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Abstract. The FHE (fully homomorphic encryption) schemes [7, 13] based on the modified AGCD problem (noise-

free AGCD problem) are vulnerable to quantum attacks, because its security relies partly on the hardness of factoring, 

and some FHE schemes based on the decisional AGCD without the noise-free assumption, for example [1], has a 

drawback that its ciphertexts are very large.  

In this paper, we construct a new batch FHE scheme based on the decisional AGCD problem to overcome these 

weaknesses and prove its security. 
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1 Introduction 

In 1978, Rivest, Adleman, and Dertouzos [18] firstly introduced the concept of the FHE scheme. The main 

goal of their idea is to allow computations on encrypted data without loss of the data security. Three decades later, 

in 2009, C. Gentry [10, 11] proposed the first FHE scheme based on the ideal lattice. The security of this FHE 

scheme is based on the Bounded Distance Decoding (BDD) problem and the Sparse Subset Sum (SSS) problem. 

Later, Gentry’s FHE scheme was improved by C. Gentry & S. Halevi [12], N. P. Smart & F. Vercauteren [19], D. 

Stehlѐ & R. Steinfeld [20], etc. 

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan [21] proposed the alternative FHE scheme. The secu-

rity of their FHE scheme relies on the SSSP and the Approximate Greatest Common Divisor (AGCD) problem. 

The efficiency of the DGHV scheme has been improved by D. Benarroch, et al. [1], J. H. Cheon, et al. [7], J. S. 

Coron, et al. [9], J. H. Cheon & D. Stehlѐ [8], etc. 

Nowadays, Many FHE schemes towards the resistance to quantum attacks put their security on two main 

computational problems: (1) the Learning With Errors (LWE) problem defined by Regev[17] and (2) Howgrave-

Graham’s AGCD problem[16]. Up to present, there are no polynomial-time quantum algorithms to solve these 

problems.  

Z. Brakerski & V. Vaikuntanathan [4, 5] developed the first LWE-based FHE schemes. These schemes were 

improved to ones with better efficiency and security by subsequent works such as Z. Brakerski [2], Z. Brakerski 

and C. Gentry, et al [3], Z. Brakerski and V. Vaikuntanathan [6], C. Gentry and S. Halevi, et al [13, 14], C. Gentry 

and A. Sahai, et al [15], etc. 

At Crypt 2015, Cheon and Stehlѐ [8] brought out a reduction from the LWE problem to the AGCD problem. 

Therefore, we consider that the AGCD problem, which finds out the hidden common divisor from many approxi-

mate multiples of a prime number or a product of primes, are harder than the LWE problem, whose polynomial 

time quantum algorithm is unknown yet [1]. 

The AGCD-based FHE schemes firstly proposed by van Dijk, et al. [21], are getting interests of numbers of 

researchers for its advantage of dependency on relatively easy integer operations [1, 7, 9, 8], and the AGCD-based 

FHE schemes are often called the FHE over the integers (FHE-OI). The FHE scheme suggested in [21] has a 

drawback that it has to encrypt/decrypt only one bit at a time. Cheon, et al. [7] and Coron, et al.[9] presented the 

batch FHE schemes that can encrypt/decrypt several bits at once, but the security of their batch version is based on 

the noise-free variant of the AGCD problem that has a right common multiple among given approximate common 

multiples. This modified AGCD problem is easier than the general one, and attackers can guess some of the hid-

den common divisor by factorizing the right common multiple with the help of a quantum computer.  



In [8], the authors suggested new AGCD-based FHE scheme invulnerable to quantum attack in order to 

overcome the defects of [7, 9]. However, they could not overcome the defect of encryption/decryption per one bit. 

Therefore, they suggested the construction of a batch one of their FHE scheme as an open problem.  

On the other hand, Benarroch, et al. [1] proposed a new FHE-OI scheme and its batch version that are re-

sistant to quantum attacks, but they have longer ciphertexts than the one in [8]. 

Our Contribution: In [8], the authors only constructed the non-batched FHE scheme, and pointed out that 

their scheme may be extended to a batch version, similarly to [7, 9]. However, there is a serious difference of the 

schemes in [7, 9] and the one in [8]. The difference is that the security of the scheme in [8] is based on the original 

AGCD problem and the ones in [7, 9] is based on the noise-free variant of the AGCD problem. To be more exact, 

the first element of the public-key 0x  has different property in [8] and [7, 9]. In [8], 0x is an approximate common 

multiple of primes, but in [7, 9], 0x  is an exact common multiple of the hidden prime. Therefore, there are some 

issues to construct batch version of [8].  

In this paper, we suggest a new batch FHE scheme with much shorter ciphertexts than the one in [1], which 

can be a partial solution of one open problem in [8], and prove its security.  

2 Preliminaries 

2.1 Notation 

We denote by Aa  selecting an element a  uniformly at random from a finite set A . When   is a distri-

bution, we denote by a  selecting a sample a  according to the distribution  . If x  is real, then  x  is the 

nearest integer to x , rounding upwards if there are two. Given Rx  and 
Zp , we use  px  to denote unique 

number in  2,2 pp  that satisfies the condition    0mod  pxx p .  

We use the CRT representations. For given pairwise coprime integers kpp , ... ,1 , we define 
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We also recall the tensor product of two given vectors:  

     nnnnnn vuvuvuvuvvuu ,...,,...,,...,:,...,,..., 111111  . 

Moreover, it satisfies the following relation with the scalar product: 

vuvuvvuu  ,,, . 



