j, y) with the role of (k, z).

As in the analyses earlier in the paper, we model each point Q for an `-
isogeny as having order 1 with probability 1/` and order ` with probability
1 − 1/`, and we assume that the number of `-isogenies to perform is a uniform
random integer e ∈ {−C, . . . , C}. Then qh for h ≥ 0 is the coefficient of xh in∑

0≤e≤C(((`− 1)x)/(`− x))e/(2C + 1); also, q−h = qh.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 29

We reduce the time spent on these computations in three ways. First, we
discard all states with i > r if we are not interested in more than r iterations.
This leaves a cubic number of states for each `: every i between 0 and r inclusive,
every j between 0 and i inclusive, and every k between 0 and i− j inclusive.

Second, we use fixed-precision arithmetic, rounding each probability to an
integer multiple of (e.g.) 2−512. We round down to obtain lower bounds on success
probabilities; we round up to obtain upper bounds on success probabilities; we
choose the scale 2−512 so that these bounds are as tight as desired. We could save
more time by reducing the precision slightly at each step of the computation,
and by using standard interval-arithmetic techniques to merge computations of
lower and upper bounds.

Third, to multiply the series
∑
i,j,k si,j,kx

iyjzk by
∑
h≥0 qhy

−h, we actually
multiply

∑
j si,j,ky

j by
∑
h≥0 qhy

−h for each (i, k) separately. We use Sage for
these multiplications of univariate polynomials with integer coefficients. Sage, in
turn, uses fast multiplication algorithms whose cost is essentially bd for d b-bit
coefficients, so our total cost for n primes is essentially bnr3.

Concretely, we use under two hours on one core of a 3.5GHz Intel Xeon E3-
1275 v3 to compute lower bounds on all the success probabilities for CSIDH-512
with b = 512 and r = 349, and under three hours4 to compute upper bounds. Our
convention of rounding failure probabilities to 3 digits makes the lower bounds
and upper bounds identical, so presumably we could have used less precision.

We find, e.g., failure probability 0.943 · 2−1 after 106 iterations, failure prob-
ability 0.855 · 2−32 after 154 iterations, and failure probability 0.975 · 2−257 after
307 iterations. Compared to the 207, 294, 468 single-isogeny iterations required
in Section 7.3, the number of iterations has decreased to 51.2%, 52.3%, 65.6%
respectively.

8.4. Analysis of the cost. We have fully implemented Algorithm 8.1 in our
bit-operation simulator. An iteration of Algorithm 8.1 uses 4969644344 non-
linear bit operations, about 1.306 times more expensive than an iteration of
Algorithm 7.1.

If the number of iterations were multiplied by exactly 0.5 then the total
cost would be multiplied by 0.653. Given the actual number of iterations (see
Section 8.3), the cost is actually multiplied by 0.669, 0.684, 0.857 respectively.
In particular, we reach failure probability 0.855 · 2−32 with 154 · 4969644344 =
765325228976 nonlinear bit operations. This justifies the second (B, ε) claim in
Section 1.

8.5. Variants. The idea of pushing points through isogenies can be com-
bined with the idea of gradually reducing the maximum prime allowed in the
Matryoshka-doll isogeny formulas. This is compatible with our techniques for
analyzing failure probabilities.

4 It is unsurprising that lower bounds are faster: many coefficients qh round down to
0. We could save time in the upper bounds by checking for stretches of coefficients
that round up to, e.g., 1/2512, and using additions to multiply by those stretches.

30 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

A dual-isogeny iteration very late in the computation is likely to have a
useless second isogeny. It should be slightly better to replace some of the last
dual-isogeny iterations with single-isogeny iterations. This is also compatible
with our techniques for analyzing failure probabilities.

There are many different possible pairings of primes: one can take any two dis-
tinct positions where the exponents have the same sign. Possibilities include re-
ducing exponents from the bottom rather than the top; reducing the top nonzero
exponent and the bottom exponent with the same sign; always pairing “high”
positions with “low” positions; always reducing the largest exponents in absolute
value; always reducing ei where |ei|`i/(`i − 1) is largest. For some of these ideas
it is not clear how to efficiently analyze failure probabilities.

This section has focused on reusing an Elligator computation and large scalar
multiplication for (in most cases) two isogeny computations, dividing the scalar-
multiplication cost by (nearly) 2, in exchange for some overhead. We could push
a point through more isogenies, although each extra isogeny has further overhead
with less and less benefit, and computing the failure probability becomes more
expensive. For comparison, [15] reuses one point for every ` where e` has the
same sign; the number of such ` is variable, and decreases as the computation
continues. For small primes it might also save time to push multiple points
through one isogeny, as in [22].

9 Computing `-isogenies using division polynomials

As the target failure probability decreases, the algorithms earlier in this paper
spend more and more iterations handling the possibility of repeated failures
for small primes `—especially ` = 3, where each generated point fails with
probability 1/3.

This section presents and analyzes an alternative: a deterministic constant-
time subroutine that uses division polynomials to always compute `-isogenies.
Using division polynomials is more expensive than generating random points,
and the cost gap grows rapidly as ` increases, but division polynomials have the
advantage that each iteration is guaranteed to compute an `-isogeny. See also
Section 10 for an alternative that uses modular polynomials rather than division
polynomials.

Division polynomials can be applied as a first step to any of our class-group
evaluation algorithms: compute the group action for some number of powers of
L±11 , . . . ,L±1s (not necessarily C powers of each), and then handle the remaining
isogenies as before. Our rough estimates in this section suggest that the optimal
choice of s is small: division polynomials are not of interest for large primes `.

9.1. Algorithm. The idea behind the following algorithm is to take the `-
division polynomial ψ` of EA, whose roots are the x-coordinates of nonzero
`-torsion points; identify a divisor χ` of ψ` that defines the Fp-rational subgroup
of EA[`]; and finally use a variant of Kohel’s formulas [45, Section 2.4] to compute
the codomain of the isogeny defined by χ` and thus B = L(A).

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 31

Algorithm 9.1: `-isogeny using division polynomials.
Parameters: Odd primes `1 < · · · < `n, a prime p = 4`1 · · · `n − 1, and

` ∈ {`1, . . . , `n}.
Input: A ∈ Sp.
Output: L(A) ∈ Sp.

Compute the `-division polynomial ψ` ∈ Fp[X] of EA.
Compute ψ′` = gcd(Xp −X,ψ`).
Let ρ = X3 +AX2 +X and compute χ` = gcd(ρ(p+1)/2 − ρ, ψ′`).
Use Lemma 9.1 on χ` to compute B such that EB ∼= EA/EA(Fp)[`].
Return B.

Lemma 9.1. Let EA : y2 = x3 + Ax2 + x be a Montgomery curve defined over
a field k with char(k) 6= 2. Consider a finite subgroup G ≤ E of odd size n ≥ 3
and let χ ∈ k[x] be a monic squarefree polynomial of degree d = (n− 1)/2 whose
roots are exactly the x-coordinates of all nonzero points in G. Write

σ = −χ[d− 1] ; τ = (−1)d+1 · χ[1] ; π = (−1)d · χ[0] ,

where χ[i] ∈ k is the coefficient of xi in χ. Then there exists an isogeny EA → EB
with kernel G, where

B = π(π(A− 6σ) + 6τ) .

Proof. This is obtained by decomposing the formulas from [62] into elementary
symmetric polynomials, which happen to occur as the given coefficients of χ. ut

Lemma 9.2. Algorithm 9.1 is correct.

Proof. First, Xp − X =
∏
a∈Fp

(X − a) implies that ψ′` is the part of ψ` that
splits into linear factors over Fp. Second, for any ρ ∈ Fp, choosing y ∈ Fp such
that y2 = ρ gives

ρ(p+1)/2 − ρ = y(yp − y) = y
∏
α∈Fp

(y − α).

Therefore the roots of χ` are exactly the x-coordinates of the nonzero Fp-
rational `-torsion points on E. Finally, the correctness of the output follows
from Lemma 9.1. ut

9.2. Cost. To analyze how this approach compares to Vélu’s formulas, we
focus on rough estimates of how cost scales with `, rather than an exact cost
analysis. Finite field squarings S are counted asM for simplicity. Let µ(d) denote
the cost of multiplying two d-coefficient polynomials. To establish a rough lower
bound, we assume µ(d) = (d log2 d)M, which is a model of the complexity of
FFT-based fast multiplication techniques. For a rough upper bound, we use
d2M, which is a model of the cost of schoolbook multiplication.

32 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Computing division polynomials. There are two obvious approaches for
obtaining division polynomials: Either evaluate the recursive definition directly
on a given A ∈ Fp, or precompute the division polynomials as elements of Fp[A, x]
in advance and evaluate them at a given A ∈ Fp at runtime. We estimate the
number of operations required for both approaches.

Recursive definition. Ignoring multiplications by small fixed polynomials, the
division polynomials satisfy a recursive equation of the form

f` = fafbf
2
c − fa′fb′f2c′ ,

where the indices a, b, c, a′, b′, c′ are integers within 2 of `/2 (so there are at most
5 distinct indices). Continuing this recursion involves indices within 2/1+ 2 = 3
of `/4 (at most 7 distinct indices), within 3.5 of `/8 (at most 8), within 3.75 of
`/16 (at most 8), etc.

Each of fa, fb, fc has approximately `2/8 coefficients, so computing fafbf2c
costs (2µ(`2/8) + µ(`2/4))M. The rough lower bound is (`2 log2 `)M, and the
rough upper bound is (3`4/32)M.

Computing f` involves computing both fafbf2c and fa′fb′f2c′ . The recursion
involves at most 5 computations for `/2, at most 7 computations for `/4, and at
most 8 computations for each subsequent level. The total is

(1 + 5/2 + 7/4 + 8/8 + 8/16 + · · ·)(2`2 log2 `)M = (29/2)(`2 log2 `)M

for the rough lower bound, and

(1 + 5/4 + 7/16 + 8/64 + 8/256 + · · ·)(3`4/16)M = (137/256)`4M

for the rough upper bound.

Evaluating precomputed polynomials. The degree of Ψ` ∈ Fp[A, x] is (`2 − 1)/2
in x and ≤ `2/8 + 1 in A, so overall Ψ` has at most about `4/16 coefficients.
Evaluating a precomputed Ψ` ∈ Fp[x][A] at A ∈ Fp using Horner’s method takes
at most about (`4/16)M. This improves the rough upper bound.

