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Abstract—Simultaneous Multithreading (SMT) architectures
are attractive targets for side-channel enabled attackers, with
their inherently broader attack surface that exposes more per
physical core microarchitecture components than cross-core
attacks. In this work, we explore SMT execution engine sharing
as a side-channel leakage source. We target ports to stacks of
execution units to create a high-resolution timing side-channel
due to port contention, inherently stealthy since it does not
depend on the memory subsystem like other cache or TLB
based attacks. Implementing said channel on Intel Skylake
and Kaby Lake architectures featuring Hyper-Threading, we
mount and end-to-end attack that recovers a P-384 private key
from an OpenSSL-powered TLS server using a small number
of repeated TLS handshake attempts. Furthermore, we show
that traces targeting shared libraries, static builds, and SGX
enclaves are essentially identical, hence our channel has wide
target application.

1. Introduction

Microarchitecture side-channel attacks increasingly gain
traction due to the real threat they pose to general-
purpose computer infrastructure. New techniques emerge
every year [1, 2], and they tend to involve lower level
hardware, they get more complex but simpler to implement,
and more difficult to mitigate, thus making microarchi-
tecture attacks a more viable attack option. Many of the
current microarchitecture side-channel techniques rely on
the persistent state property of shared hardware resources,
e.g., caches, TLBs, and BTBs, but non-persistent shared re-
sources can also lead to side-channels [3], allowing leakage
of confidential information from a trusted to a malicious
process.

The microprocessor architecture is complex and the
effect of a component in the rest of the system can be
difficult (if not impossible) to track accurately: especially
when components are shared by multiple processes during
execution. Previous research [4, 5] confirms that as long
as (persistent and non-persistent) shared hardware resources
exist, attackers will be able to leak confidential information
from a system.

In this work, we present a side-channel attack vector
exploiting an inherent component of modern processors
using Intel Hyper-Threading technology. Our new side-
channel technique PORTSMASH is capable of exploiting
timing information derived from port contention to the

execution units, thus targeting a non-persistent shared hard-
ware resource. Our technique can choose among several
configurations to target different ports in order to adapt to
different scenarios, thus offering a very fine spatial granu-
larity. Additionally, PORTSMASH is highly portable and its
prerequisites for execution are minimal, i.e., does not require
knowledge of memory cache-lines, eviction sets, machine
learning techniques, nor reverse engineering techniques.

To demonstrate PORTSMASH in action, we present a
complete end-to-end attack in a real-world setting attacking
the NIST P-384 curve during signature generation in a
TLS server compiled against OpenSSL 1.1.0h for crypto
functionality. Our Spy program measures the port contention
delay while executing in parallel to ECDSA P-384 signa-
ture generation, creating a timing signal trace containing a
noisy sequence of add and double operations during scalar
multiplication. We then process the signal using various
techniques to clean the signal and reduce errors in the
information extracted from each trace. We then pass this
partial key information to a recovery phase, creating lattice
problem instances which ultimately yield the TLS server’s
ECDSA private key.

We extend our analysis to SGX, showing it is possible to
retrieve secret keys from SGX enclaves by an unprivileged
attacker. We compare our PORTSMASH technique to other
side-channel techniques in terms of spatial resolution and
detectability. Finally, we comment on the impact of cur-
rent mitigations proposed for other side-channels on PORT
SMASH, and our recommendations to protect against it.

In summary, we offer a full treatment of our new tech-
nique: from microarchitecture and side-channel background
(Section 2); to the nature of port contention leakage when
placed in an existing covert channel framework (Section 3);
to its construction as a versatile timing side-channel (Sec-
tion 4); to its application in real-world settings, recovering a
private key (Section 5); to discussing (lack of) detectability
and mitigations (Section 6). We conclude in Section 7.

2. Background

2.1. Microarchitecture

This section describes some of Intel’s microarchitec-
tural components and how they behave with Intel SMT
implementation (i.e., Hyper-Threading technology). Intel
launched its SMT implementation with the Pentium 4 MMX
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Figure 1. Intel i7 Core processor.

processor [6]. Hyper-Threading technology (HT) aims at
providing parallelism without duplicating all microarchitec-
tural components in a physical processor. Instead, a pro-
cessor supporting Hyper-Threading has at least two logical
cores per physical core where some components are shared
between the logical ones.

Figure 1 shows a high-level description of the layout
of an Intel i7 processor [7]. This figure shows four phys-
ical cores, each with two logical cores. In this setting the
operating system sees a processor with eight cores.

Figure 1 sketches some microarchitectural components
with a sharing perspective. L1 and L2 caches are shared be-
tween a pair of logical cores in the same physical core. The
next level depicts how an Execution Engine is also shared
between two logical cores. This component is very important
for this manuscript as the presented microarchitectural side-
channel relies on this logical-core-shared feature. On the
other hand, the last level cache (LLC) is shared between all
cores.

Generally speaking the Execution Engine is responsible
for executing instructions therefore it is closely related to
the concept of pipeline [7, 8]. A simplified pipeline model
consists of three phases: (1) fetch, (2) decode, and (3)
execute. While these phases have complex internal working
details, Figure 2 provides a high-level abstraction focusing
mainly on the Execution Engine part, and its description
below also follows the same approach. For more information
about its inner working details we suggest the reader to
consult [6–8].

Each logical core has its own registers file, and the
pipeline fetches instructions from memory according to the
program counter on each of them. For the sake of processing
performance fairness, this fetching is interleaved between
the logical cores. After the fetch stage, a decoding phase
decomposes each instruction into simpler micro-operations
(uops). Each micro-operation does a single task, therefore
this splitting helps out-of-order execution by interleaving
their executions for the sake of performance. After this
point, all processing is done on uops instead of instructions.
The decoding phase then issues these uops to the execution
scheduler.

At the scheduler there is a queue of uops that belongs to
both logical cores. One task of the scheduler is issuing these
uops to the Execution Ports while maximizing performance.
An Execution Port is a channel to the execution units, the
latter being where uops are actually executed. Figure 2
shows execution units as grey-colored boxes with labels
indicating their functionality. For example, ports 0, 1, 5,
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Figure 2. Skylake/Kaby Lake microarchitecture.

and 6 can be used to execute simple arithmetic instructions,
because each of them is a channel to an ALU execution unit.
While ports 2, 3, 4, and 7 are dedicated to memory-based
uops (e.g. loads and stores).

As an illustrative example of how the whole process
happens in this simplified model, let us consider the adc
mem, reg instruction (AT&T syntax), which adds (with
carry) the value at memory location mem into the content
in register reg. According to Fog’s instruction table for
Skylake microarchitecture [9], this instruction splits into
two uops: one arithmetic uop (that actually performs the
addition) and another for loading a value from memory. The
former can be issued to ports 0 or 6, while the latter to port
2 and 3 [9]. However, if we change the operand order in
the original instruction (i.e., now the addition result is stored
back in the memory location mem), the new instruction splits
into three uops: two are essentially the same as before and
another one is issued for storing the result back to memory
(i.e., an operation that is handled by port 4).

This execution sequence behaves exactly the same in the
presence of Hyper-Threading. At the scheduler, there are
uops waiting for dispatch to some port for execution. These
uops could actually belong to instructions fetched from
any logical core, therefore, these cores share the Execution
Engine in a very granular approach (at uops level).

2.2. SMT: Timing Attacks

Timing attacks on microprocessors featuring SMT tech-
nology have a long and old history with respect to side-
channel analysis. Since the revival of SMT in 1995 [10],
it was noted that contention was imminent, particularly in
the memory subsystem. Arguably, timing attacks became a
more serious security threat once Intel introduced its Hyper-
Threading technology on the Pentium 4 microarchitecture.
Researchers knew that resource sharing leads to resource
contention, and it took a remarkably short time to notice that
contention introduces timing variations during execution,
which can be used as a covert channel, and as a side-channel.



