
Finding Collisions in a Quantum World:

Quantum Black-Box Separation of

Collision-Resistance and One-Wayness

Akinori Hosoyamada1,2 and Takashi Yamakawa1

1NTT Secure Platform Laboratories, NTT Corporation. 3-9-11, Midori-cho Musashino-shi,
Tokyo 180-8585, Japan. {hosoyamada.akinori, yamakawa.takashi}@lab.ntt.co.jp

2Department of Information and Communication Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya-shi, Nagoya 464-8603, Japan.

April 4, 2019

Abstract

Since the celebrated work of Impagliazzo and Rudich (STOC 1989), a number of black-box
impossibility results have been established. However, these works only ruled out classical black-
box reductions among cryptographic primitives. Therefore it may be possible to overcome these
impossibility results by using quantum reductions. To exclude such a possibility, we have to
extend these impossibility results to the quantum setting.

In this paper, we initiate the study of black-box impossibility in the quantum setting. We
first formalize a quantum counterpart of fully-black-box reduction following the formalization
by Reingold, Trevisan and Vadhan (TCC 2004). Then we prove that there is no quantum fully-
black-box reduction from collision-resistant hash function to one-way permutation (or even
trapdoor permutation). This is an extension to the quantum setting of the work of Simon
(Eurocrypt 1998) who showed a similar result in the classical setting.

keywords post-quantum cryptography, one-way permutation, one-way trapdoor permuta-
tion, collision resistant hash function, fully black-box reduction, quantum reduction, impossi-
bility

1 Introduction

1.1 Background

Black-box impossibility. Reductions among cryptographic primitives are fundamental in cryp-
tography. For example, we know reductions from pseudorandom generator, pseudorandom func-
tion, symmetric key encryption, and digital signatures to one-way function (OWF). On the other
hand, there are some important cryptographic primitives including collision-resistant hash func-
tion (CRH), key-exchange, public key encryption (PKE), oblivious transfer, and non-interactive
zero-knowledge proofs, for which there are no known reductions to OWF. Given this situation,
we want to ask if it is impossible to reduce these primitives to OWF. We remark that under the
widely believed assumption that these primitives exist, OWF “implies” these primitives (i.e., these
primitives are “reduced” to OWF) in a trivial sense. Therefore to make the question meaningful,
we have to somehow restrict types of reductions.

For this purpose, Impagliazzo and Rudich [IR89] introduced the notion of black-box reductions.
Roughly speaking, a black-box reduction is a reduction that uses an underlying primitive and an
adversary in a black-box manner (i.e., use them just as oracles).1 They proved that there does not
exist a black-box reduction from key-exchange protocol (and especially PKE) to one-way permu-
tation (OWP). They also observed that most existing reductions between cryptographic primitives
are black-box. Thus their result can be interpreted as an evidence that we cannot construct key-
exchange protocol based on OWP based on commonly used techniques. After their seminal work,
there have been numerous impossibility results of black-box reductions (See Section 1.3 for details).
Post-quantum and quantum cryptography. In 1994. Shor [Sho94] showed that we can effi-
ciently compute integer factorization and discrete logarithm, whose hardness are bases of widely
used cryptographic systems, by using a quantum computer. After that, post-quantum cryptogra-
phy, which treats classically computable cryptographic schemes that resist quantum attacks, has
been intensively studied (e.g., [McE78, Ajt96, Reg05, JF11]). Indeed, NIST has recently started
a standardization of post-quantum cryptography [NIS16]. We refer more detailed survey of post-
quantum cryptography to [BL17].

As another direction to use quantum computer in cryptography, there have been study of quan-
tum cryptography, in which even honest algorithms also use quantum computers. They include
quantum key distribution [BB84], quantum encryption [ABF+16, AGM18], quantum (fully) ho-
momorphic encryption [BJ15, Mah18, Bra18], quantum digital signatures [GC01], quantum money
[Wie83, AC12, Zha19], quantum copy-protection [Aar09] etc. We refer more detailed survey of
quantum cryptography to [BS16].
Our motivation: black-box impossibility in a quantum world. In this paper, we consider
black-box impossibility in a quantum setting where primitives and adversaries are quantum, and a
reduction accesses to them quantumly.

Quantum reductions are recognized to be more powerful than classical reductions. For example,
Regev [Reg05] gave a quantum reduction from the learning with errors (LWE) problem to the
decision version of the shortest vector problem (GapSVP) or the shortest independent vectors
problem (SIVP). We note that there are some follow-up works that give classical reduction between
these problems in some parameter settings [Pei09, BLP+13], we still do not know any classical
reduction that works in the same parameter setting as the quantum one by Regev. This example
illustrates that quantum reductions are often more powerful than classical reductions even if all

1This is an explanation for fully-black-box reduction using the terminology of Reingold, Trevisan, and Vadhan
[RTV04]. Since we only consider fully-black-box reductions in this paper, in this introduction, we just say black-box
reduction to mean fully-black-box reduction.

1

problem instances are classical. Therefore it may be possible to overcome black-box impossibility
results shown in the classical setting by using quantum reductions.

We observe that most existing black-box impossibility results crucially rely on the fact that
a reduction only classically calls underlying primitives and adversaries, and cannot be simply
extended to the quantum case. (We will discuss this issue in more detail for the case considered
in this paper in Section 2.) Hence if we also want to rule out quantum black-box reductions, we
have to give impossibility results considering quantum setting with a new technique. Especially,
in this paper, we focus on the impossibility of quantum black-box reductions from CRH to one-
way permutation (OWP), which was originally shown by Simon [Sim98] in the classical setting,
and revisited in some follow-up works [HR04, HHRS07, AS15]. Since both CRH and OWP are
fundamental cryptographic primitives, it is a theoretically important problem to study the relation
of them in the quantum setting.

1.2 Our Results

First, we formally define the notion of quantum black-box reduction based on the work by Rein-
gold, Trevisan and Vadhan [RTV04], which gave a formal framework for the notion of black-box
reductions in the classical setting. Then we prove the following theorem.

Theorem 1.1 (informal). There does not exist a quantum black-box reduction from CRH to OWP.

We note that though we do not know any candidate of OWP that resists quantum attacks, the
above theorem is still meaningful since it also rules out quantum black-box reductions from CRH
to OWF (since OWP is also OWF).

We also extend the result to obtain the following theorem.

Theorem 1.2 (informal). There does not exist a quantum black-box reduction from CRH to trap-
door permutation (TDP).

At high-level, we rely on the two-oracle technique introduced by Hsiao and Reyzin [HR04] to
obtain the above theorems though there are many difficulties to deal with quantum reductions. See
Sections 5 and 6 for more details of our techniques.

Remark 1.1. In this paper, by quantum black-box reduction we denote reductions that have quan-
tum superposed black-box oracle accesses to primitives. We always consider security of primitives
against quantum adversaries, and do not discuss primitives that are only secure against classical
adversaries.

1.3 Related Work

Black-box impossibility. Here, we review existing works on black-box impossibility in the clas-
sical setting. We refer more details of these works to [Fis12]. Reingold, Trevisan and Vadhan
[RTV04] introduced several notions of black-box reductions (later revisited by Baecher, Brzuska
and Fischlin [BBF13]). We only consider fully-black-box reductions using their terminology.

Impagliazzo and Rudich [IR89] ruled out black-box reductions from key-exchange to OWP by
using the relativizing technique. In this technique, we construct an oracle O such that there exists
a primitive P relative to O but does not exist Q relative to O. If such an oracle exists, then there
does not exist black-box reduction from P to Q.2 The relativizing technique can also be found in
[Sim98, Rud92, Hof11] etc.

2In fact, they ruled out relativizing reduction which is a more general type of reductions than fully-black-box
reduction.

2

Hsiao and Reyzin [HR04] proposed an extension of the relativizing technique called the two-
oracle technique. In this technique, we construct an oracle O1 that gives an “ideal” implementation
of a primitive P and another oracle O2 that trivially breaks any implementation of a primitive Q,
and prove that the security of P implemented by O1 still holds even if an adversary is given access
to the oracle O2 in addition to O1. If we prove this, then there does not exist black-box reduction
from P to Q.3 The two-oracle technique can also be found in [DOP05, FLR+10, FS12, AS15] etc.

Boneh and Venkatesan [BV98] introduced another technique to rule out black-box reductions
called meta-reduction. In this technique, we construct a trivial inefficient adversary A against
a primitive P and a simulator S which is computationally indistinguishable from A via oracle
accesses by a polynomial-time algorithm. Then a reduction algorithm from P to Q works well even
if it accesses to the simulator S instead of the adversary A. This means that we can break the
security of Q in polynomial-time. Therefore such a reduction does not exist as long as Q is secure.
Meta-reductions can also be found in [Cor02, Pas11, GW11] etc.

Recently, Rotem and Segev [RS18] showed a limitation of black-box impossibility by giving an
example that overcomes the black-box impossibility result by Rudich [Rud88] by using a non-black-
box reduction. Nonetheless, black-box impossibility results are still meaningful since we know very
limited number of non-black-box techniques. Indeed, they left it as an open problem to overcome
the black-box separation of CRH and OWP shown by Simon [Sim98].
CRH from strong OWF. Recently, Holmgren and Lombardi [HL18] gave a construction of CRH
based on a stronger variant of OWF which they call one-way product function (OWPF). However,
since they do not give a construction of OWPF from OWF (or OWP) even with exponential
security, their result does not overcome the impossibility result by Simon [Sim98].
Impossibility of quantum reduction from OWP to NP hardness. Recently, Chia, Hallgren,
and Song [CHS18] considered the problem of separating OWP from NP hardness in the quantum
setting. They ruled out a special type of quantum reductions called locally random reductions
under a certain complexity theoretic assumption. We note that in our work, we do not put any
restriction on a type of a reduction as long as it is quantum fully-black-box, and we do not assume
any unproven assumption. Also, they focus on the separation of OWP from NP hardness, and do
not give a general definition of black-box reduction in the quantum setting. Thus their work is
incomparable to ours.
Quantum Generic Attacks. Grover [Gro96] developed the famous database-search algorithm
that, given black-box access to a function f : {0, 1}n → {0, 1}, finds an element x such that
f(x) = 1 with O(2n/2) quantum queries (if such x exists). Brassard, Boyer, Høyer, and Tapp
developed a generalized version of the Grover search, which can be used to find a preimage of an
n-bit random permutation with O(2n/2) queries [BBHT98]. In particular, any n-bit (trapdoor)
permutations can be inverted with O(2n/2) queries. They also showed that O(2n/2) is the tight
bound for the database-search problem. Brassrad, Høyer, and Tapp [BHT98] developed a quantum
collision-finding algorithm that finds a collision of a 2-to-1 function with O(2n/3) queries. Actually
their algorithm can be used to find collisions of random functions, and Zhandry [Zha15] showed
that O(2n/3) is the tight bound to find collisions of random functions in the quantum setting.
Collapsing. Ambainis, Rosmanis, and Unruh have shown that the classical-style definition of
computationally binding for commitment schemes is inadequate in the quantum setting [ARU14].
Instead, Unruh introduced the notion of collapse-binding commitment, which is an extension of
classical computationally-binding commitment to the quantum setting [Unr16]. He also defined
the notion of collapsing hash functions, and showed that collapse-binding commitments can be
constructed from collapsing hash functions. The notion of collapsing is stronger than the classical

3We note that this technique only rules out fully-black-box reduction unlike the relativizing technique.

3

notion of collision-resistance [Unr16], i.e., collapsing hash functions are collision resistant.
Reducibility of secure computation functionalities in the quantum setting. Bennett et
al. showed that bit commitment implies oblivious transfer in the quantum setting [BBCS92]. Fehr et
al. showed that classical feasibility results carry over unchanged in the quantum setting [FKS+13].
Dupuis et al. proved a general relation between adaptive and non-adaptive strategies in the quantum
setting, and developed a secure quantum bit commitment scheme that uses an ideal 1-bit cut-and-
choose primitive as a black box [DFLS16].

2 Technical Overview

This section gives a technical overview of this paper. In Section 2.1 we review technical backgrounds
and previous works in the classical setting. In particular, we explain how to show the separation of
CRH from OWP in the classical setting, following the formalization by Asharov and Segev [AS15].
In Section 2.2 we review our results and techniques in the quantum setting.

2.1 Previous Works in the Classical Setting

Primitives. In the classical setting, a primitive P is defined as a pair of a set of algorithms FP
and a relation RP over pairs 〈I,A〉, where I ∈ FP and A are algorithms. Each element of FP is
called an implementation of P, and we say that A P-breaks I if 〈I,A〉 ∈ RP . For example, one-way
permutations, or shortly OWP, is defined as follows: FOWP is the set of algorithms that compute
permutations, and for I ∈ FOWP and an algorithm A, A OWP-breaks I if and only if A inverts the
permutation implemented by I. An implementation I is called a secure implementation if there
exists no efficient algorithm A that P-breaks I.
Black-Box Reductions. In the classical setting, black-box reductions are defined as follows.
Note that, in this paper we treat only so called fully-black-box reductions [RTV04, Def. 2.3]. A
primitive P is (fully-black-box) reduced to Q if and only if there exists a pair of efficient oracle-aided
algorithms (G,S) such that:

1. For each implementation I of Q, GI is an implementation of P.

2. For each implementation I of Q and an algorithm A that P-breaks GI , SA,I Q-breaks I.

Intuitively, the first condition says that there is an implementation of P that accesses to an imple-
mentation of Q in a black-box manner, and the second condition says that the security reduction
can be done in a black-box manner.
The Two Oracle Technique. To show impossibility of black-box reductions from a primitive P
to another primitive Q, we can use the two oracle technique developed by Hsiao and Reyzin [HR04].
Suppose that there exist oracles Φ and ΨΦ that satisfy the following conditions.

1. (Existence of Q, informal.) There exists an efficient oracle-aided algorithm J0 such that J Φ
0

implements Q, and for any efficient oracle-aided algorithm B, BΦ,ΨΦ
does not Q-break J Φ

0 .

2. (Non-existence of P, informal.) For any efficient oracle-aided algorithm I such that IΦ

implements P, there exists an efficient oracle-aided algorithm AI such that AΨΦ

I P-breaks
IΦ.

Then we can show that there exists no black-box reduction from P to Q.

4

2.1.1 Separation of CRH from OWP in the Classical Setting.

In what follows, we review how to show impossibility of black-box reductions from CRH to OWP
with the two oracle technique. First we set Φ as a random permutation f . Technical efforts are
mainly devoted to constructing a suitable oracle ΨΦ = Ψf that satisfies the two conditions (i.e.,
the condition that CRH does not exist relative to Ψf but OWP exists relative to Φ = f and Ψf),
and proving that in fact Ψf satisfies them. In the classical setting, an oracle ColFinderf is used
as Ψf , which was originally defined by Simon [Sim98] and generalized by Haitner et al. [HHRS07]
and Asharov and Segev [AS15] to separate CRH from OWP (and additional primitives). Next we
review the definition of the oracle ColFinderf , following the formalization by Asharov and Segev.
The Oracle ColFinder. First, each input to ColFinderf is an oracle-aided circuit C that computes a
function F fC : {0, 1}m → {0, 1}` relative to the oracle of a permutation f ∈ Perm({0, 1}n). 4 Here,
Perm({0, 1}n) is the set of permutations on the set {0, 1}n, and m and ` are independent of f .

Before an algorithm A runs relative to ColFinderf , two permutations π
(1)
C , π

(2)
C ∈ Perm({0, 1}m) are

chosen uniformly at random for each circuit C. Let Π = {π(1)
C , π

(2)
C }C denote the set of randomly

chosen permutations. On each input C, ColFinderf runs the following procedures:

1. Set w
(1)

Cf
← π

(1)
C (0m).

2. Compute u = F fC(w
(1)

Cf
) by running the circuit C relative to f on the input w

(1)

Cf
.

3. Find the minimum t 5 such that F fC(π
(2)
C (t)) = u by running the circuit C relative to f on the

input π
(2)
C (i) and checking whether F fC(π

(2)
C (i)) = u holds for i = 0, 1, 2 . . . , in a sequential

order (here we identify integers 0 ≤ i ≤ 2m − 1 and elements in {0, 1}m). Set w
(2)

Cf
← π

(2)
C (t).

4. Return (w
(1)

Cf
, w

(2)

Cf
, u).

Since π
(1)
C and π

(2)
C are chosen uniformly at random, w

(1)

Cf
is uniformly distributed on {0, 1}m, and

w
(2)

Cf
is uniformly distributed on (F fC)−1(F fC(w

(1)

Cf
)). In particular, if m > `, the oracle ColFinderf

will find a collision of F fC with a high probability.
The Technically Hardest Part. If f and ColFinderf satisfy the conditions of the two oracle
technique, it follows that there does not exist a black-box reduction from P = CRH to Q = OWP.
The second condition, i.e., non-existence of CRH, follows from definition of ColFinder. For the first
part of the first condition (existence of an implementation of OWP), J0 is constructed in such a
way that, given an input x, J0 queries it to f to compute f(x), and just returns f(x). Since f is

a random permutation, J f0 obviously implements OWP. What is technically the hardest to prove
is the latter part of the first condition, which follows from the proposition below. (In fact Asharov
and Segev also showed a similar proposition [AS15, Thm. 3.20].)

Proposition 2.1 (Informal). Let A be a q(n)-query oracle-aided algorithm. Suppose that there is
a function η(n) such that, for each circuit C that An queries to ColFinder, C makes at most η(n)

queries. If ε(n) := Prf,y,Π

[
x← Af,ColFinderf (y) : f(x) = y

]
is non-negligible, then max{q(n), η(n)}

is exponential in n.

4Later we also consider circuits that compute partially defined functions, but in this overview we only consider
circuits that compute totally defined functions.

5It is not necessary that t is the minimum one. Proofs work even if we instead define t to be the second smallest
one, or the third smallest one, and so on. We define t to be the minimum one just for simplicity.

5

The above proposition guarantees that, if A is efficient, and q and η are polynomials in n, then
ε(n) is negligible, which implies existence of Q = OWP relative to f and ColFinderf . Showing such
a proposition is the technical core for proving separation of CRH from OWP. For simplicity, below
we consider the case that q(n) = η(n).

In brief, what we want to show is that random permutations are hard to invert even if additional
information (i.e., additional oracle ColFinder) is available to adversaries. There exists a technique
to prove such claims in which we construct an information theoretic encoding (compressing) scheme
to compress the truth tables of permutations. In the classical setting, it is used to show that a
random permutation is hard to invert even if the oracle ColFinderf is available [HHRS07, AS15] or
adversaries are non-uniform [GT00, DTT10], for example.

A Proof Technique: Encoding and Compressing Permutations. Proofs that use the
technique proceed as follows. Suppose that a q(n)-query adversary A can invert a permutation
f ∈ Perm({0, 1}n) with a high probability if f is chosen uniformly at random, and A is given
access to additional information (e.g., an additional oracle Of that leaks some information of the
random permutation f), for infinitely many n. Roughly speaking, we try to make an information
theoretic encoding (compressing) scheme (E,D) by using A (E is an encoder and D is a decoder)
that compresses truth tables of permutations in Perm({0, 1}n) in such a way that (E,D) satisfies
a condition (see (1)). Below we explain a general strategy about how to construct (E,D), which
works in both of the classical and quantum settings. Note that we do not care about whether E
and D run efficiently.

For simplicity, we assume that A inverts permutations with at least a constant probability p0 for
all n. Then we can show that there exists a (relatively large) set of permutations X ⊂ Perm({0, 1}n)
that satisfies the following conditions: (i) |X| is lower bounded as |X| ≥ p1|Perm({0, 1}n)| = p12n!
for a constant p1, and (ii) for each f ∈ X, there exists a set I ⊂ {0, 1}n such that, given the
additional information, A can invert y in f with a constant probability (e.g., at least 2/3) for all
y ∈ f(I). We construct an encoder E : X → Y that compresses the truth tables of permutations
f ∈ X to output compressed truth tables described as elements of a set Y , and decoder D : Y → X
that recovers the original truth table from each compressed truth table by using A as follows.

