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Abstract. This paper investigates the construction of MDS matrices with generalized
Feistel structures (GFS). The approach developed by this paper consists in deriving
MDS matrices from the product of several sparser ones. This can be seen as a
generalization to several matrices of the recursive construction which derives MDS
matrices as the powers of a single companion matrix.
The first part of this paper gives some theoretical results on the iteration of GFS.
In second part, using GFS and primitive matrices, we propose some types of sparse
matrices that are called extended primitive GFS (EGFS) matrices. Then, by applying
binary linear functions to several round of EGFS matrices, lightweight 4 × 4, 6 × 6
and 8 × 8 MDS matrices are proposed which are implemented with 67, 156 and 260
XOR for 8-bit input, respectively. The results match the best known lightweight 4 × 4
MDS matrix and improve the best known 6 × 6 and 8 × 8 MDS matrices.
Moreover, we propose 8 × 8 Near-MDS matrices such that the implementation cost
of the proposed matrices are 108 and 204 XOR for 4 and 8-bit input, respectively.
Although none of the presented matrices are involutions, the implementation cost of
the inverses of the proposed matrices is equal to the implementation cost of the given
matrices. Furthermore, the construction presented in this paper is relatively general
and can be applied for other matrix dimensions and finite fields as well.
Keywords: MDS matrix · Generalized Feistel Structures · XOR counts · Circuit

1 Introduction
There are several approaches to construct MDS matrices which can be applied as diffusion
layers for block ciphers and hash functions. The first method is based on the algebraic
structures such as Cauchy matrix [YMT97, GR13]. The next efficient method to be used in
construction of MDS matrices is based on the recursive matrices [GPP11, SDM+12, Ber13,
AF14]. The first two approaches are called local optimization, since these methods focus
on the implementation cost of entries of an MDS matrix [SKO+15, SS16]. For instance,
completes the search for lightweight circulant matrices is provided in [LS16].

First of all, diffusion matrices are quantified with XOR gates in [KPP+14]. Then, binary
linear functions are applied to diffusion matrices in [LW16]. Next, two new approaches are
proposed which are called global optimization [KLS+17, DL18, LSL+19]. In fact, the first
work on local optimization which was popularised by [BKL16] and later leads to global
optimization is [JPS+17]. The proposed method in [KLS+17, LSL+19] is an application
of heuristics algorithms to obtain a suitable implementation of previously known MDS
matrices. The introduced technique in [BKL16, DL18] is a type of search over formal
matrices independently of binary linear functions (L) and to instantiate L later. In fact, the
work of [BKL16, DL18] is not an application of heuristics algorithms to obtain an efficient
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implementation of previously known MDS matrices, but a search for new lightweight MDS
matrices starting from the implementation.

The space of matrix explored in this paper is a subspace of the space explored in
[DL18]. Although, the presented technique in this paper is quite similar to [DL18], the
class of construction considered is different. In fact, the advantage of this work compared
to [DL18] is that the smaller search space can be used with larger dimensions.

In recursive or LFSR-based approach, we consider an n× n companion matrix A such
that the entries of the last row of A are no-zero elements over a field F. Then we check
whether the n-th power of A, denoted with An, is an MDS matrix over F. The limitation
to the recursive approach is that all entries of the last row of A must be non-zero. In
other words, the number of non-zero entries of A must be at least 2n − 1. Applying
sparse matrices based on Feistel structures is one of the best solutions for the mentioned
limitation [WWW12]. Actually, by applying Feistel structures, we can construct an n× n
sparse matrix B so that Bn is an MDS matrix and also the number of non-zero entries of
B is less than 2n− 1. The next limitation on the construction of an n× n MDS matrix,
based on the recursive approach or Feistel structures, is that the n-th power of a matrix is
used to obtain an MDS matrix. In fact, it is not possible to select an n× n companion
matrix A such that all entries of Ak are non-zero provided that k < n. In addition, all
known lightweight n × n MDS matrices which are derived from Feistel structures, are
constructed from the n-th power of n× n sparse matrices [WWW12, TTK+18].

Contribution of this work This paper follows a list of recent papers to design new
MDS matrices with low implementation costs. Concerning the standard XOR count metric,
it yields several new matrices having lower XOR cost than previous results. While for
4× 4 matrices, the results match the best known lightweight 4× 4 MDS matrix [DL18] the
results for 6× 6 are slightly better and for 8× 8 are substantially better. Compared with
the recursive constructions, the matrices considered in this paper are generally sparse.