In his pioneering work, Percival [11] described a novel
cache-timing attack against RSA’s Sliding Window Expo-
nentiation (SWE) implemented in OpenSSL 0.9.7c. The at-
tack exploits the microprocessor’s Hyper-Threading feature
and after observing that threads “share more than merely
the execution units”, the author creates a spy process that
exfiltrates information from the L1 data cache. The L1 data
cache attack correctly identifies accesses to the precomputed
multipliers used during the SWE algorithm, leading to RSA
private key recovery. As a countermeasure, to ensure uni-
form access to the cache lines, irrespective of the multiplier
used, the OpenSSL team included a “constant-time” Fixed
Window Exponentiation (FWE) algorithm paired with a
scatter-gather method to mask table access [12].

Cache-based channels are not the only shared resource to
receive security attention. Wang and Lee [3] and Acıiçmez
and Seifert [13] analyzed integer multiplication unit con-
tention in old Intel Pentium 4 processors with SMT sup-
port [6]. In said microarchitecture, the integer multiplication
unit is shared between the two logical cores. Therefore
contention could exist between two concurrent processes
running in the same physical core if they issue integer
multiplication instructions. Wang and Lee [3] explore its
application as a covert channel, while Acıiçmez and Seifert
[13] expand the side-channel attack approach.

Acıiçmez and Seifert [13] stated this side-channel attack
is very specific to the targeted Intel Pentium 4 architecture
due to the fact that said architecture only has one inte-
ger multiplier unit. They illustrated an attack against the
SWE algorithm in OpenSSL 0.9.8e. For this purpose they
developed a proof-of-concept, modifying OpenSSL source
code to enhance the distinguishability between square and
multiplication operations in the captured trace. In addition to
integer multiplication unit sharing, their attack relies on the
fact that square and multiplication operations have different
latencies, an unnecessary assumption in our work.

In a 2016 blog post1, Anders Fogh introduced Covert
Shotgun, an automated framework to find SMT covert chan-
nels. The strategy is to enumerate all possible pairs of in-
structions in an ISA. For each pair, duplicate each instruction
a small number of times, then run each block in parallel on
the same physical core but separate logical cores, measuring
the clock-cycle performance. Any pairwise timing discrep-
ancies in the resulting table indicate the potential for a covert
channel, where the source of the leakage originates from any
number of shared SMT microarchitecture components. Fogh
explicitly mentions caching of decoded uops, the reorder
buffer, port congestion, and execution unit congestion as
potential sources, even reproducing the rdseed covert
channel [14] that remarkably works across physical cores.

Covert channels from Covert Shotgun can be viewed
as a higher abstraction of the integer multiplication unit
contention covert channel by Wang and Lee [3], and our
side-channel a higher abstraction of the corresponding side-
channel by Acıiçmez and Seifert [13]. Now limiting the
discussion to port contention, our attack focuses on the

1. https://cyber.wtf/2016/09/27/covert-shotgun/

port sharing feature. This allows a darker-box analysis of
the targeted binary because there is no need to know the
exact instructions executed by the victim process, only that
the attacker must determine the distinguishable port through
trial and error. This feature is very helpful, for example, in
a scenario where the targeted code is encrypted and only
decrypted/executed inside an SGX enclave [15].

Analogous to [11], Acıiçmez et al. [16] performed a
cache-timing attack against OpenSSL DSA, but this time
targeting the L1 instruction cache. The authors demonstrate
an L1 instruction cache attack in a real-world setting and
using analysis techniques such as vector quantization and
hidden Markov models, combined with a lattice attack, they
achieve DSA full key recovery on OpenSSL version 0.9.8l.
They perform their attack on an Intel Atom processor fea-
turing Hyper-Threading. Moreover, due to the relevance and
threat of cache-timing attacks, the authors list and evaluate
several possible countermeasures to close the cache side-
channels.

More recently, Yarom et al. [5] presented CacheBleed,
a new cache-timing attack affecting some older processors
featuring Hyper-Threading such as Sandy Bridge. The au-
thors exploit the fact that cache banks can only serve one
request at a time, thus issuing several requests to the same
cache bank, i.e. accessing the same offset within a cache
line, results in bank contention, leading to timing variations
and leaking information about low address bits. To demon-
strate the attack, the authors target the RSA exponentiation
in OpenSSL 1.0.2f. During exponentiation, RSA uses the
scatter-gather method adopted due to Percival’s work [11].
More precisely, to compute the exponentiation, the scatter-
gather method accesses the cache bank or offset within a
cache line according to the multiplier used, which depends
on a digit of the private key. Thus, by detecting the used
bank through cache bank contention timings, an attacker
can determine the multiplier used and consequently digits
of the private key. The attack requires very fine granularity,
thus the victim and the spy execute in different threads in
the same core, and after observing 16,000 decryptions, the
authors fully recover 4096-bit RSA private keys.

In 2018, Gras et al. [4] presented TLBleed, a new class
of side-channel attacks relying on the Translation Looka-
side Buffers (TLB) and requiring Hyper-Threading to leak
information. In their work, the authors reverse engineer the
TLB architecture and demonstrate the TLB is a (partially)
shared resource in SMT Intel architectures. More specif-
ically, the L1 data TLB and L2 mixed TLB are shared
between multiple logical cores and a malicious process can
exploit this to leak information from another process running
in the same physical core. As a proof-of-concept, the authors
attack a non constant-time version of 256-bit EdDSA [17]
and a 1024-bit RSA hardened against FLUSH+RELOAD as
implemented in libgcrypt. The EdDSA attack combined with
a machine-learning technique achieves a full key recovery
success rate of 97%, while the RSA attack recovers 92%
of the private key but the authors do not perform full key
recovery. Both attacks are possible after capturing a single
trace.

https://cyber.wtf/2016/09/27/covert-shotgun/


3. Instantiating Covert Shotgun

Being an automated framework, Covert Shotgun is a
powerful tool to detect potential leakage in SMT archi-
tectures. But due to its black-box, brute force approach,
it leaves identifying the root cause of leakage as an open
problem: “Another interesting project would be identifying
the subsystem which are being congested by specific instruc-
tions”. In this section, we fill this research gap with respect
to port contention. Our intention is not to utilize this partic-
ular covert channel in isolation, but rather understand how
the channel can be better optimized for its later conversion
to a side-channel in Section 4.

3.1. Concept

Assume cores C0 and C1 are two logical cores of the
same physical core. To make efficient and fair use of the
shared execution engine, a simple strategy for port allocation
is as follows. Denote i the clock cycle number, and j =
i mod 2, and P the set of ports.

1) Cj is allotted Pj ⊆ P such that |P \ Pj | is mini-
mal.

2) C1−j is allotted P1−j = P \ Pj .

There are two extremes in this strategy. For instance,
if C0 and C1 are executing fully pipelined code with no
hazards, yet make use of disjoint ports, then both C0 and
C1 can issue in every clock cycle since there is no port
contention. On the other hand, if C0 and C1 are utilizing
the same ports, then C0 and C1 alternate, issuing every other
clock cycle, realizing only half the throughput performance-
wise.

Consider Alice and Bob, two user space programs, exe-
cuting concurrently on C0 and C1, respectively. The above
strategy implies the performance of Alice depends on port
contention with Bob, and vice versa. This leads to a covert
timing channel as follows. Take two latency-1 instructions:
NOP0 that can only execute on port 0, and NOP1 similarly
on port 1. Alice sends a single bit of information to Bob as
follows.

1) If Alice wishes to send a zero, she starts executing
NOP0 continuously; otherwise, a one and NOP1
instead.

2) Concurrently, Bob executes a fixed number of
NOP0 instructions, and measures the execution time
t0.

3) Bob then executes the same fixed number of NOP1
instructions, and measures the execution time t1.

4) If t1 > t0, Bob receives a one bit; otherwise, t0 >
t1 and a zero bit.

The covert channel works because if both Alice and Bob
are issuing NOP0 instructions, they are competing for port
0 and the throughput will be cut in half (similarly for NOP1
and port 1). On the other hand, with no port contention both
NOP0 and NOP1 execute in the same clock cycle, achieving
full throughput and lower latency.

