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Abstract. Ring signatures, as introduced by Rivest, Shamir, and Tau-
man (Asiacrypt ’01), allow to generate a signature for a message on be-
half of an ad-hoc set of parties. To sign a message, only the public keys
must be known and these can be generated independently. It is further-
more not possible to identify the actual signer based on the signature.
Ring signatures have recently gained attention due to their applicability
in the construction of practical anonymous cryptocurrencies, where they
are used to secure transactions while hiding the identity of the actual
spender. To be applicable in that setting, ring signatures must allow to
determine when a party signed multiple transactions, which is done using
a property called linkability.
This work presents a linkable ring signature scheme constructed from
a lattice-based collision-resistant hash function. We follow the idea of
existing schemes which are secure based on the hardness of the discrete
logarithm problem, but adapt and optimize ours to the lattice setting. In
comparison to other designs for (lattice-based) linkable ring signatures,
our approach avoids the standard solution for achieving linkability, which
involves proofs about correct evaluation of a pseudorandom function us-
ing heavy zero-knowledge machinery.
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1 Introduction

Digital signatures are one of the most important concepts in the area of cryp-
tography. They permit a party to generate a key pair (SK,PK), give PK to
the public and add certain information Ω - called the signature - to a message
m. Ω is derived using the private (or signing) key SK and later allows a verifier,
equipped with the public verification key PK, to attest that the signer indeed
generated Ω for this specific message m. Verification is done in a way such that
only a party who possesses certain secret information that only the signer has,
namely the secret signing key SK, can generate a valid signature for PK.

Ring signatures, which were first suggested by Rivest, Shamir, and Tauman
[41], relax the condition of having exactly one pair (SK,PK) for signing and
verification to a certain extent. They allow a party among a set of N participants
to sign a message on behalf of all of them. Here it is crucial that the verifier
cannot identify the party that signed the message, while nobody outside of the
N participants should be able to sign a message as if he was a participant
himself. In comparison to group signatures, the set of parties does not need to
be known ahead of time, but only when the signature is generated. Therefore,
no key-generation algorithm which generates correlated randomness for all N
parties needs to be involved and the rings can be set up ad-hoc4.

For such a ring signature, each signer could issue an arbitrary number of
signatures. Fujisaki and Suzuki introduced the notion of traceable ring signatures
[18], where the signer signs a message with respect to a list of ring members and
a public issue such as an election. There is a public procedure to determine
whether two signatures come from one signer, i.e., the signer is linked if a signer
signs the same message with respect to the same list of ring member and same
issue twice [17]. A related idea is so-called linkable ring signatures, in which
case the true signer will be linked when he signs two messages (different or
identical) with respect to the same ring. In a more restricted version of linkable
ring signatures, one-time linkable ring signatures, a signer is linked as soon as he
reveals two signatures. This property has proven to be vital in the construction
of cryptocurrencies, such as to prevent double spending attacks and to preserve
the anonymity of a spender since the address or the respective secret key in the
design of the anonymous cryptocurrency is supposed to be one-time [38].

1.1 Related Work

Lattice-based Signature Schemes. The line of work on lattice-based signature
schemes was, to the best of our knowledge, initiated by Goldreich et al. [20],
while the first practical construction was based on NTRU [23]. A scheme that
fits into this line of work is the provably secure construction due to Gentry et al.,
also called hash-and-sign [19]. This approach, where the signing key is a secret
trapdoor which is used to sample a short lattice vector, was further developed in

4 We relax this a bit and assume that there exists a CRS which is known to all parties
and which allows them to derive their respective key pairs (SK,PK).



[9, 16]. A different direction, called Fiat Shamir with Aborts, was first explored
by Lyubashevsky [30, 29]. Very efficient signature schemes such as Tesla [22] and
Dilithium [15] have been designed within this framework.

(Linkable) Ring Signature Schemes. There exists a wealth of literature on ring
signature and linkable ring signature schemes such as [41, 17, 28, 6, 18] and we
only list some of the relevant works here. However, the above mentioned sig-
nature schemes have a signature size that is linearly dependent on the number
of users N in the ring. The Groth-Kohlweiss framework [21] is based on homo-
morphic commitments and provides a ring signature scheme with a logarithmic
signature size. Franklin and Zhang [17] propose a general framework for linkable
ring signatures. They extend the “PRF made public” paradigm by Bellare and
Goldwasser [5] in order to provide linkability by combining a PRF evaluation of
the secret key with a NIZK proof of correct evaluation. The smallest ring signa-
tures to date have constant signature size and are based on accumulators. The
construction by Dodis et al. [14] uses accumulators based on the strong RSA as-
sumption, while Nguyen’s [37] relies on pairing-based cryptography. There exists
also a linkable version of [14] by Tsang and Wei [43] that retains the constant-
sized signatures. There exist candidates for post-quantum ring signature schemes
such as hash-based [13, 24] or multi-variate-quadratic-equation based construc-
tions [36]. Neither of them provide linkability in their current form, but they can
potentially be extended to do so.

Lattice-based Ring Signature Schemes. Lattice-based ring signatures were first
introduced explicitly through the work of Brakerski and Tauman-Kalai [10] who
proposed a general framework for ring signatures in the standard model and
showed how to instantiate it based on the SIS assumption. The resulting sig-
natures have size O(mN) for message length m and ring size N . Subsequently,
Wang and Sun [44] proposed two ring signatures schemes from the SIS assump-
tion in the random oracle and standard model, respectively, both of linear sig-
nature size. The first ring signature scheme based on the LWE assumption was
proposed by Melchor et al. [34] and is an extension of [29] to the ring signature
setting. Like the previous schemes, it yields signatures of linear size. Recently,
Libert et al. [26] proposed the first lattice-based ring signature scheme with only
logarithmic signature size using a Merkle-tree based construction.

Concurrent Work. In concurrent work, Torres et al. [42] present a construction
that is very similar to ours. When comparing the actual parameters of both, we
have a larger size of the public keys, but compare favorably in the signature size.

1.2 Our Contribution

We present a lattice-based linkable ring signature scheme based on the Module-
SIS and Module-LWE problem. Our scheme has a signature size which is linear
in N . It is therefore asymptotically less efficient than e.g. [26, 13, 24]. However,
we show that in terms of signature size our construction outperforms or performs



as good as [26, 13] for comparable security levels for ring sizes N / 128 and beats
[24] for rings of small size. A comparison can be found in Table 1 below.