It is stated in [DL18] that the XOR count may not be the best metric to estimate
the true hardware cost of an implementation and because of this we consider the depth
of the circuit of the proposed MDS matrices. In other words, depth corresponds to time
which implies that the lower depth results in faster operation in parallel implementation.
Therefore, we propose MDS matrices that are not only with low implementation cost, but
also their circuits have low depth by terminology of the maximum number of gates in each
path from all source to the sink [DL18]. On the other hand, for software implementation,
we propose MDS matrices with low implementation cost such that the proposed matrices
are constructed from the minimum number of binary linear functions.

The structure of the proposed MDS matrices is based on GFS [Shi11]. In addition,
the proposed matrices are not only constructed from GFS, but also should be a primitive
matrix over R, the field of real numbers. Moreover, binary linear functions are applied to
the construction of the proposed matrices. First of all, we propose an 6× 6 MDS matrix
which is implemented with 156 XOR for 8-bit input such that the proposed matrix is
constructed from six binary linear functions. Also, the proposed 6 × 6 MDS matrix is
implemented with 114 XOR for 6-bit input. In addition, an 6× 6 MDS matrix for 4-bit
input is proposed such that its implementation cost is 90 XOR.

The next new result is the construction of two 8 × 8 lightweight MDS matrices for
8-bit input. The first 8 × 8 MDS matrix is implemented with 272 XOR such that the
number of binary linear functions which are used in the construction of the proposed
matrix is 16. The first proposed 8× 8 matrix can be used in software implementation. The
implementation cost of the second 8×8 MDS matrix is 260 XOR such that the depth of its
circuit is 8. The second proposed 8× 8 matrix can be applied in hardware implementation.

By applying GFS and random searches, we could not get any 8 × 8 MDS matrices
for 4-bit input. Therefore, we tried to construct 8 × 8 lightweight Near-MDS matrices
[LW17] for 4-bit input with the following conditions. First, the proposed matrices have low
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implementation cost. Second, the inverse of the proposed matrices can be implemented
such as the proposed matrices. Moreover, the depth of their circuits are less than eight.
Finally, in the construction of the proposed matrices the minimum number of binary linear
functions are used. Table 1 is provided for comparison our results with the known results.

Table 1: Comparison our results with the best known results.

Type Input XOR Method Depth Involutory Reference
4× 4 Matrices

F24 4-bit 64 Hadamard — X [PSA+18]
F24 4-bit 42 Heuristics — X [KLS+17]
F24 4-bit 36 Heuristics — × [KLS+17]

F24/0x19 4-bit 36 GFS St. 6 × Subsection 5.1
F24 4-bit 35 GFS St. 5 × [DL18]
F24 4-bit 35 GFS St. 5 × Subsection 6.1
F28 8-bit 158 Hadamard — X [PSA+18]
F2[L] 8-bit 78 Heuristics 4 X [LSL+19]
F28 8-bit 72 Subfield — × [KLS+17]
F28 8-bit 70 GFS St. 5 × Subsection 6.1
F2[L] 8-bit 69 GFS St. 4 × [DL18]
F2[L] 8-bit 68 GFS St. 6 × Subsection 5.1
F2[L] 8-bit 67 GFS St. 5 × [DL18]
F2[L] 8-bit 67 GFS St. 5 × Subsection 6.1

6× 6 Matrices
F2[L] 4-bit 150 COM St. — × [WWW12]

F24/0x13 4-bit 90 GFS St. 9 × Subsection 6.2
F26/0x43 6-bit 114 GFS St. 8 × Subsection 6.2
F28/0x1C3 8-bit 186 DSI St. — × [TTK+18]

F28 8-bit 156 GFS St. 8 × Subsection 6.2
8× 8 Near-MDS Matrices

F24/0x13 4-bit 216 Circulant — × [LW17]
F24/0x13 4-bit 116 GFS St. 6 × Subsection 6.3.1
F24/0x13 4-bit 108 GFS St. 7 × Subsection 6.3.1

F28 8-bit 432 Circulant — × [LW17]
F2[L] 8-bit 212 GFS St. 6 × Subsection 6.3.1
F2[L] 8-bit 204 GFS St. 7 × Subsection 6.3.1

8× 8 MDS Matrices over 8-bit input
F28 8-bit 392 Subfield — × [KLS+17]