TABLE 1. SELECTIVE INSTRUCTIONS. ALL OPERANDS ARE
REGISTERS, WITH NO MEMORY OPS.

Reciprocal
Instruction Ports Latency Throughput
add 0 1 5 6 1 0.25
crc32 1 3 1
popcnt 1 3 1
vpermd 5 3 1
vpbroadcastd 5 3 1

3.2. Implementation

In this section, we give empirical evidence that Intel
Hyper-Threading uses the previous hypothetical port alloca-
tion strategy for SMT architectures strategy (or one indis-
tinguishable from it for our purposes). Along the way, we
optimize the channel with respect to pipeline usage, taking
into account instruction latencies and duplicated execution
units.

In these experiments, we used an Intel Core i7-7700HQ
Kaby Lake featuring Hyper-Threading with four cores and
eight threads. Using the perf tool to monitor uops dis-
patched to each of the seven ports and the clock cycle count
for a fixed number of instructions, we determined the port
footprint and performance characteristics of several instruc-
tions, listed in Table 1. We chose this mix of instructions
to demonstrate the extremes: from add that can be issued
to any of the four integer ALUs behind ports 0, 1, 5, or
6, to crc32 and vpermd that restrict to only ports 1 and
5, respectively. Furthermore, to minimize the effect of the
memory subsystem on timings (e.g. cache hits and misses),
in this work we do not consider any explicit store or load
instructions, or any memory operands to instructions (i.e. all
operands are registers).

Given the results in Table 1, we construct the covert
channel as follows: crc32 (port 1) will serve as the NOP0
instruction, and vpermd (port 5) as NOP1. Being latency-3
instructions, we construct a block of three such instructions
with disjoint operands to fill the pipeline, avoid hazards,
and realize a throughput of one instruction per clock cycle.
We repeated each block 64 times to obtain a low ratio
of control flow logic to overall instructions retired. The
Alice program sends a zero bit by executing the repeated
crc32 blocks in an infinite loop. Concurrently on the
receiver side, using perf, we measured the number of
clock cycles required for the Bob program to execute 220 of
the repeated crc32 blocks, then again measured with the
same number of repeated vpermd blocks. We then repeated
the experiment with the Alice program sending a one bit
analogously with the vpermd instruction. We carried out
the experiments with both Alice and Bob pinned to separate
logical cores of the same physical core, then also different
physical cores. As a rough estimate, for full throughput we
expect 3 · 64 · 220 ≈ 201 million cycles (three instructions,
with 64 repetitions, looping 220 times); even with a latency
of three, our construction ensures a throughput of one. Of
course there is some overhead for control flow logic.



TABLE 2. RESULTS OVER A THOUSAND TRIALS. AVERAGE CYCLES
AND STANDARD DEVIATION ARE IN THOUSANDS.

Diff. Phys. Core Same Phys. Core
Alice Bob Cycles Dev. Cycles Dev.
Port 1 Port 1 203331 645 408322 221
Port 1 Port 5 203322 514 203820 134
Port 5 Port 1 203334 639 203487 144
Port 5 Port 5 203328 524 404941 183

Table 2 contains the results, averaged over a thousand
trials. First on separate physical cores, we see that the
cycle count is essentially the same and approaches our full
throughput estimate, regardless of which port Alice and/or
Bob are targeting. This confirms the channel does not exist
across physical cores. In contrast, the results on the same
physical core validates the channel. When Alice and Bob
target separate ports, i.e. the port 1/5 and 5/1 cases, the
throughput is maximum and matches the results on different
physical cores. However, when targeting the same port, i.e.
the port 1/1 and 5/5 cases, the throughput halves and the
cycle count doubles due to the port contention. This behavior
precisely matches the hypothesis in Section 3.1.

4. From Covert to Side-Channel

One takeaway from the previous section is that, given
two user space programs running on two separate logical
cores of the same physical core, the clock cycle performance
of each program depends on each other’s port utilization.
Covert Shotgun leaves extension to side-channels as an open
problem: “it would be interesting to investigate to what ex-
tent these covert channels extend to spying”. In this section,
we fill this research gap by developing PORTSMASH, a new
timing side-channel vector via port contention.

At a high level, in PORTSMASH the goal of the Spy
is to saturate one or more ports with a combination of
full instruction pipelining and/or generous instruction level
parallelism. By measuring the time required to execute a
series of said instructions, the Spy learns about the Victim’s
rate and utilization of these targeted ports. A higher latency
observed by the Spy implies port contention with the Victim,
i.e. the Victim issued instructions executed through said
ports. A lower latency implies the Victim did not issue such
instructions, and/or stalled due to a hazard or waiting due to
e.g. a cache miss. If the Victim’s ability to keep the pipeline
full and utilize instruction level parallelism depends on a
secret, the Spy’s timing information potentially leaks that
secret.

As a simple example conceptually related to our later ap-
plication in Section 5, consider binary scalar multiplication
for elliptic curves. Each projective elliptic curve point dou-
ble and conditional addition is made up of a number of fi-
nite field additions, subtractions, shifts, multiplications, and
squarings. These finite field operations utilize the pipeline
and ports in very different ways and have asymptotically
different running times. For example, shifts are extremely
parallelizable, while additions via add-with-carry are strictly
serial. Furthermore, the number and order of these finite field

mov $COUNT, %rcx #elif defined(P0156)
.rept 64

1: add %r8, %r8
lfence add %r9, %r9
rdtsc add %r10, %r10
lfence add %r11, %r11
mov %rax, %rsi .endr

#else
#ifdef P1 #error No ports defined
.rept 48 #endif
crc32 %r8, %r8
crc32 %r9, %r9 lfence
crc32 %r10, %r10 rdtsc
.endr shl $32, %rax
#elif defined(P5) or %rsi, %rax
.rept 48 mov %rax, (%rdi)
vpermd %ymm0, %ymm1, %ymm0 add $8, %rdi
vpermd %ymm2, %ymm3, %ymm2 dec %rcx
vpermd %ymm4, %ymm5, %ymm4 jnz 1b
.endr

Figure 3. The PORTSMASH technique with multiple build-time port con-
figurations P1, P5, and P0156.

operations is not the same for point doubling and addition.
The Spy can potentially learn this secret sequence of doubles
and conditional additions by measuring its own performance
through selective ports, leading to (secret) scalar disclosure.

Figure 3 lists our proposed PORTSMASH Spy process.
The first rdtsc wrapped by lfence establishes the start
time. Then, depending on the architecture and target port(s),
the Spy executes one of several strategies to saturate the
port(s). Once those complete, the second rdtsc establishes
the end time. These two counters are concatenated and
stored out to a buffer at rdi. The Spy then repeats this entire
process. Here we choose to store the counter values and not
only the latency, as the former helps identify interrupts (e.g.
context switches) and the latter can always be derived offline
from the former, but the converse is not true. It is also worth
mentioning the Spy must ensure some reasonable number of
instructions retired between successive rdtsc calls to be
able to reliably detect port contention; we expand later.

In general, strategies are architecture dependent and on
each architecture there are several strategies, depending on
what port(s) the Spy wishes to measure. We now provide
and describe three such example strategies (amongst several
others that naturally follow) for Intel Skylake and Kaby
Lake: one that leverages instruction level parallelism and
targets multiple ports with a latency-1 instruction, and two
that leverage pipelining and target a single port with higher
latency instructions.

Multiple ports. In Figure 3, the P0156 block targets ports
0, 1, 5, and 6. These four add instructions do not create haz-
ards, hence all four can execute in parallel to the four integer
ALUs behind these ports, and as a latency-1 instruction in
total they should consume a single clock cycle. To provide
a window to detect port contention, the Spy replicates these
instructions 64 times. With no port contention, this should
execute in 64 clock cycles, and 128 clock cycles with full
port contention.