Encoder E.

1. Take a permutation f ∈ X as input.

2. Choose a subset G ⊂ I(⊂ {0, 1}n) and “forget” values f(x) for x ∈ G. Let f̃ be the
resulting partial, incomplete truth table of f which has no information about the pairs
(x, f(x)) for x ∈ G. Set G̃ := f(G).

3. Return (f̃ , G̃). (The set Y is defined to be the set of all elements of this form.)

Decoder D.

1. Take a pair (f̃ , G̃) as an input, where f̃ is a partially defined permutation on {0, 1}n
and G̃ is a subset of {0, 1}n such that G̃ ∪ (Image of f̃) = {0, 1}n holds.

2. Define f(x) := f̃(x) for each x in the domain of f̃ .

3. For each y ∈ G̃, recover x = f−1(y) by running A. Here, D simulates oracle f (and
possibly additional oracle Of) and answers to oracle queries made by A with only the
partial truth table f̃ and the set G̃.

Roughly speaking, |Y | ≈
(

2n

|G|
)
(2n − |G|)! = (2n!)/|G|! holds. In addition, if E and D work well

and D(E(f)) = f holds with a constant probability p, we can show that |Y | ≥ p|X| holds. Since

6

|X| ≥ p12n! holds, we obtain an inequality (2n!)/|G|! ≥ p · p1 · 2n!, which implies that const ≥ |G|
holds for a constant const. Thus, if we can construct (E,D) in such a way that

|G| ≈ 2n/q(n)c for an integer c ≥ 1, (1)

we can obtain a good bound q(n) ≥ 2n/c. Whether we can obtain a good lower bound of q depends
on how well we can construct (E,D), which is highly non-trivial even in the classical setting.
The encoder and decoder of Asharov and Segev. Here we review the idea by Asharov and
Segev [AS15] to construct an encoder and a decoder under the condition that the ColFinderf oracle

is available to A in the classical setting. First, fix a suitable set of permutations Π = {π(1)
C , π

(2)
C }C

such that Af,ColFinderf inverts f with respect to this fixed Π when f is randomly chosen (below
we consider the situation that ColFinderf always uses this fixed Π.). They showed that for each
algorithm A, there exists another algorithm B such that, roughly speaking, (1) the number of
queries and the ability of B to invert f are almost the same as those of A, and (2) B never queries
y-hitting circuit to ColFinderf while it is running on the input y. Here, a circuit C is called y-hitting

if C queries f−1(y) to the oracle f while it is running on the inputs w
(1)

Cf
or w

(2)

Cf
. Actually encoder

and decoder use B instead of A. We assume that B makes q queries to each oracle, for simplicity.
Moreover, w.l.o.g. we can assume that B is a deterministic algorithm.
Encoder E. Asharov and Segev constructed the set G ⊂ I and their encoder E as follows. To be
precise, they construct G̃ ⊂ f(I) directly, and then set G := f−1(G̃).

First, E prepares the list L that is equal to f(I) as a set and sorted in the lexicographical
order. Next, E takes the smallest element y1 ∈ L, inserts y1 to G̃, and removes y1 from L. Then
E prepares an empty list Ly1 , and runs B on the input y1 (relative to f and ColFinderf). Let
x1, . . . , xq be the queries that B makes to f . E adds f(x1), . . . , f(xq) to Ly1 . Let C1, . . . , Cq be the

queries that B makes to ColFinderf , and (w
(1)

Cfj
, w

(2)

Cfj
, uj) be the answer to the query Cj (1 ≤ j ≤ q).

For each j, E runs Cj on the inputs w
(1)

Cfj
and w

(2)

Cfj
. If Cj makes queries xj,1, . . . , xj,ηj , E adds

f(xj,1), . . . , f(xj,ηj) to Ly1 . Then E removes elements in Ly1 from L.
Similarly, E iteratively runs the following procedures for k = 1, 2, . . . , until L becomes empty:

(1) Take the lexicographically smallest element yk ∈ L, add yk to G̃, and remove yk from L. (2)
Construct Lyk similarly to Ly1 , and remove elements in Lyk from L. This is how Asharov and
Segev constructed G̃ and E.
Decoder D. Given an input (f̃ , G̃), D recovers the values f−1(y1), f−1(y2), . . . in a sequential
order by running B on the input yk ∈ G̃ for each k, simulating the oracles f and ColFinderf as
follows.

When B makes a query x to f while it is running on the input yk, D looks for a tuple (x, y) in
the partial truth table f̃ and the pairs (f−1(y1), y1), . . . , (f−1(yk−1), yk−1). If one pair is found, D
returns the value y to B, and D lets B do the next step. If such a pair is not found, then it means
that y := f(x) ∈ G̃ and D has not recovered the value x = f−1(y). However, in this case we can
deduce that f(x) = yk by construction of G̃. Thus D guesses f−1(yk) = x, and move to the next
step to recover f−1(yk+1).

When B makes a query C to ColFinderf while it is running on the input yk, first D computes

w
(1)

Cf
= π

(1)
C (0m), and then computes u = Cf (w

(1)

Cf
). Since B never queries yk-hitting circuit, C never

queries x such that D does not know the value f(x) while C is running on the input w
(1)

Cf
, and

thus D can compute u correctly. Next, D tries to compute w
(2)

Cf
= π(2)(t), where t is the minimum

number that satisfies Cf (π(2)(t)) = u. To find the minimum t, D checks if Cf (π(2)(i)) = u holds
by running C simulating f , for i = 1, 2, . . . in a sequential order. If C queries x such that D does

7

not know the value f(x), D skips the number i and move to the next number (i + 1). Since C

is not a yk-hitting circuit, on the input w
(2)

Cf
= π

(2)
C (t) it does not query x such that D does not

know the value f(x). Thus D can find t and compute w
(2)

Cf
, and always return the correct answer

(w
(1)

Cf
, w

(2)

Cf
, u) to B.

The above encoder E and decoder D are deterministic, and satisfy D(E(f)) = f for all permu-
tation f ∈ X. Since there exists an integer c ≥ 1 such that |Lyk | is upper bounded by qc for all yk,
|G| = |G̃| ≥ |f(I)|/qc ≈ 2n/qc holds. Thus we can obtain a good lower bound q ≥ 2n/c.

2.2 Our Impossibility Results in the Quantum Setting

Next we overview our techniques in the quantum setting. We define quantum counterparts of
primitive, black-box reductions, and the two oracle technique (see Section 4 for details and formal
descriptions). The goal of this paper is to show impossibility of black-box reductions from CRH
to OWP (resp., TDP) in the quantum setting. The technically most difficult part in the quantum
setting is again showing (the quantum version of) Proposition 2.1. We use the technique of encoding
(compressing) schemes also in the quantum setting. See Section 5 for more details. This section
reviews only the proof idea for separation of CRH from OWP. See Sections 6 and A for an extension
to trapdoor permutations.

The idea of Asharov and Segev is ingenious, but we cannot make our encoder and decoder based
on their idea since our decoder has to run quantum algorithms and simulate quantum oracles, while
their decoder makes full use of properties of classical algorithms and classical oracles. In the proofs
by Asharov and Segev, the property that “queries made by classical algorithms will be fixed once
their random coins and oracles are fixed” is heavily used, but such a property does not hold for
quantum algorithms. Moreover, they used the property that, while D is searching for the minimum
number t, D can detect the event that B (or C) makes a query x such that D does not know the
value f(x), which is crucial to construct the above encoder and decoder.

Instead, we construct our encoder and decoder based on the idea by Nayebi et al. [NABT15],
who showed that random permutations are hard to invert for quantum query algorithms even if
they are given classical advice depending on the permutation before making queries.
Nayebi et al.’s Encoder and Decoder. Below we briefly review the core idea by Nayebi
et al., for the simplest case that no additional classical advice is available. (That is, below we
explain just an idea of how to prove that a random permutation is hard to invert for quantum
query adversaries.) Unlike the compressing scheme by Asharov and Segev, which is a deterministic
compressing scheme, the one by Nayebi et al. is a randomized compressing scheme. The idea of
using randomized compressing scheme originally comes from the work by De et al [DTT10].

Here we intuitively explain the notion of quantum query magnitude and the swapping lemma,
which are our basic technical tools to prove “quantum” properties. Let A be an oracle-aided
quantum algorithm, and f be a quantum oracle. The query magnitude of A to f at z on input
x is, intuitively, defined as the “total probability (in a quantum meaning)” that A queries z to
the oracle f while running, when we run A on input x relative to the oracle f . Let g be another
oracle and ∆(f, g) denote the set of z such that f(z) 6= g(z). The swapping lemma [Vaz98, Lem.
3.1] is the lemma that guarantees our intuition that, if query magnitude of A to f at z ∈ ∆(f, g)
on an input x is sufficiently small, then A cannot notice whether f is replaced with g, while A is
running on the input x, which implies that the output distributions of Af and Ag (on input x) will
be almost the same.

In the second step of their encoder E, they first randomly take a subset R ⊂ {0, 1}n such that
|R| ≈ 2n/qc1 for an integer c1 ≥ 1 (this R will be the randomness of E), and then take G as the set

8

of x ∈ I ⊂ {0, 1}n that satisfies (a) x ∈ R, and (b) the query magnitude of A to f at z ∈ R \ {x} is
small. Recall that I is the set such that A inverts y in f with a constant probability for all y ∈ I.
In the third step in D, to recover f−1(y) for each y ∈ G̃, D simulates f as follows: D defines a
function hy by hy(x) := f(x) if D knows the value f(x), and hy(x) := y if D does not know the
value f(x). If A makes a query to f , D answers by using hy. The value hy(x) may differ from the
original value f(x) for x ∈ G. However, due to the condition (b), A cannot distinguish f and hy
by the swapping lemma, and D can easily simulate f without knowing f(x) for x ∈ G. Therefore
Ahy(y) outputs x = f−1(y) with a high probability, which implies that D can recover x. By doing
some analyses on probabilities, we can show that |G| ≈ |R| ≈ 2n/qc1 , which implies that q is lower
bounded as q ≥ 2n/c1 .

It would be good if we could prove our proposition just by replacing the classical advice in
Nayebi et al.’s proof with our oracle ColFinderf , but we cannot: Adversaries are given only classical
advice before making queries in Nayebi et al.’s setting. On the other hand, we consider the situation
that an adversary A has oracle access to the additional oracle ColFinderf , and A makes quantum
superposition queries to ColFinderf adaptively. What makes things complicated is that inputs
to ColFinderf are also quantum circuits which may make quantum queries to f . Hence more
complicated techniques are required to prove the quantum version of Proposition 2.1.
Our Encoder and Decoder. Here we explain how to construct our encoder E. Again, we fix

a suitable set of permutations Π = {π(1)
C , π

(2)
C }C such that Af,ColFinderf inverts f with respect to

this fixed Π when f is randomly chosen. Based on the strategy of Nayebi et al. introduced above,
we randomly choose additional subset R′ ⊂ {0, 1}n such that |R′| ≈ 2n/qc2 for an integer c2 ≥ 1,
in addition to R. We define a set badC(R′, x) of which elements are “bad” inputs (oracle-aided
quantum circuits) to ColFinderf , and construct G ⊂ I as the set of elements x ∈ I ⊂ {0, 1}n that
satisfies (Cond. 1) x ∈ R ∩ R′, (Cond. 2) the query magnitude of A to f at z ∈ R \ {x} on input
f(x) is small, and (Cond. 3) the query magnitude of A to ColFinderf at C ∈ badC(R′, x) on input
f(x) is small. We postpone the explanation of how to define badC(R′, x), since it is closely related
to the problem of how to construct our decoder D.

Next we explain how to construct our decoder D. To simulate f in the third phase of D, we use
the same hy as Nayebi et al.’s. The most difficult point is how to construct a simulator that simulates
ColFinderf , which we denote by SimCFhy . Once we construct a good SimCFhy , we can obtain a good
lower bound q ≥ 2n/(c1+c2) since, roughly speaking, we can show that |G| ≈ |R ∩ R′| ≈ 2n/qc1+c2

holds with a high probability.

Here, we briefly review how the oracle ColFinderf works. Note that now permutations π
(1)
C , π

(2)
C ∈

Perm({0, 1}m) are fixed for each oracle-aided circuit C. Given an input C, ColFinderf computes

π
(1)
C (0m), which is denoted by w

(1)

Cf
. Next, ColFinderf searches the minimum t such that F fC(w

(1)

Cf
) =

F fC(π
(2)
C (t)) by checking if F fC(w

(1)

Cf
) = F fC(π

(2)
C (i)) for i = 0, 1, 2, . . . in a sequential order. Finally

ColFinderf outputs (w
(1)

Cf
, w

(2)

Cf
:= π

(2)
C (t), F fC(w

(1)

Cf
)).

The reason that D cannot correctly compute ColFinderf is that D cannot evaluate the function
F fC for each input C. Thus, in the third step of D, we construct a subroutine CalCy that approxi-

mately computes F fC(w) for each input C (oracle-query circuit) to ColFinderf and each w, with only
a partial truth table of f . Roughly speaking, our oracle SimCFhy will be defined to be the same as
ColFinderf , except that each evaluation of F fC(w) will be replaced with that of CalCy(C,w).

Now the problems that we have to solve are summarized as follows.

1. How should we construct the subroutine CalCy?

2. How should we define the set of “bad” circuits badC(R′, x)?

9

Below we explain our idea of how to solve these problems.

The First Problem: Construction of CalCy. First, we want SimCFhy to compute the correct
value ColFinderf (C) on each good input circuit C. This is because, if SimCFhy has such a property,
then ∆(ColFinderf , SimCFhy) ⊂ badC(R′, x) holds, and we can prove that A cannot distinguish the
simulator SimCFhy from ColFinderf by using the swapping lemma and the condition (Cond. 3) that
the query magnitude of A to ColFinder is small at bad circuits. To make SimCFhy have such a
property, we informally require CalCy to satisfy the following conditions:

1. CalCy(C,w
(1)

Cf
) = F fC(w

(1)

Cf
) and CalCy(C,w

(2)

Cf
) = F fC(w

(2)

Cf
) for each good circuit C.

2. If CalCy cannot compute the correct value F fC(w) on an input (C,w), CalCy outputs ⊥. In
other words, CalCy never outputs incorrect guesses.

The first condition is obviously necessary to enable SimCFhy to output correct values on good input

circuits. Here we explain why the second condition is necessary. If it is not satisfied, F fC(w
(1)

Cf
) =

CalCy(C, π
(2)
C (t′)) may hold even though F fC(w

(1)

Cf
) 6= F fC(π

(2)
C (t′)), for some t′ which is less than the

correct minimum value t that satisfies F fC(w
(1)

Cf
) = F fC(π

(2)
C (t)). This will lead to misjudgement by

SimCFhy that “the minimum value is t′ but not t”. Thus the second condition is also necessary. In
the classical proof by Asharov and Segev, they avoid such misjudgement by making use of the fact
that D can detect the event that C makes a query x such that D does not know the value f(x): If

C makes such a query and their D detects the event while checking if F fC(w
(1)

Cf
) = F fC(π

(2)
C (i)) holds,

then D just skips the unsuitable number i and move to the (i+1)-th procedure that checks whether

F fC(w
(1)

Cf
) = F fC(π

(2)
C (i+ 1)) holds. However, in the quantum setting, we cannot use such a property

since measuring what C queries disturbs the quantum state. Moreover, there is a possibility that t
becomes exponential in n. Hence it is highly non-trivial how to avoid such misjudgement, and this
is the technically most difficult part in this paper.

To satisfy the second condition, our function CalCy takes a very conservative strategy: When
SimCFhy feed CalCy with (C,w) as an input, CalCy first computes the value F h

′
C (w) by calculating the

output distribution of Ch
′

F on input w, for all candidate permutations h′ of f such that h′(x) = hy(x)
holds for all x ∈ {0, 1}n \ G. If there exists a value u such that F h

′
(w) = u for all candidate h′,

CalCy returns CalCy(C,w) := u, and otherwise returns CalCy(C,w) :=⊥. By doing so, since the
correct f itself is one of the candidates of f , CalCy can avoid misjudgement and output a value

u 6=⊥ if and only if F fC(w) = u holds (it is formally shown as a part of Lemma 5.3).

The Second Problem: Definition of “Bad” Circuits. Here we explain how to define “Bad”

circuits. To enable CalCy to satisfy the first condition that CalCy(C,w
(1)

Cf
) = F fC(w

(1)

Cf
) and CalCy(C,

w
(2)

Cf
) = F fC(w

(2)

Cf
) for each good circuit C, while keeping the conservative strategy described above,

we define that C is bad if and only if the query magnitude of C to f at z ∈ R′ \ {f−1(y)} on inputs

w
(1)

Cf
or w

(2)

Cf
is large, and define that C is good if it is not bad.

If we define bad and good circuits as above, for all candidate permutation h′ such that h′(x) =
hy(x) for x ∈ {0, 1}n\G ⊃ {0, 1}n\R′, each good circuit C cannot notice whether or not f is replaced

with h′ during computations on inputs w
(1)

Cf
and w

(2)

Cf
by the swapping lemma. Hence the outputs of

Ch
′

on the inputs w
(1)

Cf
and w

(2)

Cf
always match those of Cf for all candidate permutation h′, which

implies that CalCy satisfies the first condition that CalCy(C,w
(1)

Cf
) = F fC(w

(1)

Cf
) and CalCy(C,w

(2)

Cf
) =

F fC(w
(2)

Cf
) hold for each good circuit C (it is formally shown as a part of Lemma 5.3).

10

3 Preliminaries

A classical algorithm is a classical Turing machine, and an efficient classical algorithm is a prob-
abilistic efficient Turing machine. We denote the set of positive integers by N. We write A
instead of A ⊗ I for short, for any linear operator A. For sets X and Y , let Func(X,Y) de-
note the set of functions from X to Y , and Perm(X) denote the set of permutations on X. Let
∆(f, g) denote the set {x ∈ X|f(x) 6= g(x)} for any functions f, g ∈ Func(X,Y). Let {0, 1}∗
denote the set ∪n≥1{0, 1}∗, and by abuse of notation we let Perm({0, 1}∗) denote the set of
permutations {P : {0, 1}∗ → {0, 1}∗|P ({0, 1}n) = {0, 1}n for each n ≥ 1}. When we say that
f : {0, 1}∗ → {0, 1}∗ is a permutation, we assume that f({0, 1}n) = {0, 1}n holds for each n,
and thus f is in Perm({0, 1}∗) (i.e., in this paper we do not treat permutations such that there
exist n 6= n′ and x ∈ {0, 1}n such that f(x) ∈ {0, 1}n′). We say a that a function f : N → R is
negligible if, for any positive integer c, f(n) ≤ n−c holds for all sufficiently large n, and we write
f(n) ≤ negl(n). Moreover, we say that f is non-negligible if, there exists a positive integer c such
that f(n) ≥ n−c for infinitely many n. Let S be a subset of {0, 1}m and f : S → {0, 1}` be a
function. We identify f with the function f ′ : {0, 1}m → {0, 1}` ∪ {⊥} such that f(x) = f ′(x) for
x ∈ S and f ′(x) =⊥ for x 6∈ S. If S = {0, 1}m, we call f a totally defined function, and otherwise
we call f a partially defined function.

3.1 Quantum Algorithms

We refer basics of quantum computation to [NC10, KSVV02]. In this paper, we use the compu-
tational model of quantum circuits. Let Q be the standard basis of quantum circuits [KSVV02].
We assume that quantum circuits (without oracle) are constructed over the standard basis Q, and
define the size of a quantum circuit as the total number of elements in Q used to construct it.
Let |C| denote the size of each quantum circuit C. An oracle-aided quantum circuit is a quantum
circuit with oracle gates. When an oracle-aided quantum circuit is implemented relative to an
oracle O represented by a unitary operator UO, the oracle gates are replaced by UO. When there
are multiple oracles, each oracle gate should specify an index of an oracle. In this paper, we assume
that all oracles are stateless, that is, the behavior of the oracle is independent from a previous
history and the same for all queries. For a stateless quantum oracle O, we often identify the oracle
and a unitary operator that represents the oracle, and use the same notation O for both of them.
Note that each classical algorithm can be regarded as a quantum algorithm. We fix an encoding
E of (oracle-aided) quantum circuits to bit strings, and we identify E(C) with C. For a quantum
circuit C, we will denote the event that we measure an output z when we run C on an input x and
measure the final state by C(x) = z.