[26] [13] Sponge/Davies-Meyer [24] Our work

Size of PK 0.5 KB 32 B 32 B 8 KB

Size (N = 8) 1.44 MB 766/477 KB 148 KB 82.5 KB

Size (N = 32) 2.29 MB 1200/719 KB 216 KB 305.7 KB

Size (N = 128) 3.14 MB 1.59/0.94 MB 285 KB 1.17 MB

Table 1. Comparison with existing work

.

The authors of [13] present two different, highly optimized constructions of
ring signatures in their work. We mention numbers for both to allow for fair
comparison (outperforming one of the two for N = 128). We want to stress that
using known techniques [15] and by choosing parameters more aggressively it is
possible to reduce the public key and signature size in our setting further, but
such optimizations are beyond the scope of this work. Furthermore, [13, 26, 24]
are not linkable in their current form, so one can expect a further increase in their
proof size to compute a linkability tag. Though our work only outperforms [24]
for small (N ≤ 20) ring sizes, this is exactly the range that cryptocurrencies need:
the recommended ring size of the most popular cryptocurrency using linkable
ring signatures, Monero, at the time of writing was N = 5. As mentioned before,
using [15], would make it possible to reduce the ring signature size further to
also outperform [24] for N / 64.

1.3 Technical Overview

As mentioned before, the standard approach for transforming a ring signature
scheme into a linkable ring signature scheme, following Franklin and Zhang [17],
is to add a PRF evaluation of the signer’s secret key to the signature, as well
as a zero-knowledge proof of correct evaluation of the PRF under one of the
secret keys corresponding to the public keys. This generic approach applies to
any ring signature scheme and was explored for lattice-based PRFs in [27, 26, 45].
However, such proofs come with quite a substantial overhead. Our construction
instead follows the approach of Liu et al. [28] that avoids this technique. The
main observation is that the signer in their scheme has two “public” keys: One
that is published before signature generation as part of the ring of signers, and
the other one that is appended to each signature. Hence, another “public key”
under different public parameters that corresponds to the signer’s secret signing
key can be used as linkability tag. Since both kinds of public keys share the same
algebraic structure, the two “public keys” of the signer, i.e. the actual public
key and the linkability tag, can be tied together without appending another
non-interactive zero-knowledge proof to the signature.



Since our construction will be based on the (Module-)SIS and (Module-)LWE
problem, the public keys of the parties are of the form PK = Ar for secret
key r and public matrix A. Linkability will be ensured by providing linkability
tags I = Br for another public matrix B. Interestingly, the reason why our
construction achieves only one-time linkability is inherent in this approach: any
evaluation Br leaks information about r. If a fresh matrix B is generated for
each ring, then a malicious party can receive more leakage on r than intended
and hence may be able to recover the signer’s secret key.

In order to obtain more efficient lattice-based (linkable) ring signatures, it
may be tempting to try to instantiate current sublinear-size ring signatures in
the lattice setting. Note, however, that this is far from trivial, as these solutions
are specifically tailored to a certain assumption like Dodis et al.’s accumulator-
based ring signatures [14], or suffer from the well-known problem that hard
lattice assumptions do not provide enough algebraic structure to support existing
sublinear approaches based on homomorphic operations like that of Groth and
Kohlweiss [21].

Paper Organization

In Section 2 we will introduce some definitions and lemmas concerning lattice-
based constructions which we will need throughout this work. Moreover, we will
give definitions for linkable ring signatures (following previous work). Section 3
contains the construction and security statements. The main parts of the proofs
are deferred to Appendix A, whereas we discuss the practicality of our scheme
in Section 4. In this Section, we also provide a sample parameter set for our
construction together with estimates for the size of signatures.

2 Preliminaries

We will use [N ] as shorthand for the set {1, . . . , N}. Let R be the cyclotomic
ring R = Z [X]/〈Xν + 1〉, where ν = 2p and p ∈ N+. Let q be an odd prime and
define Rq = Zq [X]/〈Xν + 1〉. Here Zq denotes the integers modulo q, which will
be represented as elements from the interval

[
− q−12 , q−12

]
. For f =

∑
i fiX

i ∈ R,
the norms of f are defined as

l1 : ‖f‖1 =
∑

i
|fi|, l2 : ‖f‖2 =

(∑
i
|fi|2

)1/2
, l∞ : ‖f‖∞ = max

i
|fi| .

If f ∈ Rq, then we will represent each coset from Zq with its unique represen-
tative from the aforementioned interval and consider the norm of the obtained
Z-vector. Let Sβ denote the set of elements x ∈ R with l∞-norm at most β. Let
0v ∈ Zv×v and Iv ∈ Zv×v denote the zero and identity matrix over Z.

Remark 1. We use the following standard relations among different l-norms of
a vector in R as defined above:

1. If f, g ∈ R such that ‖f‖∞ ≤ β, ‖g‖1 ≤ γ, then ‖fg‖∞ ≤ βγ.



2. If f ∈ R, g ∈ Rv satisfy that ‖f‖2 ≤ β, ‖g‖∞ ≤ γ, then ‖fg‖2 ≤
√
vνβγ.

We require a subset D of Rq which consists of short invertible elements such
that the difference of any two distinct elements from this set is also invertible. It
was shown in [33] that as long as q is a prime that satisfies q = 17 mod 32 and
q > 220, then the set D = {d ∈ Rq|‖d‖∞ ≤ 1, ‖d‖1 ≤ κ} satisfies this require-
ment. We use D̄ to denote the set of values D +D excluding 0.

2.1 Normal Distribution and Rejection Sampling

The continuous normal distribution over Rν centered at u ∈ Rν with standard
deviation σ has probability density function

ρνu,σ(x) =
1√
2πσ

· exp

(
−||x− u||22

2σ2

)
The discrete normal distribution over Rv centered at u ∈ Rv with standard

deviation σ is given by the distribution function (for all x ∈ Rv)

Nu,σ(x) = ρv·νu,σ(x)/ρv·νσ (Rv),

where we omit the subscript u when it is zero. We use the following standard
tail-bound due to Banaszczyk:

Lemma 1. Let Nu,σ be defined as above. Then

Pr
[
‖z‖2 > 2σ

√
vν | z ← N v

σ

]
< 2−vν

For our ring signature scheme, we use rejection sampling to hide the secret
signing key. The basic idea of rejection sampling is to abort the protocol with a
certain probability such that the distribution of the response is independent of
the secret input. We adopt the rejection sampling lemma from [30]:

Lemma 2. Let V be a subset of Rv in such that all elements have ‖·‖2-norms

less than T , σ ∈ R such that σ = ω(T
√

log(vν)), and h : V → R be a probability
distribution. Then there exists an M = O(1) such that the output distribution of
the following two algorithms A, S is within statistical distance 2−ω(log(vν))/M :

A:
1. u← h
2. z ← N v

u,σ

3. output (u, z) with probability min
(

1
M
Nvσ (z)
Nvu,σ(z)

, 1
)

S:
1. u← h
2. z ← N v

σ

3. output (u, z) with probability 1/M

Moreover, the probability that A outputs a value is at least 1−2−ω(log(vν))

M .