Single port. In Figure 3, the P1 and P5 blocks target port
1 and 5, respectively, in a similar fashion. Since these are
latency-3 instructions, we pipeline three sequential instruc-
tions with distinct arguments to avoid hazards and fill the
pipeline, achieving full throughput of one instruction per
cycle. Here the window size is 48, so the block executes
with a minimum 3 · 48+ 2 = 146 clock cycles with no port
contention, and with full port contention the maximum is
roughly twice that.

4.1. Comparison

Our PORTSMASH technique relies on secret-dependent
execution port footprint, a closely related concept to secret-
dependent instruction execution cache footprint. Although
similar in spirit to L1 icache attacks or LLC cache at-
tacks, since both rely on a secret-dependent footprint in
a microarchitecture component, we demonstrate that PORT
SMASH offers finer granularity and is stealthier compared
to other techniques. To differentiate PORTSMASH from pre-
vious techniques, we compare them with respect to spatial
resolution, detectability, cross-core, and cross-VM applica-
bility. We admit that detectability is extremely subjective,
especially across different microarchitecture components;
our rating is with respect to a malicious program while the
target victim is idle, i.e. waiting to capture.

Initially, Osvik et al. [18] proposed the PRIME+PROBE
technique against the L1 dcache, relying on SMT technology
to provide asynchronous execution. Newer enhancements to
this technique allowed cross-core (and cross-VM) successful
attacks [22–24]. The spatial resolution of this attack is
limited to cache-set granularity, that is usually at least of
512 bytes. Typically, the PRIME+PROBE technique occu-
pies all cache sets, moderately detectable if cache activity
monitoring takes place.

Later, Yarom and Falkner [19] proposed the FLUSH+RE-
LOAD technique, a high resolution side-channel providing
cache-line granularity with an improved eviction strategy.
Closely related, Gruss et al. [20] proposed FLUSH+FLUSH,
a stealthier version of FLUSH+RELOAD. Both techniques
rely on shared memory between Victim and Spy processes,
in addition to the clflush instruction to evict cache lines
from the LLC. While this is a typical setting in cross-core
scenarios due to the use of shared libraries, the impact
in cross-VM environments is limited due to the common
practice of disabling page de-duplication [25, Sec. 3.2].
FLUSH+RELOAD constantly reloads from the same address
it flushes, hence is highly detectable if the number of cache-
misses is monitored (Section 6 expands on this). In contrast,
FLUSH+FLUSH does not perform loads at all; stealthiness
is one of its strengths.

More recently, Gras et al. [4] proposed TLBLEED as
another microarchitecture attack technique. Even if this is
not a “pure” cache technique, it exploits TLBs, a form of
cache for memory address translations [7]. Interestingly, this

2. Cache-set size depends on the microprocessor specifications and can
be calculated as (cache line size × cache associativity).

30f0 <x64_foo>: 4150 <x64_bar>:
30f0 test %rdi,%rdi 4150 test %rdi,%rdi
30f3 je 4100 <x64_foo+0x1010> 4153 je 5100 <x64_bar+0xfb0>
30f9 jmpq 4120 <x64_foo+0x1030> 4159 jmpq 5140 <x64_bar+0xff0>
.... ....
4100 popcnt %r8,%r8 5100 popcnt %r8,%r8
4105 popcnt %r9,%r9 5105 popcnt %r9,%r9
410a popcnt %r10,%r10 510a popcnt %r10,%r10
410f popcnt %r8,%r8 510f popcnt %r8,%r8
4114 popcnt %r9,%r9 5114 popcnt %r9,%r9
4119 popcnt %r10,%r10 5119 popcnt %r10,%r10
411e jmp 4100 <x64_foo+0x1010> 511e popcnt %r8,%r8
4120 vpbroadcastd %xmm0,%ymm0 5123 popcnt %r9,%r9
4125 vpbroadcastd %xmm1,%ymm1 5128 popcnt %r10,%r10
412a vpbroadcastd %xmm2,%ymm2 512d popcnt %r8,%r8
412f vpbroadcastd %xmm0,%ymm0 5132 popcnt %r9,%r9
4134 vpbroadcastd %xmm1,%ymm1 5137 popcnt %r10,%r10
4139 vpbroadcastd %xmm2,%ymm2 513c jmp 5100 <x64_bar+0xfb0>
413e jmp 4120 <x64_foo+0x1030> 513e xchg %ax,%ax
4140 retq 5140 vpbroadcastd %xmm0,%ymm0

5145 vpbroadcastd %xmm1,%ymm1
514a vpbroadcastd %xmm2,%ymm2
514f vpbroadcastd %xmm0,%ymm0
5154 vpbroadcastd %xmm1,%ymm1
5159 vpbroadcastd %xmm2,%ymm2
515e vpbroadcastd %xmm0,%ymm0
5163 vpbroadcastd %xmm1,%ymm1
5168 vpbroadcastd %xmm2,%ymm2
516d vpbroadcastd %xmm0,%ymm0
5172 vpbroadcastd %xmm1,%ymm1
5177 vpbroadcastd %xmm2,%ymm2
517c jmp 5140 <x64_bar+0xff0>
517e retq

Figure 4. Two Victims with similar port footprint i.e. port 1 and port 5, but
different cache footprint. Left: Instructions span a single cache-line. Right:
Instructions span multiple cache-lines.

subtle distinction is sufficient for making it stealthier to
cache countermeasures [4]. On the downside, the spatial
resolution of this attack is limited to a memory page (4
KB). Since no cross-core improvements have been proposed
for either TLBLEED or PORTSMASH, it could be seen as
a drawback of these attacks. However, attackers can launch
multiple Spy processes to occupy all cores and ensure co-
location on the same physical core; see [26, Sec. 3.1] for a
related discussion.

Recent microarchitecture attacks have been proposed
achieving intra cache-line granularity. Yarom et al. [5]
demonstrated that intra-cache granularity is possible—at
least in older Intel microprocessors—with their CacheBleed
attack. This attack proposes two techniques to achieve this
granularity: cache bank conflicts and write-after-read false
dependencies. Cache bank conflicts have a limited impact,
considering the authors discovered that current Intel micro-
processors no longer have cache banks; thus this technique
does not apply to newer microprocessors. To that end,
Moghimi et al. [21] improved the previous work and pro-
posed a read-after-write false dependency side-channel. The
authors highlight the potential 5 cycle penalty introduced
when a memory write is closely followed by a read, a more
critical condition compared to a read closely followed by a
memory write. This technique gives a 4-byte granularity on
the cache-lines, thus allowing them to exploit the 5 cycle
delay to perform a key recovery attack against a constant-
time AES implementation on Intel IPP library. Both attacks
are less detectable than FLUSH+RELOAD since they do not
utilize clflush at all.

Table 3 compares the previously mentioned techniques
in their original version. As can be appreciated, our PORT
SMASH technique enjoys the highest spatial resolution
among them, since it goes beyond the cache-line and instead,
it considers individual uops dispatched to the execution



TABLE 3. COMPARISON OF MICROARCHITECTURE ATTACK TECHNIQUES (ORIGINAL VERSIONS)

Attack Spatial Resolution Size Detectability Cross-Core Cross-VM
TLBLEED [4] Memory Page (Very low) 4 KB Low No Yes/SMT
PRIME+PROBE [18] Cache-set (Low) 512 bytes2 Medium Yes Yes/SharedMem
FLUSH+RELOAD [19] Cache-line (Med) 64 bytes High Yes Yes/SharedMem
FLUSH+FLUSH [20] Cache-line (Med) 64 bytes Low Yes Yes/SharedMem
CacheBleed [5] Intra cache-line (High) 8 bytes Medium No Yes/SMT
MemJam [21] Intra cache-line (High) 4 bytes Medium No Yes/SMT
PORTSMASH Execution port (Very High) uops Low No Yes/SMT

units. As an example, consider the two functions x64_foo
and x64_bar in Figure 4. These two functions get passed
an argument of either zero or one (e.g. a secret bit): in
the former case, they start executing pipelined popcnt
instructions in a loop, and vpbroadcastd instructions in
the latter. The x64_foo function has all its functionality
for both branches within a single cache line (64B), starting
at address 0x4100. In contrast, the x64_bar function has
distinct cache lines for each branch: the zero case starts
at address 0x5100 and the one case at 0x5140, and the
control flow for each corresponding loop restricts to its
single cache line.