Extracting the split part. As stated in Algorithm 9.1, extracting the part ψ′`
of ψ` that splits over Fp amounts to computing gcd(Xp−X,ψ`). The exponentia-
tion Xp mod ψ` is computed using square-and-multiply with windows (similar to
Appendix C.5), which uses about log2 p squarings and about (log2 p)/(log2 log2 p)
multiplications. For simplicity we count this as a total of 1.2 log2 p multiplica-
tions, which is a reasonable estimate for 512-bit p.

For the number of Fp-multiplications to compute Xp mod ψ` we obtain ap-
proximately 2.4 log2 p · `2 log ` for the lower bound on µ(d) and 0.6 log2 p · `4 for
the upper. Here we assume cost µ(d) for reducing a degree-(2d−2) polynomial
modulo a degree-d polynomial.

The computation of gcd
(
(Xp mod ψ`) − X,ψ`

)
can be done using Stevin’s

algorithm which uses roughly d2M, where d is the degree of the larger of the
input polynomials. In this case, since degψ` ≈ `2/2, this amounts to about
(`4/4)M.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 33

Table 9.1. Rough estimates for the number of Fp-multiplications to compute L(A)
using division polynomials (Algorithm 9.1).

` 3 5 7 11 13 17 19 23 29

rough upper bound 215.1 217.8 219.6 222.1 223.1 224.6 225.3 226.4 227.7

rough lower bound 214.5 216.4 217.6 219.1 219.7 220.6 220.9 221.6 222.3

Fast arithmetic improves gcd computation to O(d · (log2 d)2)M asymptoti-
cally; see, e.g., [69]. We are not aware of literature presenting concrete speeds
for fast constant-time gcd computation. For a rough lower bound we assume
2d(log2 d)

2M, i.e., about 4`2(log2 `)2M.

Extracting the kernel polynomial. Note that degψ′` = `− 1: Each root in
Fp of ψ` gives rise to two points of order ` in the +1 or −1 Frobenius eigenspace,
which contain ` − 1 nonzero points each. Hence, as before, the cost of obtain-
ing χ` from ψ′` is roughly (2.4 log2 p · ` log2 `)M resp. 2.4 log2 p · `2M for the
exponentiation, plus 2`(log2 `)2M resp. `2M for the gcd computation.

Computing the isogeny. Lemma 9.1 is just a simple formula in terms of a
few coefficients of χ` and can be realized using 2M and some additions, hence
has negligible cost.

9.3. Total cost. In summary, the cost of Algorithm 9.1 in Fp-multiplications
has a rough lower bound of

min
{
(29/2)`2 log2 `, `

4/16
}
+ 2.4 log2 p · `2 log2 `+ 4`2(log2 `)

2

+ 2.4 log2 p · ` log2 `+ 2`(log2 `)
2

and a rough upper bound of

`4/16 + 0.6 log2 p · `4 + `4/4 + 2.4 log2 p · `2 + `2.

Table 9.1 lists values of these formulas for log2 p ≈ 512 and small `.
The main bottleneck is the computation of Xp mod ψ`: for each bit of p there

is a squaring modulo ψ`, a polynomial of degree (`2− 1)/2. For comparison, the
scalar multiplication in Section 5 involves about 10M for each bit of p, no matter
how large ` is, but is not guaranteed to produce a point of order `.

10 Computing `-isogenies using modular polynomials

One technique suggested by De Feo, Kieffer, and Smith [42, 23] to compute the
CRS group action is to use the (classical) modular polynomials Φ`(X,Y), which
vanish exactly on the pairs of j-invariants that are connected by a cyclic `-
isogeny. For prime `, the polynomial Φ`(X,Y) is symmetric and has degree `+1

34 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

in the two variables, hence fixing one of the variables to some j-invariant and
finding the roots of the resulting univariate polynomial suffices to find neighbours
in the `-isogeny graph.

The advantage of modular polynomials over division polynomials is that the
degree ` + 1 of Φ`(j, Y) grows more slowly than the degree (`2 − 1)/2 of the
`-division polynomial ψ` used in Section 9: modular polynomials are smaller for
all ` ≥ 5. However, using modular polynomials requires solving two problems:
disambiguating twists and disambiguating directions. We address these problems
in the rest of this section.

10.1. Disambiguating twists. It may seem that the idea of computing `-
isogenous curves by finding roots of Φ`(X,Y) is not applicable to the CSIDH
setting, since a single j-invariant almost always defines two distinct nodes in the
supersingular Fp-rational isogeny graph, namely EB and E−B for some B ∈ Sp.
Knowing j(EL(A)) is not enough information to distinguish L(A) from −L(A).

This problem does not arise in CRS. Twists always have the same j-invariant
but, in the ordinary case, are not isogenous. A random twist point has negligible
chance of being annihilated by the expected group order, so one can reliably
recognize the twist at the expense of a scalar multiplication.

For CSIDH, one way to distinguish the cases L(A) = B and L(A) = −B is to
apply a different isogeny-computation method (from, e.g., Section 5 or Section 9)
to compute L(B). If L(B) = −A then L(A) = −B; otherwise L(A) = B.

This might seem to remove any possible advantage of having used modular
polynomials to compute ±B in the first place, since one could simply have used
the different method to compute L(A). However, below we will generalize the
same idea to Le(A), amortizing the costs of the different method across the costs
of e computations using modular polynomials.

An alternative is as follows. The Bostan–Morain–Salvy–Schost algorithm [13],
given a curve C (in short Weierstrass form, but the algorithm is easily adjusted
to apply to Montgomery curves) and an `-isogenous curve C ′, finds a formula for
the unique normalized `-isogeny from C to C ′. Part of this formula is the kernel
polynomial of the isogeny: the monic degree-(`−1) polynomial D ∈ Fp[X] whose
roots are the x-coordinates of the nonzero elements of the kernel of the isogeny.
The algorithm uses `1+o(1) field operations with fast multiplication techniques.
The output of the algorithm can be efficiently verified to be an `-isogeny from
C to C ′, so the algorithm can also be used to test whether two curves are `-
isogenous.

Use this algorithm to test whether there is an `-isogeny from EA to EB ,
and, if so, to find the kernel polynomial D. Check whether D divides Xp −X,
i.e., whether all of the nonzero elements of the kernel have x-coordinates defined
over Fp; this takes one exponentiation modulo D. Also check whether D divides
(X3 + AX2 + X)(p+1)/2 − (X3 + AX2 + X), i.e., whether all of the nonzero
elements of the kernel have y-coordinates defined over Fp. These tests are all
passed if and only if B = L(A).

Both of these approaches also incur the cost of computing B ∈ Fp given
j(EB), which we handle as follows. First note that there are at most two such B:

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 35

different Montgomery models of the same curve arise from the choice of point of
order 2 which is moved to (0, 0); in our setting, there is only one rational order-2
point, hence B is unique up to sign. The j-invariant of EB is an even rational
function of degree 6 in B, hence solving for B ∈ Fp given j(EB) amounts to
finding the Fp-roots of a degree-6 polynomial g ∈ Fp[Y 2]. To do so, we first
compute h = gcd(Y p−Y, g) to extract the split part; by the above h has degree
2. A solution B ∈ Fp can then be obtained by computing a square root.

We also mention a further possibility that appears to eliminate all of the costs
above: replace the classical modular polynomials for j with modular polynomials
for the Montgomery coefficient A. Starting with standard techniques to compute
classical modular polynomials, and replacing j with A, appears to produce, at the
same speed, polynomials that vanish exactly on the pairs (A,B) where EA and
EB are connected by a cyclic `-isogeny. The main cost here is in proof complexity:
to guarantee that this approach works, one must switch from the well-known
theory of classical modular polynomials to a suitable theory of Montgomery (or
Edwards) modular polynomials.

10.2. Disambiguating directions. A further problem is that each curve has
two neighbors in the `-isogeny graph. The modular polynomial does not contain
enough information to distinguish between the two neighbours. Specifically, the
roots of Φ`(j(EA), Y) in Fp are j(EL(A)) and j(EL−1(A)), which are almost always
different. Switching from j-invariants to other geometric invariants does not solve
this problem.

This is already a problem for CRS, and is already solved in [42, 23] using
the Bostan–Morain–Salvy–Schost algorithm. The application of this algorithm
in the CRS context is slightly simpler than the application explained above,
since there is no need for isogeny verification: one knows that EB is `-isogenous
to EA, and the only question is whether the kernel is in the correct Frobenius
eigenspace. For CSIDH, the question is whether the y-coordinates in the kernel
are defined over Fp.

10.3. Isogeny walks. We now consider the problem of computing Le(A). As
before, L−e(A) can be computed as −Le(−A), so we focus on the case e > 0.

After the first step L(A) has been computed (see above), identifying the
correct direction in each subsequent step is easy, as pointed out in [23, Algorithm
ElkiesWalk]. The point is that (except for degenerate cases) another step in the
same direction never leads back to the previously visited curve; hence simply
avoiding backward steps is enough. The cost of disambiguating directions is
thus amortized across all e steps.

We also amortize the cost of disambiguating twists across all e steps as fol-
lows. We ascertain the correct direction at the first step. We then compute the
sequence of j-invariants for all e steps. At the last step, we compute the corre-
sponding Montgomery coefficient and ascertain the correct twist.

Algorithm 10.1 combines these ideas. For simplicity, the algorithm avoids
the Bostan–Morain–Salvy–Schost algorithm. Instead it uses another isogeny-
computation method, such as Algorithm 9.1, to disambiguate the direction at
the first step and to disambiguate the twist at the last step.

36 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

Algorithm 10.1: Isogeny graph walking using modular polynomials.
Parameters: Odd primes `1 < · · · < `n, a prime p = 4`1 · · · `n − 1,

` ∈ {`1, . . . , `n}, and an integer e ≥ 1.
Input: A ∈ Sp.
Output: Le(A) ∈ Sp.

Compute B = L(A) using another algorithm.
Set jprev = j(EA) and jcur = j(EB).
for i← 2 to e do

Compute f ← gcd(Y p − Y, Φ`(jcur , Y)).
Let c, d ∈ Fp be the coefficients of f , such that f = Y 2 + cY + d.
Set (jprev , jcur)← (jcur , c− jprev).

Find B ∈ Fp such that j(EB) = jcur .
Compute C = L(B) using another algorithm.
Set B ← −B if j(EC) = jprev .
Return B.

The correctness of Algorithm 10.1 is best explained through the graph pic-
ture: Recall that the `-isogeny graph (labelled by A-coefficients) is a disjoint
union of cycles which have a natural orientation given by the map L.