In [30], the author remarks that if σ = αT, α > 0 andM = exp
(
12/α+ 1/(2α2)

)
then the output of both algorithms will be within statistical distance 2−100/M

and A will output a value with probability at least
1− 2−100

M
. As an example,

assume that we want the signing algorithm to succeed in each iteration with
probability 1/3, i.e. we want to set M = 3. Then following the reasoning in [30],
we can set σ = 11 · T . This means that the output of the signing algorithm is
indistinguishable from the simulator except with probability ≈ 2−98, which we
deem sufficient for our application.

2.2 Module-SIS and Module-LWE

The security of our linkable ring signature scheme will be based on the hardness
of two problems, Module-SIS and Module-LWE [25]. These problems are variants
of the well-known SIS [1] and LWE [40] problems, but over modules that are
defined over polynomial rings. This is a generalized version of the Ring-SIS and
Ring-LWE problems [32, 31, 39]. Using Module-lattice assumptions comes with
two advantages: (i) while they are a generalization of ideal-lattice assumptions,
they still retain some structure which is necessary to construct a large space of
short, invertible elements which is necessary for our construction; and (ii) there
is evidence that module lattices of larger rank are less prone to certain attacks
than ideal-lattices [8, 3].

The homogeneous Module-SIS problem consists of finding a vector r of small
norm such that Ar = 0 for a given, structured matrix A.

Definition 1. (MSISh,v,t) Given A← Rh×vq , find r ∈ Rv such that
Ar = 0 and 0 < ‖r‖2 ≤ t.

Our scheme also uses the Decisional Module-LWE problem. In D-MLWE,
the problem consists of distinguishing noisy linear equations from random.

Definition 2. (D-MLWEh,v,β) Let A ← Rh×vq . Then distinguish the distribu-
tions

(A,Ar) and (A,u)

where r ← Svβ and u← Rhq .

Here, we use a special instance of the Module-LWE problem where the secret
has the same distribution as the noise5.

If two samples (with different matrices, but same secret vector r) are issued
by the challenger, then this can still be related to a D-MLWE instance but with
different parameters, as the following proposition shows.

5 This equivalent formulation is possible in our setting, as only one LWE sample will be
issued per secret. The definition might seem unusual at first, as one regularly defines
the LWE distribution as As1+s2. We can use the following transformation, which is
well-known: note that the given equation is equivalent to writing As1+Ihs2 instead.
By aligning this into a single matrix product of A′ with (s1|s2) and multiplying the
resulting challenge with a uniformly random r ∈ Rq, we obtain Definition 2.



Proposition 1. Let A,B ← Rh×vq , r ← Svβ and c,d← Rhq . Then

(A,Ar,B,Br) ≈c (A, c,B,d)

given the D-MLWE2h,v,β-problem is hard.

Proof. Consider the matrices E =

[
A
B

]
, and Er =

[
Ar
Br

]
. Then distinguishing

the above distributions is equivalent to distinguishing

(E,Er) ≈c
(
E,

[
c
d

])
This is the definition of the D-MLWE2h,v,β problem. ut

Our construction will moreover rely on a third problem, namely the Search
Module-LWE problem. It can be seen as an inhomogeneous MSIS instance where
the target is known to have a short preimage under A.

Definition 3. (S-MLWEh,v,β) Sample r ← Svβ uniformly at random. Given(
A← Rh×vq , s = Ar

)
find r′ ∈ Rv such that Ar′ = s and 0 < ‖r′‖∞ ≤ β.

Fixing h, v, β of an S-MLWE-instance, it is easy to see that any algorithm
A that solves S-MLWE-instances can also solve D-MLWE-instances with the
same parameters in comparable time and with similar probability. For the con-
verse direction, Langlois and Stehlé [25] showed that, for certain parameter sets,
S-MLWE can be reduced to D-MLWE.

2.3 Linkable Ring Signatures

The formal syntax and security model of linkable ring signatures, sometimes also
called linkable spontaneous anonymous group signatures, can be found in [28,
18]. Definitions of linkable ring signatures with adaptation to the cryptocurrency
scenario can be found in [38]. Our definitions are in the spirit of [21, 28, 18].

Definition 4 (Linkable Ring Signature). A linkable ring signature scheme
consists of five algorithms:

Setup(1λ): Generates and outputs public parameters PP available to all users.

KGen(PP ): Generates a public key PK and a private signing key SK.

SignPP,SK`(m,L): Outputs a signature Ω on the message m ∈ {0, 1}? with
respect to the ring L = (PK1, . . . , PKN ). Here, (PK`, SK`) is a valid key
pair output by KGen(PP ), and PK` ∈ L.

Vfy(m,L,Ω): Verifies a purported ring signature Ω on a message m with respect
to the ring of public keys L. It outputs a bit b ∈ {0, 1}.

Link(m1,m2, Ω1, Ω2)6: Takes as inputs two messages m1,m2 as well as two
signatures Ω1 and Ω2 and outputs b ∈ {0, 1}.



The above algorithms form a linkable ring signature scheme if the following
three definitions of correctness, signer anonymity, linkability and exculpability
are fulfilled.

Definition 5 (Correctness). Let N ≥ 1. Then ∀t ∈ [N ], ∀{i1, ..., it} ⊂ [N ],
k ∈ {i1, ..., it} and ∀m ∈ {0, 1}∗ it holds that

Pr

Vfy(m,L,Ω) = 0

PP ← Setup(),
{PKi ← KGen(PP )}i∈[N ],
L = (PKi1 , . . . , PKit),
Ω = SignPP,SKk(m,L)

 ≤ negl(λ)

Signer anonymity captures the intuition that if the targeted signer is not
corrupted, then the probability that the adversary can identify him as the true
signer among all uncorrupted parties is negligible.