First, we define quantum algorithms. We note that we only consider classical-input-output
quantum algorithms.

Definition 3.1 (Quantum algorithms). A quantum algorithm A is a family of quantum circuits
{An}n∈N that acts on a quantum system Hn = Hn,in ⊗ Hn,out ⊗ Hn,work for each n. When we
feed A with an input x ∈ {0, 1}n, A runs the circuit An on the initial state |x〉 |0〉 |0〉, measures
the final state with the computational basis, and outputs the measurement result of the register
which corresponds to Hn,out. We say that A is an efficient quantum algorithm if it is a family
of polynomial-size quantum circuits, i.e., there is a polynomial λ(n) such that |An| ≤ λ(n) for all
sufficiently large n.

Remark 3.1. Though we use a Turing machine for a computational model of classical computation,
we use a quantum circuit for a computational model of quantum computation. This is just because

11

quantum circuits are well-studied than quantum Turing machines [Yao88], and is easier to treat.
We remark that we do not intend to rule out reductions with full non-uniform techniques as was
done in [CLMP13].

Next, we define oracle-aided quantum algorithms, which are quantum algorithms that can access
to oracles.

Definition 3.2 (Oracle-aided quantum algorithms). An oracle-aided quantum algorithm A is a
family of oracle aided quantum circuits {An}n∈N that acts on a quantum system Hn = Hn,in ⊗
Hn,out ⊗Hn,work for each n. Let O1 = {O1,i}i∈N, ..., Ot = {Ot,i}i∈N be families of quantum oracle
gates. When we feed A with an input x ∈ {0, 1}n relative to oracles (O1, ..., Ot), A runs the circuit

AO1,n,...,Ot,n
n on the initial state |x〉 |0〉 |0〉, measures the final state with the computational basis,

and outputs the measurement result of the register which corresponds to Hn,out. We note that

an oracle-aided quantum circuit AO1,n,...,Ot,n
n that makes q queries can be described by a unitary

operator

AO1,n,...,Ot,n
n =

q(n)∏
j=1

(Uj,t,nOt,n . . . Uj,1,nO1,n)

U0,n, (2)

where (U0,n, {Uj,1,n,. . . , Uj,t,n}j∈[q]) are some unitary operators.

Remark 3.2. We also often consider an oracle access to a quantum algorithm. This is interpreted
as an oracle access to a unitary operator that represents A.

Next, we define randomized quantum oracles, which are quantum oracles that flip classical
random coins before algorithms start.

Definition 3.3 (Randomized quantum oracles). Let Rn be a finite set for each n, and R :=∏∞
n=1Rn (note that each element r ∈ R is an infinite sequence (r1, r2, · · ·)). A randomized quantum

oracle O := {Or}r∈R is a family of quantum oracles such that Or,n = Or′,n if rn = r′n. When we
feed A with an input x ∈ {0, 1}n relative to O, first rn is randomly chosen from the finite set Rn
(according to some distribution), and then A runs the circuit AOr,nn on the initial state |x〉 |0〉 |0〉.
We denote Or,n by Orn and {Orn}rn∈Rn by On, respectively, and identify O with {On}n∈N.

Similarly, when A is given oracle access to multiple randomized oracles (O1, . . . , Ot), we consider
that an oracle gate is randomly chosen and fixed for each of the t oracles before A starts. The
distributions of O1, . . . , Ot can be highly dependent.

Remark 3.3. Later we consider the situation that a quantum algorithm A has access to a random-
ized quantum oracle O, and another quantum algorithm B has access to AO. This is interpreted as
follows: Before B starts, rn ∈ Rn is chosen uniformly at random, and B is given an oracle access
to the unitary operator that represents AOrnn . In particular we do not change rn while B is running.

Next, we define what “a quantum algorithm computes a function” means.

Definition 3.4 (Functions computed by quantum algorithms). A quantum algorithm A computes
a function f : {0, 1}∗ → {0, 1}∗ if we have Pr[A(x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n. An
oracle-aided quantum algorithm A computes a function f : {0, 1}∗ → {0, 1}∗ relative to an oracle
Γ if we have Pr[AΓ(x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n.

12

3.2 Technical Lemmas

This section introduces some technical lemmas for later use. First, we use the following lemma as
a fact.

Lemma 3.1 ([ARU14], Lemma 36). trD(|ψ1〉 〈ψ1| , |ψ2〉 〈ψ2|) ≤ ‖ |ψ1〉 − |ψ2〉 ‖ holds for any pure
states |ψ1〉 and |ψ2〉, where trD denotes the trace distance function.

By applying the above claim, we can show the following lemma.

Lemma 3.2. Let Γ = (f1, . . . , ft),Γ
′ = (f ′1, . . . , f

′
t) be sequences of oracles, and assume that A is

given oracle access to either Γ or Γ′. Then,∣∣∣Pr
[
AΓ(x) = z

]
− Pr

[
AΓ′(x) = z

]∣∣∣ ≤ ∥∥∥AΓ
n |x, 0, 0〉 − AΓ′

n |x, 0, 0〉
∥∥∥ (3)

holds for any input x ∈ {0, 1}n and output z.

Proof of Lemma 3.2. Let |φ〉 = AΓ
n |x, 0, 0〉 and |φ′〉 = AΓ′

n |x, 0, 0〉. In addition, let D,D′ be (clas-
sical) distributions of outputs of AΓ and AΓ′ on input x ∈ {0, 1}n, respectively. Then the left hand
side of eq. (3) is upper bounded by TD(D,D′), where TD denotes the total variational distance
function, and TD(D,D′) ≤ trD(|φ〉 〈φ| , |φ′〉 〈φ′|) holds by the basic property of trace distance (see
Theorem 9.1 in [NC10], for example). From Lemma 3.1, trD(|φ〉 〈φ| , |φ′〉 〈φ′|) ≤ ‖ |φ〉−|φ′〉 ‖ follows,
and the claim holds.

3.2.1 Swapping Lemma for Multiple Oracles.

Next we introduce a generalized version of the swapping lemma [Vaz98, Lem. 3.1] for multiple
oracles. The original swapping lemma formalizes our intuition that the measurement outcome of
oracle-aided algorithm will not be changed so much even if the output values of the oracles are
changed on a small fraction of inputs. Since this paper considers the situation that multiple oracles
are available to adversaries, we extend the original lemma to a generalized one so that we can treat
multiple oracles. To simplify notation, below often omit the parameter n when it is clear from
context (e.g., we write just q instead of q(n)). Here we introduce an important notion called query
magnitude.

Query Magnitude. Let Γ = (f1, . . . , fg) be a sequence of quantum oracles, where each fi is a
fixed oracle and not randomized. Let A be a q-query oracle-aided quantum algorithm relative to
the oracle Γ.

Fix an input x, and let |φfij 〉 be the quantum state of AΓ on input x ∈ {0, 1}n just before the
j-th query to fi. Without loss of generality, we consider that the unitary operator Ofi acts on the
first (mi(n) + `i(n))-qubits of the quantum system. (Here we assume that fi is a function from

{0, 1}mi(n) to {0, 1}`i(n).) Then |φfij 〉 =
∑

z∈{0,1}mi(n) αz |z〉 ⊗ |ψz〉 holds for some complex numbers

αz and quantum states |ψz〉. If we measure the first mi(n) qubits of the state |φfij 〉 with the

computational basis, we obtain z with probability |αz|2. Intuitively, this probability corresponds
the “probability” that z is sent to fi as the j-th quantum query by A.

Definition 3.5 (Query magnitude to fi).

1. The query magnitude of the j-th quantum query of A to fi at z on input x ∈ {0, 1}n is
defined by

µA,fiz,j (x) := |αz|2. (4)

13

2. The (total) query magnitude of A to fi at z on input x ∈ {0, 1}n is defined by

µA,fiz (x) :=
∑
j

µA,fiz,j (x). (5)

The following lemma can be proven in the same way as the original swapping lemma [Vaz98,
Lem. 3.1], using the hybrid argument introduced by Bennet et al. [BBBV97], but we give a proof
for completeness.

Lemma 3.3 (Swapping lemma with multiple oracles). Let Γ = (f1, . . . , ft),Γ
′ = (f ′1, . . . , f

′
t) be

sequences of oracles, where each fi and f ′i are fixed oracles and not randomized. Assume that A is
given oracle access to either Γ or Γ′. Then∥∥∥AΓ

n |x, 0, 0〉 − AΓ′
n |x, 0, 0〉

∥∥∥ ≤ 2
∑

1≤i≤t

√
q(n)

∑
z∈∆(fi,f ′i)

µA,fiz (x) (6)

holds for all x ∈ {0, 1}n.

Proof. In this proof we write q instead of q(n), for simplicity. For 1 ≤ k ≤ q and 1 ≤ ` ≤ t, let Γ(k,`)

be an intermediate oracle between Γ and Γ′: When we run an oracle-aided quantum algorithm A
relative to Γ(k,`), first A queries to Γ until the k-th query to f`−1 (or the (k − 1)-th query to ft if
` = 1), and then A queries to Γ′ from the k-th query to f` until the last query to ft. Then, the

corresponding unitary operator AΓ(k,`)
n is described as

AΓ(k,`)
n =

 q∏
j=k+1

(
Uj,t,nOf ′t ,n . . . Uj,1,nOf ′1,n

)
· Uk,t,nOf ′t ,n · · ·Of ′`,nUk,`−1,nOf`−1,n · · ·Uk,1,nOf1,n

·

k−1∏
j=1

(Uj,t,nOft,n . . . Uj,1,nOf1,n)

U0,n. (7)

Let |φ(k,`)
(i,j) 〉 be the quantum state of A just before the i-th query to fj or f ′j , when we run A relative

to Γ(k,`) on input x ∈ {0, 1}n. By |φ(k,`)
(q+1,1)〉 we denote the final quantum state of A when we run

A relative to Γ(k,`) on input x ∈ {0, 1}n. Let Γ(q+1,1) denote Γ. Below we regard that ft+1 = f1,
f ′t+1 = f ′1, and (k, t+ 1) = (k + 1, 1), for simplicity. Then, since unitary operators preserve norms
of vectors, we have that∥∥∥AΓ

n |x, 0, 0〉 − AΓ′
n |x, 0, 0〉

∥∥∥ =
∥∥∥|φ(q+1,1)

(q+1,1)〉 − |φ
(1,1)
(q+1,1)〉

∥∥∥
≤
∑

1≤`≤t

∑
1≤k≤q

∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ (8)

and ∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ =
∥∥∥Of` |φ(k,`)

(k,`)〉 −Of ′` |φ
(k,`)
(k,`)〉

∥∥∥ (9)

14

hold. Let Π∆(f`,f
′
`)

be the projector onto the space spanned by the vectors that correspond to
elements of ∆(f`, f

′
`). Then we have∥∥∥Of` |φ(k,`)
(k,`)〉 −Of ′` |φ

(k,`)
(k,`)〉

∥∥∥ =
∥∥∥(Of` −Of ′`)Π∆(f`,f

′
`)
|φ(k,`)

(k,`)〉
∥∥∥

≤ 2 ·
∥∥∥Π∆(f`,f

′
`)
|φ(k,`)

(k,`)〉
∥∥∥ = 2

√ ∑
z∈∆(f`,f

′
`)

µA,f`z,k (x). (10)

From inequalities (8), (9), and (10), it follows that∥∥∥AΓ
n |x, 0, 0〉 − AΓ′

n |x, 0, 0〉
∥∥∥ ≤ 2

∑
1≤`≤t

∑
1≤k≤q

√ ∑
z∈∆(f`,f

′
`)

µA,f`z,k (x)

≤ 2
∑

1≤`≤t

√
q
∑

1≤k≤q

∑
z∈∆(f`,f

′
`)

µA,f`z,k (x)

= 2
∑

1≤`≤t

√
q

∑
z∈∆(f`,f

′
`)

µA,f`z (x), (11)

where we used the concavity of the square root function for the second inequality.

4 Quantum Primitives and Black-Box Quantum Reductions

Here, we define quantum primitives, which is a quantum counterpart of a primitive [RTV04, Def.
2.1], in addition to the notion of fully-black-box reduction [RTV04, Def. 2.3] in quantum regime.
Note that we consider reductions that have quantum superposed black-box oracle accesses to prim-
itives. We always consider security of primitives against quantum adversaries, and do not discuss
primitives that are only secure against classical adversaries.

Definition 4.1 (Quantum primitives). A quantum primitive P is a pair 〈FP , RP〉, where FP is a
set of quantum algorithms I, and RP is a relation over pairs 〈I,A〉 of quantum algorithms I ∈ FP
and A. A quantum algorithm I implements P or is an implementation of P if I ∈ FP . If I ∈ FP
is efficient, then I is an efficient implementation of P. A quantum algorithm A P-breaks I ∈ FP
if 〈I,A〉 ∈ RP . A secure implementation of P is an implementation I of P such that no efficient
quantum algorithm P-breaks I. The primitive P quantumly exists if there exists an efficient and
secure implementation of P.

Definition 4.2 (Quantum primitives relative to oracle). Let P = 〈FP , RP〉 be a quantum primi-
tive, and Γ = (O1, . . . , Ot) be a family of (possibly randomized) quantum oracles. An oracle-aided
quantum algorithm I implements P relative to Γ or is an implementation of P relative to Γ if
IΓ ∈ FP . If IΓ ∈ FP is efficient, then I is an efficient implementation of P relative to Γ. A
quantum algorithm A P-breaks I ∈ FP relative to Γ if 〈IΓ,AΓ〉 ∈ RP . A secure implementation of
P is an implementation I of P relative to Γ such that no efficient quantum algorithm P-breaks I
relative to Γ. The primitive P quantumly exists relative to Γ if there exists an efficient and secure
implementation of P relative to Γ.

Remark 4.1. In the above definition, IΓ and AΓ are considered to be quantum algorithms (rather
than oracle-aided quantum algorithms) once an oracle Γ is fixed so that IΓ ∈ FP and 〈IΓ,AΓ〉 ∈ RP
are well-defined. This is possible since we assume that an oracle Γ is stateless. (If Γ is randomized,
we regard the randomness of Γ as a part of the randomness of the quantum algorithms IΓ and AΓ.
See also Remark 3.3.)

15

Next we define quantum fully-black-box reductions, which is a quantum counterpart of fully-
black-box reductions [RTV04, Def. 2.3].

Definition 4.3 (Quantum fully-black-box reductions). A pair (G,S) of efficient oracle-aided quan-
tum algorithms is a quantum fully-black-box reduction from a quantum primitive P = 〈FP , RP〉 to
a quantum primitive Q = 〈FQ, RQ〉 if the following two conditions are satisfied:

1. For every implementation I ∈ FQ, we have GI ∈ FP .

2. For every implementation I ∈ FQ and every quantum algorithm A, if A P-breaks GI , then
SA,I Q-breaks I.

Hsiao and Reyzin showed that if there exists an oracle (family) that separates primitives P and
Q, then there is no fully-black-box reduction from P to Q [HR04, Prop. 1]. The following lemma
guarantees that a similar claim holds in the quantum setting. Although we need no arguments
which is specific to the quantum setting, we give a proof for completeness.

Lemma 4.1 (Two oracle technique). There exists no quantum fully-black-box reduction from P to
Q if there exist families of quantum oracles Γ1 and Γ2 = {ΨΦ

λ }Φ∈Γ1,λ∈Λ, where Λ is a non-empty
set, and the following two conditions hold.

1. Existence of Q. There exists an efficient oracle-aided quantum algorithm J0 that satisfies the
following conditions:

1. J Φ
0 ∈ FQ holds for any Φ ∈ Γ1.

2. For any efficient oracle-aided algorithm B and any λ ∈ Λ, there exists Φ ∈ Γ1 such that
BΦ,ΨΦ

λ does not Q-break J Φ
0 .

2. Non-Existence of P. For any efficient oracle-aided quantum algorithm I such that IΦ ∈ FP
holds for any Φ ∈ Γ1, there exists an efficient oracle-aided quantum algorithm AI and λ ∈ Λ

such that AΨΦ
λ
I P-breaks IΦ for any Φ ∈ Γ1.

Proof. Suppose that there exists a quantum fully-black-box reduction (G,S) from P = 〈FP , RP〉
to Q = 〈FQ, RQ〉. Then, by the first property of quantum fully-black-box reduction and the first

condition of Lemma 4.1, GJ
Φ
0 ∈ FP holds for any Φ ∈ Γ1. Thus, if we set I0 := GJ0 , from

the second condition of Lemma 4.1, it follows that there exists an efficient oracle-aided quantum

algorithm AI0 and λ ∈ Λ such that AΨΦ
λ
I0 P-breaks I0

Φ for any Φ ∈ Γ1. Therefore, from the

second property of quantum fully-black-box reduction, it follows that S
A

ΨΦ
λ
I0

,JΦ
0 Q-breaks J Φ

0 for
any Φ ∈ Γ1. Since G, AI0 , and J0 are all efficient, there exists an efficient oracle-aided quantum

algorithm B such that BΦ,ΨΦ
λ = S

A
ΨΦ
λ
I0

,JΦ
0 . Now we have that there exists an efficient oracle-aided

algorithm B and λ ∈ Λ such that BΦ,ΨΦ
λ Q-breaks J Φ

0 for any Φ ∈ Γ1. However, it contradicts the
second part of the first condition of Lemma 4.1, which completes the proof.

Remark 4.2. Remember that each fixed (resp., randomized) quantum oracle O is an infinite family
of unitary gates {On}n∈N (resp., O = {On}n∈N and On = {Orn}rn∈Rn, where Rn is the set of
random coins), where On is used when an oracle-aided algorithm runs relative to O on an input in
{0, 1}n. For example, (the quantum oracle of) a permutation f ∈ Perm({0, 1}∗) is represented as
a family {fn}n∈N, where fn = f |{0,1}n. We implicitly assume that ΨΦ

λ,n depends only on Φn and is
independent of Φm for m 6= n.

16

Later, to prove impossibility of quantum fully-black-box reductions from collision resistant hash
functions to one-way permutations, we will apply this lemma with the condition that Λ is the set
of all polynomials in n, Γ1 = Perm({0, 1}∗), and Γ2 = {ColFinderfλ}f∈Γ1,λ∈Λ. Here, ColFinderfλ is
a randomized oracle that takes, as inputs, oracle-aided quantum circuits that computes functions,
and returns collision of the functions. The number λ(n) denotes the maximum size of circuits that

ColFinderfλ,n takes as inputs for each n ∈ N.

4.1 Concrete Primitives

This section defines concrete quantum primitives. Namely, we define one-way permutations, trap-
door permutations, and collision-resistant hash functions.

We define two quantum counterparts for each classical primitives. One is the classical-computable
primitive that can be implemented on classical computers, and the other is the quantum-computable
primitive that can be implemented on quantum computers but may not be implemented on classical
computers. Here we note that, in this paper, all adversaries are quantum algorithms for both of
classical-computable and quantum-computable primitives.

Definition 4.4 (One-way permutation). Quantum-computable (resp., classical-computable) quantum-
secure one-way permutation QC-qOWP(resp., CC-qOWP) is a quantum primitive defined as follows:
Implementation of QC-qOWP (resp., CC-qOWP) is an efficient quantum (resp., classical) algorithm
Eval that computes a function f : {0, 1}∗ → {0, 1}∗ such that fn := f |{0,1}n is a permutation over
{0, 1}n. For an implementation I of QC-qOWP (resp., CC-qOWP) that computes f and a quantum
algorithm A, we say that A QC-qOWP-breaks I (resp., CC-qOWP-breaks I) if and only if

Pr
[
x

$←− {0, 1}n; y ← fn(x);x′ ← A(y) : x′ = x
]

(12)

is non-negligible.