The x64_bar function is a potential target for L1
icache attacks, FLUSH+RELOAD attacks, FLUSH+FLUSH
attacks, etc. since there are two different targets that span
two different cache lines. In contrast, the x64_foo control
flow resides in a single cache line: L1 icache attacks, FLU-
SH+RELOAD attacks, FLUSH+FLUSH attacks, etc. only have
cache line granularity, and are not designed to distinguish
varying code traversal within a single line. Remarkably, both
x64_foo and x64_bar are potential targets for our new
method. In this light, at a very high level what CacheBleed
accomplished for dcache attacks—the ability to target at less
than data cache line granularity—our method accomplishes
for the code side, and furthermore potentially with a single
trace instead of averaging traces.

To validate our findings, we ran the following set of
PORTSMASH experiments. First, we configured the Victim
process to execute the x64_foo function passing 0 as
argument, causing the Victim to issue popcnt commands,
using port 1. In parallel, we configured the Spy process
with the P1 strategy in the sibling logical core to issue
and time crc32 commands, thus creating contention and
the Spy successfully tracks the Victim state by observing
high latency. Then, we repeated the experiment but this time
we passed 1 as argument to the Victim process, executing
vpbroadcastd instructions, using port 5. Since the Spy
process is still using the P1 strategy, i.e. timing crc32
instructions, port contention does not happen, hence the
Spy successfully tracks the Victim state by observing low
latency. Figure 5 (Top) shows the resulting trace for both
cases i.e. contention vs no-contention from a Spy process
perspective configured with the P1 strategy. We then re-
configured the Spy to use the P5 strategy, and repeated
the experiments, shown in Figure 5 (Bottom). This raw
empirical data—that is clearly linearly separable—confirms
not only the validity of our new side-channel in general,
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Figure 5. Top: Timings for the PORTSMASH Spy when configured with
P1, in parallel to the Victim executing x64_foo with rdi as both zero
and one in two consecutive runs. Bottom: Analogous but with the Spy
configured with P5.

but furthermore the symmetry in the plots confirms that
our technique even allows to leak code traversal information
with a granularity finer than cache-line, since in this case it
is dependent on port utilization by the executed instructions
within the cache-line.

5. Applications

In the previous section, we developed a generic PORT
SMASH Spy process to procure timing signals that detect
port contention. In this section, we present the first attack
using our technique in a real-world setting. We start with
some background on ECC, and explain why P-384 is a
highly relevant standardized elliptic curve, and examine its
scalar multiplication code path within OpenSSL 1.1.0h and
earlier. We then design and implement an end-to-end P-384
private key recovery attack that consists of three phases:

1) In the procurement phase, we target an stunnel TLS
server authenticating with a P-384 certificate, using
our tooling that queries the TLS server over mul-
tiple handshakes with the Spy measuring port con-
tention in parallel as the server produces ECDSA
signatures.

2) In the signal processing phase, we filter these traces
and output partial ECDSA nonce information for
each digital signature.

3) In the key recovery phase, we utilize this partial
nonce information in a lattice attack to fully recover
the server’s P-384 private key.

We close this section with a discussion on applications to
statically linked binaries and SGX enclaves.



5.1. ECC and P-384

Koblitz [27] and Miller [28] introduced elliptic curves
to cryptography during the mid 1980’s. By 1995, the Na-
tional Security Agency (NSA) became a strong supporter of
Elliptic Curve Cryptography (ECC) [29] and pushed for the
adoption of ECDSA, the elliptic curve variant of the (then)
recently approved Digital Signature Algorithm (DSA) [30].

In 2005, NSA’s support of ECC was clear, mandating its
use “for protecting both classified and unclassified National
Security information[..], the NSA plans to use the elliptic
curves over finite fields with large prime moduli (256,
384, and 521 bits) published by NIST” [31]. Shortly after,
the NSA announced Suite B, a document recommending
cryptography algorithms approved for protecting classified
information up to Secret and Top Secret information, in-
cluding P-256 at 128 bits of security, and P-384 at 192 bits
of security, respectively.

During 2012, the Committee for National Security Sys-
tems (CNSS) issued CNSSP-15 [32], a document defining
the set of public key cryptographic standards recommended
to protect classified information until public standards for
post-quantum cryptography (PQC) materialize, further push-
ing the support for both curves, P-256 and P-384. Suddenly
in August 2015, and after a long history of ECC support,
the NSA released a statement [33] urging the development
of PQC and discouraging the late adoption of ECC, and
instead focusing on the upcoming upgrade to quantum-
resistant algorithms. Parallel to this statement, the Suite B
recommendation was updated, mysteriously removing P-256
from the list of approved curves without giving any reason,
and leaving P-384 as the only ECC option to protect infor-
mation up to Top Secret level. In January 2016, the NSA
issued a FAQ [34] derived from the statement released five
months prior. They informed about the replacement of Suite
B with an updated version of CNSS-15, and also finally
commented on the removal of P-256 from the previous Suite
B. We cherry-pick three statements from the document: (1)
“equipment for NSS that is being built and deployed now
using ECC should be held to a higher standard than is
offered by P-256”; (2) “Elimination of the lower level of
Suite B also resolves an interoperability problem raised by
having two levels”; and (3) “CNSSP-15 does not permit use
of P-521”.

To summarize, P-384 is the only compliant ECC option
for Secret and Top Secret levels. Unfortunately, its imple-
mentations have not received the same scrutiny as P-256
and P-521; we expand later in this section.

ECDSA. For the purpose of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3, all
of the x, y ∈ GF (p) solutions to the equation

E : y2 = x3 + ax+ b

along with the point-at-infinity (identity) form a group. The
domain parameters of interest are the NIST standard curve
that set p Mersenne-like prime and a = −3 ∈ GF (p).

The user’s private-public keypair is (dA, QA) where dA
is chosen uniformly from [1 . . n) and QA = [dA]G holds. G
is a generator G ∈ E of prime order n. A digital signature
on message m compute as follows.

1) Select a secret nonce k uniformly from [1 . . n).
2) Compute r = (k[G])x mod n.
3) Compute s = k−1(h(m) + dAr) mod n.
4) Return the digital signature tuple (m, r, s).

The hash function h can be any “approved” function, e.g.
SHA-1, SHA-256, and SHA-512. Verification is not relevant
to this work, hence we omit the description.

ECDSA and P-384 in OpenSSL. In OpenSSL, each elliptic
curve has an associated method structure containing function
pointers to common ECC operations. For ECDSA, scalar
multiplication is the most performance and security-critical
ECC operation defined in this method structure, and the
actual algorithm to perform scalar multiplication depends on
several factors, e.g. curve instantiated, scalar representation,
OpenSSL version, and both library and application build-
time options. Due to the long history of timing attacks
against ECDSA and the possibility of improving the perfor-
mance of some curves, over the years OpenSSL mainlined
several implementations for scalar multiplication, especially
for popular NIST curves over prime fields.

Based on work by Käsper [35]—and as a response to
the data cache-timing attack by Brumley and Hakala [36]—
OpenSSL introduced EC_GFp_nistp256_method, a
constant-time scalar multiplication method for the NIST P-
256 curve (and analogous methods for P-224 and P-521).
This method uses secure table lookups (through masking)
and a fixed-window combing during scalar multiplication.
Later, Gueron and Krasnov [37] introduced a faster constant-
time method with their EC_GFp_nistz256_method.
This method uses Intel AVX2 SIMD assembly to in-
crease the performance of finite field operations, thus
providing a considerable speedup when compared to
EC_GFp_nistp256_method that is portable C. The
NIST curve P-256 quickly became (arguably) the most
widely used, fast, and timing-attack resistant of all NIST
curves in OpenSSL. Unfortunately, P-384 was neglected,
and it missed all of the previous curve-specific improve-
ments that provided timing attack security for P-224, P-256,
and P-521. Instead, P-384 follows a generic non constant-
time scalar multiplication algorithm—i.e. interleaved scalar
multiplication by Möller [38, Sec. 3.2]—which uses a mod-
ified windowed Non-Adjacent Form (wNAF) for scalar
representation. Although this implementation is a known
vulnerability [36, 39–41], it has never been exploited in the
context of P-384 in OpenSSL.