2.2 Some Distributions and AGCD problems 

For  -bit primes kpp , ... ,1 , we define some distributions as follows: 
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Definition 1 [7] (The    k ,, AGCD decisional problem). Let  ,,  be the security parameters and 

kpp , ... ,1  be  -bit primes. The decisional problem is to distinguish between the distribution  kppD ,...,1,  and 

the uniform distribution  )2,0[U Z . 

Definition 2 (The    kj,,,  AGCD decisional problem). Let  ,,  be the security parameters,  

kpp , ... ,1  be  -bit primes, and j  be the chosen index. The decisional problem is to distinguish between the dis-

tribution  kppD ,...,1,  and the uniform distribution  )2,0[U Z . 

The    k ,, AGCD decisional problem and the    kj,,,  AGCD decisional problem have the 

same degree of computational complexity, i.e. if there is a polynomial-time quantum algorithm to solve the 

   k ,, AGCD decisional problem then we can construct a polynomial-time quantum algorithm to solve the 

   kj,,,  AGCD decisional problem. Moreover, the inverse argument is correct.  

On the other hand, from the known reduction of LWE problem to AGCD problem [8], we can assume that 

the    k ,, AGCD decisional problem is hard: 

Main assumption The    k ,, AGCD decisional problem is hard to solve by any quantum computers. 

3 Our Batch Somewhat Homomorphic Encryption scheme 

In this section, we generalize the FHE scheme [8] to a new batch Somewhat HE scheme and then prove its 

security. To construct a new batch SHE(Somewhat Homomorphic Encryption) scheme, we use the CRT represen-

tation. 

3.1 The Construction 

We define some parameters. In this paper,   is the security parameter,   is the maximum bit length of the 

error,   is the bit length of the secret prime integers,   is the bit length of the ciphertexts,   is the number of 

encryptions of zero in public key, and k  is the number of distinct secret primes. 

We assume that these parameters satisfy the following constraints by discussions in [1, 8]: 
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 tccCpk ,...,,, 1Evaluate  Given the binary circuit C  with t  inputs, and ciphertexts tcc ,...,1 , we apply (addition 

and multiplication gates of) C  to tcc ,...,1  as follows:  
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Then it returns the resulting integer. 

3.2 Correctness 

Lemma 1 (Encryption noise). Let   kpksk ,,,,,KeyGen,   and c  be a ciphertext of plaintext  

 kmm ,...,1m ,  1,0im  for ki ,...,1 . Then   21 iiiii pmRQpc  for some ZiQ  and ZiR  with 
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The above expression is equal to the following one for some ZF and ZG  with  1 kkG  . 

0S
1 S

1
1, ... ,

2

1
, ,...

2

1
..., ,

2

1
CRT

1
GxxxmpF

p
m

p
m

p
m

j j

k

l t

tll
k

k
l

lpp

l

k























 
  

 

. 

On the other hand,  

jijiij rqpx   for some Zjiq ,   2,2Zjir , 

because of  kj ppDx ,...,1, . So 



 i
i

iiij ji

k

l t

tii
i

i p
p

mRGrrrm
p

mc

l

mod
2

1

2

1
0S

1 S




















   

 

. 

for 0S
1 S

: GrrrmR
j j

k

l t

tii

l















   

 

. Therefore 
2

1
 i

iiii

p
mRQpc  for some ZiQ . 

To find upper bound of iR , 
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Lemma 2 (Decryption noise). Let  kppsk , ... ,1  be a secret key. For given vector  kmm ,...,1  (  1,0im ) and 

an integer   21 iiiii pmRQpc , if 214  ii pR  then    kmmcsk ,...,,Dec 1 . ki ,...,1 . 
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Theorem 1 (Correctness). Let  kpksk ,,,,,KeyGen,   and let  m,Enc pkc   denote the ciphertext of 

 kmm ,...,1m , (  1,0im ). Then we have  cpk ,Decm  when    41log  k . 
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On the other hand, since  
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3.3 Security 

Lemma 3 (Leftover Hash Lemma) [8]. The statistical distance of the uniform distribution  1
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Theorem 2 (Security). Our Batch FHE scheme is CPA-secure under the assumption of hardness of 

   k ,, AGCD problem. 

Proof. From the main assumption, the public key pk  and the “pseudo” public key     kyyxxkp  ,...,,,..., 10  , 

which was made from uniformly random selection, are computationally indistinguishable. 
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xZ  are less than -2 . Thus we can conclude that the probability for the attacker to 

precisely distinguish the actual ciphertext from uniformly and randomly selected integer is less than -2 . □ 

4 Batch Leveled Homomorphic Encryption scheme 

Definition 3 ( L homomorphic scheme). Let    KeyGen,, evkskpk . A scheme is called L homomorphic 

scheme if for any binary integer circuit C  that has the circuit depth L  and l -inputs, it holds that 
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Lemma 6 (Multiplication noise). For 2,1b , let  bb pkc m,Enc  denote ciphertexts of  bkbb mm ,...,1m . 
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Combining the above two results, we have, 
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Theorem 3. Our SHE scheme is L homomorphic if the following inequality holds: 
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Proof. For each ],1[ ki and ],1[ Lb , let bc  be a ciphertext with 
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From Lemma 4 and Lemma 6, the following relationship holds between 1jR  and jR . 
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From Lemma 2, this scheme is L homomorphic if 
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From our hypothesis, we have 
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ip  since ip  is an  bit integer. Thus, we have 
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which implies that 
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Therefore, we can conclude that it is L homomorphic.        □ 
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