Definition 6 (Signer Anonymity). Let L = (PK1, . . . , PKN ) be a list of
public keys and Dt be any set of 0 ≤ t < N signing keys such that ∀SKi ∈
Dt ∃PKi ∈ L : (PKi, SKi) is generated by KGen. A ring signature scheme is
signer anonymous if for any PPT algorithm E, on inputs of any message m,
sets L,Dt as defined above and any valid signature Ω on L and m generated
using SK` 6∈ Dt, then∣∣∣∣Pr [E (m,L,Dt, Ω) = `]− 1

N − t

∣∣∣∣ ≤ negl(λ).

Let PP ← Setup(1λ). For the following two definitions we assume the exis-
tence of two oracles OK ,OS :

Key generation oracle OK : On input of a bit b generate a random keypair
(PK,SK)← KGen(PP ). If b = 0 then output PK, otherwise (PK,SK).

Signing oracle OS: On input (L,m, i) where L = (PK1, . . . , PKN ) are public
keys generated by OK , i ∈ [N ] and OK did not output SKi and m ∈ {0, 1}∗,
return Ω ← SignPP,SKi(m,L). If a key in L was not queried before, then
output ⊥.

The idea behind the Linkability definition is as follows: if the same signer
generates two signatures, then the algorithm Link will identify this with over-
whelming probability. It is important that this not only holds against honest use
of the algorithm Sign, but arbitrary adversaries.

Definition 7 (Linkability). Let A be a PPT algorithm with oracle access to
OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where L
is the set of all keys queried from OK) of length N together with N + 1 values
{(mi, Ωi)}i∈[N+1]. Then the scheme is linkable if, for every such A,

Pr

[
∀i ∈ [N + 1] : Vfy(mi, L,Ωi) = 1 ,
∀i, j ∈ [N + 1], i 6= j : Link(mi,mj , Ωi, Ωj) = 0

]
≤ negl(λ).



The above only talks about the setting of generating signatures without being
traceable. Equally important is the setting where signatures are signed by two
different parties, where we require that their tags must be distinct. This then,
of course, in particular includes the case of the Sign algorithm. This property is
important in the setting of cryptocurrencies where one might otherwise be able
to issue fake transactions on behalf of another party.

Definition 8 (Exculpability). Let A be a PPT algorithm with oracle access
to OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where
L is the set of all keys queried from OK) of length N together with two pairs
(m1, Ω1), (m2, Ω2) with Vfy(m1, L,Ω1) = Vfy(m2, L,Ω2) = 1, not both queried
to OS. Let M ⊂ L be set of PKi for which A did not obtain SKi from OK .
Then

Pr

Link(L,m1,m2, Ω1, Ω2) = 1

∃PKi ∈M, ∃m ∈ {0, 1}∗,
∃j ∈ {1, 2} :[
Ω ← SignPP,SKi(m,L),

Link(m,mj , Ω,Ωj) = 1
]
 ≤ negl(λ).

Remark 2. In our scheme, we do not give a definition and proof for existential
unforgeability. As was observed in [18] the above definitions imply this property,
as any algorithm breaking existential unforgeability can be used in a black-box
setting to break exculpability (see [18, Theorem 2.6]).

3 Constructing Linkable Ring Signatures

In this section, we will describe our linkable ring signature scheme and prove its
security. Our proposed scheme can be considered as an adaption of the linkable
ring signature scheme proposed in [28] to the lattice setting. However, while most
linkable signature schemes such as the one proposed in [17] require the use of a
pseudorandom function to achieve linkability, our scheme demonstrates that the
linkability for one-time ring signature schemes can be obtained without using a
pseudorandom function to generate the tag.

If a scheme is not one-time, then this PRF is evaluated on the secret (or
public) key of the signing party and a description of the actual ring L. In our
case, it is not necessary to include the ring L into the tag computation (as
the scheme is one-time) and we attach a tag derived from the secret key only.
Concretely, each party will have a private key ri together with a public key
PKi = Ari, where A is a random length-compressing matrix and ri is a vector
of small norm. Thus, PKi is an evaluation of the public collision-resistant hash
function fA(·) : x 7→ Ax on the private input ri.

During the signing process, the signer will generate two rings of signatures
(similar to [41, 28] but twice): the first is a ring consisting of signatures for all the
N public keys and generated using fA whereas the second ring uses a different
CRHF fB. This function fB(·) : x 7→ Bx uses a different public matrix B
having the same dimensions as A. The crucial point to interleave these rings



is that they are built simultaneously, using the same challenges and blinding
value in each step. For this to be verifiable, the signer must now include his Ii in
the signature, which serves the same purpose as the public key PKi in the first
ring. We will show that the signer is bound to use his own value Ii if he wants
to generate a valid signature and will therefore produce a collision if a second
signature is revealed.

Let H : {0, 1}∗ → D be a cryptographic hash function where D is the
challenge space defined in Section 2. The algorithms of our scheme are defined
as follows:

Setup(1λ): Sample two random matrices A,B ← Rh×vq and set PP = (A,B).

KGen(PP ) Sample r ← Svβ and then generate the public key PK = Ar as
well as the signing key SK = r.

SignPP,SK`(m,L):

1. Compute the tag I` = Br`.

2. Sample u← N v
σ and set d`+1 ← H(L, I`,m,Au,Bu).

3. For each i = `+ 1, . . . , N, 1, . . . , `− 1:

(a) Sample rz,i ← N v
σ .

(b) Set ti,1 = Arz,i − diPKi and ti,2 = Brz,i − diI` as well as
d(i mod N)+1 ← H(L, I`,m, ti,1, ti,2).

4. Compute rz,` = u + d`r`.

5. Abort with probability 1−min

(
1,

Nvσ (rz,`)
M ·Nvd`r`,σ(rz,`)

)
, otherwise output the

signature Ω =
(
d1, (rz,i)i∈[N ] , I`

)
.

Vfy(m,L,Ω):

1. For i ∈ [N ], check whether ‖rz,i‖2 ≤ 2σ
√
νv, else output 0.

2. For i ∈ [N ], compute t′i,1 = Arz,i− diPKi, t
′
i,2 = Brz,i− diI` as well as

di+1 =H
(
L, I`,m, t

′
i,1, t

′
i,2

)
.

3. If d1 =H
(
L, I`,m, t

′
N,1, t

′
N,2

)
= dN+1 then output 1, else output 0.

Link(Ω1, Ω2): Given

Ω1 =

(
d
(1)
1 ,
(
r
(1)
z,i

)
i∈[N ]

, I
(1)
`

)
and Ω2 =

(
d
(2)
1 ,
(
r
(2)
z,i

)
i∈[N ]

, I
(2)
`

)
,

return 1 if I
(1)
` = I

(2)
` and 0 otherwise.

Correctness can easily be verified using Lemma 1 and Lemma 2.