In OpenSSL 1.1.0h and below, P-384 calls
ecdsa_sign_setup @ crypto/ec/ecdsa_ossl.c
when generating an ECDSA signature. There, the underlying
ec_wNAF_mul function gets called to perform scalar
multiplications, where r = [k]G is the relevant computation
for this work. That function first transforms the scalar
k to its wNAF representation and then, based on this



representation, the actual scalar multiplication algorithm
executes a series of double and add operations. To
perform double and add operations, OpenSSL calls
ec_GFp_simple_dbl and ec_GFp_simple_add
respectively. There, these methods have several function
calls to simpler and lower level Montgomery arithmetic,
e.g. shift, add, subtract, multiply, and square operations.
A single ECC double (or add) operation performs several
calls to these arithmetic functions. Among the strategies
mentioned in Section 4, we found that for our target the
P5 strategy results in the least noisy trace overall.

In summary, by using the PORTSMASH technique dur-
ing OpenSSL P-384 ECDSA signature generation, we can
measure the timing variations due to port contention. More
specifically, we capture the port contention delay during
double and add operations, resulting in an accurate raw
signal trace containing the sequence of operations during
scalar multiplication, and leaking enough LSDs of multiple
nonces k to later succeed in our key recovery phase.

5.2. Procurement Phase: TLS

Stunnel3 provides TLS/SSL tunneling services to servers
(and clients) that do not speak TLS natively; during the
procurement phase we used stunnel 5.49 as the TLS server.
We compiled it from source and linked it against OpenSSL
1.1.0h for crypto functionality. Our setup consists of an Intel
Core i7-6700 Skylake 3.40GHz featuring Hyper-Threading,
with four cores and eight threads, running Ubuntu 18.04
LTS “Bionic Beaver”, and TurboBoost disabled.

We configured the stunnel server with a P-384 ECDSA
certificate and ECDHE-ECDSA-AES128-SHA256 as the
TLS 1.2 cipher suite. We wrote a custom TLS client to
connect to our TLS server. Typically, during a TLS hand-
shake, the client and the server exchange several protocol
messages, including ClientHello, ServerHello and
ServerKeyExchange parameters. These messages are
concatenated, hashed and digitally signed by the server.
Then, the client verifies the signature before finally estab-
lishing a session with the server.

Our custom TLS client serves two purposes: (1) it starts
the TLS handshake with the stunnel server, collecting pro-
tocol messages and digital signatures; and (2) it launches
the Spy process, which captures the scalar multiplication
operations performed by OpenSSL on the server side during
the handshake, both for Diffie-Hellman key agreement and
ECDSA signature generation. Figure 6 (Top) shows a trace
captured by the Spy process, containing the two scalar
multiplication operations during TLS handshake, i.e. ECDH
and ECDSA respectively.

The client drops the handshake as soon as the server
presents the digital signature; since we are only interested in
capturing up to the digital signature generation, this allows
us to rapidly capture more traces. Additionally, our client
concatenates the protocol messages, hashes the resulting
concatenation, and stores the message digest. Similarly, it

3. https://www.stunnel.org
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Figure 6. Multiple TLS trace stages. Top: Raw TLS handshake trace
showing scalar multiplication during ECDH and ECDSA. Bottom: Zoom
at the end of the previous ECDSA trace, peaks (filtered) represent Add
operations. For example, this trace ends with an add operation, indicating
the nonce is odd.

stores the respective DER-encoded P-384 ECDSA signa-
tures for each TLS handshake. This process is repeated as
needed to build a set of traces, digest messages and digital
signatures that our lattice attack uses later in the key recovery
phase.

Once the data tuples are captured, we proceed to the
signal processing phase, where the traces are trimmed and
filtered to reduce the noise and output useful information.
Figure 6 (Bottom) shows a zoom at the end of the (Top)
trace, where the filters reveals peaks representing addition
operations, separated by several double operations.

At a high level—returning to the discussion in Sec-
tion 4—the reason our signal modulates is as follows. The
wNAF algorithm executes a (secret) sequence of double
and add operations. In turn, these operations are sequences
of finite field additions, subtractions, multiplications, and
squarings. Yet the number and order of these finite field
operations are not identical for double and add. This is even-
tually reflected in their transient port utilization footprint.

5.3. Signal Processing Phase

After verifying the existence of SCA leakage in the
captured TLS traces, we aim to extract the last Double and
Add sequence to provide partial nonce information to the
key recovery phase. Although visual inspection of the raw
trace reveals the position of Double and Add operations,
this is not enough to automatically and reliably extract the
sequence due to noise and other signal artifacts.

Since our target is ECDSA point multiplication, we
cropped it from the rest of the TLS handshake by applying
a root mean square envelope over the entire trace. This
resulted in a template used to extract the second point multi-
plication corresponding to the ECDSA signature generation.
To further improve our results, we correlated the traces to

https://www.stunnel.org


the patterns found at the beginning and end of the point
multiplication. This was possible as the beginning shows a
clear pattern (trigger) due to OpenSSL precomputation, and
the end of the trace has a sudden decrease in amplitude.

We then used a low pass filter on the raw point multipli-
cation trace to remove any high frequency noise. Having pre-
viously located the end of point multiplication, we focused
on isolating the Add operations to get the last Add peak,
while estimating the Doubles using their length. For doing
this we applied source separation filtering method known
as Singular Spectrum Analysis (SSA) [42]. SSA was first
suggested in SCA literature for power analysis to increase
signal to noise ratio in DPA attacks [43], and later used as
a source separation tool for extracting Add operations in an
EM SCA attack on ECDSA [44].

The SSA filter performs an eigen-spectra decomposi-
tion of the original signal using a trajectory matrix into
different components which are then analyzed and selected
accordingly for reconstructing a filtered signal. The first step
embedding converts the single dimension signal {mk}Nk=1
of length N into a multidimensional trajectory matrix M
which contains I column vectors each of size w where
I = N − w + 1. The window size 1 < w ≤ N/2
dictates the quality and performance of the reconstruction
phase. The second step singular value decomposition (SVD)
decomposes the trajectory matrix M into non-zero eigen-
values λk of MM> sorted in decreasing ranks of their
magnitudes along with their corresponding eigenvectors uk.
With vk = M>uk

√
λk and Yk = ukvk the projection

matrices, SVD can be shown as:

M =

d∑
k=1

√
λkY

>
k

To obtain the reconstructed components {yi}Ni=1, next per-
form a diagonal averaging also known as Hankelization by
computing the average over the skewed diagonal of the
projection matrices Yk [45]. The original signal can thus be
reproduced by summing all the reconstructed components:

{mi}Ni=1 =

d∑
k=1

{yki }Ni=1

For source separation, only the useful components can be
chosen, leaving out the noisy ones from all the d possible
choices.

For our purpose, we decided to threshold the window
size as suggested in [43]. Since the total length of the trace
was around 15000 samples, this gave us a window size of
30. However, based on experimentation, a window of size
20 yielded optimal results using the second and the third
component.

The traces occasionally encountered OS preemptions
corrupting them due to the Spy or Victim being interrupted.
We detect Spy interrupts as high amplitude peaks or low
amplitude gaps, depending on whether they happened while
during or between latency measurement windows. Similarly
the Victim interrupts exhibit a low amplitude gap in our
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Figure 7. Length distributions for various patterns at the end of scalar
multiplication.

traces, since there was no Victim activity in parallel. In
any case, we discarded all such traces (around 2.5%) when
detecting any interrupt during the last Double and Add
sequence.