F28/0x1E7 8-bit 272 GFS St. 9 × Subsection 6.3.2
F28/0x187 8-bit 260 GFS St. 8 × Subsection 6.3.3

In general, using binary linear functions (L) and applying GFS, we select n× n sparse
matrices Ai with 1 ≤ i ≤ k such that Ai’s satisfy the following conditions. First Ai’s
have the same structure with respect to the location of their zero entries. Second, Ai’s
are primitive matrices over R. Then, Ai’s are non-singular matrices over F2[L]. Moreover,
the multiplication of Ai’s is an MDS matrix over F2[L]. The last and the main condition
is that Ai’s can be implemented with low implementation cost by terminology of XOR
counts. In fact, we try to decompose an MDS matrix into sparse matrices provided that
these sparse matrices, first have the same and simple structure and then are non-singular
over the ground field and finally can be implemented with the minimal XOR cost.
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Outline of this paper The rest of paper is organized as follows. Definitions and
notations are given in Section 2. In Section 3, it is motivated why primitive matrices
are used in this paper. Definition of primitive GFS matrices is provided in Section 4.
Moreover, using primitive GFS matrices a probabilistic algorithm for the construction of
MDS matrices is proposed in Section 4. In Section 5, by applying binary linear functions
over primitive GFS matrices, 4× 4 and 8× 8 MDS matrices are proposed. An extension
of primitive GFS matrices, called EGFS matrices, is given in Section 6. Furthermore,
the best result of this paper by applying binary linear functions over EGFS matrices are
provided in Section 6. Finally, a conclusion is given in Section 7.

2 Definitions and Notations
Let A be an n×n matrix over a field Fq, the finite field with q elements. A is called MDS
over Fq if all square submatrix of A is nonsingular over Fq [BR99]. Moreover, a finite field
with characteristic 2 is denoted with F2q for some q. Furthermore, we present a finite field
F2q by hexadecimal representation. For instance, F28/0x18D is the finite field F28 which is
constructed from the primitive polynomial f = x8 + x7 + x3 + x2 + 1. For simplicity, we
use non-zero positions in each row of a binary matrix as a representation of the matrix.

As an example, [[1, 2, 4], [1, 3], [2, 4], [3, 4]] is applied for A =
( 1 1 0 1

1 0 1 0
0 1 0 1
0 0 1 1

)
.

We denote a matrix with (ai,j) where ai,j is the (i, j)th entry of the matrix. Consider
an n× n matrix A = (ai,j) with 1 ≤ i, j ≤ n over R, the field of real numbers. Then, A is
called a positive matrix over R provided that ai,j > 0 for all 1 ≤ i, j ≤ n.
Definition 1 ([HJ13]). Consider an n× n non-negative matrix A over R. The matrix A
is called a primitive matrix over R if Ak is a positive matrix, denoted Ak > 0, for some
integer k ≥ 1. The primitive order A is the minimum number k which satisfies Ak > 0
and the matrix A is called an k-primitive matrix over R. Moreover, an n× n non-negative
matrix A is called a non-primitive matrix over R, if there is no an integer number k ≥ 1
such that Ak > 0.

In this paper, the symbol F2[L] is considered as a set of all finite polynomials in the
following form

∑n
i=1 bi Lti where bi ∈ F2 and ti’s are integer numbers. Consider an n× n

matrix A over F2[L]. Then A = (ai,j) is called a positive matrix over F2[L] if ai,j 6= 0 for
all 1 ≤ i, j ≤ n. Moreover, A is called an MDS matrix over F2[L] if determinant of all
square submatrices of A are non-zero over F2[L] [WWW12].

Assume that r is a set over F2[L]. Then the set of all prime factors of r is called the base
set of r. For instance, consider the set r = {L,L2,L+ 1,L2 + 1, (L2 +L+ 1)2,L6 +L2 + 1}.
Then the base set of r is r̃ = {L,L+1,L2+L+1,L3+L+1}, since we have L2+1 = (L+1)2