Since −L(−A) = L−1(A), negating all labels in a cycle C corresponds to
inverting the orientation of the cycle. For a cycle C as above, let C/± denote the
quotient graph of C by negation. This is the same thing as applying j-invariants
to all nodes. If C contains 0, then C/± is a line with inflection points at the ends;
else C/± has the same structure as C. In both cases C/± is unoriented.

For brevity, write ji = j(ELi(A)). Algorithm 10.1 starts out on a cycle C as
above by computing one step L with known-good orientation. It then reduces to
C/± and continues walking in the same direction simply by avoiding backwards
steps when possible; there are only (up to) two neighbours at all times. Therefore,
the property jcur = ji holds at the end of each iteration of the loop; in particular,
arbitrarily lifting je to a node with the right j-invariant yields B ∈ {±Le(A)}.
Finally, computing and comparing j(EL(B)) = j(EL(±Le(A))) = je±1 to the value
je−1 known from the previous iteration of the loop reveals the correct sign.

10.4. Cost. Algorithm 10.1 requires two calls to a separate subroutine for L
and some extra work (computing a pth power modulo a degree-6 polynomial),
so it is never faster than repeated applications of the separate subroutine when
e ≤ 2. On the other hand, replacing this subroutine with the Bostan–Morain–
Salvy–Schost algorithm, and/or replacing classical modular polynomials with
modular polynomials for A, might make this approach competitive for e = 2
and perhaps even e = 1.

No matter how large e is, Algorithm 10.1 requires computing the polynomials
gcd(Y p − Y, g) and gcd(Y p − Y, Φ`(jcur , Y)) for each isogeny. The degree of g is

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 37

smaller than in Algorithm 9.1 for ` ≥ 5, but the gcd cost quickly becomes much
more expensive than the “Vélu” method from Section 5 as ` grows. However,
this algorithm may nevertheless be of interest for small values of `. If Algo-
rithm 9.1 (rather than the Vélu method) is used as the separate L subroutine
then Algorithm 10.1 is deterministic and always works.

References

[1] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In Asi-
aPKC@AsiaCCS, pages 1–10. ACM, 2016. https://ia.cr/2016/229.

[2] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 311–323. Springer, 1986.

[3] Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17:525–532, 1973.

[4] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, 1989.

[5] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 207–228.
Springer, 2006. https://cr.yp.to/papers.html#curve25519.

[6] Daniel J. Bernstein. Batch binary Edwards. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 317–336. Springer, 2009. https://cr.yp.to/
papers.html#bbe.

[7] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elliga-
tor: elliptic-curve points indistinguishable from uniform random strings. In ACM
Conference on Computer and Communications Security, pages 967–980. ACM,
2013. https://ia.cr/2013/325.

[8] Daniel J. Bernstein and Tanja Lange. Analysis and optimization of elliptic-curve
single-scalar multiplication. In Finite fields and applications. Proceedings of the
eighth international conference on finite fields and applications, Melbourne, Aus-
tralia, July 9–13, 2007, pages 1–19. Providence, RI: American Mathematical So-
ciety (AMS), 2008. https://ia.cr/2007/455.

[9] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery
ladder. In Joppe W. Bos and Arjen K. Lenstra, editors, Topics in computational
number theory inspired by Peter L. Montgomery, pages 82–115. Cambridge Uni-
versity Press, 2017. https://ia.cr/2017/293.

[10] Xavier Bonnetain and María Naya-Plasencia. Hidden shift quantum cryptanalysis
and implications. In ASIACRYPT, volume 11274 of Lecture Notes in Computer
Science. Springer, 2018. https://ia.cr/2018/432.

[11] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH
and ordinary isogeny-based schemes, 2018. IACR Cryptology ePrint Archive
2018/537. https://ia.cr/2018/537.

[12] Joppe W. Bos. Constant time modular inversion. J. Cryptographic Engineering,
4(4):275–281, 2014. http://www.joppebos.com/files/CTInversion.pdf.

[13] Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast al-
gorithms for computing isogenies between elliptic curves. Math. Comput.,
77(263):1755–1778, 2008. https://www.ams.org/journals/mcom/2008-77-263/
S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf.

https://ia.cr/2016/229
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#bbe
https://cr.yp.to/papers.html#bbe
https://ia.cr/2013/325
https://ia.cr/2007/455
https://ia.cr/2017/293
https://ia.cr/2018/432
https://ia.cr/2018/537
http://www.joppebos.com/files/CTInversion.pdf
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf
https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-08-02066-8/S0025-5718-08-02066-8.pdf

38 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

[14] Richard P. Brent and Hsiang-Tsung Kung. The area-time complexity of binary
multiplication. J. ACM, 28(3):521–534, 1981. https://maths-people.anu.edu.
au/~brent/pd/rpb055.pdf.

[15] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In ASI-
ACRYPT, volume 11274 of Lecture Notes in Computer Science, pages 395–427.
Springer, 2018. https://ia.cr/2018/383.

[16] Yiping Cheng. Space-efficient Karatsuba multiplication for multi-precision inte-
gers. CoRR, abs/1605.06760, 2016. https://arxiv.org/abs/1605.06760.

[17] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. J. Mathematical Cryptology,
8(1):1–29, 2014. https://arxiv.org/abs/1012.4019.

[18] Craig Costello and Hüseyin Hisil. A simple and compact algorithm for SIDH with
arbitrary degree isogenies. In ASIACRYPT (2), volume 10625 of Lecture Notes
in Computer Science, pages 303–329. Springer, 2017. https://ia.cr/2017/504.

[19] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. Efficient compression of SIDH public keys. In EUROCRYPT (1),
volume 10210 of Lecture Notes in Computer Science, pages 679–706, 2017.

[20] Jean-Marc Couveignes. Hard Homogeneous Spaces, 2006. IACR Cryptology
ePrint Archive 2006/291. https://ia.cr/2006/291.

[21] Luigi Dadda. Some schemes for parallel multipliers. Alta frequenza, 34(5):349–356,
1965.

[22] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathemati-
cal Cryptology, 8(3):209–247, 2014. IACR Cryptology ePrint Archive 2011/506.
https://ia.cr/2011/506.

[23] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key exchange
from ordinary isogeny graphs. In ASIACRYPT, volume 11274 of Lecture Notes
in Computer Science. Springer, 2018. https://ia.cr/2018/485.

[24] Vassil S. Dimitrov, Laurent Imbert, and Andrew Zakaluzny. Multiplication by a
constant is sublinear. In 18th IEEE Symposium on Computer Arithmetic (ARITH-
18 2007), 25-27 June 2007, Montpellier, France, pages 261–268. IEEE Computer
Society, 2007. http://www.lirmm.fr/~imbert/pdfs/constmult_arith18.pdf.

[25] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
Surface codes: Towards practical large-scale quantum computation. Physical Re-
view A, 86:032324, 2012. https://arxiv.org/abs/1208.0928.

[26] Martin Fürer. Faster integer multiplication. In STOC, pages 57–66. ACM, 2007.
[27] Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, 2017.

https://quantum-journal.org/papers/q-2018-06-18-74/.
[28] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt.

Applying Grover’s algorithm to AES: quantum resource estimates. In PQCrypto,
volume 9606 of Lecture Notes in Computer Science, pages 29–43. Springer, 2016.
https://arxiv.org/abs/1512.04965.

[29] James L. Hafner and Kevin S. McCurley. A rigorous subexponen-
tial algorithm for computation of class groups. J. Amer. Math.
Soc., 2(4):837–850, 1989. https://www.ams.org/journals/jams/1989-02-04/
S0894-0347-1989-1002631-0/S0894-0347-1989-1002631-0.pdf.

[30] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n +
2 qubits with Toffoli based modular multiplication. Quantum Information &
Computation, 17(7&8):673–684, 2017. https://arxiv.org/abs/1611.07995.

https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://ia.cr/2018/383
https://arxiv.org/abs/1605.06760
https://arxiv.org/abs/1012.4019
https://ia.cr/2017/504
https://ia.cr/2006/291
https://ia.cr/2011/506
https://ia.cr/2018/485
http://www.lirmm.fr/~imbert/pdfs/constmult_arith18.pdf
https://arxiv.org/abs/1208.0928
https://quantum-journal.org/papers/q-2018-06-18-74/
https://arxiv.org/abs/1512.04965
https://www.ams.org/journals/jams/1989-02-04/S0894-0347-1989-1002631-0/S0894-0347-1989-1002631-0.pdf
https://www.ams.org/journals/jams/1989-02-04/S0894-0347-1989-1002631-0/S0894-0347-1989-1002631-0.pdf
https://arxiv.org/abs/1611.07995

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 39

[31] David Harvey and Joris van der Hoeven. Faster integer multiplication using short
lattice vectors. CoRR, abs/1802.07932, 2018. https://arxiv.org/abs/1802.
07932.

[32] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Even faster integer
multiplication. J. Complexity, 36:1–30, 2016. https://arxiv.org/abs/1407.
3360.

[33] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Faster polynomial
multiplication over finite fields. J. ACM, 63(6):52:1–52:23, 2017. https://arxiv.
org/abs/1407.3361.

[34] Hüseyin Hişil. Elliptic curves, group law, and efficient computation. PhD the-
sis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/
33233/.

[35] Michael Hutter and Peter Schwabe. Multiprecision multiplication on AVR revis-
ited. J. Cryptographic Engineering, 5(3):201–214, 2015. https://ia.cr/2014/
592.

[36] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. SIKE. Submission
to [55]. http://sike.org.

[37] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In PQCrypto, volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011. https://ia.cr/2011/506/
20110918:024142.

[38] David Jao, Jason LeGrow, Christopher Leonardi, and Luis Ruiz-Lopez. A
subexponential-time, polynomial quantum space algorithm for inverting the CM
group action. Journal of Mathematical Cryptology, 2018. To appear.

[39] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys-
ical Review A, 87:022328, 2012.

[40] Anatoly A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595–596, 1963.

[41] Shane Kepley and Rainer Steinwandt. Quantum circuits for F2n -multiplication
with subquadratic gate count. Quantum Information Processing, 14(7):2373–2386,
2015.

[42] Jean Kieffer. Étude et accélération du protocole d’échange de clés de Couveignes–
Rostovtsev–Stolbunov. Mémoire du Master 2, Université Paris VI, 2017. https:
//arxiv.org/abs/1804.10128.