Finally by applying continuous wavelet transform [46]
in the time-frequency domain we were able to detect the
high energy Add peaks, therefore isolating them. Moreover,
a root-mean-square of the resulting peaks smoothed out
any irregularities. Figure 6 illustrates the results of signal
processing steps on a TLS trace from top to bottom. Even
after applying these steps, some traces where the Adds were
indistinguishable due to noise still occur, decreasing the
accuracy of our results by about 2%.

The output of this phase, for each trace, is the distance
from the last Add operation to the end of the point mul-
tiplication: estimating the number of trailing Doubles by
counting the number of samples. Figure 7 depicts the CDF
of the resulting sequences using our distance metric, having
clear separation for each trailing Double and Add sequence.

5.4. Key Recovery Phase: Lattices

For the lattice attack stage we build on the work pre-
sented in [40], using the BKZ reduction algorithm to ef-
ficiently look for solutions to the Shortest Vector Problem
(SVP). The output of the signal processing phase eventually
provides us with partial nonce information, as the trailing
sequence tells us the bit position of the lowest set bit.

We first describe exploring the lattice parameter space
using traces modeled without errors. We then combine this
study with profiling of the experimental data and the con-
straints of the computational resources at our disposal to
launch a real world end-to-end attack.

Exploration of the lattice parameter space. The main
parameters to tune in implementing the lattice attack are the
size (d) of the set of signatures used to build the lattice basis
and the block size (β) for the BKZ reduction algorithm. The
parameter d is directly proportional to the amount of bits of
knowledge available in the lattice structure; the product d×β
is inversely related to the average number of BKZ iterations
required to retrieve the private key, but is directly related to
the execution time of a single iteration.



Theoretically, given an infinite amount of time, if the
selected subset of signatures does not contain any error and
if the lattice embeds more bits of knowledge than the bit-
length of the secret key, it should eventually succeed. In this
scenario, optimizing for the smallest d that delivers enough
bits of knowledge to recover the private key would be the
preferred metric, as it requires less overall data from the
procurement phase (lowering the risk of detection) and also
improves success chances of the heuristic process (dealing
with potential errors in the signal processing phase).

In a more realistic scenario we want to model the lattice
parameters to succeed in a “reasonable” amount of time.
This definition is not rigorous and largely depends on the
capabilities of a dedicated attacker: in this academic contest,
constrained by the grid computing resources available to
us, we define a lattice instance as successful if it correctly
retrieves the secret key in under 4 hours when running on
a single 2.50 GHz Xeon E5-2680 core.

We modeled our preliminary experiments using random
nonces, biased to have a trailing sequence of zero bits: i.e.,
this is equivalent to assuming error-free traces from the
signal processing phase. We run two sets of experiments,
one with a bias mask of 0x3, i.e., with at least two trailing
zero bits (using the notation from [40], z ≥ 2 and l ≥ 3),
and the other with a bias mask of 0x1, i.e., with at least
one trailing zero bit (z ≥ 1 and l ≥ 2).

Regarding the block size β, our experiments (for which
detailed results are provided in Appendix A) confirm the
findings in [40]: “The lower block sizes perform better
in the higher dimensions, as the high-dimensional lattices
already contain much information and strong reduction is
not required.” Building on their results, we started with
β ∈ {10, 20, 15} and analyzed the trade-off between an
increase in the number of iterations against a generally faster
execution time for each iteration. In terms of overall execu-
tion time, we ultimately determined that β = 20 performed
better (even for extremely high lattice dimensions).

To determine the optimal d for each bias case, we ran
10000 instances of the lattice algorithm against the two sets
of modeled perfect traces and measured the corresponding
amount of known nonce bits, the number of iterations for
successful instances, the overall execution time for suc-
cessful instances, and the success probability. The results
indicate d = 450 is optimal for the 0x1 biased ideal traces,
with success probability exceeding 90% coupled with a
small number of iterations as well as overall execution time.
Analogously, d = 170 is optimal for the 0x3 bias case.

Experimental parameters with real traces. Real traces
come with errors, which lattices have no recourse to com-
pensate for. The traditional solution is oversampling, using
a larger set of t traces (with some amount e of traces
with errors), and running in parallel a number (i) of lattice
instances, each picking a different subset of size d from
the larger set. Picking the subsets uniformly random, the

probability for any subset to be error-free is:

Pr(No error in a random subset of size d) =

(
t−e
d

)(
t
d

)
For typical values of {t, e, d}, the above probability is small
and not immediately practical. But given the current capa-
bilities for parallelizing workloads on computing clusters,
repeatedly picking different subsets compensates:

Pr( ≥ 1 error-free subset over i inst.) = 1−

(
1−

(
t−e
d

)(
t
d

) )i

(1)

Profiling the signal processing phase results, we determined
to utilize thresholding to select traces belonging to the “AD”,
“ADD”, “ADDD” and “ADDDD” distributions of Figure 7.
In our setup, other traces are either useless for our lattice
model or have too low accuracy. To ensure accuracy, we
determined very narrow boundaries around the distributions
to limit overlaps at the cost of very strict filtering. Out of the
original 10000 captures, the filtering process selects a set of
1959 traces with a 0x1 bias mask including e = 34 (1.74%)
errors. Combining this with d = 450 from our empirical
lattice data, (1) leads us to i ≥ 36000 instances required
to achieve a probability ≥ 99% of picking at least one
subset without errors. This number of instances is beyond
the parallel computational resources available to us, hence
we move to the remaining case.

Filtering out also the 1060 traces categorized as ’AD’
delivers a total of 899 traces with a 0x3 bias mask, includ-
ing e = 14 (1.56%) errors. Combining this with d = 170
for the higher nonce bias and substituting in (1) leads us
to i ≥ 200 instances to achieve a probability ≥ 99.99% of
picking at least one subset without errors.

When using the actual attack data we noticed that while
our filtering process increasing accuracy, it has the side-
effect of straying from the statistics determined in ideal
conditions. We speculate this is due to filtering out longer
trailing zero bits (low accuracy) decreasing the average
amount of known nonce bits per signature, resulting in
wider lattice dimensions with lower than expected useful
information. This negatively affects the overall success rate
and the amount of required iterations for a successful in-
stance. We experimentally determined that when selecting
only nonces with a bias mask between 0x3 and 0xF,
d = 290 compensates with a success rate (for an error-
free subset) of 90.72%. Using these values in (1) leads us
to i = 2000 instances to achieve a probability 99.97% of
picking at least one subset without errors—well within the
computing resources available to us.

Finally, running the entire process on the real data
obtained from the signal processing phase on the original
10000 captures, using parameters t = 899, e = 14, and
d = 290 over i = 2000 instances running in parallel on the
described cluster resulted in 11 instances that successfully
retrieved the secret key, the fastest of which terminated in
259 seconds after only two BKZ reduction iterations.



5.5. SGX

Intel Software Guard Extensions (SGX)4 is a micro
architecture extension present in modern Intel processors.
SGX aims at protecting software modules by providing
integrity and confidentiality to their code and memory con-
tents. In SGX terminology, an SGX enclave is a software
module that enjoys said protections. SGX was designed to
defend processes against tampering and inspection from OS-
privileged adversaries, therefore, it provides strong isola-
tion between enclave memory regions and the outer world.
Despite these strong protections, side-channel attacks are
still considered a major threat for enclaves, as SGX by
itself does not protect against them [47]. In this regard,
as the SGX threat model considers an OS-level adversary,
it is even possible to mount more powerful side-channel
attacks against enclaves where the measurement noise can
be reduced considerably [48–50].