and L6 + L2 + 1 = (L3 + L + 1)2 over F2[L]. Now consider an n× n non-singular matrix
A over F2. If A, A + In, A2 + A + In and A3 + A + In are non-singular matrices over F2,
then we say the elements of r̃ are non-singular matrices over F2 by applying A. Notice
that if by using an n× n matrix A the elements of r̃ are non-singular matrices over F2,
then it can be verified that the elements of r are non-singular matrices over F2 using A.
Definition 2 ([DR13]). For an F2m -linear transformation L, the branch number is defined
by BL = mina6=0{wt(a) + wt(L(a))} where wt(x) is the number of non-zero words in x.
Moreover, an n× n matrix M is called a near-MDS matrix if BL = n.
Example 1. Let A = [[1, 2], [3], [3, 4], [1]] is a 4× 4 binary matrix. Consider B = A3 over
F2. It can be checked that the matrix B is an involutory near-MDS over F2m which means
its branch number is 4. Moreover, it is easy to verify that the depth of the circuit of B is
3. Furthermore, the implementation cost of the matrix B is equal to 6m for m-bit input.
The matrix A is a 4× 4 primitive GFS matrix that will be defined in Section 4.
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3 Relation between Primitive Matrices and Search Space
In this section, the role of primitive matrices for the construction of proposed MDS matrices
are explained. Let A be an n× n non-negative matrix over R. It is easy to see that if A
is a non-primitive matrix over R then A can not be a primitive matrix over F2[L]. Next,
we show that if A is an k-primitive matrix over R, then A may be a non-primitive over
F2[L] or A can be an k′-primitive matrix over F2[L] such that k′ ≥ k. In other words, the
characteristic 2 in F2[L], puts limitation on the order of primitive matrices.

Example 2. Consider the following three matrices

A1 =

( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, A2 =

( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
, A3 =

( L 1 0 0
0 0 1 0
0 0 1 1
L 0 0 0

)
. (1)

Assume that L is a positive integer in R. Then it can be checked that A1, A2 and A3 are
4-primitive matrices over R. For instance, A4

1 over R is in the following form.

A4
1 =

 L4 + 1 L3 3 L2 2 L
2 L 1 L3 L2

3 L2 2 L L4 + 1 L3

L3 L2 2 L 1

 .

In addition, there is no integer number 1 ≤ k ≤ 3 such that Ak
1 be a positive matrix over

R. Now consider A1, A2 and A3 over F2[L].

First of all, we prove A1 is a non-primitive matrix over F2[L]. The characteristic
polynomial of A1 over F2[L] is x4 + L2x2 + 1. Consider the equation xk = (x4 + L2x2 +
1)h(x)+r(x) where r(x) is a polynomial of degree less than 4 over F2[L]. Therefore, we get
Ak

1 = r(A1), since A1 satisfies its own characteristic equation [HJ13]. It can be verified
that r(x) = a1 + a2x

2 when k is an even number and r(x) = b1x+ b2x
3 when k is an odd

number where ai and bi with 1 ≤ i ≤ 2, are in F2[L]. Hence, Ak
1 is a linear combination of

(I4 and A2
1) or (A1 and A3

1) where I4 is the identity matrix of order 4. Moreover, A1, A2
1

and A3
1 are not positive matrices over F2[L]. Furthermore, it can be checked that (I4 and

A2
1) and (A1 and A3

1) have zero entries in the same positions. Therefore, for any positive
integer k, Ak

1 has at least one zero entry which results in A1 is a non-primitive matrix
over F2[L]. In addition, A2 and A3 are 7-primitive and 4-primitive matrices over F2[L].

Definition 3. Suppose that A = (ai,j) and B = (bi,j) with 1 ≤ i, j ≤ n are two n × n
sparse matrices over R. A and B are called with the same structure provided that if
ai,j = 0 then bi,j = 0 and vice versa.

The 4 × 4 sparse matrices A1, A2 and A3, given in Example 2, are with the same
structure. In the rest, by applying Definition 3 to primitive matrices, a systematic approach
for the construction of MDS matrices are proposed. Assume Ai with 1 ≤ i ≤ k are n× n
sparse matrices over R. Now based on the primitivity and structures of Ai’s the following
five cases are considered.

Case 1: Ai’s are non-primitive over R and are with the same structure.

Case 2: Ai’s are non-primitive over R and are not with the same structure.

Case 3: Ai’s are primitive over R and are with the same structure.

Case 4: Ai’s are primitive over R and are not with the same structure.