[43] Emanuel Knill. An analysis of Bennett’s pebble game. CoRR, abs/math/9508218,
1995. https://arxiv.org/abs/math/9508218.

[44] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, 1981.

[45] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkeley, 1996. http://iml.univ-mrs.fr/~kohel/
pub/thesis.pdf.

[46] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM J. Comput., 35(1):170–188, 2005. https://
arxiv.org/abs/quant-ph/0302112.

[47] Greg Kuperberg. Another subexponential-time quantum algorithm for the di-
hedral hidden subgroup problem. In TQC, volume 22 of LIPIcs, pages 20–34.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. https://arxiv.org/
abs/1112.3333.

https://arxiv.org/abs/1802.07932
https://arxiv.org/abs/1802.07932
https://arxiv.org/abs/1407.3360
https://arxiv.org/abs/1407.3360
https://arxiv.org/abs/1407.3361
https://arxiv.org/abs/1407.3361
https://eprints.qut.edu.au/33233/
https://eprints.qut.edu.au/33233/
https://ia.cr/2014/592
https://ia.cr/2014/592
http://sike.org
https://ia.cr/2011/506/20110918:024142
https://ia.cr/2011/506/20110918:024142
https://arxiv.org/abs/1804.10128
https://arxiv.org/abs/1804.10128
https://arxiv.org/abs/math/9508218
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/1112.3333
https://arxiv.org/abs/1112.3333

40 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

[48] Vincent Lefèvre. Multiplication by an integer constant: Lower bounds on the code
length. In 5th Conference on Real Numbers and Computers 2003 - RNC5, pages
131–146, Lyon, France, 2003. https://hal.inria.fr/inria-00072095v1.

[49] Michael Meyer and Steffen Reith. A faster way to the CSIDH, 2018. IACR
Cryptology ePrint Archive 2018/782. https://ia.cr/2018/782.

[50] Daniele Micciancio. Improving lattice based cryptosystems using the Hermite
normal form. In CaLC, volume 2146 of Lecture Notes in Computer Science,
pages 126–145. Springer, 2001. https://cseweb.ucsd.edu/~daniele/papers/
HNFcrypt.html.

[51] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO, volume 218
of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

[52] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44:519–521, 1985. http://www.ams.org/journals/mcom/
1985-44-170/S0025-5718-1985-0777282-X/home.html.

[53] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48(177):243–264, 1987. https://www.ams.
org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/.

[54] Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas for isogenies
on alternate models of elliptic curves. Math. Comput., 85(300):1929–1951, 2016.
https://ia.cr/2011/430.

[55] National Institute of Standards and Technology. Post-quantum cryptog-
raphy standardization, December 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization.

[56] Peter J. Nicholson. Algebraic theory of finite Fourier transforms. J. Comput.
Syst. Sci., 5(5):524–547, 1971.

[57] Alex Parent, Martin Roetteler, and Michele Mosca. Improved reversible and quan-
tum circuits for Karatsuba-based integer multiplication. In TQC, volume 73 of
LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
https://arxiv.org/abs/1706.03419.

[58] Christophe Petit. Faster algorithms for isogeny problems using torsion point
images. In ASIACRYPT (2), volume 10625 of Lecture Notes in Computer Science,
pages 330–353. Springer, 2017. https://ia.cr/2017/571.

[59] Julia Pieltant and Hugues Randriam. New uniform and asymptotic upper bounds
on the tensor rank of multiplication in extensions of finite fields. Math. Comput.,
84(294):2023–2045, 2015. https://arxiv.org/abs/1305.5166.

[60] John M. Pollard. The fast Fourier transform in a finite field. Mathemat-
ics of Computation, 25:365–374, 1971. https://www.ams.org/journals/mcom/
1971-25-114/S0025-5718-1971-0301966-0/.

[61] Oded Regev. A subexponential time algorithm for the dihedral hidden sub-
group problem with polynomial space, 2004. https://arxiv.org/abs/quant-ph/
0406151.

[62] Joost Renes. Computing isogenies between Montgomery curves using the action
of (0, 0). In PQCrypto, volume 10786 of Lecture Notes in Computer Science, pages
229–247. Springer, 2018. https://ia.cr/2017/1198.

[63] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin E. Lauter. Quan-
tum resource estimates for computing elliptic curve discrete logarithms. In ASI-
ACRYPT (2), volume 10625 of Lecture Notes in Computer Science, pages 241–270.
Springer, 2017. https://ia.cr/2017/598.

[64] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies, 2006. IACR Cryptology ePrint Archive 2006/145. https://ia.cr/
2006/145.

https://hal.inria.fr/inria-00072095v1
https://ia.cr/2018/782
https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html
https://cseweb.ucsd.edu/~daniele/papers/HNFcrypt.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/home.html
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
https://ia.cr/2011/430
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://arxiv.org/abs/1706.03419
https://ia.cr/2017/571
https://arxiv.org/abs/1305.5166
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-0301966-0/
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://ia.cr/2017/1198
https://ia.cr/2017/598
https://ia.cr/2006/145
https://ia.cr/2006/145

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 41

[65] Arnold Schönhage. Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2. Acta Inf., 7:395–398, 1977.

[66] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3-4):281–292, 1971.

[67] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
https://arxiv.org/abs/quant-ph/9508027.

[68] Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. Adv. in Math. of Comm.,
4(2):215–235, 2010.

[69] Volker Strassen. The computational complexity of continued fractions. SIAM
Journal on Computing, 12:1–27, 1983.

[70] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime
order as uniform random strings. In Financial Cryptography, volume 8437 of
Lecture Notes in Computer Science, pages 139–156. Springer, 2014. https://ia.
cr/2014/043.

[71] Andrei L. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963. http:
//toomandre.com/my-articles/engmat/MULT-E.PDF.

[72] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences de Paris, 273:238–241, 1971.

[73] Christopher S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
electronic Computers, (1):14–17, 1964.

[74] Herbert S. Wilf. generatingfunctionology. Academic Press, 1994. https://www.
math.upenn.edu/~wilf/DownldGF.html.

[75] Gustavo Zanon, Marcos A. Simplício Jr., Geovandro C. C. F. Pereira, Javad
Doliskani, and Paulo S. L. M. Barreto. Faster isogeny-based compressed key
agreement. In PQCrypto, volume 10786 of Lecture Notes in Computer Science,
pages 248–268. Springer, 2018. https://ia.cr/2017/1143.

A Cost metrics for quantum computation

This appendix reviews several cost metrics relevant to this paper.

A.1. Bit operations. Computations on today’s non-quantum computers are
ultimately nothing more than sequences of bit operations. The hardware carries
out a sequence of NOT gates b 7→ 1 − b; AND gates (a, b) 7→ ab; OR gates
(a, b) 7→ max{a, b}; and XOR gates (a, b) 7→ a ⊕ b. Some of the results are
displayed as outputs.

Formally, a computation is a finite directed acyclic graph where each node
has 0, 1, or 2 inputs. Each 0-input node in the graph is labeled as constant 0,
constant 1, or a specified input bit. Each 1-input node in the graph is labeled
NOT. Each 2-input node in the graph is labeled AND, OR, or XOR. There is
also a labeling of output bits as particular nodes in the graph.

The graph induces a function from sequences of input bits to sequences of
output bits. Specifically, given values of the input bits, the graph assigns a value
to each node as specified by the label (e.g., the value at an AND node is the

https://arxiv.org/abs/quant-ph/9508027
https://ia.cr/2014/043
https://ia.cr/2014/043
http://toomandre.com/my-articles/engmat/MULT-E.PDF
http://toomandre.com/my-articles/engmat/MULT-E.PDF
https://www.math.upenn.edu/~wilf/DownldGF.html
https://www.math.upenn.edu/~wilf/DownldGF.html
https://ia.cr/2017/1143

42 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

minimum of the values of its two input nodes), and in particular computes values
of the output bits.

Our primary cost metric in this paper is the number of nonlinear bit oper-
ations: i.e., we count the number of ANDs and ORs, disregarding the number of
NOTs and XORs (and 0s and 1s). The advantage of choosing this cost metric is
comparability to the Toffoli cost metric used in, e.g., [30] and [63], which in turn
is motivated by current estimates of the costs of various quantum operations, as
we explain below.

A potential disadvantage of choosing this cost metric is that the cost metric
can hide arbitrarily large sequences of linear operations. For example, there
are known algorithms to multiply n-coefficient polynomials in F2[x] using Θ(n)
nonlinear operations (see, e.g., [59]), but this operation count hides Θ(n2) linear
operations. Other algorithms using n(log n)1+o(1) total bit operations (see, e.g.,
[65] and [33]) are much better when n is large, even though they have many
more nonlinear bit operations.

This seems to be less of an issue for integer arithmetic than for polynomial
arithmetic. Adding nonzero costs for NOT and XOR requires a reevaluation of,
e.g., the quantitative cutoff between schoolbook multiplication and Karatsuba
multiplication, but does not seem to have broader qualitative impacts on the
speedups that we consider in this paper. Similarly, our techniques can easily be
adapted to, e.g., a cost metric that allows NAND gates with lower cost than
AND gates, reflecting the reality of computer hardware.

A.2. The importance of constant-time computations. One can object
to the very simple model of computation explained above as not allowing variable-
time computations. The graph uses a constant number of bit operations to pro-
duce its outputs, whereas real users often wait input-dependent amounts of time
for the results of a computation. If a particular input is processed faster than
the worst case, then the time saved can be spent on other useful computations.

However, our primary goal in this paper is to evaluate the cost of carrying
out a CSIDH group action on a huge number of inputs in quantum superposi-
tion. Operations are carried out on all of the inputs simultaneously, and then a
measurement retroactively selects a particular input. The cost depends on the
number of operations carried out on all inputs, not on the number of operations
that in retrospect could have been carried out for the selected input.

The same structure has an impact at every level of algorithm design. In
conventional algorithm design, if a function calls subroutine X for some inputs
and subroutine Y for other inputs, then the cost of the function is the maximum
of the costs of X and Y . However, a computation graph does not allow this
branching. One must instead compute a suitable combination such as

bX(inputs) + (1− b)Y (inputs),

taking the total time for X and Y , or search for ways to overlap portions of the
computations of X and Y .

One can provide branches as a higher-level abstraction by building a com-
putation graph that manipulates an input-dependent pointer into an array of

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 43

instructions, imitating the way that CPU hardware is built. It is important to
realize, however, that the number of bit operations required to read an instruc-
tion from a variable location in an array grows with the size of the array, so the
total number of bit operations in this approach grows much more rapidly than
the number of instructions. A closer look at what actually needs to be computed
drastically reduces the number of bit operations.