3.1 Security

We will now prove that our construction satisfies anonymity, linkability and
exculpability as required.



Anonymity. We first provide a theorem about signer anonymity. The proof
follows a similar structure as [41, 28] and can be found the appendix.

Theorem 1 (Signer Anonymity). The proposed ring signature scheme pro-
vides signer anonymity in the (programmable) random oracle model assuming
hardness of the D-MLWE2h,v,β-problem.

Proof. See Appendix A.1.

Linkability. The proofs of linkability and exculpability use the Forking Lemma.
We separate the rewinding part (as it also rather directly follows from previous
work) from the rest and defer the proofs to the appendix.

Lemma 3. Let A be a PPT algorithm with oracle access to OK ,OS , H which
queries H at most qH times and OS at most qS times. Moreover, A on input
1λ, PP outputs L, {(m(i), Ω(i))}i∈[N+1] as defined in Definition 7 with probability

ε in time at most s. Then there exists an algorithm R that outputs (I, r, r̂, d, d̂, π)

– such that π ∈ [N ], d, d̂ ∈ D and ||r||, ||r̂|| ≤ 2σ
√
νv,

– it holds that dPKπ = Ar, d̂PKπ = Ar̂, dI = Br and d̂I = Br̂,

– where I is not a tag for any honestly generated PKj from L,

– with probability
(
ε− 1

|D|−qH−NqS

)2
/
(
(N2 +N)qH

)2
,

– in time O(N2 · qH · s).

Proof. See Appendix A.2.

Using the above lemma, the proof of linkability now works as follows: We
embed a MSIS-instance into the public key and then use the algorithm R. This
gives us values d, d̂, r, r̂ which are used to obtain a MSIS-preimage. It remains
to show that this preimage is within the bounds of the theorem and non-zero.

Theorem 2 (Linkability). Let A be defined as in Lemma 3. Then there exists
an algorithm M that breaks a MSISh,v,t-instance

– with probability
(
ε− 1

|D|−qH−NqS

)2
/
(
(N2 +N)qH

)2
,

– in time O(N2 · qH · s),
– where t = 4σ

√
v · ν + 2 · κ · v · ν1.5 · β.

For simplicity, we assume in the reduction that N is fixed, which means that we
can easily construct a reduction for an upper-bounded L.

Proof. Consider the following algorithm M:

1. Query for an MSIS-challenge A ∈ Rh×vq . Sample B ← Rh×vq uniformly at
random. Set PP = (A,B).

2. Set up oracles OK ,OS for A and simulate these by running KGen,Sign
honestly.



3. Run R from Lemma 3 with A.

4. If R does not output ⊥ then return s = (d− d̂)rπ − (r̂ − r).

Observe that if R generates output, then we obtain d, d̂, r, r̂, π such that

(d− d̂)PKπ = A(r − r̂) and (d− d̂)I = B(r − r̂).

PKπ was generated honestly by OK and we have rπ such that PKπ = Arπ.
Rewrite the above as

A(d− d̂)rπ = A(r − r̂)

Assume that (d− d̂)rπ = (r− r̂) then by the invertibility of (d− d̂) it holds that

Iπ = Brπ = B
(

(r − r̂) · (d− d̂)−1
)

= I

which contradicts the assumption that I is different from all honestly generated
tags. Hence (d − d̂)rπ 6= (r̂ − r) and thus s 6= 0, while 0 = As which yields a
solution s to the MSIS-instance obtained in Step 1 as required in Definition 1.

The runtime of M is clearly dominated by the runtime of R. To give an
upper-bound on the size of s: the vector rπ was generated honestly as in KGen,
therefore ||rπ||∞ ≤ β. Using d, d̂ ∈ D we obtain that ||(d−d̂)rπ||2 ≤ 2·κ·β·v·ν1.5.
By the triangular inequality, the bound on s follows. ut

Exculpability. For the exculpability proof, we need a different extractor which
is also based on the Forking Lemma. Again, the actual construction can be found
in the appendix. In the proof of exculpability, we use the following result:

Lemma 4. Let A be a PPT algorithm with oracle access to OK ,OS , H which
queries H at most qH times and OS at most qS times. Moreover, A on input
1λ, PP outputs L, (m(1), Ω(1)), (m(2), Ω(2)) as defined in Definition 8 with prob-

ability ε in time s. Then there exists an algorithm R′ that outputs (I, r, r̂, d, d̂, π)

– such that π ∈ [N ], d, d̂ ∈ D and ||r||, ||r̂|| ≤ 2σ
√
νv,

– it holds that dPKπ = Ar, d̂PKπ = Ar̂, dI = Br and d̂I = Br̂,

– with probability
(
ε− 1

|D|−qH−NqS

)2
/
(
(N2 +N)(qH +N · qS)

)2
,

– in time O(N · qH · s).

Proof. See Appendix A.2.

We do not follow the exact same outline as in the proof of Theorem 2, as
the same argument that the computed MSIS-solution is non-zero does not hold
anymore. We resolve this by having a simulator that - indistinguishably for the
adversary A and the extractor R′ - randomly embeds one out of two possible,
but different, challenges which it then breaks.

Theorem 3 (Exculpability). Let algorithm A be defined as in Lemma 4. Then
there exists an algorithm M that either breaks an S-MLWE2h,v,β instance or
an MSISh,v,t-instance



– with probability
(

(N−1)ε
N − 1

|D|−qH−NqS

)2
/
(
(N2 +N)(qH +N · qS)

)2
,

– in time O(N · qH · s),
– where t = 4σ

√
v · ν + 2 · κ · v · ν1.5 · β.

Proof. The algorithmM which we will construct in the course of this proof will
either use the matrix A in Setup to implant an MSIS-challenge or alternatively
choose A,B from an S-MLWE instance. Whereas in the former case the proof
works as before, in the latter one we use a randomly chosen public key and its
corresponding tag to embed an S-MLWE challenge. This then means that we
cannot correctly simulate the OS-oracle as we would need the secret key for it -
which is the secret we want to extract! Instead, the proof uses a version of the
simulator S from signer anonymity.