Remark 4.3. Since there is no function generation algorithm Gen in the above definition, this
captures “public-coin” one-way permutations. This makes the definition of one-way permutations
stronger, and thus makes our negative result stronger.

Definition 4.5 (Trapdoor permutation). Quantum-computable (resp., classical-computable) quantum-
secure trapdoor permutation QC-qTDP(resp., CC-qTDP) is a quantum primitive defined as follows:
Implementation of QC-qTDP (resp., CC-qTDP) is a triplet of efficient quantum (resp., classical)
algorithms (Gen,Eval, Inv). In addition, we require (Gen,Eval, Inv) to satisfy the following:

1. For any (pk, td) generated by Gen(1n), Eval(pk, ·) computes a permutation fpk,n{0, 1}n →
{0, 1}n.

2. For any (pk, td) generated by Gen(1n) and any x ∈ {0, 1}n, we have Pr[Inv(td, fpk,n(x)) =
x] > 2/3 (i.e., Inv(td, ·) computes f−1

pk,n(·)).

For an implementation I = (Gen,Eval, Inv) of QC-qTDP (resp., CC-qTDP) and a quantum algo-
rithm A, we say that A QC-qTDP-breaks I (resp., CC-qTDP-breaks I) if and only if

Pr
[
(pk, td)← Gen(1n);x

$←− {0, 1}n; y ← fpk,n(x);x′ ← A(pk, y) : x′ = x
]

(13)

is non-negligible.

17

Definition 4.6 (Collision-resistant hash function). Quantum-computable (resp., classical-computable)
quantum-collision-resistant hash function QC-qCRH(resp., CC-qCRH) is a quantum primitive de-
fined as follows: Implementation of QC-qCRH (resp., CC-qCRH) is a pair of efficient quantum
(resp., classical) algorithms (Gen,Eval).

Gen(1n): This algorithm is given 1n as input, and outputs a function index σ.

Eval(σ, x): This algorithm is given a function index σ and x ∈ {0, 1}m(n) as input, and outputs
y ∈ {0, 1}`(n).

In addition, we require (Gen,Eval) to satisfy the following:

1. We have m(n) > `(n) for all sufficiently large n ∈ N.

2. For any σ generated by Gen(1n), Eval(σ, ·) computes a function Hσ : {0, 1}m(n) → {0, 1}`(n).

For an implementation I = (Gen,Eval) of QC-qCRH (resp., CC-qCRH) and a quantum algorithm
A, we say that A QC-qCRH-breaks I (resp., CC-qCRH-breaks I) if and only if

Pr
[
σ ← Gen(1n); (x, x′)← A(σ) : Hσ(x) = Hσ(x′)

]
(14)

is non-negligible.

Remark 4.4. Though trapdoor permutations and collision-resistant hash functions are defined to
be a tuple of algorithms, we can capture them as quantum primitives as defined in Definition 4.1 by
considering a unified quantum algorithm that runs either of these algorithms depending on prefix
of its input. We also remark that any classical algorithm can be seen as a special case of quantum
computation, and thus classical-computable variants are also captured as quantum primitives.

5 Impossibility of Reduction from QC-qCRH to CC-qOWP

The goal of this section is to show the following theorem.

Theorem 5.1. There exists no quantum fully-black-box reduction from QC-qCRH to CC-qOWP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH from CC-qOWP.
That is, we define an oracle that implements CC-qOWP, in addition to an oracle that finds collisions
of functions, and then apply the two oracle technique (Lemma 4.1). Our oracles are quantum ana-
logues of those in previous works on impossibility results [Sim98, HHRS07, AS15] in the classical
setting. Roughly speaking, we simply use random permutations f to implement one-way permu-
tations. As for an oracle that finds collisions of functions, we use a randomized oracle ColFinder.

Remark 5.1. The statement of Theorem 5.1 is the strongest result among possible quantum (fully-
black-box) separations of CRH from OWP, since it also excludes reductions from CC-qCRH to
CC-qOWP, reductions from QC-qCRH to QC-qOWP, and reductions from CC-qCRH to QC-qOWP.
6

6Note that it also excludes possible quantum (fully-black-box) reductions from collapsing hash functions to one-
way permutations, since the notion of collapsing is stronger than collision-resistance.

18

5.0.1 Oracle ColFinder.

Intuitive Idea. Intuitively, our oracle ColFinderf works as follows for each fixed permutation f .
As an input, ColFinderf takes an an oracle-aided quantum circuit C. Note that, for each permuta-
tion f , a partially or totally defined function F fC : {0, 1}m → {0, 1}` ∪ {⊥} is uniquely determined

from C: Here, F fC is the function such that F fC(x) = u ∈ {0, 1}` if and only if Pr
[
Cf (x) = u

]
> 2/3

and F fC(x) =⊥ if and only if Pr
[
Cf (x) = u

]
≤ 2/3 holds for all u ∈ {0, 1}`. First, ColFinderf

chooses w
(1)

Cf
∈ {0, 1}m uniformly at random, and computes u = F fC(w

(1)

Cf
) by running the circuit C

on input w
(1)

Cf
relative to f . If F fC(w

(1)

Cf
) =⊥, ColFinderf sets w

(2)

Cf
:=⊥, and returns (w

(1)

Cf
, w

(2)

Cf
,⊥).

Second, if F fC(w
(1)

Cf
) 6=⊥, ColFinderf chooses w

(2)

Cf
from (F fC)−1(u) uniformly at random. Finally

ColFinderf returns (w
(1)

Cf
, w

(2)

Cf
, u). If F fC is a totally defined function and has many collisions (for

example, if m > `), ColFinderf returns a collision of F fC with a high probability. The idea of the
above oracle ColFinder originally comes from the seminal work by Simon [Sim98]. Below we give a
formal description of ColFinder, following the formalization of Asharov and Segev [AS15].

Formal Description. Here we give a formal description of ColFinder. Let λ : N → R≥0 be a
function, and Circ(λ(n)) denote the set of oracle-aided quantum circuits C of which size is less than

or equal to λ(n). Note that Circ(λ(n)) is a finite set for each n. Let Πn = {π(1)
C , π

(2)
C }C∈Circ(λ(n))

be a set of permutations. Here, for each permutation f , C computes a partially or totally defined

function F fC : {0, 1}m → {0, 1}` ∪ {⊥}, and π
(1)
C , π

(2)
C are permutations over {0, 1}m (note that

m is independent of f). It can be regarded that Πn assigns two permutations for each circuit in
Circ(λ(n)). Let Rλ,n be the set of all possible such assignments Πn, and Rλ be the product set∏∞
n=1Rλ,n.

For each fixed permutation f and a function λ, we define a randomized quantum oracle
ColFinderfλ = {ColFinderfλ,Π}Π←Rλ , where ColFinderfλ,Π = {ColFinderfλ,Π,n}n∈N is a fixed quantum
oracle for each Π (here by Π ← Rλ we ambiguously denote the procedure that Π is chosen uni-

formly at random before adversaries make queries to ColFinderfλ). When we feed an algorithm A
with an input x ∈ {0, 1}n relative to ColFinderfλ, first Πn ∈ Rλ,n is chosen uniformly at random (i.e.,

two permutations π
(1)
C , π

(2)
C are chosen uniformly at random for each oracle-aided quantum circuit

C ∈ Circ(λ(n))), and then A runs the circuit A
ColFinderfλ,Π,n
n on the initial state |x〉 |0〉 |0〉. For each

fixed n and Πn, the deterministic function ColFinderfλ,Π,n is defined by the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Compute w
(1)

Cf
:= π

(1)
C (0m).

3. Compute F fC(w
(1)
C). That is, compute the output distribution of Cf on input w

(1)

Cf
, find the

element y such that Pr[Cf (w
(1)

Cf
) = y] > 2/3, and set u← y. If there is no such y, set u←⊥.

4. If u =⊥, set w
(2)

Cf
=⊥. If u 6=⊥, search for the minimum t ∈ {0, 1}m such that F fC(π

(2)
C (t)) = u

by checking whether

Pr
[
Cf
(
π

(2)
C (i)

)
= u

]
> 2/3

holds for i = 0, 1, 2, . . . in a sequential order, and set w2
Cf

:= π
(2)
C (t) (note that such t always

exists if u 6=⊥ since F fC(w
(1)

Cf
) = u).

19

5. Return (w
(1)

Cf
, w

(2)

Cf
, u).

Later we will apply Lemma 4.1 with Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where Λ
is the set of polynomials in n.

5.0.2 Proof of Theorem 5.1.

It can be proven that Theorem 5.1 follows from the following proposition. Note that the oracle

gate ColFinderfλ,Π,n is (and thus the circuit A
fn,ColFinder

f
λ,Π,n

n is) fixed once fn and Πn are fixed, since

the output values of ColFinderfλ,Π,n are independent of fm and Πm for m 6= n.

Proposition 5.1. Let λ, q, ε be functions such that 0 ≤ λ(n), q(n) and 0 < ε(n) ≤ 1. Let A be a
q-query oracle-aided quantum algorithm. Suppose that there is a function η(n) ≤ λ(n) such that,
for each circuit C that An queries to ColFinder, C makes at most η(n) queries. If

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (15)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n) · 2n/7 (16)

holds for infinitely many n.

Now we show that Theorem 5.1 follows from Proposition 5.1.

Proof of Theorem 5.1. Let Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where Λ is the set

of all polynomials in n. (If λ(n) ≤ 0 for some n, we assume that ColFinderfλ,n does not take any
inputs.) Below we show that the two conditions of Lemma 4.1 are satisfied.

For the first condition of Lemma 4.1, we define an oracle-aided quantum algorithm J0 as follows:
When we feed J0 with an input x relative to a permutation f , J0 queries x to f and obtains the
output f(x). Then J0 returns f(x) as its output. We show that this algorithm J0 satisfies the

first condition of Lemma 4.1 (existence of CC-qOWP). It is obvious that J f0 ∈ FCC-qOWP for any
permutation f , by definition of J0. Let B be an efficient oracle-aided quantum algorithm, and λ
be a polynomial in n. Now we show the following claim.

Claim 5.1. For any efficient oracle-aided quantum algorithm B and for any polynomial λ, there
exists a permutation f : {0, 1}∗ → {0, 1}∗ such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< 2−n/8 (17)

holds for all sufficiently large n.

Proof of Claim. Without loss of generality we assume that there is a polynomial η′(n) and η′(n) =
|Bn| holds, since Bn is an efficient algorithm. Then, for each circuit C that Bn queries to ColFinder,
C makes at most η′(n) queries since |C| ≤ |Bn| holds. It suffices to show the claim in the case
that λ(n) = |Bn| holds since, in general, the ability of adversaries to invert permutations does not
decrease as λ(n) becomes large, and the size of quantum circuits that Bn can query to ColFinder
does not exceed |Bn|. Hence, below we consider the case that λ(n) = η′(n) = |Bn| holds. Note

20

that B can be regarded as a λ-query algorithm in this case, since Bn cannot make more than λ(n)
queries.

Since B is an efficient algorithm and λ(n) is a polynomial in n, it follows that

Pr
fn,Πn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
< 2−n/8 (18)

for all sufficiently large n, from Proposition 5.1. Thus, for all sufficiently large n, there exists a
permutation f ′n on {0, 1}n such that

Pr
Πn

y←{0,1}n

[
x← B

f ′n,ColFinder
f ′
λ,Π,n

n (y) : f ′n(x) = y

]
< 2−n/8 (19)

holds. Now, let f ′ : {0, 1}∗ → {0, 1}∗ be a permutation such that f ′|{0,1}n = f ′n for all sufficiently
large n. Then

Pr
y←{0,1}n

[
x← Bf ′,ColFinder

f ′
λ (y) : f(x) = y

]
< 2−n/8 (20)

holds for all sufficiently large n.

From the above claim, it follows that, for any efficient oracle-aided quantum algorithm B and
any λ ∈ Λ, there exists a permutation f such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< negl(n) (21)

holds, which implies that Bf,ColFinder
f
λ does not CC-qOWP-break J f0 relative to (f,ColFinderfλ).

Hence the first condition (existence of CC-qOWP) of Lemma 4.1 is satisfied.
Next, we show that the second condition (non-existence of QC-qCRH) of Lemma 4.1 is satisfied.

For any efficient oracle-aided quantum algorithm I = (Gen,Eval) such that If ∈ FCC-qCRH holds
for any permutation f , let λ be a polynomial such that λ(n) > |In| for all n. We define a family of
oracle-aided quantum algorithmsAI as: Given an input σ which is generated by Gen(1n), AI queries

the oracle-aided quantum circuit Evaln(σ, ·) to ColFinderfλ, obtains an answer (w(1), w(2), Hσ(w(1))),

and finally outputs (w(1), w(2)). When AColFinderfλ
I is given an input σ, the output will be (w(1), w(2)),

where w(1) is uniformly distributed over the domain of Hσ : {0, 1}m(n) → {0, 1}`(n) and w(2)

is uniformly distributed over the set H−1
σ (Hσ(w(1))). Since m(n) > `(n) holds by definition of

implementations of QC-qCRH, the probability that w(1) 6= w(2), which implies that (w(1), w(2))
is a collision of Hσ, is at least 1/4. Thus it follows that there exists AI and λ ∈ Λ such that

AColFinderfλ
I CC-qCRH-breaks If for any permutation f . Hence the second condition of Lemma 4.1

is satisfied.

Remark 5.2. In this paper we formally treat only efficient reductions such that the circuit sizes of
reduction algorithms are polynomial in n. However, the statement of Proposition 5.1 also excludes
sub-exponential reductions from CRH to OWP in the quantum setting.

5.1 Proof of Proposition 5.1

This subsection proves Proposition 5.1. See Section 2.2 for an intuitive overview of our proof idea.
We begin with describing some technical preparations.

21

5.1.1 Preparations.

Without loss of generality we can assume that q(n), η(n), λ(n) ≥ 1 holds, since increasing these
numbers does not decrease the ability of A to invert f . We construct another algorithm Â that
iteratively runs A to increase the success probability, and then apply the encoding technique to Â.

Let c be a positive integer. Let Bc be an oracle-aided quantum algorithm that runs as follows,
relative to the oracles f and ColFinderfλ.

1. Take an input y. Set guess←⊥.

2. For i = 1, . . . , cd1/ε(n)e do:

3. Run Af,ColFinder
f
λ on the input y. Let x denote the output.

4. Query x to f . If f(x) = y, then set guess← x.

5. End For

6. Return guess.

Let Q(n) := cd1/ε(n)e(max{q(n), η(n)} + 1). Then Bc can be regarded as a Q-query algorithm,

and for each quantum circuit C that Bc queries to ColFinderfλ,n, C makes at most Q(n) queries.

Remark 5.3. The randomness Πn of ColFinderfλ is chosen before Bc starts, and unchanged while
Bc is running (see Remark 3.3).

Lemma 5.1. Let p1, p2 be any positive constant values such that 0 < p1, p2 < 1. For a sufficiently
large integer c, the following condition is satisfied for infinitely many n:
Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ p1 · |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (22)

for all fn ∈ X.

Proof. Let p0 := p1 + (2
3 + 1

3p2)(1 − p1), and c be an integer that satisfies e−c ≤ 1 − p0. In what
follows, we show that this c satisfies the condition.

First, for each n such that

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (23)

holds, there exists Πn such that

Pr
fn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (24)

holds. Below we fix Πn that satisfies inequality (24) for each n such that inequality (23) holds.
Now we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 1− (1− ε(n))

c
ε(n)

= 1− ((1− ε(n))
− 1
ε(n))−c (25)

22

holds. If ε(n) = 1, the right hand side of inequality (25) becomes 1, which is larger than p0. If
ε(n) < 1, the right hand side of inequality (25) is lower bounded by 1− e−c ≥ p0, here we used the

fact that (1− x)−
1
x ≥ e holds for 0 < x < 1. Therefore we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ p0 (26)

holds.
Here it follows that

Pr
fn

[
Pr

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2

]
≥ p1 (27)

from inequality (26). In other words, there exists X ⊂ Perm({0, 1}n) such that

|X| ≥ p1|Perm({0, 1}n)|

and

Pr
y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2 (28)

holds for all fn ∈ X. Now, from inequality (28), it follows that

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (29)

for all fn ∈ X.

In what follows, we fix constants p1, p2 such that 0 < p1, p2 < 1 arbitrarily. Then, from the
above lemma, it follows that there exists a constant c that satisfies the condition in Lemma 5.1
for infinitely many n. Let us denote Bc by Â. We use the encoding technique to this Q-query
algorithm Â, here Q(n) = cd1/ε(n)e(max{q(n), η(n)} + 1). Below we fix a sufficiently large n in
addition to Πn and X such that the condition in Lemma 5.1 is satisfied. For simplicity, we write
Q, q, ε, η, f , and ColFinderf instead of Q(n), q(n), ε(n), η(n), fn, and ColFinderfλ,Π,n respectively,
for simplicity.

5.1.2 An Information Theoretic Property of Randomized Compressing Schemes.

Here we introduce an information theoretic property of a randomized compressing scheme (Er :
X → Y ∪ {⊥}, Dr : Y → X ∪ {⊥}), where r is chosen according to a distribution R. Generally, if
the encoding and decoding success with a constant probability p, then |Y | cannot be much smaller
than |X|:

Lemma 5.2 ([DTT10], Fact 10.1). If there exists a constant 0 ≤ p ≤ 1 such that Prr∼R[Dr(Er(x)) =
x] ≥ p holds for all x ∈ X, then |Y | ≥ p · |X| holds.

Below we formally define an encoder E and a decoder D that compress elements (truth tables
of permutations) in X. In the encoder E, random coin r is chosen according to a distribution R.
On the other hand, we consider that D is deterministic rather than randomized, and regard r as
a part of inputs to D. Note that we do not care whether encoding and decoding can be efficiently
done, since Lemma 5.2 describes a purely information theoretic property.

23

5.1.3 Encoder E.

Let δ be a sufficiently small constant (δ = (1/8)4 suffices). When we feed E with f ∈ X as an
input, E first chooses subsets R,R′ ⊂ {0, 1}n by the following sampling: For each x ∈ {0, 1}n, x
is added to R with probability δ3/2/Q2, and independently added to R′ with probability δ5/2/Q4.
(The pair (R,R′) is the random coin of E.)

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits) to ColFinderf are

defined for each x ∈ {0, 1}n as follows. Note that now π
(1)
C and π

(2)
C have been fixed for each oracle-

aided quantum circuit C, and thus the output ColFinderf (C) = (w
(1)

Cf
, w

(2)

Cf
, F fC(w

(1)

Cf
)) is uniquely

determined. For each oracle-aided quantum circuit C such that F fC(w
(1)

Cf
) 6=⊥, we can define query

magnitude of C to f on input w
(1)

Cf
and w

(2)

Cf
at z ∈ {0, 1}n (see Definition 3.5). We say that a

quantum circuit C such that F fC(w
(1)

Cf
) 6=⊥ is bad relative to x if

∑
z∈R′\{x}

µC,fz (w
(1)

Cf
) >

δ

Q
(30)

or ∑
z∈R′\{x}

µC,fz (w
(2)

Cf
) >

δ

Q
(31)

hold, and otherwise we say that C is good relative to x. For quantum circuits C such that

F fC(w
(1)

Cf
) =⊥, we always say that C is good. Let badC(R′, x) denote the set of bad circuits relative

to x, for each R′ ⊂ {0, 1}n.
Next, E constructs a set G ⊂ {0, 1}n depending on the input f . Let I ⊂ {0, 1}n be the set of

elements x such that Â successfully inverts f(x), i.e., I := {x | Pr[x′ ← Âf,ColFinderf (f(x)) : x′ =
x] ≥ 2/3. Then |I| ≥ p2 · 2n holds by definition of X (Remember that X is chosen in such a way
as to satisfy the condition in Lemma 5.1). Now, a set G is defined to be the set of elements x ∈ I
that satisfies the following conditions:

Conditions for G.