The speedup techniques considered in this paper can also be used in constant-
time non-quantum software and hardware for CSIDH, reducing the cost of pro-
tecting CSIDH users against timing attacks. However, our main focus is the
quantum case.

A.3. Reversible bit operations. Bits cannot be erased or copied inside a
quantum computation. For example, one cannot simply compute a XOR gate,
replacing (a, b) with a ⊕ b, or an AND gate, replacing (a, b) with ab. However,
one can compute a “CNOT” gate, replacing (a, b) with (a, a ⊕ b); or a “Toffoli”
gate, replacing (a, b, c) with (a, b, c⊕ ab).

In general, an n-bit reversible computation begins with a list of n input
bits, and then applies a sequence of NOT gates, CNOT gates, and Toffoli gates
to specified positions in the list, eventually producing n output bits. Each of
these gates is its own inverse, so one can map output back to input by applying
the same gates in the reverse order.

Bennett’s conversion (see [3], which handles the more complicated case of
Turing machines) is a generic transformation from computations, as defined in
Appendix A.1, to reversible computations. Say the original computation maps
x ∈ {0, 1}k to F (x) ∈ {0, 1}`. The reversible computation then maps (x, y, 0) ∈
{0, 1}k+`+m to (x, y ⊕ F (x), 0) ∈ {0, 1}k+`+m, for some choice of m that will be
clear in a moment; the m auxiliary zero bits are called ancillas. The effect of
the reversible computation upon more general inputs (x, y, z) ∈ {0, 1}k+`+m is
more complicated, and usually irrelevant.

For each AND gate (a, b) 7→ ab in the original computation, the reversible
computation allocates an ancilla c and performs (a, b, c) 7→ (a, b, c ⊕ ab) as a
Toffoli gate. Note that if the ancilla c begins as 0 then this Toffoli gate produces
the desired bit ab. More generally, for each gate in the original computation,
the reversible computation allocates an ancilla c and operates reversibly on this
ancilla, in such a way that if the ancilla begins with 0 then it ends with the same
bit computed by the original gate. For example:

• For each constant-1 gate () 7→ 1, the reversible computation allocates an
ancilla c and performs a NOT gate c 7→ 1− c.

• For each NOT gate b 7→ 1−b, the reversible computation allocates an ancilla
c and performs (b, c) 7→ (b, c⊕ 1⊕ b) as a NOT gate and a CNOT gate.

• For each XOR gate (a, b) 7→ a ⊕ b, the reversible computation allocates an
ancilla c and performs (a, b, c) 7→ (a, b, c⊕ a⊕ b) as two CNOT gates.

The reversible computation thus maps (x, y, 0) to (x, y, z) where z is the entire
sequence of bits in the original computation, including all intermediate results.
In particular, z includes the bits of F (x), and ` additional CNOT gates produce

44 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

(x, y ⊕ F (x), z). Finally, re-running the computation of z in reverse order has
the effect of “uncomputing” z, producing (x, y ⊕ F (x), 0) as claimed.

The number of Toffoli gates here is exactly twice the number of nonlinear
bit operations in the original computation: once in computing z and once in
uncomputing z. There is a larger expansion in the number of NOT and CNOT
gates compared to the original number of linear bit operations, but, as mentioned
earlier, we focus on nonlinear bit operations.

Sometimes these overheads can be reduced. For example, if the original com-
putation is simply an AND (a, b) 7→ ab, then the reversible computation stated
above uses two Toffoli gates and one ancilla—

• (a, b, y, 0) 7→ (a, b, y, ab) with a Toffoli gate,
• (a, b, y, ab) 7→ (a, b, y ⊕ ab, ab) with a CNOT gate,
• (a, b, y ⊕ ab, ab) 7→ (a, b, y ⊕ ab, 0) with another Toffoli gate,

—but it is better to simply compute (a, b, y) 7→ (a, b, y ⊕ ab) with one Toffoli
gate and no ancillas. We do not claim that the optimal number of bit operations
is a perfect predictor of the optimal number of Toffoli gates; we simply use the
fact that the ratio is between 1 and 2.

Note that Bennett’s reversible computation operates on an n-bit state where
n = k + ` +m is essentially the number of bit operations in the original com-
putation. Perhaps the original computation can fit into a much smaller state
(depending on the order of operations, something not expressed by the com-
putation graph), but this often relies on erasing intermediate results, which a
reversible computation cannot do. Even in a world where arbitrarily large quan-
tum computers can be built, this number n has an important impact on the cost
of the corresponding quantum computation, so it becomes important to consider
ways to reduce n, as explained in Appendix A.5.

A.4. T -gates. The state of n qubits is, by definition, a nonzero element
(v0, v1, . . .) of the vector space C2n . Measuring these n qubits produces an n-bit
index i ∈ {0, 1, . . . , 2n − 1}, while modifying the vector to have 1 at position i
and 0 elsewhere. The chance of obtaining i is proportional to |vi|2. One can, if
desired, normalize the vectors so that

∑
i |vi|

2
= 1.

An n-qubit quantum computation applies a sequence of NOT (often
written “X”), CNOT, Hadamard (“H”), T , and T−1 gates to specified positions
within n qubits. There is a standard representation of these gates as the matrices

(
0 1
1 0

)
,

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

(
1 1
1 −1

)
,

(
1 0
0 exp(iπ/4)

)
,

(
1 0
0 exp(−iπ/4)

)

respectively; if vectors are normalized then the Hadamard matrix is divided by√
2. There is also a standard way to interpret these matrices as acting upon vec-

tors in C2n . For example, applying the NOT gate to qubit 0 of (v0, v1, v2, v3, . . .)

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 45

produces (v1, v0, v3, v2, . . .); measuring after the NOT has the same effect as mea-
suring before the NOT and then complementing bit 0 of the result. Applying
the NOT gate to qubit 1 of (v0, v1, v2, v3, . . .) produces (v2, v3, v0, v1, . . .).

The consensus of quantum-computer engineers appears to be that “Clifford
operations” such as NOT, CNOT, H, T 2, and T−2 are at least two orders of
magnitude less expensive than T and T−1. It is thus common practice to allow
T 2 (“S” or “P ”) and T−2 as further gates, and to count the number of T and
T−1, while disregarding the number of NOT, CNOT, H, T 2, and T−2. The total
number of T and T−1 is, by definition, the number of T -gates.

There is a standard conversion from an n-bit reversible computation to an
n-qubit quantum computation. NOT is converted to NOT; CNOT is converted
to CNOT; Toffoli is converted to a sequence of 7 T -gates and some Clifford gates.
Multiplying 7 by an upper bound on the number of Toffoli gates thus produces
an upper bound on the number of T -gates.

As in Appendix A.3, these overheads can sometimes be reduced. For example:

• All of the quantum gates mentioned here operate on one or two qubits at a
time. The intermediate results in a Toffoli computation can often be reused
for other computations.

• In a more sophisticated model of quantum computation that allows internal
measurements, Jones [39] showed how to implement a Toffoli gate as 4 T -
gates, some Clifford gates, and a measurement. We follow [28] in mentioning
but disregarding this alternative.

• In the same model, a recent paper by Gidney [27] showed how to implement
n-bit integer addition using about 4n T -gates (and a similar number of Clif-
ford gates and measurements). For comparison, a standard “ripple carry”
adder uses about 2n nonlinear bit operations.

As before, we do not claim that the optimal number of Toffoli gates is a perfect
predictor of the number of T -gates; we simply use the fact that the ratio is
between 1 and 7.

A.5. Error-correction steps; the importance of parallelism. To recap:
Our primary focus is producing an upper bound on the number of nonlinear
bit operations. Multiplying by 2 gives an upper bound on the number of Toffoli
gates for a reversible computation, and multiplying this second upper bound by
7 gives an upper bound on the number of T -gates for a quantum computation.
Linear bit operations (and the corresponding reversible and quantum gates) do
not seem to be a bottleneck for the types of computations considered in this
paper.

There is, however, a much more important bottleneck that is ignored in these
cost metrics: namely, fault-tolerance seems to require continual error correction
of every stored qubit.

Surface codes [25] are the leading candidates for fault-tolerant quantum com-
putation. A logical qubit is encoded in a particular way as many entangled phys-
ical qubits spread over a surface. Some of the physical qubits are continually
measured, and operations are carried out on the physical qubits to correct any

46 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

errors revealed by the measurements. The consensus of the literature appears
to be that performing a computation on a logical qubit will be only a small
constant factor more expensive than storing an idle logical qubit.

One consequence of this structure is that all fault-tolerant quantum com-
putations involve entanglement throughout the entire computation, contrary to
the claim in [11] that a particular quantum algorithm “does not need to have a
highly entangled memory for a long time”.

Another consequence of this structure is that the cost of a quantum compu-
tation can grow quadratically with the number of bit operations. Consider, for
example, an n-bit ripple-carry adder, or the adder from [27]. This computation
involves Θ(n) sequential bit operations and finishes in time Θ(n). Each of the
Θ(n) qubits needs active error correction at each time step, for a total of Θ(n2)
error-correction steps.

The product of computer size and time is typically called “area-time product”
or “AT ” in the literature on non-quantum computation; “volume” in the liter-
ature on quantum computation; and “price-performance ratio” in the literature
on economics. The cost of quantum error correction is not the only argument for
viewing this product as the true cost of computation: there is a more fundamen-
tal argument stating that the total cost assigned to two separate computations
should not depend on whether the computations are carried out in serial (using
hardware for twice as much time) or in parallel (using twice as much hardware).

From this perspective, it is much better to use parallel algorithms for integer
addition that finish in time Θ(log n). This still means Θ(n log n) error-correction
steps, so the cost is larger by a factor Θ(log n) than the number of bit operations.

At a higher level, the CSIDH computation involves various layers for which
highly parallel algorithms are not known. For example, modular exponentiation
is notoriously difficult to parallelize. A conventional computation of x mod n,
x2 mod n, x4 mod n, x8 mod n, etc. can store each intermediate result on top of
the previous result, but Bennett’s conversion produces a reversible computation
that uses much more storage, and the resulting quantum computation requires
continual error correction for all of the stored qubits. Shor’s algorithm avoids
this issue because it computes a superposition of powers of a constant x; this is
not helpful in the CSIDH context.