From a practical perspective, it is interesting to know
which unprivileged side-channel techniques are a threat for
SGX enclaves. Regarding cache attacks, FLUSH+RELOAD
and FLUSH+FLUSH do not apply for the unprivileged sce-
nario since they require shared memory with the SGX
enclave, but the latter does not share its memory [15, 47].
However, researchers use other attack techniques against
SGX, such as L1-based PRIME+PROBE attacks [50], and
false dependency attacks Moghimi et al. [21]. It is worth
mentioning that these methods assume an attacker with
privileged access, however, we strongly believe these at-
tacks would succeed without this assumption at the cost of
capturing traces with a higher signal-to-noise ratio. Finally,
TLBLEED [4] could be a potential successful attack tech-
nique against SGX, yet the authors leave it for future work.

The rest of this section demonstrates our PORTSMASH
technique against SGX enclaves. By definition, it should
apply without issues since SGX technology does not protect
the execution units. This fills a research gap left by Covert
Shotgun as an open problem: “That would be especially
interesting say in SGX scenarios.” For our experiments we
developed two Victim processes. One Victim is a standard
processes linked against OpenSSL 1.1.0h, and the other is
an Intel SGX SSL enclave. Both Victim processes follow the
same scalar multiplication code path analyzed in Section 5,
therefore we have two processes executing exactly the same
code path with and without SGX protections.

Following the rationale that a PORTSMASH attack is
oblivious to SGX enclaves, we applied the P5 strategy
employed in Section 5. We captured two traces on an Intel
Core i7-7700HQ (i.e. Kaby Lake), one for each setting:
SGX and non-SGX. Figure 8 shows both the raw and
filtered traces for each of them. Note the similarities between
both raw traces, and after applying a noise reduction filter,
the similarities become more evident since the position of
additions are clearly revealed in both traces as amplitude
peaks. This experiment validates our hypothesis that a PORT
SMASH attack can be applied to SGX enclaves as well as

4. https://software.intel.com/en-us/sgx
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Figure 8. From top to bottom: raw trace of our SGX Victim; said trace after
filtering; raw trace of our user space Victim; said trace after filtering. Both
victims received the same input, i.e. a scalar that induces 16 point additions
at the end of the trace, clearly identifiable by the peaks in the filtered traces.
This demonstrates the leakage from SGX is essentially identically to the
leakage outside SGX.

to non-SGX processes. Moreover, it also proves that the
amount of noise does not significantly vary between both
scenarios.

6. Mitigations

6.1. Existing Work

Due to the copious amount of microarchitecture side-
channel attacks in recent years, several countermeasures and
mitigations appear in the literature; see [51] for a complete
survey on countermeasures. From all the microarchitecture
side-channel attacks proposed, cache-timing attacks and
their respective techniques have arguably the most impact of
all. This translates to the development of specific memory-
based mitigations such as cache partitioning [11, 52], cache
flushing [53, 54], and (partially) disabling caching [16].
Nevertheless, generally these solutions do not provide pro-
tections against non memory-based side-channels. To that
end, another mitigation technique angle follows malware
analysis methods. One way to categorize these countermea-
sures is by binary and runtime analysis.

Binary analysis looks for code signatures that allows
classifying a binary file as a malicious file or not. Irazoqui
et al. [55] proposed MASCAT, a binary analysis framework
for detecting microarchitecture malware. This framework
analyzes a target binary by looking for the signature of
a set of instructions often used during microarchitecture
attacks, e.g. high-resolution timers, fence instructions and
cache-flushing instructions. Nevertheless, [15] showed that
is possible to hide malicious code from static analysis of
binaries.

Runtime analysis inspects potentially malicious pro-
cesses while they execute, looking for dubious activities.
Several approaches propose microarchitecture attack miti-
gations [56–58]. Most of them focus mainly on monitoring

https://software.intel.com/en-us/sgx


hardware performance counters (HPC) to detect irregular
execution patterns that may suggest an ongoing side-channel
attack. Kulah et al. [56] and Zhang et al. [57] focus on
unusual cache-activity rates, while Raj and Dharanipragada
[58] aims at detecting an attack by measuring memory
bandwidth differences.

Wichelmann et al. [59] recently proposed a combination
of these categories. Their framework MicroWalk applies
Dynamic Binary Instrumentation and Mutual Information
Analysis to not only detect leakage in binaries, but also to
locate the source of the leakage in the binary. The framework
combines the memory footprint and the program control-
flow to determine the side-channel leakage. They apply
their technique successfully to closed source cryptographic
libraries such as Intel IPP and Microsoft CNG.

From this brief survey, most of the work to mitigate
microarchitecture side-channels is in the area of cache-based
channels. Hence, many of these frameworks and techniques
are not directly applicable to detect and mitigate our PORT
SMASH technique. Since our technique does not target the
cache, but instead focuses on the execution units, we argue
it is extremely challenging to detect it. For example, when
using an HPC-based countermeasure, it must distinguish
normal port utilization between highly optimized code and
PORTSMASH. At the end of the day, microprocessor man-
ufacturers and code developers expect full core resource
utilization. We agree that it is conceptually possible to
adapt some of the previous countermeasures to detect our
technique, but it is an open question how difficult, effective,
and practical these countermeasures would be.

6.2. Recommendations

Our PORTSMASH technique relies on SMT and exploits
transient microarchitecture execution port usage differences,
therefore two immediate countermeasures arise: (1) remove
SMT from the attack surface; and (2) promote execution
port-independent code.

So far, the best and most recommended strategy against
attacks relying on SMT—e.g. CacheBleed, MemJam, and
TLBleed—is to simply disable this feature. Even OpenBSD
developers 5 recently followed this approach, since it is the
simplest solution that exists but it comes at the cost of
performance loss on thread-intensive applications. In order
to minimize this loss, Wang and Lee [3] proposed a selective
approach by modifying the OS to support logical core
isolation requests from user space, such that security-critical
code can trigger it on demand. This selective SMT-disabling
reduces performance loss but is costly to implement since
it requires changes in the OS and the underlying libraries,
hindering portability and large-scale adoption.

The second option, port-independent code, can be
achieved through secret-independent execution flow se-
cure coding practices, similar to constant-time execution.
Constant-time implementations that execute the same set
of instructions independently from the secret—i.e. all code

5. https://marc.info/?l=openbsd-cvs&m=152943660103446

and data addresses are assumed public—fulfill the port-
independent code requirement we propose to mitigate this
technique.

7. Conclusion

We presented a new SCA technique exploiting timing
information against a non-persistent shared HW resource,
derived from port contention in shared CPU execution units
on SMT architectures. Our PORTSMASH technique features
interesting properties including high adaptability though
various configurations, very fine spatial granularity, high
portability and minimal prerequisites. We demonstrated it is
a practical attack vector with a real-world end-to-end attack
against a TLS server, successfully recovering an ECDSA
P-384 secret key; we further demonstrate it is a viable
side-channel to endanger the security of SGX enclaves and
discussed potential mitigations.

Following responsible disclosure procedures, we re-
ported our findings to the manufacturer and OS vendors,
which resulted in the assignment of CVE-2018-5407 to track
the vulnerability.

We leave as future work exploring the capabilities of
PORTSMASH on other architectures featuring SMT, espe-
cially on AMD Ryzen systems.

Finally, we conclude with a remark on how this work,
together with the increasingly fast-paced publications of
scientific results in the same field, confirms once again
SCA as a practical and powerful tool to find, exploit—and
eventually mitigate—significant and often underestimated
threats to the security of our data and communications.
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Appendix A.
Lattice Statistics

 0

 50

 100

 150

 200

 250

 100  150  200  250  300  350  400  450  500  550  600

o o

Signature count

0x1 success prob.
0x1 instances

0x3 success prob.
0x3 instances

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100  200  300  400  500  600

K
n

o
w

n
 n

o
n

ce
 b

it
s

Signature count

0x1
0x3

 0

 200

 400

 600

 800

 1000

 1200

 100  150  200  250  300  350  400  450  500  550  600

It
er

at
io

n
s

Signature count

0x1
0x3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 100  150  200  250  300  350  400  450  500  550  600

T
im

e 
(s

ec
o

n
d

s)

Signature count

0x1
0x3

Figure 9. Empirical data for lattice experiments.
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