With respect to the Link algorithm from our construction, the definition
translates into the requirement that the tags I(1), I(2) from Ω1, Ω2 are equal.
Moreover, each I(i) must be identical to an honestly generated identification tag
for one of the public keys in L, and A did not obtain both signatures from OS
and does not possess the secret key for this public key. Let I = I(1) = I(2). The
algorithm M will first fairly flip a bit b ← B1/2. Then it does the following,
based on the value of b:

b = 0: M will take a S-MLWE instance (D, t) where D =

(
A
B

)
∈ R2h×v

q

and t =

(
t0
t1

)
∈ R2h

q such that A,B ∈ Rh×vq and t0, t1 ∈ Rhq . Assign

PP = (A,B) and choose an index k ∈ [N ]. For j ∈ [N ] set

(PKj , SKj) =

{
(Arj , (rj ,Brj)) if k 6= j and for rj ← Svβ
(t0, (⊥, t1)) if k = j

We then set the counter j = 1. Whenever A requests a public key from OK ,
then output PKj and increase j by 1. If j = k and A requests the secret key
then abort. Whenever OS is queried, then sign the signature for the queried
key s correctly if s 6= k, otherwise use the back-patching simulator from the
Signer Anonymity proof7, but with Ij = t1.

b = 1: M will take a MSIS instance A ∈ Rh×vq as input, sample B ← Rh×vq

uniformly at random and set PP = (A,B). It will additionally choose k ∈
[N ] uniformly at random. OK will generate all keys honestly, but abort if A
queries SKk. OS will run Sign honestly.

Assume that A does not query for SKk, then the output of A will be independent
of the choice of b due to Theorem 1. If b = 0 then A will be stopped if SKk

is queried, but observe that this abort probability is the same in case b = 1 as
the key PKk is perfectly indistinguishable from honestly generated public key

7 The anonymity simulation does only provide computational indistinguishability as
it uses Proposition 1. Here the correctly generated Ij is known and the simulation
is statistically indistinguishable, not just computationally.



PKj . Moreover, the abort probability in the presence of OS is identical due to
the construction of the oracle, so the probability that A outputs something is
independent of b. This output probability is ε′ = ε · (N − 1)/N by the random
choice of k.

In the next step, M now runs A using the algorithm R′ from Lemma 4. If
R′ does not output ⊥ then we obtain values d, d̂, r, r̂, π such that

(d− d̂)Arπ = (d− d̂)PKπ = A(r − r̂) and (d− d̂)I = B(r − r̂)

where rπ is the secret key belonging to PKπ. We might either have that (d −
d̂)rπ = r − r̂ or that inequality holds. Now if the values are not equal, then we
can use the same argument as in linkability to extract a MSIS solution (this
covers the case when b = 1). But in case of equality the approach does not work
- unless we are in the setting where the algorithmM chose b = 0. Now we know
that equality holds and rπ is known to exist as PKπ is a S-MLWE challenge,
which we can therefore extract.

More formally, if b = 0 and k = π thenM will output rπ = (r−r̂)·(d−d̂)−1 as

d−d̂ ∈ D′. If b = 1 then it will instead output (d−d̂)rπ+r̂−r. We now calculate
the probability that the algorithmM will output a correct answer to either of the
two challenges. Therefore, denote with X= the event that (d− d̂)rπ = r− r̂, and
with X6= the opposite event. Let M denote the event thatM outputs something.
As our goal is to lower-bound the probability that the output of M is correct,
we need to determine

Pr [M gives correct output] = Pr [X=, b = 0|M] + Pr [X6=, b = 1|M]

If b = 0, then by the choice of k, the probability that π = k is at least 1/|L|
and therefore Pr [M|X=, b = 0] ≥ 1/N . Using Bayes’ Theorem, we obtain that

Pr [X=, b = 0|M] =
Pr [M|X=, b = 0] · Pr [X=, b = 0]

Pr [M]

≥ Pr [M|X=, b = 0] · Pr [X=, b = 0]

≥ 1/N · Pr [X=] · Pr [b = 0] = 1/2N · Pr [X=]

where we use in the last step that the occurrence of X= is independent of b.
In case of b = 1 we always give output, so we have that Pr [M|X6=, b = 1] = 1.

Using the same reasoning as above, we obtain that

Pr [X6=, b = 1|M] ≥ 1/2 · Pr [X6=]

which yields an overall bound of Pr [M gives correct output] ≥ 1/2N .
For the size t of the extracted MSIS-solution we can use the same argument

as in the proof of Theorem 2. The runtime is dominated by the runtime of R′,
except that the success probability of A is ε′ instead of ε due to the adjustment
of the oracles. ut



The proof of Theorem 3 can be simplified such as to rely only on the MSIS
assumption if one can guarantee that the event X6= will occur with good prob-
ability (where multiple solutions for the given MSIS instance exist and the rπ
used in the signature is hidden). See [29] for details.

4 Discussion

We now discuss questions surrounding the practicality of our scheme and hint
at future research directions.

Practical Considerations. The runtime of Vfy is essentially the N -fold runtime
of the verification of a regular lattice-based signature scheme. For signing, the
computation and sampling of I`,u as well as rr,j ,Arz,j ,Brz,j for j 6= ` can
be done offline. The size of the total signature is approximately the size of N
individual lattice-based signatures, as can be seen in Table 2.

As the basis of our construction, we chose a simple signature scheme without
optimizations. Following the outline of our algorithms, one can instantiate it
with e.g. [15] and then use their key-compression technique: this optimization is
important when it comes to signature size.

Parameter Selection. In our construction, the D-MLWE-instance from Theo-
rem 1 and the S-MLWE-instance in Theorem 3 have the same dimensions and
bounds. Moreover, it was already mentioned in Section 2.2 that any algorithm
which solves the S-MLWE problem in time h with success probability ε can be
turned into a distinguisher for D-MLWE for the same dimension with essen-
tially the same runtime and success probability. It thus suffices in the parameter
selection to look at the D-MLWE-instance only.

Unfortunately, it seems like the security reduction cannot be used for the
choice of parameters, as it is inherently non-tight: from the proofs in Section 3,
we see that the reductions have a huge loss in terms of success probability (both
due to the use of the Forking Lemma and because the runtime is proportional
to the number of queries of A to H). If one attempts to obtain a good success
probability of the reduction, the estimated runtime gets rather large. We leave a
proof with a tighter reduction that can be used to instantiate our construction
as an open problem.

Instead, we chose the parameters of our scheme such that the MSIS- and
D-MLWE-problems are hard given that the reduction succeeds (see Table 2).
As baseline, we assume hardness of at least 128 bits using all currently known
lattice reduction attacks. This is reflected by requiring that lattice reduction will
have to achieve a Root Hermite factor of less than 1.003 to break our scheme. For
the given parameters, the security relies only on Module-SIS/LWE with h = 1
i.e. Ring-SIS/LWE, but increasing h, v, κ and thus decreasing ν would allow to
base the hardness on Module-SIS/LWE with a larger rank with only a minor
increase in the size of the signature.