Bennett suggested reducing the number of intermediate results in a reversible
computation by checkpointing the computation halfway through:

• Compute the middle as a function of the beginning.
• Uncompute intermediate results, leaving the beginning and the middle.
• Compute the end as a function of the middle.
• Uncompute intermediate results, leaving the beginning, middle, and end.
• Recompute the middle from the beginning.
• Uncompute intermediate results, leaving the beginning and end.

This multiplies the number of qubits by about 0.5 but multiplies the number of
gates by about 1.5. See [4] and [43] for analyses of further tradeoffs along these
lines.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 47

This paper focuses on bit operations, as noted above. Beyond this, Ap-
pendix C.6 makes some remarks on the number of qubits required for our com-
putations. We have not attempted to analyze the time required for a parallel
computation using a specified number of qubits.

A.6. Error-correction steps on a two-dimensional mesh. There is a
further problem with counting bit operations: in many computations, the main
bottleneck is communication.

For example, FFT-based techniques multiply n-bit integers using n1+o(1) bit
operations, and can be parallelized to use time just no(1) with area n1+o(1).
However, Brent and Kung showed [14] that integer multiplication on a two-
dimensional mesh of area n1+o(1) requires time n0.5+o(1), even in a model where
information travels instantaneously through arbitrarily long wires.

Plausible architectures for fault-tolerant quantum computation, such as [25],
are built from near-neighbor interactions on a two-dimensional mesh. Presum-
ably, as in [14], n1+o(1) qubits computing an n-bit product require time n0.5+o(1),
and thus n1.5+o(1) error-correction steps. One might hope for quantum teleporta-
tion to avoid some of the bottlenecks, but spreading an entangled pair of qubits
across distance n0.5+o(1) takes time n0.5+o(1) in the same architectures.

We have not attempted to analyze the impact of these effects for concrete
sizes of n. We have also not analyzed communication costs at higher levels of
the CSIDH computation. For comparison, attacks against AES [28] use fewer
qubits, and perform much longer stretches of computation on nearby qubits.

B Basic integer arithmetic

We use b bits n0, n1, n2, . . . , nb−1 to represent the nonnegative integer n0+2n1+
4n2 + · · ·+ 2b−1nb−1. Each element of

{
0, 1, . . . , 2b − 1

}
has a unique represen-

tation as b bits. This appendix analyzes the cost of additions, subtractions,
multiplications, and squarings in this representation.

B.1. Addition. We use a standard sequential ripple-carry adder. If b ≥
1 then the sum of the b-bit integers represented by n0, n1, n2, . . . , nb−1 and
m0,m1,m2, . . . ,mb−1 is the (b + 1)-bit integer represented by s0, s1, s2, . . . , sb
computed as follows:

x0 = n0 ⊕m0; s0 = x0; c0 = n0m0;

x1 = n1 ⊕m1; s1 = x1 ⊕ c0; c1 = n1m1 ⊕ x1c0;
x2 = n2 ⊕m2; s2 = x2 ⊕ c1; c2 = n2m2 ⊕ x2c1;
...

xb−1 = nb−1 ⊕mb−1; sb−1 = xb−1 ⊕ cb−2; cb−1 = nb−1mb−1 ⊕ xb−1cb−2;
sb = cb−1.

There are 5b − 3 bit operations here, including 2b − 1 nonlinear bit operations.
Our primary cost metric is the number of nonlinear bit operations.

48 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

More generally, to add a b-bit integer to an a-bit integer with a ≤ b, we use
the formulas above to obtain a (b+1)-bit sum, skipping computations that refer
to ma,ma+1, . . . ,mb−1.

Minor speedups: If a = 0 then we instead produce a b-bit sum. More generally,
we could (but currently do not) track ranges of integers more precisely, and
decide based on the output range whether a sum needs b bits or b+1 bits. This
is compatible with constant-time computation: the sequence of bit operations
being carried out is independent of the values of the bits being processed.

B.2. Subtraction. We use a standard ripple-borrow subtractor to subtract
two b-bit integers modulo 2b, obtaining a b-bit integer. The formulas are similar
to the ripple-carry adder. The total number of operations grows from 5 to 7 for
each bit but the number of nonlinear operations is still 2 per bit.

B.3. Multiplication. Write Q(b) for the minimum number of nonlinear bit
operations for b-bit integer multiplication. We combine Karatsuba multiplica-
tion [40] and schoolbook multiplication, as explained below, to obtain concrete
upper bounds on Q(b) for various values of b. See Table B.1.

We are not aware of previous analyses of Q(b). It is easy to find literature
stating the number of bit operations for schoolbook multiplication, but we do
better starting at 14 bits. For b = 512 we obtain Q(512) ≤ 241908 (using an
algorithm with a total of 536184 bit operations), while schoolbook multiplication
uses 784896 nonlinear bit operations (and a total of 1568768 bit operations).

It is also easy to find literature on the number of bit operations for polynomial
multiplication mod 2, but carries make the integer case much more expensive and
qualitatively change the analysis. For example, [41] uses Karatsuba’s method for
polynomials all the way down to single-bit multiplication, exploiting the fact that
polynomial addition costs 0 nonlinear bit operations; for integer multiplication,
Karatsuba’s method has much more overhead. Concretely, Karatsuba’s method
uses just 39 = 19683 nonlinear bit operations to multiply 512-bit polynomials;
we use 12 times as many nonlinear bit operations to multiply 512-bit integers.

Schoolbook multiplication. Schoolbook multiplication of two b-bit integers
has two stages. The first stage is b2 parallel multiplications of individual bits.
This produces 1 product at position 0; 2 products at position 1; 3 products at
position 2; . . . ; b products at position b− 1; b− 1 products at position b; . . . ; 1
product at position 2b− 2. The second stage repeatedly

• adds two bits at position i, obtaining one bit at position i and a carry bit at
position i+ 1, or, more efficiently,

• adds three bits at position i, obtaining one bit at position i and a carry bit
at position i+ 1,

until there is only one bit at each position.
There are several standard ways to organize the second stage for parallel

computation: for example, Wallace trees [73] and Dadda trees [21]. Dadda trees
use fewer bit operations since they make sure to add three bits whenever possible
rather than two bits. Since parallelism is not visible in our primary cost metric,

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 49

1 1 65 8313 129 25912 193 50221 257 79732 321 114068 385 153686 449 197391
2 6 66 8497 130 26224 194 50631 258 80237 322 114669 386 154350 450 198131
3 18 67 8813 131 26733 195 51310 259 81067 323 115655 387 155448 451 199341
4 36 68 8940 132 26925 196 51563 260 81387 324 116035 388 155866 452 199802
5 60 69 9201 133 27377 197 52161 261 82097 325 116877 389 156807 453 200845
6 90 70 9397 134 27701 198 52594 262 82614 326 117490 390 157494 454 201601
7 126 71 9664 135 28098 199 53124 263 83267 327 118263 391 158354 455 202540
8 168 72 9736 136 28233 200 53296 264 83467 328 118499 392 158615 456 202834
9 216 73 10070 137 28699 201 53930 265 84252 329 119428 393 159655 457 203956

10 270 74 10272 138 28968 202 54295 266 84712 330 119972 394 160261 458 204608
11 330 75 10618 139 29440 203 54924 267 85442 331 120834 395 161233 459 205675
12 396 76 10757 140 29644 204 55200 268 85774 332 121226 396 161674 460 206152
13 468 77 11042 141 29992 205 55657 269 86315 333 121863 397 162385 461 206932
14 535 78 11256 142 30267 206 56017 270 86720 334 122340 398 162923 462 207529
15 630 79 11547 143 30682 207 56565 271 87330 335 123058 399 163738 463 208429
16 684 80 11625 144 30762 208 56669 272 87473 336 123225 400 163918 464 208619
17 795 81 11989 145 31307 209 57384 273 88217 337 124101 401 164926 465 209751
18 851 82 12209 146 31649 210 57835 274 88691 338 124659 402 165568 466 210468
19 974 83 12585 147 32206 211 58537 275 89441 339 125541 403 166571 467 211559
20 1036 84 12736 148 32416 212 58808 276 89718 340 125866 404 166944 468 211981
21 1171 85 13045 149 32910 213 59434 277 90403 341 126671 405 167858 469 212960
22 1239 86 13277 150 33264 214 59872 278 90883 342 127235 406 168495 470 213636
23 1386 87 13592 151 33697 215 60402 279 91444 343 127892 407 169237 471 214440
24 1460 88 13676 152 33844 216 60597 280 91656 344 128140 408 169521 472 214750
25 1608 89 14070 153 34352 217 61190 281 92288 345 128880 409 170347 473 215625
26 1688 90 14308 154 34645 218 61532 282 92644 346 129296 410 170812 474 216126
27 1859 91 14703 155 35159 219 62153 283 93343 347 130115 411 171729 475 217072
28 1934 92 14866 156 35381 220 62411 284 93626 348 130446 412 172097 476 217453
29 2092 93 15188 157 35759 221 62873 285 94130 349 131034 413 172758 477 218153
30 2195 94 15427 158 36058 222 63243 286 94553 350 131529 414 173314 478 218725
31 2369 95 15755 159 36509 223 63788 287 95187 351 132271 415 174142 479 219559
32 2431 96 15845 160 36595 224 63887 288 95275 352 132371 416 174254 480 219694
33 2607 97 16247 161 37188 225 64619 289 96171 353 133423 417 175429 481 220845
34 2726 98 16492 162 37560 226 65072 290 96724 354 134072 418 176152 482 221551
35 2914 99 16917 163 38165 227 65820 291 97632 355 135125 419 177314 483 222704
36 2978 100 17081 164 38393 228 66106 292 97982 356 135535 420 177773 484 223156
37 3172 101 17438 165 38929 229 66750 293 98758 357 136432 421 178755 485 224126
38 3303 102 17706 166 39313 230 67219 294 99323 358 137082 422 179465 486 224834
39 3509 103 18058 167 39782 231 67808 295 100036 359 137904 423 180371 487 225741
40 3579 104 18154 168 39941 232 67990 296 100254 360 138158 424 180650 488 226010
41 3791 105 18597 169 40491 233 68699 297 101111 361 139137 425 181723 489 227102
42 3934 106 18860 170 40808 234 69113 298 101613 362 139712 426 182357 490 227747
43 4158 107 19290 171 41364 235 69781 299 102409 363 140618 427 183334 491 228727
44 4234 108 19477 172 41604 236 70083 300 102771 364 141029 428 183780 492 229181
45 4464 109 19811 173 42012 237 70576 301 103360 365 141703 429 184514 493 229913
46 4619 110 20061 174 42335 238 70949 302 103801 366 142205 430 185052 494 230446
47 4850 111 20423 175 42822 239 71513 303 104465 367 142955 431 185849 495 231243
48 4932 112 20514 176 42914 240 71640 304 104620 368 143134 432 186052 496 231449
49 5169 113 20959 177 43555 241 72338 305 105430 369 144043 433 186996 497 232382
50 5325 114 21237 178 43957 242 72782 306 105946 370 144621 434 187597 498 232980
51 5585 115 21698 179 44599 243 73482 307 106762 371 145536 435 188569 499 233970
52 5673 116 21872 180 44845 244 73743 308 107063 372 145874 436 188919 500 234312
53 5928 117 22278 181 45412 245 74380 309 107808 373 146706 437 189807 501 235231
54 6107 118 22572 182 45815 246 74826 310 108330 374 147290 438 190436 502 235886
55 6349 119 22937 183 46309 247 75351 311 108939 375 147973 439 191165 503 236628
56 6432 120 23056 184 46480 248 75549 312 109169 376 148228 440 191431 504 236899
57 6702 121 23492 185 47050 249 76139 313 109855 377 149000 441 192272 505 237769
58 6868 122 23745 186 47380 250 76473 314 110241 378 149435 442 192742 506 238247
59 7154 123 24183 187 47956 251 77120 315 111000 379 150281 443 193666 507 239231
60 7265 124 24373 188 48203 252 77383 316 111307 380 150625 444 194044 508 239630
61 7510 125 24699 189 48630 253 77853 317 111853 381 151233 445 194697 509 240309
62 7692 126 24954 190 48966 254 78244 318 112312 382 151742 446 195250 510 240901
63 7939 127 25337 191 49467 255 78828 319 113000 383 152505 447 196090 511 241814
64 8009 128 25415 192 49565 256 78914 320 113094 384 152611 448 196197 512 241908