(Cond. 1) x ∈ R ∩R′.

(Cond. 2)
∑

z∈R\{x} µ
Â,f
z (f(x)) ≤ δ/Q.

(Cond. 3)
∑

C∈badC(R′,x) µ
Â,ColFinderf
C (f(x)) ≤ δ/Q.

Finally, E encodes f into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 − 60
√
δ)δ4p22n/2Q6.

Otherwise E encodes f into ⊥.
In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (32)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permutation f ∈ X.

24

5.1.4 Decoder D.

D takes (f̃ , G̃) as an input in addition to (R,R′), where G̃ ⊂ {0, 1}n and f̃ is a bijection from a
subset of {0, 1}n onto {0, 1}n \ G̃, and R,R′ are subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂
R ∩R′ holds, then D outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstructs the truth table of
a permutation f ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) as f(x) := f̃(x). For other elements
x ∈ {0, 1}n which is not contained in the domain of f̃ , what D now knows is only that f(x) is
contained in G̃. To determine the remaining part of the truth table of f , D tries to recover the
value f−1(y) for each y ∈ G̃ by using Â.

For each fixed y ∈ G̃, D could succeed to recover the value f−1(y) if D were able to deter-
mine the output distribution of Â on input y relative to oracles f and ColFinderf . However, D
cannot determine the distribution even though D has no limitation on its running time, since f
itself is the permutation of which D wants to reconstruct the truth table, and the behavior of
ColFinderf depends on f . Thus D instead prepares oracles hy and SimCFhy which approximates

f and ColFinderf , respectively, and computes the output distribution of Âhy ,SimCFhy on input y.
SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is an oracle-aided circuit that

may make queries to f and computes a function F fC , and w is an element of the domain of F fC) and

simulates the evaluation of F fC(w). D finally infers that f−1(y) is the element which Âhy ,SimCFhy

outputs with probability greater than 1/2. (If there does not exist such an element, then D outputs
⊥.) Below we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(33)

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R∩R′}. CalCy is defined
as the following procedures.

1. Take an input (C,w), where C is an oracle-aided circuit and w is an element of the domain
of the function FC .

2. Compute the output distribution of the quantum circuit Ch
′

on input w for each h′ ∈
Pcandidate, and find u(C,w, h′) ∈ {0, 1}` such that Pr[Ch

′
(w) = u(C,w, h′)] > 1/2. If there is

no such u(C,w, h′) for a fixed h′, set u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value u(C,w, h′). Other-
wise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Compute w̃
(1)

Cf
:= π

(1)
C (0m).

3. If CalCy(C, w̃
(1)

Cf
) =⊥, set w̃

(2)

Cf
:=⊥.

25

4. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
(1)

Cf
) = CalCy(C, π

(2)
C (t)) by

checking whether CalCy(C, w̃
(1)

Cf
) = CalCy(C, π

(2)
C (i)) holds for i = 0, 1, 2, . . . in a sequential

order, and set w̃
(2)

Cf
:= π

(2)
C (t).

5. Return (w̃
(1)

Cf
, w̃

(2)

Cf
,CalCy(C, w̃

(1)

Cf
)).

Note that D is an information theoretic decoder, and we do not care whether CalCy and SimCFhy

run efficiently.

5.1.5 Analyses.

Here we give formal analyses. See Section 2 for an intuitive overview. The following lemma shows
that hy, CalCy, and SimCFhy satisfy some suitable properties. Here we consider the situation that
D takes an input (f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for some subsets R,R′ ⊂ {0, 1}n and a
permutation f ∈ {0, 1}n, and tries to recover the value f−1(y) for some y ∈ G̃.

Lemma 5.3. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

2. CalCy(C,w) = F fC(w) or ⊥ holds for any C and w.

3. For each circuit C which is good relative to f−1(y) and satisfies F fC(w
(1)

Cf
) 6=⊥, CalCy(C,w

(1)

Cf
) =

F fC(w
(1)

Cf
) and CalCy(C,w

(2)

Cf
) = F fC(w

(2)

Cf
) hold. In addition, for each circuit C such that

F fC(w
(1)

Cf
) =⊥, CalCy(C,w

(1)

Cf
) =⊥ holds.

4. SimCFhy(C) = ColFinderf (C) holds for each circuit C which is good relative to f−1(y). In
particular, ∆(ColFinderf , SimCFhy) ⊂ badC(R′, f−1(y)) holds.

Proof. The first property is obviously satisfied by definition of hy.
For the second property, since f ∈ Pcandidate, if CalCy(C,w) 6=⊥ then we have CalCy(C,w) =

u(C,w, f) 6=⊥ by definition of CalCy, and u(C,w, f) = F fC(w) always holds. Hence the second
property holds.

For the third property, let C be a quantum circuit is good relative to f−1(y) and satisfies

F fC(w
(1)

Cf
) 6=⊥. For each h′ ∈ Pcandidate, from Lemma 3.2 we have

Pr
[
Ch
′
(w

(1)

Cf
) = F fC(w

(1)

Cf
)
]
≥ Pr

[
Cf (w

(1)

Cf
) = F fC(w

(1)

Cf
)
]

−
∥∥∥Cf |w(1)

Cf
, 0, 0〉 − Ch′ |w(1)

Cf
, 0, 0〉

∥∥∥ . (34)

From the swapping lemma (Lemma 3.3) it follows that∥∥∥Cf |w(1)

Cf
, 0, 0〉 − Ch′ |w(1)

Cf
, 0, 0〉

∥∥∥ ≤ 2

√
Q

∑
z∈∆(f,h′)

µC,fz (w
(1)

Cf
). (35)

Since ∆(f, h′) ⊂ R ∩ R′ \ {f−1(y)} ⊂ R′ \ {f−1(y)} holds for all h′ ∈ Pcandidate, and C is a good
circuit relative to f−1(y), the right hand side of the above inequality is upper bounded by 2

√
δ

Thus, for a sufficiently small δ we have

Pr
[
Ch
′
(w

(1)

Cf
) = F fC(w

(1)

Cf
)
]
≥ 2

3
− 2
√
δ >

1

2
, (36)

26

which implies that u(C,w
(1)

Cf
, h′) = F fC(w

(1)

Cf
) holds for every h′ ∈ Pcandidate. Thus CalCy(C,w

(1)

Cf
) =

F fC(w
(1)

Cf
) holds if C is good relative to f−1(y). The equality CalCy(C,w

(2)

Cf
) = F fC(w

(2)

Cf
) can be

shown in the same way. In addition, for a circuit C such that F fC(w
(1)

Cf
) =⊥, CalCy(C,w

(1)

Cf
) =⊥

holds since u(C,w
(1)

Cf
, f) = F fC(w

(1)

Cf
) =⊥ holds. Therefore the third property follows.

The fourth property follows from the definition of SimCFhy , the second property, and the third
property.

The following lemma shows that the decoding always succeeds if the encoding succeeds.

Lemma 5.4. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds.

Proof of Lemma 5.4. Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can correctly recover

x = f−1(y) for each y ∈ G̃.
We apply the swapping lemma (Lemma 3.3) to the oracle pairs (f,ColFinderf) and (hy,SimCFhy).

Then we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy ,SimCFhy
n |f(x), 0, 0〉

∥∥∥
≤ 2

√
Q

∑
z∈∆(f,hy)

µÂ,fz (f(x)) + 2

√√√√Q
∑

C∈∆(ColFinderf ,SimCFhy)

µÂ,ColFinder
f

C (f(x)). (37)

Since ∆(f, hy) = R ∩ R′ \ {f−1(y)} ⊂ R \ {f−1(y)} = R \ {x} and ∆(ColFinderf , SimCFhy) ⊂
badC(R′, f−1(y)) = badC(R′, x) from Lemma 5.3, the right hand side of inequality (37) is upper
bounded by

2

√
Q

∑
z∈R\{x}

µÂ,fz (f(x)) + 2

√
Q

∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)). (38)

Due to the conditions (Cond. 2) and (Cond. 3) (see p. 24), each term of the above expression is
upper bounded by 2

√
δ. Thus, eventually we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy ,SimCFhy

n |f(x), 0, 0〉
∥∥∥ ≤ 4

√
δ (39)

Finally, from Lemma 3.2, for sufficiently small δ it follows that

Pr
[
Âhy ,SimCFhy (f(x)) = x

]
≥ Pr

[
Âf,ColFinder

f

(f(x)) = x
]

−
∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Ahy ,ColFinder

h

n |f(x), 0, 0〉
∥∥∥

≥ 2/3− 4
√
δ > 1/2, (40)

which implies that D correctly recovers x = f−1(y).

Next, we show the following lemma, which shows that our E and D work well with a constant
probability. Our analysis below is a generalization of the analysis by Nayebi et al [NABT15, Claim
8].

27

Lemma 5.5. If Q6 ≤ δ4p22n/32,

Pr
(R,R′)

[
D((R,R′), E((R,R′), f) = f

]
≥ 0.7 (41)

holds for each f ∈ X.

Proof of Lemma 5.5. If |G| ≥ θ holds, then it follows that E((R,R′), f) 6=⊥ by definition of
E, which leads to D((R,R′), E((R,R′), f) = f by Lemma 5.4. Therefore, in what follows, we
show that |G| ≥ θ holds with a high probability. Let H be the set defined as H := {x ∈ I |
x satisfies (Cond. 1) }, J1 be the set defined as J1 := {x ∈ I | x satisfies (Cond. 1) but does not
satisfy (Cond. 2) }, and J2 be the set defined as J2 := {x ∈ I | x satisfies (Cond. 1) but does not
satisfy (Cond. 3)}. Then |G| ≥ |H| − |J1| − |J2| holds.

First, we show that |H| becomes large with a high probability: Since ER,R′ [|H|] = δ4|I|/Q6,

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 1− exp

[
−1

8
· δ

4|I|
Q6

]
(42)

follows from the multiplicative Chernoff bound. Since |I| ≥ p22n holds by definition of I, and
Q6 ≤ δ4p22n/32 is assumed, we have

exp

[
−1

8
· δ

4|I|
Q6

]
≤ exp[−4] ≤ 0.1. (43)

Therefore

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 0.9 (44)

holds.
Second, we show that |J1| becomes large only with a small probability: For each x ∈ I, we have

that

ER

 ∑
z∈R\{x}

µÂ,fz (f(x))

 =
∑

z∈{0,1}n\{x}

δ3/2

Q2
µÂ,fz (f(x)) ≤ δ3/2

Q
(45)

holds, where we used the property that
∑

z µ
Â,f
z (f(x)) ≤ Q holds since Â is a Q-query algorithm.

Hence

Pr
R

 ∑
z∈R\{x}

µÂ,fz (f(x)) ≥ δ

Q

 ≤ √δ (46)

follows from Markov’s inequality. Since the conditions (Cond. 1) and (Cond. 2) are independent
(note that the condition (Cond. 2) does not depend on whether x ∈ R ∩R′),

Pr
R,R′

[x ∈ J1] = Pr
R,R′

[x satisfies (Cond. 1)] · Pr
R,R′

[x does not satisfy (Cond. 2)] ≤ (δ4/Q6) ·
√
δ =

δ9/2

Q6

(47)
holds for each x ∈ I. Now we can show the following claim.

Claim 5.2. It holds that
ER,R′ [|J1|] ≤ δ9/2|I|/Q6. (48)

28

Proof of Claim. Note that the set J1 is determined once R and R′ are fixed. Let J
(R,R′)
1 denote

the set J1 that corresponds to (R,R′). Let 2I be the set of subsets of I. For each x ∈ I, define a
function ξx : 2I → {0, 1} by ξx(J) = 1 if and only if x ∈ J . Then we have

ER,R′ [|J1|] = ER,R′

[∑
x∈I

ξx

(
J

(R,R′)
1

)]

=
∑
R0,R′0

(∑
x∈I

ξx

(
J

(R0,R′0)
1

))
· Pr
R0,R′0

[
(R,R′) = (R0, R

′
0)
]

=
∑
x∈I

 ∑
R0,R′0

ξx

(
J

(R0,R′0)
1

)
· Pr
R0,R′0

[
(R,R′) = (R0, R

′
0)
]

=
∑
x∈I

Pr
R,R′

[x ∈ J1] ≤ |I| · δ
9/2

Q6
, (49)

where the last inequality follows from inequality (47).

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J1| ≥

10δ9/2|I|
Q6

]
≤ 0.1 (50)

holds.
Third, we show that |J2| becomes large only with a small probability: Remember that, for each

x ∈ I, a quantum circuit C becomes bad relative to x if and only if F fC(w
(1)

Cf
) 6=⊥, and inequalities

(30) or (31) hold. Here, for any fixed C and w we have

ER′

 ∑
z∈R′\{x}

µC,fz (w)

 =
∑

z∈{0,1}n\{x}

δ5/2

Q4
µC,fz (w) ≤ δ5/2

Q3
, (51)

where we used the property that
∑

z µ
C,f
z (w) ≤ Q holds since C makes at most Q queries. Thus,

the probability that a fixed C such that F fC(w
(1)

Cf
) 6=⊥ becomes bad relative to x is upper bounded

as

Pr
R′

[
C ∈ badC(R′, x)

]
≤
∑
i=1,2

Pr
R′

 ∑
z∈R′\{x}

µC,fz (wiCf) > δ/Q

 ≤ 2δ3/2

Q2
(52)

by Markov’s inequality. Moreover, if C satisfies F fC(w
(1)

Cf
) =⊥ holds, PrR′ [C ∈ badC(R′, x)] = 0

follows. Therefore

Pr
R′

[
C ∈ badC(R′, x)

]
≤ 2δ3/2

Q2
(53)

holds for any quantum circuit C.

29

Since R′ is chosen independently of Â, we have

ER′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x))

=
∑
R0

∑
C∈badC(R0,x)

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[
R′ = R0

]
=
∑
R0

∑
C

µÂ,ColFinder
f

C (f(x)) · XbadC(R0,x)(C) · Pr
R′

[
R′ = R0

]
=
∑
C

µÂ,ColFinder
f

C (f(x)) ·

∑
R0

XbadC(R0,x)(C) · Pr
R′

[
R′ = R0

]
=
∑
C

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[
C ∈ badC(R′, x)

]
≤
∑
C

µÂ,ColFinder
f

C (f(x)) · (2δ3/2/Q2) ≤ 2δ3/2/Q, (54)

where XbadC(R0,x) is the boolean function such that XbadC(R0,x)(C) = 1 if and only if C ∈ badC(R0, x),

and we used the property that
∑

C µ
Â,ColFinderf
C (f(x)) ≤ Q holds since Â is a Q-query algorithm.

Therefore

Pr
R′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)) > δ/Q

 ≤ 2
√
δ (55)

follows from Markov’s inequality. Since the conditions (Cond. 1) and (Cond. 3) are independent
(note that the condition (Cond. 3) does not depend on whether x ∈ R ∩R′),

Pr
R,R′

[x ∈ J2] = Pr
R,R′

[x satisfies (Cond. 1)]· Pr
R,R′

[x does not satisfy (Cond. 3)] ≤ (δ4/Q6)·2
√
δ =

2δ9/2

Q6

(56)
holds for each x ∈ I. Now we can show the following claim in the same way as we showed that
Claim 5.2 holds.

Claim 5.3. It holds that
ER,R′ [|J2|] ≤ 2δ9/2|I|/Q6 (57)

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J2| ≥

20δ9/2|I|
Q6

]
≤ 0.1 (58)

holds.
Finally, we show that |G| becomes large with a high probability: From inequalities (44), (50),

and (58) it follows that

Pr
R,R′

[
|H| < 1

2
· δ

4|I|
Q6
∨ |J1| ≥

10δ9/2|I|
Q6

∨ |J2| ≥
20δ9/2|I|
Q6

]
≤ 0.3. (59)

30

holds. Therefore, with a probability at least 1− 0.3 = 0.7 it holds that

|G| ≥ |H| − |J1| − |J2| ≥
δ4|I|
2Q6

− 10δ9/2|I|
Q6

− 20δ9/2|I|
Q6

=
δ4|I|
2Q6

(
1− 60

√
δ
)
≥ δ4(1− 60

√
δ)
p22n

2Q6
= θ. (60)

Thus we have that
Pr
R,R′

[|G| ≥ θ] ≥ 0.7, (61)

which completes the proof.

Finally, we show that Proposition 5.1 follows from the above lemmas.

Proof of Proposition 5.1. First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (62)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| = M} (63)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(64)

for sufficiently large n. Here we show the following claim.

Claim 5.4. If Q6 ≤ δ4p22n/32, there exists a constant const1 such that Q6 ≥ const1 · 2n/n holds.
We can choose const1 independently of n.

Proof of Claim. By definition of X, |X| ≥ p1(2n)! holds. In addition, from inequality (64), we have

|Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming that Q6 ≤ δ4p22n/32 holds, it follows that

|Y | ≥ 0.7|X| from Lemma 5.2 and Lemma 5.5. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 · p1(2n)!, which is

equivalent to
2n

0.7p1
≥ dθe!. (65)

Since p1 is a constant and n! ≥ 2n holds for n ≥ 4, there exists a constant const2, which can be
taken independently of n, such that dconst2 ·ne! ≥ 2n/(0.7p1) holds. Now we have dconst2 ·ne ≥ dθe,
which implies that

const2 · n+ 1 ≥ θ = δ4
(

1− 60
√
δ
) p22n

2Q6
(66)

holds. Moreover, since δ and p2 are also constants, there exists a constant const1 that is independent
of n and

Q6 ≥ const1 · 2n/n (67)

holds, which completes the proof of the claim.

31

Let const3 := min{δ4p2/32, const1}. Then, from the Claim 5.4, it follows that

Q6 ≥ const3 · 2n/n (68)

holds. Since Q = c
⌈

1
ε

⌉
(max{q, η}+ 1) by definition of Q, we have

c6

⌈
1

ε

⌉6

(max{q, η}+ 1)6 ≥ const3 · 2n/n. (69)

Hence there exists a constant const such that

max{q, η} ≥ const · ε · 2n/6/n1/6 ≥ const · ε · 2n/7 (70)

holds for sufficiently large n, which completes the proof.

6 Impossibility of Reduction from QC-qCRH to CC-qTDP

The goal of this section is to show the following theorem.

Theorem 6.1. There exists no quantum fully-black-box reduction from QC-qCRH to CC-qTDP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH from CC-qTDP.
That is, we define an oracle that implements trapdoor permutations, in addition to an oracle that
finds collisions of functions, and then apply the two oracle technique (Lemma 4.1).

Remark 6.1. The statement of Theorem 6.1 is the strongest result among possible quantum
(fully-black-box) separations of CRH from TDP, since it also excludes reductions from CC-qCRH
to CC-qTDP, reductions from QC-qCRH to QC-qTDP, and reductions from CC-qCRH to QC-qTDP.
7

6.0.1 Oracles that separates QC-qCRH from CC-qTDP.

Suppose, for each n, we have a permutation gn : {0, 1}n → {0, 1}n and a function fn : {0, 1}n ×
{0, 1}n → {0, 1}n for each n, where fn(z, ·) : {0, 1}n → {0, 1}n is a permutation for each z ∈
{0, 1}n. Define f inv

n : {0, 1}n × {0, 1}n → {0, 1}n by f inv
n (z, ·) := (fn(gn(z), ·))−1 for each z.

Let g := {gn}n∈N, f := {fn}n∈N, and f inv := {f inv
n }n∈N. Define efficient oracle-aided quantum

algorithms (Gen,Eval, Inv) relative to (g, f, f inv) as follows.

1. When we feed Geng with 1n as an input, first td ∈ {0, 1}n is chosen uniformly at random,
and then pk is set as pk := gn(td). Finally Geng outputs (pk, td).

2. Given an input (pk, x) ∈ {0, 1}n × {0, 1}n, Evalf queries (pk, x) to fn, and output fn(pk, x).

3. Given an input (td, x) ∈ {0, 1}n×{0, 1}n, Invf
inv

queries (td, x) to f inv
n , and output f inv

n (td, x).