Case 5: Let I = {j1, j2, · · · , jm} with 1 ≤ m < k be a subset of the set {1, 2, · · · , k}.
Consider Ajt with 1 ≤ t ≤ m are primitive matrices over R and Ai for i 6∈ I are not
primitive matrices over R (the structures of Ai’s can be chosen arbitrarily).
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By considering the given five cases, let B be the multiplication of Ai’s, denoted with
B =

∏k
i=1 Ai. Without loss of generality we may assume that all nonzero entries of Ai’s

are equal to 1. By considering the case 1, the matrix B is not a primitive matrix over
F2[L], since it can be checked that the primitivity of B implies that Ai’s are primitive
matrices which is in contradiction to the assumptions of case 1. Moreover, B is possibly a
primitive matrix over F2[L] by considering the assumptions of cases 2,3,4 and 5 and hence
the matrix B possibly can be an MDS matrix over F2[L]. Therefore, to construct MDS
matrices over F2[L], by applying search on sparse matrices, cases 2,3,4 and 5 can be used.

Performing a search using the third case has less complexity than cases 2,4 and 5, since
Ai’s are with the same structure. In fact, firstly we obtain an n× n k-primitive matrix C
over R. Then we choose matrices Ai with 1 ≤ i ≤ k′ over F2[L] provided that k′ ≥ k and
Ai’s are with the same structure as C. Next, we check whether B =

∏k′

i=1 Ai is an MDS
matrix over F2[L]. Therefore, the main reason for applying the primitive matrices with
the same structure, is the issue of reducing the search space.

Example 3. Consider the following 4× 4 sparse matrices over F2[L].

Ã1 =

( 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
, Ã2 =

( 0 1 0 0
0 0 1 1
0 0 0 1
1 L 0 0

)
, Ã3 =

( 0 1 0 0
0 0 1 L
0 0 0 1
L L 0 0

)
, Ã4 =

( 0 1 0 0
0 0 1 1
0 0 0 1
1 1 0 0

)
.

The matrices Ãi with 1 ≤ i ≤ 4 are extracted from Appendix C.2, Fig. 8 in [DL18]. It is
shown in [DL18] the multiplication of Ãi’s, denoted with B̃ =

∏4
i=1 Ãi, is an MDS matrix

over F2[L]. Moreover, it can be checked that B̃ is obtained from the Case 5, since Ã2, Ã3
and Ã4 are primitive matrices over R and Ã1 is a non-primitive matrix over R.

Consider the matrix A1 given in Example 2. It is observed that A1 is a 4-primitive
matrix over R. Now we select matrices Âi with 1 ≤ i ≤ 4 provided that Âi’s are with the
same structure as A1. In addition, the multiplication of Âi’s, denoted with B̂ =

∏4
i=1 Âi,

is an MDS matrix over F2[L]. The following matrices are derived from a simple search.

Â1 =

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
, Â2 =

( 1 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, Â3 =

( L L 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, Â4 =

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
.

Furthermore, by similar structural properties of Ãi and Âi with 1 ≤ i ≤ 4, we conclude the
implementation cost of the two matrices B̃ and B̂ are the same from hardware perspective.

In the next section, according to the given technique in [DL18] and applying primitive
matrices, a probabilistic algorithm for the construction of MDS matrices is proposed.

4 Primitive GFS Matrices
There are two reasons why GFS is used in this paper. The first and most important reason
is this fact the inverse of GFS is easy to compute as well. The second one is that combining
primitive matrices and GFS reduces search space. In this section, by applying GFS, a type
of primitive sparse matrix is proposed which is called primitive GFS matrix. In Section
5 using primitive GFS matrices, 4 × 4 and 8 × 8 MDS matrices are proposed such that
the implementation cost of these matrices and their inverse are 68 and 264 XOR for 8-bit
input, respectively. Consider the following 2× 2 block-matrices

c(m)
1 =

(
L 1
0 0

)
, c(m)

2 =
(

0 0
1 0

)
, z(m) =

(
0 0
0 0

)
. (2)

where L is an m×m non-singular matrix over F2. In addition, 1 and 0 are m×m identity
and zero matrices, respectively. In Definition (4), by applying c(m)

1 , c(m)
2 and z(m) we

propose primitive GFS matrices.
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Definition 4 (Primitive GFS Matrices). Suppose that p1 = {a1, a2, · · · , an} and p2 =
{b1, b2, · · · , bn} are two permutations of integer numbers from 1 to n such that ai 6= bi for
all 1 ≤ i ≤ n. Consider 2× 2 block-matrices c(m)

1 , c(m)
2 and z(m) which are given in (2).

Suppose that the ith row of an n× n block-matrix S = (si,j) with 1 ≤ i, j ≤ n, based on
the two permutations p1 and p2, is filled in the following form:

si,j =


c(m)

1 j = ai,

c(m)
2 j = bi,

z(m) j 6∈ {ai, bi}.