Table B.1. Upper bounds on Q(b) for b ≤ 512: e.g., Q(3) ≤ 18. Q(b) is the minimum
number of nonlinear bit operations for b-bit integer multiplication.

50 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

we simply add sequentially from the bottom bit. Overall we use 6b2 − 8b bit
operations for b-bit schoolbook multiplication (if b ≥ 2), including 3b2 − 3b
nonlinear bit operations.

Karatsuba multiplication. When b is not very small, we do better using
Karatsuba’s method: the product of X0+2bX1 and Y0+2bY1 is Z0+2bZ1+22bZ2

where Z0 = X0Y0, Z2 = X1Y1, and Z1 = (X0 +X1)(Y0 + Y1)− (Z0 + Z2).
Karatsuba’s method reduces a 2b-bit multiplication to two b-bit multiplica-

tions for Z0 and Z2, two b-bit additions for X0+X1 and Y0+Y1, one (b+1)-bit
multiplication, one 2b-bit addition for Z0+Z2, one subtraction modulo 22b+1 for
Z1, and a 4b-bit addition for (Z0 +22bZ2) + 2bZ1. Some operations in the 4b-bit
addition can be eliminated, and counting carefully shows that

Q(2b− 1) ≤ Q(b− 1) +Q(b) +Q(b+ 1) + 17b− 12,

Q(2b) ≤ 2Q(b) +Q(b+ 1) + 17b− 4.

These formulas do better than schoolbook multiplication for Q(14) and for
Q(16), Q(17), Q(18),

For comparison, similar formulas apply to M(b), the total number of bit
operations (linear and nonlinear) for b-bit polynomial multiplication mod 2. The
cost of schoolbook multiplication then scales as 2b2 rather than 3b2. The overhead
of “refined Karatsuba” multiplication scales as 7b rather than 17b, already giving
improved bounds on M(6), and giving, e.g., M(512) ≤ 109048.

Other techniques. We have skipped some small speedups. For example, the
top bit of (X0 +X1)(Y0 + Y1) does not need to be computed. As another exam-
ple, one can use “refined Karatsuba” multiplication for integers; see [35] for one
way to organize the carry chains. Presumably we have missed some other small
speedups.

Toom multiplication [71] implies Q(b) ∈ b1+o(1). FFT-based improvements
in the o(1) appear in, e.g., [60], [56, page 532], [66], [26], [32], and [31]. Our
Karatsuba-based bounds on Q(b) can thus be improved for sufficiently large
values of b, and perhaps for values of b relevant to CSIDH. For comparison,
Bernstein [6] obtained M(512) ≤ 98018 using Toom multiplication, not a large
improvement upon the M(512) ≤ 109048 bound mentioned above from refined
Karatsuba multiplication.

B.4. Squaring. Schoolbook squaring saves about half the work of schoolbook
multiplication. Specifically, for each pair (i, j) with i < j, schoolbook multiplica-
tion adds both nimj and njmi to position i+ j, while schoolbook squaring adds
ninj to position i+ j +1; also, schoolbook multiplication adds nimi to position
2i, while schoolbook squaring adds ni (which is the same as n2i) to position 2i.
Overall we use 3b2−6b+3 bit operations for b-bit schoolbook squaring, including
1.5b2 − 2.5b+ 1 nonlinear bit operations.

Karatsuba squaring also has less overhead than Karatsuba multiplication, but
the overhead/schoolbook ratio is somewhat larger for squaring than for multipli-
cation, making Karatsuba squaring somewhat less effective. We obtain squaring
speedups from Karatsuba squaring—in our primary cost metric, nonlinear bit

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 51

operations—starting at 22 bits. For 512 bits we use 143587 nonlinear bit opera-
tions, about 60% of the nonlinear bit operations that we use for multiplication.

B.5. Multiplication by a constant. We save even more in the multiplica-
tions that arise in reduction modulo p (see Appendix C.1), namely multiplica-
tions by large constants. The exact savings depend on the constant; for example,
for seven different 512-bit constants, we use

107338, 110088, 109574, 111760, 107925, 107711, 108234

nonlinear bit operations, about 45% of the multiplication cost. Here the school-
book method is as follows: if mj is the constant 1 then add ni to position i+ j.
We use Karatsuba multiplication starting at 30 bits.

Other techniques. There is some literature studying addition chains (and
addition-subtraction chains) with free doublings. For example, [24] shows that
multiplication by a b-bit constant uses O(b/ log b) additions (and [48] shows that
most constants require Θ(b/ log b) additions), for a total of O(b2/ log b) bit oper-
ations. This is asymptotically beaten by Karatsuba multiplication, but could be
useful as an intermediate step between schoolbook multiplication and Karatsuba
multiplication.

C Modular arithmetic

CSIDH uses elliptic curves defined over Fp, where p is a standard prime number.
For example, in CSIDH-512, p is the prime number 4 · 3 · 5 · 7 · 11 · · · 373 · 587− 1,
between 2510 and 2511; all primes between 3 and 373 appear in the product.

Almost all of the bit operations in our computation are consumed by a long
series of multiplications modulo p, organized into various higher-level operations
such as exponentiation and elliptic-curve scalar multiplication. This appendix
analyzes the performance of modular multiplication, exponentiation, and inver-
sion.

C.1. Reduction. We completely reduce a nonnegative integer z modulo p as
follows. Assume that z has c bits (so 0 ≤ z < 2c), and assume 2b−1 < p < 2b

with b ≥ 2.
If c < b then there is nothing to do: 0 ≤ z < 2b−1 < p. Assume from now on

that c ≥ b.
Compute an approximation q to z/p precise enough to guarantee that 0 ≤

z − qp < 2p. Here we use the standard idea of multiplying by a precomputed
reciprocal:

• Precompute R =
⌊
2c+2/p

⌋
. Formally, this costs 0 in our primary cost met-

ric, since precomputation is part of constructing our algorithm rather than
running our algorithm. More importantly, our entire algorithm uses only a
few small values of c, so this precomputation has negligible cost.

52 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

• Compute q =
⌊⌊
z/2b−2

⌋
R/2c−b+4

⌋
. The cost of computing q is the cost of

multiplying the (c−b+2)-bit integer
⌊
z/2b−2

⌋
by the constant (c−b+3)-bit

integer R. Computing
⌊
z/2b−2

⌋
means simply taking the top c − b + 2 bits

of z.

By construction R ≤ 2c+2/p and q ≤ zR/2c+2 so q ≤ z/p. Checking that
z/p < q + 2 involves more inequalities:

• 2c+2/p < R+1 so z/p < z(R+1)/2c+2 < zR/2c+2 +1/4. This uses the fact
that 0 ≤ z < 2c.

• z/2b−2 <
⌊
z/2b−2

⌋
+ 1, so (z/2b−2)R/2c−b+4 <

⌊
z/2b−2

⌋
R/2c−b+4 + 1/2.

This uses the fact that 0 ≤ R < 2c−b+3.
•
⌊
z/2b−2

⌋
R/2c−b+4 < q + 1.

• Hence z/p < q + 1 + 1/2 + 1/4 = q + 7/4.

Next replace z with z−qp. This involves a multiplication of the (c−b+1)-bit
integer q by the constant b-bit integer p, and a subtraction. We save some time
here by computing only the bottom b + 1 bits of qp and z − qp, using the fact
that 0 ≤ z − qp < 2b+1.

At this point (the new) z is between 0 and 2p − 1, so all that remains is to
subtract p from z if z ≥ p.

Compute y = z − p mod 2b+1. Use yb, the bit at position b of y, to select
between the bottom b bits of z and the bottom b bits of y: specifically, compute
y0 ⊕ yb(y0 ⊕ z0), y1 ⊕ yb(y1 ⊕ z1), and so on through yb−1 ⊕ yb(yb−1 ⊕ zb−1). If
z ≥ p then 0 ≤ z − p < p < 2b so y = z − p and yp = 0, so these output bits are
y0, y1, . . . , yb−1 as desired; if z < p then −2b < −p ≤ z−p < 0 so y = z−p+2b+1

and yp = 1, so these output bits are z0, z1, . . . , zb−1 as desired.

Other techniques. We could save time in the multiplication by R by skipping
most of the computations involved in bottom bits of the product. It is important
for the total of the bits thrown away to be at most 2c−b+2, so that q is reduced
by at most 1/4, the gap between q + 2 and the q + 7/4 mentioned above.