(Gen,Eval, Inv) implements CC-qTDP relative to (g, f, f inv).

For each fixed g, f and a function λ, define the randomized oracle ColFinderg,f,f
inv

λ in the same

way as we defined ColFinder in Section 5. Note that now each input to ColFinderg,f,f
inv

λ is an
oracle-aided quantum circuit C of which circuit size is at most λ(n), and that may make queries

7Note that it also excludes possible quantum (fully-black-box) reductions from collapsing hash functions to one-
way permutations, since the notion of collapsing is stronger than collision-resistance.

32

to g, f , and f inv. Note that, for each permutations f and g, a partially or totally defined function

F g,f,f
inv

C : {0, 1}m → {0, 1}`∪{⊥} is uniquely determined from C: Here, F g,f,f
inv

C is the function such

that F g,f,f
inv

C (x) = y ∈ {0, 1}` if and only if Pr
[
Cg,f,f

inv
(x) = y

]
> 2/3 holds, and F g,f,f

inv

C (x) =⊥

if and only if Pr
[
Cg,f,f

inv
f(x) = y

]
≤ 2/3 holds for any y ∈ {0, 1}`.

We can show that Theorem 6.1 follows from Proposition 6.1 below by applying the two oracle

technique (Lemma 4.1) with Γ1 := {(g, f, f inv)} and Γ2 := {ColFinderg,f,f
inv

λ }(g,f,f inv)∈Γ1,λ∈Λ, where
Λ is the set of polynomials in n, in the same way as Theorem 5.1 follows from Proposition 5.1.

Proposition 6.1. Let λ, q, ε be functions such that 0 ≤ λ(n), q(n) and 0 < ε(n) ≤ 1. Let A be a
q-query oracle-aided quantum algorithm. Suppose that there is a function η(n) ≤ λ(n) such that,
for each circuit C that An queries to ColFinder, C makes at most η(n) queries. If

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y

]
≥ ε(n) (71)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/42 (72)

holds for infinitely many n. 8

Remark 6.2. In this paper we formally treat only efficient reductions such that the circuit sizes of
reduction algorithms are polynomial in n. However, the statement of Proposition 6.1 also excludes
sub-exponential reductions from CRH to TDP in the quantum setting.

6.0.2 Intuitive Overview of Proof Idea.

Here we explain an intuition of our proof idea. We consider three separate cases. In the first
and second cases, we can show that the claim of Proposition 6.1 is reduced to Proposition 5.1.
In the third case, we again use the arguments about randomized compressing schemes to show
permutations are hard to invert.

The first case is the one that A queries td to f inv with a high probability (we denote this
event by TDHIT1). In this case, we can make an oracle-aided quantum query algorithm B1 that
inverts the permutation g, given oracle access to (g,ColFinderg). Given pk = g(td) as an input
and oracle access to (g,ColFinderg), B1 runs A simulating oracles f and f inv itself, and simulating

ColFinderg,f,f
inv

by making queries to ColFinderg. Then B1 measures a query of A to f inv. Since A
queries td to f inv with a high probability, B1 can obtain td with a high probability, which implies
that B1 can invert pk in g. Thus the claim can be reduced to Proposition 5.1 in this case. From
Proposition 5.1, it follows that B1 has to make many queries if ε(n) is non-negligible, which implies
that A also has to make many queries.

The second case is the one that A queries a trapdoor-hitting circuit C to ColFinderg,f,f
inv

with
a high probability (we denote this event by TDHIT2). Intuitively, a circuit C is called trapdoor-

hitting if it queries td to f inv with a high probability on input w
(1)

Cg,f,f inv or w
(2)

Cg,f,f inv (here, w
(1)

Cg,f,f inv

8Strictly speaking, when we feed an input (pk, y) ∈ {0, 1}n × {0, 1}n, A should run a quantum circuit denoted by
A2n in our definition of quantum circuits (see Definition 3.1 and Definition 3.2). However, in this section we abuse
the notation An to denote A2n, for simplicity.

33

and w
(2)

Cg,f,f inv are defined in the same way as w
(1)

Cf
and w

(2)

Cf
in Section 5). In this case, again we

can make an oracle-aided quantum query algorithm B2 that inverts the permutation g, given
oracle access to (g,ColFinderg). Given pk = g(td) as an input and oracle access to (g,ColFinderg),

B2 runs A simulating oracles f and f inv, and simulating ColFinderg,f,f
inv

by making queries to
ColFinderg. Then B2 measures a query of A to ColFinderg,f,f

inv
. Since A queries a trapdoor-hitting

circuit C to ColFinderg,f,f
inv

with a high probability, B2 can obtain a trapdoor-hitting circuit C
with a high probability. Once B2 obtains a trapdoor-hitting circuit C, B2 computes the value

ColFinderg,f,f
inv

(C) = (w
(1)

Cg,f,f inv , w
(2)

Cg,f,f inv , u) by simulating f , f inv itself and making queries to its

own oracle ColFinderg. Then B2 runs C relative to the oracles g, f , and f inv on inputs w
(1)

Cg,f,f inv

and w
(2)

Cg,f,f inv , and measures some queries of C to f inv. Since the trapdoor-hitting circuit C queries

td to f inv with a high probability, B2 can obtain td with a high probability, which implies that B2

can invert pk in g. Thus the claim can be reduced to Proposition 5.1 in this case as well.
The third case is the one that either of TDHIT1 and TDHIT2 does not occur (that is, the

case that ¬(TDHIT1 ∨ TDHIT2) occurs). In this case, intuitively, we can construct a randomized
compressing scheme that compresses the truth table of f(pk, ·) without the oracle f inv(td, ·) since
the query magnitude to f inv(td, ·) is almost always small if ¬(TDHIT1 ∨ TDHIT2) occurs. In this
section, we only describe the difference between the proof for the third case and the proof in
Section 5. The complete proof of the third case can be found in Section A.

6.0.3 Formal Proof.

Below we give a formal proof. We begin with formally defining trapdoor-hitting circuits, and
the events TDHIT1 and TDHIT2. Let δ be a sufficiently small constant (δ = (1/8)4 suffices),
and c be a sufficiently large positive constant integer (actually c = 2 suffices.) Let Q(n) :=

c
⌈

12
ε(n)

⌉
(max{q(n), η(n)} + 1), and Q̃(n) := c

⌈
12
ε(n)

⌉
· Q(n). (We will use δ, c, and Q(n) for the

compressing technique in the third case, in the almost same way as we did in Section 5. η(n) is the
upper bound of the number of queries made by the circuits that A queries to ColFinder.)

Definition of trapdoor-hitting Circuits. For each fixed n, Π, (g, f, f inv), and td, we say that
an oracle-aided quantum circuit C is trapdoor-hitting if

F g,f,f
inv

C (w
(1)

Cg,f,f inv) 6=⊥ ∧

 ∑
z∈{0,1}n

µC,f
inv

(td,z) (w
(1)

Cg,f,f inv) >
δ

Q(n)
∨

∑
z∈{0,1}n

µC,f
inv

(td,z) (w
(2)

Cg,f,f inv) >
δ

Q(n)

(73)

holds, or

F g,f,f
inv

C (w
(1)

Cg,f,f inv) =⊥ ∧
∑

z∈{0,1}n
µC,f

inv

(td,z) (w
(1)

Cg,f,f inv) >
δ

Q(n)
(74)

holds. If C is not trapdoor-hitting, we say that it is a non-trapdoor-hitting circuit.

Definition of the events TDHIT1 and TDHIT2. For each n, we define TDHIT1 as the event
that ∑

z

µA,f
inv

(td,z) (pk, y) >
δ

Q̃(n)
(75)

34

occurs. In addition, for each n, we define TDHIT2 as the event that∑
C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ
C (pk, y) >

δ

Q̃(n)
(76)

occurs. Below we give a proof of Proposition 6.1.

Remark 6.3. Once g, f , td, y, and Πn are fixed, whether or not the events TDHIT1 and TDHIT2

occur is determined, since the left hand side of inequalities (75) and (76) are completely determined.

Proof of Proposition 6.1. Let E denote the event that A inverts the trapdoor permutation, i.e.,
fn(pk, x) = y holds. If Pr[E] ≥ ε(n) holds, then one of the three conditions holds: (1) TDHIT1

occurs with a high probability, i.e., Pr[E ∧TDHIT1] ≥ ε(n)/3 holds, (2)TDHIT2 occurs with a high
probability, i.e., Pr[E ∧ TDHIT2] ≥ ε(n)/3 holds, or (3)¬(TDHIT1 ∨ TDHIT2) occurs with a high
probability, i.e., Pr[E ∧ ¬(TDHIT1 ∨ TDHIT2)] ≥ ε(n)/3 holds. Below we show that the claim of
the proposition holds in each case.

6.0.4 Case 1: The Event TDHIT1 Occurs.

Here we consider the case that TDHIT1 occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT1

]
≥ ε(n)

3
(77)

holds for infinitely many n. In this case, for each n such that (77) holds, there exist y0 ∈ {0, 1}n
and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂ inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

f̂n(pk, x) = y0 ∧ TDHIT1

]
≥ ε(n)

3
. (78)

Under the condition that TDHIT1 occurs, we have that∑
z

µA,f̂
inv

(td,z),i0
(pk, y0) >

δ

q(n) · Q̃(n)
≥ δ

Q̃(n)2
(79)

holds for some 1 ≤ i0 ≤ q(n). Below we construct an oracle-aided quantum algorithm B1 relative
to oracles g ∈ Perm({0, 1}n) and ColFindergλ′ (defined in Section 5), where λ′ is a function that λ′(n)
is sufficiently large for each n.

Before describing the algorithm B1, here we explain that we can simulate the oracles f̂ inv and

ColFinderg,f̂ ,f̂
inv

λ , given the truth table of f̂ and oracle access to g and ColFindergλ′ , with knowing pk
but without knowing td.

We begin with explaining how to simulate the oracle f̂ inv. Remember that f̂ inv(z, x) =
(f̂(g(z), ·))−1(x) holds. Thus we can evaluate f̂ inv once by using the truth table of f̂ and making
two queries to g.

35

Next we explain how to simulate the oracle ColFinderg,f̂ ,f̂
inv

λ . Given an oracle-aided circuit C

which may make queries to g, f̂ , and f̂ inv, first we replace each f̂ oracle gate in C with the concrete
quantum circuit that computes f̂ , by using the truth table of f̂ . (Note that here we do not care
whether calculations can be done efficiently, and we focus only on the number of queries to g.)
Second, we replace each f̂ inv oracle gate in C with an oracle-aided quantum circuit that computes
f̂ inv by using the truth table of f̂ and making two queries to g, in the same way as we simulate the
f̂ inv oracle.

Let Cfill denote the resulting circuit. If C is an η-query circuit, then Cfill makes at most 3η-

queries. By definition of Cfill, obviously ColFindergλ′(Cfill) = ColFinderg,f̂ ,f̂
inv

λ (C) holds. Thus we can

simulate the oracles of f̂ inv and ColFinderg,f̂ ,f̂
inv

λ .
Next we give the description of B1.

Algorithm B1.

1. B1 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation g ∈ Perm({0, 1}n).
The truth table of f̂ is hardcoded in the description of B1. Set guess←⊥.

2. Repeat the following procedures Q̃(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ

before the i0-th query to f̂ inv, and measure the i0-th query. B1 simulates the oracles

g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ as we described above. Let (t̃d, z̃) ∈ {0, 1}n × {0, 1}n be
the measurement result.

(b) Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

3. Return guess.

Analysis of B1. The number of queries to each of g and ColFinderg made by B1 is at most
Q̃(n)2(3q(n) + 1) ≤ 4Q̃(n)3. In addition, for each oracle aided circuit C that A queries to

ColFinderg,f,f̂
inv

λ , the number of queries to each oracle made by C is at most η(n), by assump-
tion. Hence, for each oracle aided circuit Cfill that B1 queries to ColFindergλ′ , the number of queries
to g made by Cfill is at most 3η(n).

From inequality (79), under the condition that TDHIT1 occurs, it follows that the probability

that B1 finds t̃d such that pk = g(t̃d) is at least 1 − (1 − δ/Q̃(n)2)Q̃(n)2 ≥ 1 − e−δ. (Here we used

the fact that (1− x)−
1
x ≥ e for 0 < x < 1.) That is, we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

∣∣∣∣TDHIT1

]
≥ 1− e−δ (80)

holds for the 4Q̃(n)3-query algorithm B1. From inequality (78), it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT1] ≥ ε(n)

3
(81)

holds for infinitely many n. Therefore we have

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

]
≥ (1− e−δ) · ε(n)

3
(82)

36

for infinitely many n.
Now we can show that there exists a constant const1 such that

max
{

4Q̃(n)3, 3η(n)
}
≥ const1 · ε(n) · 2n/7 (83)

holds for infinitely many n in the same way as we showed Proposition 5.1.

Moreover, since Q̃(n) = c2
⌈

12
ε(n)

⌉2
(max{q(n), η(n)}+ 1), we have that

4c6

⌈
12

ε(n)

⌉6

(max{q(n), η(n)}+ 1)3 ≥ const1 · ε(n) · 2n/7, (84)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)3 · 2n/21 (85)

for infinitely many n. Therefore the claim holds in this case.

6.0.5 Case 2: The Event TDHIT2 Occurs.

Here we consider the case that TDHIT2 occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT2

]
≥ ε(n)

3
(86)

holds for infinitely many n. In this case, for each n such that inequality (86) holds, again there
exist y0 ∈ {0, 1}n and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂ inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

f̂n(pk, x) = y0 ∧ TDHIT2

]
≥ ε(n)

3
, (87)

and we can construct an adversary B2 that inverts random permutation gn. Under the condition
that TDHIT2 occurs, we have that

∑
C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ
C,i0

(td, y) >
δ

Q̃(n) · q(n)
≥ δ

Q̃(n)2
(88)

holds for some 1 ≤ i0 ≤ q(n). In addition, for each trapdoor-hitting circuit C such that F g,f,f
inv

C (

w
(1)

Cg,f,f inv) 6=⊥, we have that

∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w

(1)

Cg,f,f inv) >
δ

Q̃(n)2
or

∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w

(2)

Cg,f,f inv) >
δ

Q̃(n)2
(89)

37

for some 1 ≤ j0 ≤ η(n), by definition of trapdoor-hitting circuits and since η(n) ≤ Q(n). Similarly,

for each trapdoor-hitting circuit C such that F g,f,f
inv

C (w
(1)

Cg,f,f inv) =⊥, we have that

∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w

(1)

Cg,f,f inv) >
δ

Q̃(n)2
(90)

for some 1 ≤ j0 ≤ η(n).
Below we construct an oracle-aided quantum algorithm B2 relative to oracles g ∈ Perm({0, 1}n)

and ColFindergλ′ (defined in Section 5), where λ′ is a function that λ′(n) is sufficiently large for each
n. In what follows, without loss of generality we assume that each circuit C that A queries to
ColFinder makes η(n) queries.

Algorithm B2.

1. B2 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation g ∈ Perm({0, 1}n)
and ColFindergλ′ . The truth table of f̂ is hardcoded in the description of B2. Set guess←⊥.

2. Repeat the following procedures Q̃(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ

before the i0-th query to ColFinderg,f̂ ,f̂
inv

λ , and measure the i0-th query. B2 simulates the

oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ as we described in the proof of Case 1. Let C be
the measurement result.

(b) Query Cfill to ColFindergλ′ to compute ColFinderg,f̂ ,f̂
inv

λ (C) = (w
(1)

C(g,f̂,f̂ inv)
, w

(2)

C(g,f̂,f̂ inv)
, u)

(see p. 36 for the definition of Cfill).

(c) For 1 ≤ i ≤ η(n), do:

i. Repeat the following procedures Q̃(n)2 times.

A. Run the circuit C on the input w
(1)

C(g,f̂,f̂ inv)
relative to g, f̂ , f̂ inv before the i-th

query to f̂ inv, and measure the i-th query. B2 simulates the oracles (g, f̂ , f̂ inv)
as we described in the proof of Case 1. Let (t̃d, z) ∈ {0, 1}n × {0, 1}n be the
measurement result.

B. Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

C. If w
(2)

C(g,f̂,f̂ inv)
6=⊥, do Steps A and B by using w

(2)

C(g,f̂,f̂ inv)
instead of w

(1)

C(g,f̂,f̂ inv)
.

3. Return guess.

Analysis of B2. First we analyze the number of queries made by B2. Steps (a) and (b) require
at most 3i0 ≤ 3q(n) and 1 queries to each oracle, respectively, and the maximum number of queries
made by each circuit Cfill that B2 queries to ColFindergλ′ is at most 3η(n).

In Step A, C makes at most η(n) queries to each oracle. Since B2 makes at most two queries
to g in order to simulate one evaluation of f̂ inv, B2 makes at most 3η(n) queries in Step A. In Step
B, B2 makes 1 query. Thus, in Step (c), B2 makes at most η(n) · (Q̃(n))2 · 2 · (3η(n) + 1) ≤ 8Q̃(n)4

queries.
Therefore B2 makes at most Q̃(n)2 ·(8Q̃(n)4+(3q(n)+1)) ≤ 12Q̃(n)6 queries, and the maximum

number of queries made by each circuit Cfill that B2 queries to ColFindergλ′ is at most 3η(n).

38

Second we analyze success probability of B2. Since inequality (88) holds, under the condition
that TDHIT2 occurs, the probability that B2 obtains a trapdoor-hitting circuit C in Step 2-(a)
at least once while B2 is running (below we call this event succ1) is lower bounded by 1 − (1 −
δ/Q̃(n)2)Q̃(n)2 ≥ 1 − e−δ. Since inequalities (89) or (90) hold for each trapdoor-hitting circuit,
under the condition that succ1 occurs, the probability that B2 obtains t̃d such that pk = g(t̃d) in
Step 2-(c)-i at least once while B2 is running under the condition that succ1 occurs is lower bounded

by 1− (1− δ/(Q̃(n))2)(Q̃(n))2 ≥ 1− e−δ. Hence it follows that B2 finds t̃d such that pk = g(t̃d) with
a probability at least (1− e−δ)2, under the condition that TDHIT2 occurs.

Now we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

∣∣∣∣TDHIT2

]
≥ (1− e−δ)2 (91)

holds for a 12Q̃6-query quantum algorithm B2. Moreover, from inequality (87), it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT2] >

ε(n)

3
(92)

holds for infinitely many n. Therefore we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

]
≥ (1− e−δ)2 · ε(n)

3
(93)

holds for infinitely many n. Thus we can show that there exists a constant const1 such that

max
{

12Q̃(n)6, 3η(n)
}
≥ const1 · ε(n) · 2n/7 (94)

holds for infinitely many n, in the almost same way as we showed Proposition 5.1.

Moreover, since Q̃(n) = c2
⌈

12
ε(n)

⌉2
(max{q(n), η(n)}+ 1), we have that

12c12

⌈
12

ε(n)

⌉12

(max{q(n), η(n)}+ 1)6 ≥ const1 · ε(n) · 2n/7, (95)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)3 · 2n/42 (96)

for infinitely many n. Therefore the claim also holds in this case.

6.0.6 Case 3: The Event ¬(TDHIT1 ∨ TDHIT2) Occurs.

Here we consider the case that ¬(TDHIT1 ∨ TDHIT2) occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(97)

39

holds for infinitely many n. In this case, for each n such that inequality (97) holds, there exist
an n-bit string td0 ∈ {0, 1}n, a permutation ĝn ∈ Perm({0, 1}n), and a family of permutations
{f̂(pk, ·)}pk 6=pk0

such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (pk0, y) :

f̂n(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (98)

Here we can construct a randomized compressing scheme (E,D) that compresses the truth table
of f̂(pk0, ·), and can show that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (99)

for infinitely many n, which implies that the claim also holds in this case.
The compressing scheme is an analogue of that in Section 5. Below we describe only the

difference between the randomized compressing scheme here and that in Section 5. See Appendix A
for a complete proof.