The block-matrix S is called primitive GFS matrix if S is a primitive matrix over R.

First of all, notice that in Definition 4 to check whether S is a primitive matrix over
R, we assume that c(m)

1 , c(m)
2 and z(m) are 2 × 2 matrices over R and L is a positive

integer. Moreover, for simplicity the block-matrix S is denoted with S(n,L(m), [p1,p2]).
Furthermore, it follows from Definition 4 that a primitive GFS matrix can be a non-
primitive matrix over F2[L]. In addition, primitive GFS matrices are non-singular over
F2[L], since it can be proved that det(S) = 1 over F2[L]. In Example 4, it is observed that
why the block-matrix S in Definition 4 should be a primitive matrix over R and not ask
for S to be primitive over F2[L].

Example 4. Suppose that in Definition 4, we assumed S be a primitive matrix over F2[L].
Consider the following n × n block-matrix that is constructed from two permutations
p1 = {1, 2, · · · , n} and p2 = {2, 3, · · · , n, 1}.

S(n, 1(m), [p1, p2]) =


1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0

 .

For simplicity in representation set A = S(n,1(m), [p1,p2]). Next, we prove A is a non-
primitive matrix over F2[L]. Suppose A is a primitive matrix over F2[L] which implies
that there is a positive integer k such that Ak > 0 over F2[L]. Hence, all entries of Ak

are equal to 1. But it is in contradiction to this fact that A is a non-singular matrix over
F2[L] but Ak is a singular matrix over F2[L], since Ak has two equal rows. Therefore, in
order to use sparse block-matrices such as A, the block-matrix S in Definition 4 should be
asked to be a primitive matrix over R.

It follows from Appendix A that the order of a primitive GFS matrix depends on
the two permutations p1 and p2. Moreover, the implementation cost of proposed MDS
matrices in Section 5, is directly related to the number of iterations required to reach
full diffusion. Therefore, for the construction of MDS matrices, GFS matrices with the
minimum primitive-order should be used. In Example 5, some types of primitive GFS
matrices are made, which are used in Section 5 to construct lightweight 4× 4 and 8× 8
MDS matrices with the implementation cost 68 and 264 XOR for 8-bit input , respectively.

Example 5. For n = 2, the following primitive GFS matrix is used.

p1 = {1, 2}, p2 = {2, 1}, S(2,L(m), [p1,p2]) =
( L 1 0 0

0 0 1 0
0 0 L 1
1 0 0 0

)
. (3)

In Example 2, it is observed that S(2,L(m), [p1,p2]) is a 4-primitive matrix over R. For
n = 3, there are 12 permutations such as p1 = {a1, a2, a3} and p2 = {b1, b2, b3} from 1 to
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3 such that ai 6= bi for all 1 ≤ i ≤ 3. Consider the following case

p1 = {1, 3, 2}, p2 = {2, 1, 3}, S(3,L(m), [p1,p2]) =


L 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 L 1
1 0 0 0 0 0
0 0 L 1 0 0
0 0 0 0 1 0

 (4)

The primitive GFS matrix S(3,L(m), [p1,p2]), is an 5-primitive matrix over R. For n = 4,
there are 216 permutations p1 = {a1, a2, a3, a4} and p2 = {b1, b2, b3, b4} from 1 to 4 such
that ai 6= bi for 1 ≤ i ≤ 4. These 216 permutations are divided into four cases, which are
listed in Appendix A. It follows from Appendix A that the minimum primitive-order of
an GFS matrix such as S(4,L(m), [p1,p2]) is 6. Therefore, we select two permutations p1
and p2 provided that S(4,L(m), [p1,p2]) is a 6-primitive matrix over R.

p1 = {4, 3, 2, 1}, p2 = {3, 2, 1, 4}, S(4, L(m), [p1, p2]) =


0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0
0 0 0 0 L 1 0 0
0 0 1 0 0 0 0 0
0 0 L 1 0 0 0 0
1 0 0 0 0 0 0 0
L 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , (5)

p̂1 = {1, 3, 2, 4}, p̂2 = {2, 1, 4, 3}, S(4, L(m), [p̂1, p̂2]) =


L 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 L 1 0 0
1 0 0 0 0 0 0 0
0 0 L 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0

 . (6)

Two primitive GFS matrices such as A1 and A2 are considered with the same structure
if A1 and A2 are constructed from the same permutations. In the rest, we propose a
probabilistic algorithm for the construction of MDS matrices.