Parameter Recommended choice

q ≈ 232

ν 1024

h 1

v 4

κ 45/90

β (in Sβ) 1

σ 31680/63360

t (`2 MSIS-bound) ≈ 224/225

Root Hermite factor < 1.0030

Public key size (per party) ≈ 8 KB/8 KB

Signing key size (per party) ≈ 8.8 KB/8.8 KB

Signature (N = 1) ≈ 17.4 KB/17.9 KB

Signature (N = 8) ≈ 82.5 KB/86.5 KB

Signature (N = 32) ≈ 305.7 KB/321.7 KB

Signature (N = 128) ≈ 1.17 MB/1.23 MB

Table 2. Parameter settings for our scheme.

To choose actual parameters, we use the LWE simulator with sparse secrets
from [4, 2] for D-MLWE. Moreover, we use [35] to assess the hardness of our ob-
tained SIS instance 8. The size estimates in Table 2 are in Kilobytes/Megabytes
(as in related work), we bound the size of each coefficient of rz,i assuming it is
within a 6σ-interval.

Post-Quantum Security. It is widely believed that hardness assumptions used
in our scheme may offer security in a post-quantum era. On the other hand, it
is unlikely that our security proofs carry over to the Quantum Random Oracle
Model (QROM, see e.g. [7]): we use adaptive programming of the RO H in
Theorem 1, and adaptive rewinding in Theorem 2 and 3. Both of these proof
techniques are somewhat inherent to the construction.

We note that other candidate constructions in the QROM such as [15, 12]
also use a form of RO programming (even though not adaptively). Moreover,
though it seems unlikely that the Forking Lemma can be proven in the QROM,
there exist no attacks on protocols using these proof techniques which stem from
this use of the RO, to the best of our knowledge.

8 While there might be newer methods to assess the hardness of SIS more precisely,
[35] suffices for an estimation of parameters. Moreover, it turned out that using
different methods yields hardness estimates (in terms of the Root Hermite factor)
that are very close to [35]. Our parameter choices were considered secure at the time
of writing, but the reader should refer to the full version of this work for updated
parameters.
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Appendix A Simulation and Knowledge Extraction

In this appendix we explain how to simulate signatures for our scheme and how
to extract knowledge from the specific adversaries as is needed in the proofs in
Section 3.

A.1 Simulation

The proof of Theorem 1 follows a similar pattern as in [28, 41]. In an honestly
generated ring signature (where the secret key SK` is known) the Sign algorithm
simulates N − 1 individual signatures consecutively for all public keys but the
one to which its secret key SK` belongs. For this last public key, it uses the
challenge d` that is obtained for the last signature to close the ring using the
secret key SK`. A simulator has no secret key and will instead generate all
N individual signatures consecutively this way. To close the ring, it needs to
reprogram the random oracle H on the last query to exactly yield the challenge
d1 that is necessary to make all tests in Vfy go through. Even though this
reprogramming takes place, the challenge d1 that the RO returns will be fixed
in the simulation ahead of time but be chosen uniformly at random. This means
that the reprogramming is not detectable. Furthermore, Lemma 2 ensures that
the simulation of the ring is indistinguishable.

Proof (Theorem 1). We will argue that there exists a simulator S that outputs
signatures for a signer ` without knowledge of the secret key SK` = r` of ` in the
programmable random oracle model. We will then argue that its output distri-
bution is computationally indistinguishable from the input to the distinguisher
in Definition 6.

The algorithm S obtains m,L,Dt as input and then does the following:

1. Choose a PK` ∈ L such that ∀SKi ∈ Dt : (PK`, SKi) is not generated by
KGen.

2. Sample a random r ∈ Svβ and compute I` = Br.

3. Use the back-patching approach as in [41, 28] to generate d1 and answer the
relevant random oracle queries to H:
(a) For i ∈ [N ], choose rz,i ← N v

σ .

(b) Sample d1 ← D uniformly at random.

(c) For i ∈ [N ] compute ti,1 = Arz,i−diPKi and ti,2 = Brz,i−diI` as well
as di+1 = H(L, I`,m, ti,1, ti,2).

(d) Set the output of H(L, I`,m, tN,1, tN,2) to be d1.

4. Output Ω =
(
d1, (rz,i)i∈[N ] , I`

)
.

S does not need to abort the simulation and output this event, as a verifier will
never see aborting signatures in practical use cases.

Note that the simulator created the signature exactly in such a way that it
will pass verification: all equations hold trivially, and the check on the bound
of rz,i holds with overwhelming probability (and the same probability as for



honestly generated signatures) due to Lemma 1. All that remains to show is
that the signature follows the right distribution.

In the real signature, d1 is assumed to be uniformly random in D as it is
chosen as output of H. The simulator chooses d1 with the same distribution.
The real rz,i, i 6= ` are drawn from N v

σ , whereas the final rz,` is computed as
u + d`r`. However, Lemma 2 ensures that the distribution of rz,` is statistically
close to N v

σ . Hence, all simulated rz,i follow a distribution that is statistically
close to the real one.

Finally, we note that here I` is not obtained from the same secret input
r` that is used to derive PK` since the simulator does not know SK`. How-
ever, an adversary cannot distinguish between I` and the correctly generated
counterpart since the D-MLWE2h,v,β assumption of Proposition 1 attests to the
indistinguishability of a pair of quadruples: (A,B,A · r,B · r) ∼ (A,B, u, v),
where u, v are random. One can further reduce the indistinguishability of an-
other pair of quadruples: (A,B, u, v) ∼ (A,B,A · r, v) to D-MLWEh,v,β prob-
lem, the hardness of which can be deduced from the larger instance. Based
on hybrid argument, the indistinguishability of the following two quadruples
(A,B,A · r, v) ∼ (A,B,A · r,B · r) is reduced to the D-MLWE2h,v,β assump-
tion. ut

If the above simulator is used in an environment where it is queried adaptively
and repetitvely (or where PK` is fixed), we store the choice I`, r in Step 2 in a
list to provide signatures that are consistent and linkable if necessary.

A.2 Rewinding

We now give proofs for the Lemmas 3 and 4.

Proof (Lemma 3). By the requirements of Linkability as in Definition 7, each
signature Ω(i) which is generated by the adversary A must contain an identifi-
cation tag I(i) and all these identification tags are different. Therefore, at least
one identification tag will not correspond to the public keys from the list L. Our
goal is now to extract those values mentioned in the definition of the Lemma.