Difference from the Proof in Section 5. The constructions of E and D are almost the same
as that of Section 5, except that in this section D uses the dummy oracle that always returns ⊥ to
simulate the oracle f̂ inv(td0, ·).

The main difference from the proof in Section 5 is that, roughly speaking, we take X (the
domain of encoder E) and G (subset of {0, 1}n on which E “forgets” values of permutation f ∈ X)
in such a way that, for any f = f̂(pk0, ·) ∈ X and x ∈ G, (i) Â inverts f(x) in f with probability
at least 2/3 and (ii) the event ¬(TDHIT1 ∨ TDHIT2) always occurs with respect to Â, y = f(x),
and f = f̂(pk0, ·). We use ε(n)/6 and ε(n)/12, which may not be constants, instead of constants
p1 and p2 so that the condition (ii) will hold. Hence we have to change Lemma 5.1.

Accordingly, the statement of Lemma 5.3 and Lemma 5.4 will be slightly changed: In Lemma 5.3,
it is claimed that CalCy satisfies some suitable properties for good circuits, but in this section CalCy
satisfies the corresponding properties for good and non-trapdoor-hitting circuits. For Lemma 5.4,
the statement will not be changed in this section, but we will make full use of the condition (ii)
above in the proof.

Moreover, since we use ε(n)/6 and ε(n)/12 instead of constants p1 and p2, the factor ε(n)3,
instead of ε(n), appears in the final bound (99).

7 Concluding Remarks

In this paper we studied black-box impossibility in the quantum setting. We first formalized a
quantum counterpart of the classical fully-black-box reduction [RTV04], and then proved that
there is no quantum fully-black box reduction from collision-resistant hash function to one-way
permutation, or even trapdoor permutation. Our result is an extension to the quantum setting of
the work of Simon [Sim98] who showed a similar result in the classical setting. We used compressing
arguments to show the impossibility results, which is based on the work by Nayebi et al. [NABT15]
and extends the work by Asharov and Segev [AS15].
Future direction. Here, we give two possible future directions. The first is to strengthen the black-
box separation for CRH from other cryptographic primitives. In the classical setting, Asharov and

40

Segev [AS15] proved that there does not exist a black-box reduction from CRH to OWP (or TDP)
and indistinguishability obfuscation (IO) [GGH+13].9 Since IO and OWP implies many strong
cryptographic primitives including functional encryption [GGH+13], witness encryption [GGSW13],
deniable encryption [SW14] etc., their result means that it is difficult to construct CRH from these
primitives. Though it would be nice if we obtain a similar result in the quantum setting, it is
not clear how we can define IO and “black-box access” to it in the quantum setting. Thus we
considered simpler cases to separate CRH from OWP (or TDP) as a first step. We leave it as an
interesting open problem to extend our result to separate CRH from OWP (or TDP) and IO.

The second is to give quantum analogues of black-box impossibility results shown in the classical
setting. As seen in Section 1.3, there are many known black-box impossibility results shown in the
classical setting. However, we observe that many of them crucially relies on the fact that all
algorithms are classical, and it seems not easy to extend them to ones in the quantum setting.
Especially, a theoretically important question is if we can rule out a quantum black-box reduction
from classical-communication key-exchange to OWP (or OWF) in the quantum setting. (If quantum
communications are allowed, then the protocol in [BB84] is unconditionally secure. Therefore we
only consider the case of classical-communication for making the question meaningful.) We note
that this can be done if we prove that there does not exist a classical-communication key-exchange
protocol (with super-polynomial security) in the quantum random oracle model (QROM). In the
classical setting, a similar statement was proven by Impagliazzo and Rudich [IR89], followed by
Barak and Mahmoody [BMG09] who gave the optimal security bound. On the other hand, in the
quantum setting, we do not know any non-trivial security bound. We note that though Brassard et
al. [BHK+11] gave a classical-communication key-exchange protocol in the QROM that is secure
against adversary making q5/3 queries to the random oracle where q is the number of queries by
honest parties, they did not show their protocol is optimal in regard to security.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009, pages 229–242, 2009.

[ABF+16] Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni, Christian
Schaffner, and Michael St. Jules. Computational security of quantum encryption. In
Anderson C. A. Nascimento and Paulo Barreto, editors, ICITS 16, volume 10015 of
LNCS, pages 47–71. Springer, Heidelberg, August 2016.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 41–60. ACM
Press, May 2012.

[AGM18] Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz. Unforgeable quantum
encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 489–519. Springer, Heidelberg, April / May
2018.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

9Since a certain type of non-black-box construction is inherent in many IO-based constructions, they actually also
ruled out reductions using “commonly used” non-black-box techniques.

41

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classi-
cal proof systems: The hardness of quantum rewinding. In 55th FOCS, pages 474–483.
IEEE Computer Society Press, October 2014.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 191–
209. IEEE Computer Society Press, October 2015.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribu-
tion and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing, pages 175–179, India, 1984.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523,
1997.

[BBCS92] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène Skubiszewska.
Practical quantum oblivious transfer. In Joan Feigenbaum, editor, CRYPTO’91, vol-
ume 576 of LNCS, pages 351–366. Springer, Heidelberg, August 1992.

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions,
revisited. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 296–315. Springer, Heidelberg, December 2013.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.

[BHK+11] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante, and Louis
Salvail. Merkle puzzles in a quantum world. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 391–410. Springer, Heidelberg, August 2011.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and
claw-free functions. In Latin American Symposium on Theoretical Informatics, pages
163–169. Springer, 1998.

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits
of low T-gate complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 609–629. Springer, Heidelberg,
August 2015.

[BL17] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography. Nature, 549:188–
194, 2017.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

[BMG09] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal - an
O(n2)-query attack on any key exchange from a random oracle. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 374–390. Springer, Heidelberg, August
2009.

42

[Bra18] Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
67–95. Springer, Heidelberg, August 2018.

[BS16] Anne Broadbent and Christian Schaffner. Quantum cryptography beyond quantum
key distribution. Des. Codes Cryptography, 78(1):351–382, 2016.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to
factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages
59–71. Springer, Heidelberg, May / June 1998.

[CHS18] Nai-Hui Chia, Sean Hallgren, and Fang Song. On basing one-way permutations on
np-hard problems under quantum reductions. CoRR, abs/1804.10309, 2018.

[Cor02] Jean-Sébastien Coron. Security proof for partial-domain hash signature schemes. In
Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 613–626. Springer,
Heidelberg, August 2002.

[DFLS16] Frédéric Dupuis, Serge Fehr, Philippe Lamontagne, and Louis Salvail. Adaptive versus
non-adaptive strategies in the quantum setting with applications. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
33–59. Springer, Heidelberg, August 2016.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of
the full domain hash. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 449–466. Springer, Heidelberg, August 2005.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks
against one-way functions and PRGs. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 649–665. Springer, Heidelberg, August 2010.

[Fis12] Marc Fischlin. Black-box reductions and separations in cryptography. In Progress in
Cryptology - AFRICACRYPT 2012 - 5th International Conference on Cryptology in
Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings, pages 413–422, 2012.

[FKS+13] Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and Vassilis Zikas. Feasi-
bility and completeness of cryptographic tasks in the quantum world. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 281–296. Springer, Heidelberg, March
2013.

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam,
and Stefano Tessaro. Random oracles with(out) programmability. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 303–320. Springer, Heidelberg,
December 2010.

[FS12] Dario Fiore and Dominique Schröder. Uniqueness is a different story: Impossibility of
verifiable random functions from trapdoor permutations. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 636–653. Springer, Heidelberg, March 2012.

[GC01] Daniel Gottesman and Isaac Chuang. Quantum digital signatures. CoRR, abs/quant-
ph/0105032, 2001.

43

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219.
ACM, 1996.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryp-
tographic constructions. In 41st FOCS, pages 305–313. IEEE Computer Society Press,
November 2000.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108. ACM Press, June 2011.

[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions
in interactive protocols - a tight lower bound on the round complexity of statistically-
hiding commitments. In 48th FOCS, pages 669–679. IEEE Computer Society Press,
October 2007.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 850–858, 2018.

[Hof11] Dennis Hofheinz. Possibility and impossibility results for selective decommitments.
Journal of Cryptology, 24(3):470–516, July 2011.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure
hash functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 92–105. Springer, Heidelberg, August 2004.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December 2, 2011. Pro-
ceedings, pages 19–34, 2011.

[KSVV02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical
and quantum computation. Number 47. American Mathematical Soc., 2002.

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 332–338, 2018.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, 44:114–116, 1978.

44

[NABT15] Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. Quantum lower
bound for inverting a permutation with advice. Quantum Information & Computation,
15(11&12):901–913, 2015.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010.

[NIS16] National Institute of Standards and Technology. Post-quantum cryptography standard-
ization. 2016. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Lance Fortnow
and Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–118. ACM Press, June 2011.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342.
ACM Press, May / June 2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

[RS18] Lior Rotem and Gil Segev. Injective trapdoor functions via derandomization: How
strong is rudich’s black-box barrier? In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, volume 11239 of LNCS, pages 421–447. Springer, Heidelberg, November
2018.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 1–20. Springer, Heidelberg, February 2004.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-way Functions. PhD
thesis, University of California, Berkeley, 1988.

[Rud92] Steven Rudich. The use of interaction in public cryptosystems (extended abstract). In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 242–251. Springer,
Heidelberg, August 1992.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In 35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 334–345. Springer, Heidelberg, May / June 1998.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 497–527. Springer, Heidelberg, May 2016.

45

[Vaz98] Umesh Vazirani. On the power of quantum computation. PHILOSOPHICAL
TRANSACTIONS-ROYAL SOCIETY OF LONDON SERIES A MATHEMATICAL
PHYSICAL AND ENGINEERING SCIENCES, pages 1759–1767, 1998.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum
Information & Computation, 15(7&8):557–567, 2015.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In EUROCRYPT
2019 (to appear), 2019.

A A Complete Proof for the Case 3 of Proposition 6.1.

The goal of this section is to show the following proposition.

Proposition A.1. Suppose that, for infinitely many n, there exist an n-bit string td0 ∈ {0, 1}n, a
permutation ĝn ∈ Perm({0, 1}n), and a family of permutations {f̂n(pk, ·)}pk 6=pk0

such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (pk0, y) :

f̂n(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (100)

holds. Then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (101)

holds for infinitely many n.

A.0.1 Preparations.

Here we describe some technical preparations before using the encoding technique. Without loss
of generality we can assume that q(n), η(n), λ(n) ≥ 1 holds, since increasing these numbers does
not decrease the ability of A to invert f̂ . In a similar way as we did in Section 5, we construct
another algorithm Â that iteratively runs A to increase the success probability, and then apply the
encoding technique to Â.

Remember that c is a sufficiently large positive integer in Section 6. Let Bc be an oracle-aided

quantum algorithm that runs as follows, relative to the oracles ĝ, f̂ , f̂ inv, ColFinderĝ,f̂ ,f̂
inv

λ .

1. Take an input y. Set guess←⊥.

2. For i = 1, . . . , cd12/ε(n)e do:

3. Run Aĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

λ on the input (pk0, y). Let x be the output.

4. Query (pk0, x) to f̂ . If f̂(pk0, x) = y, then set guess← x.

5. End For

46

6. Return guess.

Remember that Q(n) is defined as cd12/ε(n)e(max{q(n), η(n)}+1) in Section 6. Bc can be regarded

as a Q-query algorithm, and for each quantum circuit C that Bc queries to ColFinderĝ,f̂ ,f̂
inv

λ,n , C makes
at most Q(n) queries.

Lemma A.1 that will be shown below corresponds to Lemma 5.1 in Section 5. The main
difference between Lemma A.1 and Lemma 5.1 is that Lemma A.1 uses ε(n)/6 and ε(n)/12, which
may not be constants, instead of constants p1 and p2, respectively. We use ε(n)/6 and ε(n)/12 so
that, for x ∈ G (G is the set we will use in our encoder and decoder) and f = f̂(pk0, ·) ∈ X, Bc
will invert y = f(x) = f̂(pk0, x) in f = f̂(pk0, ·) and the event ¬(TDHIT′1 ∨ TDHIT′2) occurs with
respect to Bc, y, and f . Here, TDHIT′1 and TDHIT′2 are the events defined as follows.

Definition of the events TDHIT′1 and TDHIT′2. For each n, we define TDHIT′1 as the event
that ∑

z

µBc,f
inv

(td,z) (pk, y) >
δ

Q(n)
(102)

occurs. In addition, for each n, we define TDHIT′2 as the event that∑
C:trapdoor-hitting

µ
Bc,ColFinderg,f,f

inv

λ
C (pk, y) >

δ

Q(n)
(103)

occurs. Note that, in the definitions of TDHIT1 and TDHIT2, we used Q̃(n) instead of Q(n). We
need not only TDHIT1 and TDHIT2 but also TDHIT′1 and TDHIT′2 since Bc makes more queries
than A, and thus the query magnitudes of Bc is larger than those of A. (See (75) and (76) for the
definitions of TDHIT1 and TDHIT2.)

Lemma A.1. For a sufficiently large positive integer c, the following condition is satisfied for
infinitely many n:
Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ ε(n)

6 · |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 2/3

∧ ¬(TDHIT′1 ∨ TDHIT′2)

]
≥ ε(n)

12
(104)

for all f̂n(pk0, ·) ∈ X. (Note that whether or not the event ¬(TDHIT′1 ∨ TDHIT′2) occurs is deter-
mined once y, f̂n(pk0, ·) ĝ, {f̂n(z, ·)}z 6=pk0

, td0, pk0, and Πn are all fixed.)

Proof. Let c be an integer that satisfies e−c ≤ 1/3. In what follows, we show that this c satisfies
the condition.

First, for each n such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(105)

47

holds, there exists Πn such that

Pr
f̂n(pk0,·),
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(106)

holds. Below we fix Πn that satisfies inequality (106) for each n such that inequality (105) holds.
Now we have that

Pr
f̂n(pk0,·)

[
Pr

y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6

]
≥ ε(n)

6
(107)

from inequality (106). In other words, there exists X ⊂ Perm({0, 1}n) such that |X| is lower

bounded by ε(n)
6 |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6
(108)

holds for all f̂n(pk0, ·) ∈ X. Hence, for each f̂n(pk0, ·) ∈ X, from inequality (108) it follows that

Pr
y←{0,1}n

[
Pr

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y]

≥ ε(n)

12
∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

12
(109)

For each pair (f(pk0, ·), y) ∈ X × {0, 1}n such that

Pr

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

]
≥ ε(n)

12

∧ ¬(TDHIT1 ∨ TDHIT2), (110)

we have that

Pr

[
x← B

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 1−

(
1− ε(n)

12

) 12c
ε(n)

= 1−

((
1− ε(n)

12

)− 1
ε(n)
12

)−c
. (111)

48

The right hand side of inequality (111) is equal to 1 if ε(n) = 1, and lower bounded by 1− e−c ≥ 2
3

if ε(n) < 1 (here we used the fact that (1 − x)−
1
x ≥ e holds for 0 < x < 1). In addition, for

each pair (f(pk0, ·), y) ∈ X ×{0, 1}n such that (110) holds, the event ¬(TDHIT′1 ∨TDHIT′2) occurs
with respect to Bc by definition of the events TDHIT1, TDHIT2, TDHIT′1, and TDHIT′2 since Bc
iteratively runs A just cd12/ε(n)e times, and Q̃(n) = cd12/ε(n)eQ(n) holds. Therefore the claim
holds.

Then, from the above lemma, it follows that there exists a constant c that satisfies the condition
in Lemma A.1 for infinitely many n. Let us denote Bc by Â. We use the encoding technique to this
Q-query algorithm Â, here Q(n) = cd12/ε(n)e(max{q(n), η(n)} + 1). Below we fix a sufficiently
large n in addition to Πn and X such that the condition in Lemma A.1 is satisfied. For simplicity, we

write Q, ε, ĝ, f̂ , f̂ inv, and ColFinderĝ,f̂ ,f̂
inv

instead of Q(n), ε(n), ĝn, f̂n, f̂ inv
n , and ColFinderĝ,f̂ ,f̂

inv

λ,Π,n ,

respectively, for simplicity. Moreover, sometimes we write f instead of f̂(pk0, ·).
Below we describe an encoder E and a decoder D that compress elements (truth tables of

permutations) in X. The encoder in this section has to deal with more oracles than the encoder
in Section 5 does, but there is no essential difference between them. The decoder in this section
has to simulate the oracle f̂ inv(td0, ·) = (f̂(pk0, ·))−1 since Â may make queries to it. However,
f̂(pk0, ·) itself is the permutation that our decoder want to invert. Thus we use the dummy oracle
that returns ⊥ for any input instead of f inv(td0, ·). Since the sets X and G will be constructed in
such a way that the event ¬(TDHIT′1 ∨ TDHIT′2) occurs with respect to Â, f = f̂(pk0, ·) ∈ X, and
y ∈ G, Â will not be able to distinguish the dummy oracle and f̂ inv(td0, ·).

A.0.2 Encoder E.

When we feed E with f = f̂(pk0, ·) ∈ X as an input, E first chooses subsets R,R′ ⊂ {0, 1}n
by the following sampling: For each x ∈ {0, 1}n, x is added to R with probability δ3/2/Q2, and
independently added to R′ with probability δ5/2/Q4. (The pair (R,R′) is the random coin of E.)

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits) to ColFinderĝ,f̂ ,f̂
inv

are defined for each x ∈ {0, 1}n as follows. Note that now π
(1)
C and π

(2)
C have been fixed for

each C, and the output ColFinderĝ,f̂ ,f̂
inv

(C) = (w
(1)

C ĝ,f̂ ,f̂ inv , w
(2)

C ĝ,f̂ ,f̂ inv , F
ĝ,f̂ ,f̂ inv

C (w
(1)

C ĝ,f̂ ,f̂ inv)) is uniquely

determined. For each oracle-aided quantum circuit C such that F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) 6=⊥, we can

define query magnitude of C to f = f̂(pk0, ·) on input w
(1)

C ĝ,f̂ ,f̂ inv and w
(2)

C ĝ,f̂ ,f̂ inv at z ∈ {0, 1}n (see

Definition 3.5). We say a quantum circuit C such that F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) 6=⊥ is bad relative to x

if ∑
z∈R′\{x}

µ
C,f̂(pk0,·)
z (w

(1)

C ĝ,f̂ ,f̂
inv) >

δ

Q
(112)

or ∑
z∈R′\{x}

µ
C,f̂(pk0,·)
z (w

(2)

C ĝ,f̂ ,f̂ inv) >
δ

Q
(113)

hold, and otherwise we say C is good relative to x. For quantum circuits C such that F ĝ,f̂ ,f̂
inv

C (

w
(1)

C ĝ,f̂ ,f̂ inv) =⊥, we always say that C is good. Let badC(R′, x) denote the set of bad circuits relative

to x for each R′ ⊂ {0, 1}n.
Next, E construct a set G ⊂ {0, 1}n depending on the input f = f̂(pk0, ·). Let I ⊂ {0, 1}n

be the set of elements x such that Â successfully inverts f(x) = f̂(pk0, x), i.e., I := {x | Pr[x′ ←

49

Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

(f̂(pk0, x)) : x′ = x] ≥ 2/3. Then |I| ≥ ε
12 · 2

n holds by definition of X
(Remember that X is chosen in such a way as to satisfy the condition in Lemma A.1). Now, a set
G is defined to be the set of elements x ∈ I that satisfies the following conditions:

Conditions for G.

(Cond. 1) x ∈ R ∩R′.

(Cond. 2)
∑

z∈R\{x} µ
Â,f̂(pk0,·)
z (f̂(pk0, x)) ≤ δ/Q.

(Cond. 3)
∑

C∈badC(R′,x) µ
Â,ColFinderĝ,f̂ ,f̂

inv

C (f̂(pk0, x)) ≤ δ/Q.

Finally, E encodes f = f̂(pk0, ·) into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 − 60
√
δ)δ4 ·

(ε
12) · 2n/2Q6. Otherwise E encodes f = f̂(pk0, ·) into ⊥.