We could vary the number of bits in R, the allowed range of z− qp, etc. The
literature sometimes recommends repeatedly subtracting p once z is known to
be small, but if the range is (e.g.) 0 through 4p − 1 then it is slightly better to
first subtract 2p and then subtract p.

Historical notes. Multiplying by a precomputed reciprocal, to compute a quo-
tient and then a remainder, is often called “Barrett reduction”, in reference to a
1986 paper [2]. However, Knuth [44, page 264] had already commented in 1981
that Newton’s method “for evaluating the reciprocal of a number was exten-
sively used in early computers” and that, for “extremely large numbers”, Newton’s
method and “subsequent multiplication” using fast multiplication techniques can
be “considerably faster” than a simple quadratic-time division method.

C.2. Multiplication. To multiply b-bit integers x, y modulo p, we follow the
conventional approach of first multiplying x by y, and then reducing the 2b-bit
product xy modulo p as explained in Appendix C.1.

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 53

For example, for CSIDH-512, we use 241814 nonlinear bit operations for 511-
bit multiplication, and 206088 nonlinear bit operations for reduction modulo p,
for a total of 447902 nonlinear bit operations for multiplication modulo p.

Generic conversion to a quantum algorithm (see Appendix A.4) produces
14 · 447902 = 6270628 T -gates. This T -gate count is approximately 48 times
larger than the cost “217” claimed in [11, Table 6]. The ratio is actually closer
to 100, since [11] claims to count “Clifford+T” gates while we count only T -
gates. We do not claim that the generic conversion is optimal, but there is no
justification for [11] using an estimate for the costs of multiplication in a binary
field as an estimate for the costs of multiplication in Fp.

Squaring. For CSIDH-512, we use 143508 nonlinear bit operations for 511-bit
squaring, and again 206088 nonlinear bit operations for reduction modulo p, for
a total of 349596 nonlinear bit operations for squaring modulo p. This is about
78% of the cost of a general multiplication, close to the traditional 80% estimate.

Other techniques. Montgomery multiplication [52] computes xy/2b modulo p,
using a multiple of p to clear the bottom bits of xy. This has the same asymptotic
performance as clearing the top bits; it sometimes requires extra multiplications
and divisions by 2b modulo p but might be slightly faster overall.

C.3. Addition. A standard speedup for many software platforms is to avoid
reductions after additions. For example, to compute (x + y)z modulo a 511-bit
p, one computes the 512-bit sum x+ y, computes the 1023-bit product (x+ y)z,
and then reduces modulo p.

However, bit operations are not the same as CPU cycles. An intermediate
reduction of x + y modulo p (using the last step of the reduction procedure
explained in Appendix C.1, a conditional subtraction of p) involves relatively
few bit operations, and saves more bit operations because the multiplication
and reduction are working with slightly smaller inputs.

C.4. Exponentiation with small variable exponents. Our isogeny algo-
rithms involve various computations xe mod p where e is a variable having only
a few bits, typically under 10 bits.

To compute xe mod p where e = e0+2e1+4e2+ · · ·+2b−1eb−1, we start with
xeb−1 , square modulo p, multiply by xeb−2 , square modulo p, and so on through
multiplying by xe0 . We compute each xei by using the bit ei to select between 1
and x; this takes a few bit operations per bit of x, as in Appendix C.1.

Starting at b = 4, we instead use “width-2 windows”. This means that we
perform a sequence of square-square-multiply operations, using two bits of e
at a time to select from a precomputed table of 1, x, x2 mod p, x3 mod p. For
example, for 10-bit exponents, we use 9 squarings and 5 general multiplications.

None of the CSIDH parameters that we tested involved variable exponents e
large enough to justify window width 3 or larger.

C.5. Inversion. We compute the inverse of x in Fp as xp−2 mod p. This is
different from the situation in Appendix C.4, in part because the exponent here
is a constant and in part because the exponent here has many more bits.

54 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

We use fractional sliding windows to compute xp−2 mod p. This means that
we begin by computing x2, x3, x5, x7, x9, . . . , xW modulo p, where W is a pa-
rameter; “fractional” means that W + 1 is not required to be a power of 2. We
then recursively compute xe as (xe/2)2 if e is even, and as xr times xe−r if e is
odd, where r ∈ {1, 3, 5, 7, 9, . . . ,W} is chosen to maximize the number of 0 bits
at the bottom of e − r. For small e we use some minor optimizations listed in
[8, Section 3]: for example, we compute xe as xe/2−1xe/2+1 if e is a multiple of
4 and e ≤ 2W − 2.

We choose W as follows. Given a b-bit target exponent e, we automatically
evaluate the cost of the computation described above for each odd W ≤ 2b+ 3.
For this evaluation we model the cost of a squaring as 0.8 times the cost of
a general multiplication, without regard to p. We could instead substitute the
exact costs for arithmetic modulo p.

For CSIDH-512, we use 537503414 bit operations for inversion, including
220691666 nonlinear bit operations. Here W is chosen as 33. There are 507
squarings, accounting for 507 ·349596 = 177245172 nonlinear bit operations, and
97 general multiplications, accounting for the remaining 97 · 447902 = 43446494
nonlinear bit operations.

Batching inversions. We use Montgomery’s trick [53] of computing 1/y and
1/z by first computing 1/yz and then multiplying by z and y respectively. This
reduces a batch of two inversions to one inversion and three multiplications; a
batch of three inversions to one inversion and six multiplications; etc.

Inversion by exponentiation allows input 0 and produces output 0. This ex-
tension of the inversion semantics is often convenient for higher-level compu-
tations: for example, some of our computations sometimes generate input 0 in
settings where the output will later be thrown away. However, Montgomery’s
trick does not preserve these semantics: for example, if y = 0 and z 6= 0 then
Montgomery’s trick will produce 0 for both outputs.

We therefore tweak Montgomery’s trick by replacing each input 0 with input
1 (and replacing the corresponding output with 0; we have not checked whether
any of our computations need this). To do this with a constant sequence of bit
operations, we compare the input to 0 by ORing all the bits together, and we
then XOR the complement of the result into the bottom bit of the input.

Eliminating inversions. Sometimes, instead of dividing x by z, we maintain
x/z as a fraction. This skips the inversion of z, but usually costs some ex-
tra multiplications. We quantify the effects of this choice in describing various
higher-level computations: for example, this is the choice between “affine” and
“projective” coordinates for elliptic-curve points in Section 3.2.

The Legendre symbol. The Legendre symbol of x modulo p is, by definition,
1 if x is a nonzero square modulo p; −1 if x is a non-square modulo p; and 0 if
x is divisible by p. The Legendre symbol is congruent modulo p to x(p−1)/2, and
we compute it this way.

The cost of the Legendre symbol is marginally smaller than the cost of in-
version. For example, for CSIDH-512, there are 506 squarings and 96 general

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 55

multiplications, in total using 535577602 bit operations, including 218988158
nonlinear bit operations.

Other techniques. It is well known that inversion in Fp via an extended version
of Euclid’s algorithm is asymptotically much faster than inversion via exponen-
tiation. Similar comments apply to Legendre-symbol computation.

However, Euclid’s algorithm is a variable-time loop, where each iteration
consists of a variable-time division. This becomes very slow when it is converted
in a straightforward way into a constant-time sequence of bit operations. Faster
constant-time variants of Euclid’s algorithm are relatively complicated and still
have considerable overhead; see, e.g., [12] and [63, Section 3.4].

We encourage further research into these constant-time algorithms. Suffi-
ciently fast inversion and Jacobi-symbol computation could save more than 10%
of our overall computation time.

C.6. Fewer qubits. In this subsection we look beyond our primary cost met-
ric and consider some of the other costs incurred by integer arithmetic.

Consider, e.g., the sequence of bit operations described in Appendix C.5
for inversion in the CSIDH-512 prime field: 537503414 bit operations, including
220691666 nonlinear bit operations. A generic conversion (see Appendix A.3)
produces a reversible computation using 2 ·220691666 = 441383332 Toffoli gates.

It is important to realize that this reversible computation also uses 537503414
bits of intermediate storage, and the corresponding quantum computation (see
Appendix A.4) uses 537503414 qubits. The factor 2 mentioned in the previous
paragraph accounts for the cost of “uncomputation” to recompute these inter-
mediate results in reverse order; all of the results are stored in the meantime.
Presumably many of the linear operations can be carried out in place, reducing
the intermediate storage, but this improvement is limited: about 40% of the bit
operations that we use are nonlinear. The number of qubits is even larger for
higher-level computations, such as our algorithms for the CSIDH group action.

In traditional non-reversible computation, the bits used to store intermedi-
ate results in one multiplication can be erased and reused to store intermediate
results for the next multiplication. Something similar is possible for reversible
computation (and quantum computation), but one does not simply erase the
intermediate results; instead one immediately uncomputes each multiplication,
doubling the cost of each multiplication. The inversion operation uses many of
these double-cost multiplications and accumulates its own sequence of interme-
diate results, which also need to be uncomputed, again using the double-cost
multiplications. To summarize, this reuse of bits doubles the number of Toffoli
gates used for inversion from 441383332 to 882766664. Similar comments apply
to qubits and T -gates.

The intermediate space used for multiplication outputs in inversion, in scalar
multiplication, etc. can similarly be reused, but this produces another doubling of
costs. Even after these two doublings, our higher-level computations still require
something on the scale of a million qubits.

Quantum algorithms are normally designed to fit into far fewer qubits, even
when this means sacrificing many more qubit operations. For example—in the

56 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

context of applying Shor’s attack to an elliptic curve defined over a prime field—
Roetteler, Naehrig, Svore, and Lauter [63, Table 1] squeeze b-bit reversible mod-
ular multiplication into

• 5b+ 4 bits using approximately (16 log2 b− 26.3)b2 Toffoli gates, or
• 3b+ 2 bits using approximately (32 log2 b− 59.4)b2 Toffoli gates.

These are about 224.87 or 225.83 Toffoli gates for b = 511, far more than the
number of Toffoli gates we use.

We focus on the challenge of minimizing the number of nonlinear bit op-
erations for the CSIDH class-group action. Understanding the entire tradeoff
curve between operations and qubits—never mind more advanced issues such
as parallelism (Appendix A.5) and communication costs (Appendix A.6)—goes
far beyond the scope of this paper. See [57] for some recent work on improving
these tradeoffs for reversible Karatsuba multiplication; see also [16], which fits
Karatsuba multiplication into fewer bits but does not analyze reversibility.

	Quantum circuits for the CSIDH:optimizing quantum evaluation of isogenies