Assume that A is run with some certain input and that it generates a set
of signatures. A makes queries to both the random oracle H and to the two
oracles OK ,OS in order to generate these signatures. We construct an algorithm
R which will run A with multiple inputs and will attempt to rewind it on one
of these inputs with different outputs from the random oracle. During a run, A
will be allowed to make qH queries to the random oracle directly, but also OS
indirectly9 makes N ·qS queries to H to generate all the queried signatures. Now
for each of the signatures that A generates, we have that such a signature Ω(i)

can be verified by Vfy. In order to do so, Vfy makes N subsequent queries to
H, which we denote as

d
(i)
j+1 = H

(
L, I(i),m(i),Ar

(i)
z,j − d

(i)
j PKj ,Br

(i)
z,j − d

(i)
j I(i)

)
for j ∈ [N ]

9 These indirect queries are not important when we discuss a signature that does not
correspond to any public key.



where we additionally must have that d
(i)
N+1 = d

(i)
1 . Each dj from these queries is

uniformly random from the set |D|, so an adversary that generates a signature
which is accepted by Vfy must either use the random oracle H or guess the
output of at least one non-queried input. Therefore, if A generates a forgery
with probability ε, then A generates this forgery while obtaining all the values

d
(i)
j from H with probability at least µ = ε− 1

|D|−qH−N ·qS
.

Now consider an output τ of A, then for the queries that A makes to generate
the output, we write the first occurrences of the N queries to Vfy for m(i), Ω(i)

as X1, . . . , XN where

Xir = H
(
L, I(i),m(i), t

(i)
j,1, t

(i)
j,2

)
with 1 ≤ i1 < i2 < · · · < iN ≤ qH . Moreover, for XiN we write XiN =

H(L, I(i),m(i), t
(i)
π−1,1, t

(i)
π−1,2). We call a signature a (`, π)-signature if ` = i1

and π is defined as above. We call an output τ a (`, π, i)-output if its output
signature Ω(i) is a (`, π) signature. For such a (`, π)-signature we must have that

Xi1 = H(L, I(i),m(i),Ar
(i)
z,π − d(i)π PKπ,Br

(i)
z,π − d(i)π I(i)) where d

(i)
π = XiN , and

the overall goal of rewinding will be to obtain two forgeries for the same Xi1 , π
and i where I(i) does not belong to a public key, which will allow extraction.

We are now ready to introduce the algorithms R, which iterates over all
possible ` ∈ [qH ], π ∈ [N ], i ∈ [N + 1] and will first run A so it generates a
well-formed output. If so, then it checks if it is a (`, π, i)-output. In this case, it
will rewind A:

1. Fix a key PP according to Setup. For each ` ∈ [qH ], π ∈ [N ], i ∈ [N + 1] do
the following:
(a) Sample new randomness r for the algorithm A, which includes preparing

responses of OK ,OS . Moreover, initialize the random oracle H.

(b) Run A on r, the oracle H and simulate the oracles OK ,OS truthfully.
This will generate an output τ .

(c) Add (`, π, i, τ, r) to the list Z if:
– τ = (L, {(m(j), Ω(j))}j∈[N+1]) and fulfills Definition 7.

– Let I(j) be the identification tag used in Ω(j). Moreover, let F =
(I ′1, . . . , I

′
N ) be the honestly generated identification tags belonging

to L = (PK1, . . . , PKN ). Add the item to the list if I(i) 6∈ F , and if
Ω(i) is a (`, π) signature.

2. For each (`, π, i, τ, r) ∈ Z, we do the following:
(a) Rewind A on r until right after the `th query to H. Then, for each new

query to H sample a new output value.

(b) For the new output τ̂ check if
– τ̂ = (L, {(m̂(j), Ω̂(j))}j∈[N+1]) and fulfills Definition 7.

– Check if Ω̂(i) is a (`, π)-signature10.

10 This is in fact enough as the input to H for this query will be fixed. This means
that the used tag is the same (as it is input to the random oracle) and also the list
of public keys, which means that the tag will still not belong to a public key.



(c) If the check fails, continue with the next element from Z. Else output

(I(i), r(i), r̂(i), d(i), d̂(i), π).

3. Output ⊥.

We now examine the probability that R outputs a pair in step 2: there exists
(`, π, i) such that the probability that A generates an output τ that will be added
to Z is at least µ

(N2+N)·qH . Then by the proof of [28, Theorem 1] and their

Rewind-on-Success Lemma we get that R will output (I(i), r(i), r̂(i), d(i), d̂(i))

with probability at least
(

µ
(N2+N)·qH

)2
. The runtime of R can be approximated

by the number of iterations of its loops, which is 2 · (N2 +N) · qH · s. ut

Proof (Lemma 4). With respect to the Link algorithm from our construction,
the definition translates into the requirement that the tags I(1), I(2) from Ω(1),
Ω(2) are equal. Moreover, each I(i) must be identical to an honestly generated
identification tag for one of the public keys in L. Let I = I(1) = I(2).

We describe the algorithm now for completeness, but will neither give in-
tuition nor analysis of the success probability as it follows directly from the
algorithm R from the Lemma 3. R′ works as follows:

1. For each ` ∈ [qH ], π ∈ [N ], i ∈ {1, 2} do the following:
(a) Run A on fresh randomness r, the oracle H and simulate the oracles
OK ,OS using KGen,Sign. This will generate an output τ .

(b) Add (`, π, i, τ, r) to the list Z if:
– τ = (L, (m(1), Ω(1)), (m(2), Ω(2))) and fulfills Definition 8.

– Ω(i) is a (`, π)-signature, SKi was not queried and Ω(i) was not an
output of OS .

2. For each (`, π, i, τ, r) ∈ Z, we do the following:
(a) Rewind A on r until right after the `th query to H. Then, for each new

query to H sample a new output value.

(b) For the new output τ̂ check if
– τ̂ = (L, (m̂(1), Ω̂(1)), (m̂(2), Ω̂(2))) and fulfills Definition 8.

– Ω̂(i) is a (`, π)-signature, SKi was not queried and Ω̂(i) was not an
output of OS .

(c) If the check fails, continue with the next element from Z. Else output

(I, r(i), r̂(i), d(i), d̂(i), π).

3. Output ⊥.

Using the same argument as in the linkability proof, the probability that R′

succeeds in not outputting ⊥ is at least
(

µ
2·N(qH+NqS)

)2
for µ = ε− 1

|D|−qH−N ·qS
.

The runtime of R′ is dominated by the number of iterations of the inner loops
and can be approximated as O(N · qH · s). ut