In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (114)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permutation f ∈ X.

A.0.3 Decoder D.

D takes (f̃ , G̃) as input in addition to (R,R′), where G̃ ⊂ {0, 1}n and f̃ is a bijection from a subset
of {0, 1}n onto {0, 1}n \ G̃, and R,R′ are subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂ R∩R′
holds, then D outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstruct the truth table of a
permutation f = f̂(pk0, ·) ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) = f̂(pk0, x) as f(x) := f̃(x). For other
elements x ∈ {0, 1}n which is not contained in the domain of f̃ , what D now knows is only that
f(x) is contained in G̃. To determine the remaining part of the truth table of f = f̂(pk0, ·), D
tries to recover the value f−1(y), which is equal to (f̂(pk0, ·))−1(y) = f̂ inv(td0, y), for each y ∈ G̃
by using Â and without the oracle f̂ inv(td0, ·).

In a similar way as we did in Section 5, D prepares oracles hy and SimCFhy which ap-

proximates f(pk0, ·) and ColFinderĝ,f̂ ,f̂
inv

, respectively, and computes the output distribution of

Âĝ,(hy ,f̂pk6=pk0
),(⊥,f̂ inv

td 6=td0
),SimCFhy

on input y. Here, (hy, f̂pk 6=pk0
) is the oracle that returns hy(x) on

input (pk0, x), and returns f̂(z, x) on input (z, x) such that z 6= pk0. (⊥, f̂ inv
td 6=td0

) is the oracle that

returns ⊥ on input (td0, x) and returns f̂ inv(z, x) on input (z, x) such that z 6= td0.
SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is an oracle-aided circuit that

may make queries to ĝ, f̂ , f̂ inv and computes a function F ĝ,f̂ ,f̂
inv

C , and w is an element of the domain

of F ĝ,f̂ ,f̂
inv

C) and simulates the evaluation of F ĝ,f̂ ,f̂
inv

C (w). D finally infers that f−1(y), which is equal

to (f(pk0, ·))−1(y) = f inv(td0, y), is the element which Âĝ,(hy ,f̂pk 6=pk0
),(⊥,f̂ inv

td 6=td0
),SimCFhy

outputs with
probability greater than 1/2. (If there does not exist such an element, then D outputs ⊥.) Below
we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(115)

50

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R∩R′}. CalCy is defined

as the following procedures. For h′ ∈ Pcandidate, let (h′−1, f̂ inv
td6=td0

) denote the oracle that returns

h′−1(x) on input (td0, x) and returns f̂ inv(z, x) on input (z, x) such that z 6= td0.

1. Take an input (C,w), where C is an oracle-aided circuit and w is an element of the domain
of the function FC .

2. Compute the output distribution of the quantum circuit C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td 6=td0

)
on in-

put w for each h′ ∈ Pcandidate, and find the corresponding output u(C,w, h′) such that

Pr
[
C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td 6=td0

)
(w) = u(C,w, h′)

]
> 1/2. If there are no such u(C,w, h′) for

a fixed h′, set u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value u(C,w, h′). Other-
wise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Compute w̃
(1)

C ĝ,f̂ ,f̂ inv := π
(1)
C (0m).

3. If CalCy(C, w̃
(1)

C ĝ,f̂ ,f̂ inv) =⊥, set w̃
(2)

C ĝ,f̂ ,f̂ inv :=⊥.

4. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
(1)

C ĝ,f̂ ,f̂
inv) = CalCy(C, π

(2)
C (t))

by checking whether CalCy(C, w̃
(1)

C ĝ,f̂ ,f̂ inv) = CalCy(C, π
(2)
C (i)) holds for i = 0, 1, 2, . . . in a

sequential order. If the minimum number t is found, set w̃
(2)

C ĝ,f̂ ,f̂ inv := π
(2)
C (t). Otherwise set

w̃
(2)

C ĝ,f̂ ,f̂ inv :=⊥.

5. Return (w̃
(1)

C ĝ,f̂ ,f̂ inv , w̃
(2)

C ĝ,f̂ ,f̂ inv ,CalCy(C, w̃
(1)

C ĝ,f̂ ,f̂ inv)).

Note that D is an information theoretic decoder, and we do not care whether CalCy and SimCFhy

run efficiently.

A.0.4 Analyses.

The following lemma, which corresponds to Lemma 5.3 in Section 5, shows that hy, CalCy, and
SimCFhy satisfy some suitable properties. Here we consider the situation that D takes an input
(f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for some subsets R,R′ ⊂ {0, 1}n and a permutation f =
f̂(pk0, ·) ∈ {0, 1}n, and tries to recover the value f−1(y) for some y ∈ G̃.

In Lemma 5.3, some suitable properties are satisfied for good circuits. On the other hand,
in Lemma A.2, to satisfy the corresponding suitable properties, a circuit have to be good and
non-trapdoor-hitting (see (73) for the definition of non-trapdoor-hitting circuits). This is the main
difference between Lemma 5.3 and Lemma A.2.

Lemma A.2. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

51

2. CalCy(C,w) = F ĝ,f̂ ,f̂
inv

C (w) or ⊥ holds for any C and w.

3. For each non-trapdoor-hitting circuit C which is good relative to f−1(y) and satisfies F ĝ,f̂ ,f̂
inv

C (

w
(1)

C ĝ,f̂ ,f̂ inv) 6=⊥, it holds that CalCy(C,w
(1)

C ĝ,f̂ ,f̂ inv) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) and CalCy(C,w
(2)

C ĝ,f̂ ,f̂ inv)

= F ĝ,f̂ ,f̂
inv

C (w
(2)

C ĝ,f̂ ,f̂ inv). In addition, for each circuit C such that F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) =⊥,

CalCy(C,w
(1)

C ĝ,f̂ ,f̂ inv) =⊥ holds.

4. SimCFhy(C) = ColFinderĝ,f̂ ,f̂
inv

(C) holds for each circuit C which is good relative to f−1(y)

and non-trapdoor-hitting. In particular, ∆(ColFinderĝ,f̂ ,f̂
inv
,SimCFhy) ⊂ badC(R′, f−1(y))∪hitC

holds, where hitC is the set of trapdoor-hitting circuits.

Proof. The first property is obviously satisfied by definition of hy.

For the second property, since f = f̂(pk0, ·) ∈ Pcandidate, if CalCy(C,w) 6=⊥ then we have

CalCy(C,w) = u(C,w, f) by definition of CalCy, and u(C,w, f) = F ĝ,f̂ ,f̂
inv

C (w) always holds. Hence
the second property holds.

For the third property, for each h′ ∈ Pcandidate, from Lemma 3.2 we have

Pr
[
C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td 6=td0

)
(w

(1)

C ĝ,f̂ ,f̂ inv) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv)
]

≥ Pr
[
C ĝ,f̂ ,f̂

inv
(w

(1)

C ĝ,f̂ ,f̂ inv) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv)
]

−
∥∥∥C ĝ,f̂ ,f̂ inv |w(1)

C ĝ,f̂ ,f̂ inv , 0, 0〉 − C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td6=td0

) |w(1)

C ĝ,f̂ ,f̂ inv , 0, 0〉
∥∥∥ . (116)

From the swapping lemma (Lemma 3.3) it follows that∥∥∥C ĝ,f̂ ,f̂ inv |w(1)

C ĝ,f̂ ,f̂ inv , 0, 0〉 − C
ĝ,(h′,f̂pk 6=pk0

),(h′−1,f̂ inv
td 6=td0

) |w(1)

C ĝ,f̂ ,f̂ inv , 0, 0〉
∥∥∥

≤ 2

√
Q

∑
z∈∆(f(pk0,·),h′)

µ
C,f̂(pk0,·)
z (w

(1)

C ĝ,f̂ ,f̂ inv)

+2

√
Q

∑
z∈{0,1}n

µ
C,f̂ inv(td0,·)
z (w

(1)

C ĝ,f̂ ,f̂ inv). (117)

Since ∆(f(pk0, ·), h′) = ∆(f, h′) ⊂ R∩R′\{f−1(y)} ⊂ R′\{f−1(y)} holds for all h′ ∈ Pcandidate, and
C is good relative to f−1(y) and non-trapdoor-hitting, the right hand side of the above inequality
is upper bounded by 2

√
δ + 2

√
δ = 4

√
δ. Thus, for a sufficiently small δ we have

Pr
[
C
ĝ,(h′,f̂pk 6=pk0

),(h′−1,f̂ inv
td 6=td0

)
(w

(1)

C ĝ,f̂ ,f̂ inv) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv)
]
≥ 2

3
− 4
√
δ >

1

2
, (118)

which implies that u(C,w
(1)

C ĝ,f̂ ,f̂ inv , h
′) = F ĝ,f̂ ,f̂

inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) holds for every h′ ∈ Pcandidate. Thus

CalCy(C,w
(1)

C ĝ,f̂ ,f̂ inv) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) holds if C is good relative to f−1(y) and non-trapdoor-

hitting. It can be shown that the corresponding property also holds for w
(2)

C ĝ,f̂ ,f̂ inv in the same way.

In addition, for a circuit C such that F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂
inv) =⊥, CalCy(C,w

(1)

C ĝ,f̂ ,f̂ inv) =⊥ holds since

u(C,w
(1)

C ĝ,f̂ ,f̂ inv , f) = F ĝ,f̂ ,f̂
inv

C (w
(1)

C ĝ,f̂ ,f̂ inv) =⊥ holds. Therefore the third property follows.

The fourth property follows from the definition of SimCFhy , the second property, and the third
property.

52

The following lemma shows that the decoding always succeeds if the encoding succeeds. In the
proof below, we make full use of the condition that the sets X and G are constructed in such a
way that the event ¬(TDHIT′1 ∨ TDHIT′2) occurs with respect to Â, f = f̂(pk0, ·) ∈ X, and y ∈ G.

Lemma A.3. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds for each f = f̂(pk0, ·) ∈
X.

Proof of Lemma 5.4. Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can correctly recover

x = f−1(y) for each y ∈ G̃.

We apply the swapping lemma (Lemma 3.3) to the oracle tuples (ĝ, f̂ , f̂ inv,ColFinderĝ,f̂ ,f̂
inv

)
and (ĝ, (hy, f̂pk 6=pk0

), (⊥, f̂ inv
td 6=td0

), SimCFhy). Then we have∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

n |f(x), 0, 0〉 − Â
ĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≤ 2

√√√√Q
∑

z∈∆(f̂(pk0,·),hy)

µ
Â,f̂(pk0,·)
z (f(x)) + 2

√
Q

∑
z∈{0,1}n

µ
Â,f̂ inv(td0,·)
z (f(x))

+ 2

√√√√Q
∑

C∈∆(ColFinderĝ,f̂ ,f̂
inv
,SimCFhy)

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x)). (119)

Since ∆(f̂(pk0, ·), hy) = ∆(f, hy) = R ∩R′ \ {f−1(y)} ⊂ R \ {f−1(y)} = R \ {x} hold, the first
term of the right hand side of inequality (119) is upper bounded by

2

√
Q

∑
z∈R\{x}

µ
Â,f̂(pk0,·)
z (f(x)), (120)

which is upper bounded by 2
√
δ due to the condition (Cond. 2) (see p. 50).

In addition, since TDHIT′1 does not occur for f = f̂(pk0, ·) ∈ X and y ∈ G̃ by definition of X
and G̃, the second term of the right hand side of inequality (119) is also upper bounded by 2

√
δ.

Moreover, since ∆(ColFinderĝ,f̂ ,f̂
inv
,SimCFhy) ⊂ badC(R′, f−1(y)) ∪ hitC = badC(R′, x) ∪ hitC

holds from Lemma A.2, it follows that∑
C∈∆(ColFinderĝ,f̂ ,f̂

inv
,SimCFhy)

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x))

≤
∑

C∈badC(R′,x)

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x)) +
∑

C∈hitC
µÂ,ColFinder

ĝ,f̂ ,f̂ inv

C (f(x))

≤ δ

Q
+
δ

Q
, (121)

here we used the condition (Cond. 3) (see p. 50) and that TDHIT′2 does not occur for f = f̂(pk0, ·) ∈
X and x ∈ G by definition of X and G for the last inequality. Hence the third term of the right
hand side of eq. (119) is upper bounded by 8

√
δ.

Thus, eventually we have∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

n |f(x), 0, 0〉

−Â
ĝ,(hy ,f̂pk 6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥ ≤ 8

√
δ. (122)

53

Finally, from Lemma 3.2, for sufficiently small δ it follows that

Pr
[
Âĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy
(f(x)) = x

]
≥ Pr

[
Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂

inv

(f(x)) = x

]
−
∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂

inv

n |f(x), 0, 0〉

−Â
ĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≥ 2/3− 8
√
δ > 1/2, (123)

which implies that D correctly recovers x = f−1(y).

The following lemma shows that our E and D works well with a constant probability.

Lemma A.4. If Q6 ≤ δ4 · ε12 · 2
n/32,

Pr
(R,R′)

[
D((R,R′), E((R,R′), f) = f

]
≥ 0.7 (124)

holds for each f = f̂(pk0, ·) ∈ X.

Since it can be proven in the almost same way as Lemma 5.5 is proven (by replacing ε(n)
6 and

ε(n)
12 with p1 and p2, respectively), here we omit the proof of Lemma A.4.

Finally, we show that Proposition A.1 follows from the above lemmas.

Proof of Proposition A.1. First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (125)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| = M} (126)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(127)

for sufficiently large n. Here we show the following claim.

Claim A.1. If Q6 ≤ δ4 · ε12 · 2
n/32, there exists a constant const1 such that Q6 ≥ const1 · ε2 · 2n/n

holds. We can choose const1 independently of n.

Proof of Claim. By definition of X, |X| ≥ ε
6 · (2

n)! holds. In addition, from inequality (127), we

have |Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming that Q6 ≤ δ4 · ε12 ·2

n/32 holds, it follows

that |Y | ≥ 0.7|X| from Lemma 5.2 and Lemma A.4. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 · ε6 · (2

n)!, which
is equivalent to

6 · 2n

0.7 · ε
≥ dθe!. (128)

54

Since n! ≥ 2n holds for n ≥ 4, we have that⌈
6 · n

0.7 · ε

⌉
! ≥ 6 · 2n

0.7 · ε
(129)

for sufficiently large n. Hence we have d 6·n
0.7·εe ≥ dθe, which implies that

6n

0.7 · ε
+ 1 ≥ θ = δ4

(
1− 60

√
δ
)
· ε

12
· 2n

2Q6
(130)

holds. Moreover, since δ is a constant, there exists a constant const1 that is independent of n and

Q6 ≥ const1 · ε2 · 2n/n (131)

holds, which completes the proof of the claim.

From the above claim, it follows that there exists a constant const2 such that

Q6 ≥ min
{
δ4 · ε

12
· 2n/32, const1 · ε2 · 2n/n

}
≥ const2 · ε22n/n (132)

holds.
Since Q = c

⌈
12
ε

⌉
(max{q, η}+ 1) by definition of Q and 1

ε ≥ 1, we have

c6

⌈
12

ε

⌉6

(max{q, η}+ 1)6 ≥ const2 · ε2 · 2n/n. (133)

Hence there exists a constant const such that

max{q, η} ≥ const · ε3 · 2n/7 (134)

holds for sufficiently large n, which completes the proof.

B Technical Difference from the Previous Version

Here we describe the technical difference from this paper’s previous version. The previous version
contained a technical error and failed to show the main results. Below we explain only the difference
in Section 5 (the separation result for CRH and OWP), since the difference in Section 6 (the
separation result for CRH and TDP) is almost the same.

Roughly speaking, in the previous version, the oracle ColFinderf was too weak, and one can-
not break collision-resistance of all (compressing) hash functions with that oracle contrary to our
claim.10 In the current version, we have modified ColFinderf so that it will certainly break collision-
resistance of all (compressing) hash functions. The construction of ColFinderf has been changed,
but other parts of the proof remains almost the same. Below we explain details about what was
wrong with ColFinderf and how we have corrected it, with an example.

In the previous version, we defined that an input (quantum circuit) C to ColFinderf is valid
if Cf computes a totally defined function for all permutations f ∈ Perm({0, 1}n) (in addition, we
defined that C is invalid if it is not valid). We constructed ColFinderf in such a way that, on
each input C, it first checks whether it is a valid input, and reject (i.e., outputs ⊥) if it is invalid.

10This was pointed out by a reviewer of STOC 2019.

55

The previous ColFinderf failed to find collisions of some hash functions because of this checking
procedure.

For example, let (Genf ,Evalf) be an oracle-aided implementation of hash function (a pair of
oracle-aided quantum circuits) that makes queries to a permutation f . Fix a positive integer n.
Assume that outputs of Genf on the input 1n are always in {0, 1}n and f is an n-bit permutation, for
simplicity. In addition, suppose that Evalf (σ, ·) computes a function Hf (σ, ·) : {0, 1}n+1 → {0, 1}n
for each σ returned by Genf (1n). Now, consider to construct another implementation of hash
function (Gen

′f ,Eval
′f) as follows.

Algorithm Gen
′f .

1. Take 1n as an input.

2. Run Genf on the input 1n and obtain an output σ ∈ {0, 1}n.

3. Choose r from {0, 1}n uniformly at random and compute f(r) by querying r to f .

4. Return σ′ := (σ, r, f(r)) ∈ {0, 1}3n.

Algorithm Eval
′f .

1. Take (σ′, x) as an input, where σ′ = (σ, r, v) and σ, r, v ∈ {0, 1}n.

2. Check if f(r) = v holds by querying r to f . If it does not hold, return ⊥.

3. If f(r) = v, compute y = Hf (σ, x) by running Evalf on the input (σ, x), and return y.

The pair (Gen
′f ,Eval

′f) is in fact an (oracle-aided) implementation of hash function. Let σ′ =
(σ, r, f(r)) be an output of Gen

′f (1n). The previous ColFinderf should have been constructed in
such a way that it would return a collision of Hf (σ′, ·) when the (oracle-aided) quantum circuit
of Eval

′(·)(σ′, ·) is queried. However, since there exists a permutation g such that g(r) 6= f(r) and
Eval

′g(σ, ·) outputs ⊥ for any input x, the previous ColFinderf judges that the input Eval
′(·)(σ′, ·)

is invalid. In particular, ColFinderf (Eval
′(·)(σ′, ·)) =⊥ holds, and thus we failed to prove the main

theorem in the previous version.
On the other hand, in the current version, we just removed the checking procedure from

ColFinderf so that it will correctly return collisions for all possible implementations of hash function.
Though this modification may seem significant, the remaining parts of the proof remain almost the
same. Namely, we did not use the fact that ColFinderf immediately returns ⊥ for invalid inputs in
the proof at all, and the checking procedure was just unnecessary and extra one.

56

	Introduction
	Background
	Our Results
	Related Work

	Technical Overview
	Previous Works in the Classical Setting
	Separation of CRH from OWP in the Classical Setting.

	Our Impossibility Results in the Quantum Setting

	Preliminaries
	Quantum Algorithms
	Technical Lemmas
	Swapping Lemma for Multiple Oracles.

	Quantum Primitives and Black-Box Quantum Reductions
	Concrete Primitives

	Impossibility of Reduction from QC-qCRH to CC-qOWP
	Oracle ColFinder.
	Proof of Theorem 5.1.

	Proof of Proposition 5.1
	Preparations.
	An Information Theoretic Property of Randomized Compressing Schemes.
	Encoder E.
	Decoder D.
	Analyses.

	Impossibility of Reduction from QC-qCRH to CC-qTDP
	Oracles that separates QC-qCRH from CC-qTDP.
	Intuitive Overview of Proof Idea.
	Formal Proof.
	Case 1: The Event TDHIT1 Occurs.
	Case 2: The Event TDHIT2 Occurs.
	Case 3: The Event (TDHIT1 TDHIT2) Occurs.

	Concluding Remarks
	A Complete Proof for the Case 3 of Proposition 6.1.
	Preparations.
	Encoder E.
	Decoder D.
	Analyses.

	Technical Difference from the Previous Version