Algorithm 1: Construction of Lightweight MDS Matrices based on the Primitive
GFS Matrices with the same Structure
Input :Three positive integer n, m and r.
Output :An 2n× 2n lightweight MDS matrix over m-bit input with ≤ r XOR.

1 Select two permutations p1 and p2 such that the order of primitive GFS matrix
C = S(n,1(m), [p1,p2]) is minimal over R.

2 Let C be an k-primitive matrix over R and set u = k.
3 Select primitive GFS matrices Ai = S(n, f (i)

(m), [p1,p2]) with 1 ≤ i ≤ u such that
f (i) ∈ {L−2,L−1,1,L,L2} and Ai’s are constructed from minimal numbers of L.

4 Construct B =
∏u

i=1 Ai over F2[L].
5 If B is an MDS matrix over F2[L] then go in Step 8 end.
6 If all cases in Step 3 are considered then set u = u+ 1.
7 If B is not an MDS matrix over F2[L] then go in Step 3 end.
8 Get the base set of subdeterminants of B over F2[L].
9 Obtain an m×m non-singular binary matrix L with the minimal implementation

cost provided that elements of the base set are non-singular matrices over F2 by L.
10 If Step 9 fails to obtain a binary matrix L then go in Step 3 end.
11 Obtain the implementation cost of Ai’s, denoted x, with respect to the cost of L.
12 If x ≤ r then go in Step 14 end.
13 If u ≤ 2n then go in Step 3 else go in Step 1 end.
14 Return B , Ai’s and the non-singular binary matrix L.

Notice that, Algorithm 1 is a randomized algorithm, since with the proposed approach,
there is an extensive search space to construct MDS matrices for the large dimensions.
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Example 6. The best implementation of the lightweight 6× 6 MDS matrices for 8-bit
input is 186 XOR [TTK+18]. Set n = 3, m = 8 and r = 186 as input into Algorithm 1.
It follows from (4) that C = S(3,1(8), [p1,p2]) is an 5-primitive matrices over R for the
two permutations p1 = {1, 3, 2} and p2 = {2, 1, 3}. Using exhaustive search, it can be
verified that there are no primitive GFS matrices Ai = S(3, f (i)

(m), [p1,p2]) with 1 ≤ i ≤ 5
such that

∏5
i=1 Ai is an MDS matrix over F2[L] provided that f (i) ∈ {L−2,L−1,1,L,L2}.

Now consider the following primitive GFS matrices Ai with 1 ≤ i ≤ 6.
A1 = R(3, 1(m), [p1, p2]), A2 = R(3, L(m), [p1, p2]), A3 = R(3, 1(m), [p1, p2]),

A4 = R(3, 1(m), [p1, p2]), A5 = R(3, L2
(m), [p1, p2]), A6 = R(3, 1(m), [p1, p2]).

It can be checked that B =
∏6

i=1 Ai is an MDS matrix over F2[L]. Moreover, applying
exhaustive search, matrix B is an optimal result with respect to the number of binary
linear functions which are used in the construction of B (L,L,L,L2,L2 and L2). It is worth
mentioning that L2 is considered two binary linear functions.

B =


L3 + 1 L3 + 1 L3 + L2 + L + 1 L3 + L2 + 1 1 L

L3 + L + 1 L3 + 1 L2 L2 + L L3 + 1 L3

1 L L3 + 1 L3 + 1 L3 + L2 + L + 1 L3 + L2 + 1
L3 + 1 L3 L3 + L + 1 L3 + 1 L2 L2 + L

L3 + L2 + L + 1 L3 + L2 + 1 1 L L3 + 1 L3 + 1
L2 L2 + L L3 + 1 L3 L3 + L + 1 L3 + 1

 .

It is easy to verify that the number of subdeterminants of an n×n matrix is
∑n

i=1
(

n
i

)(
n
i

)
=(2n

n

)
−1. Therefore, B has

(12
6
)
−1 = 923 subdeterminants. The base set of subdeterminants

of B is given in (7).
{L, L + 1, L2 + L + 1, L3 + L + 1, L3 + L2 + 1, L4 + L + 1, L4 + L3 + 1, L4 + L3 + L2 + L + 1,
L5 + L2 + 1, L5 + L3 + 1, L5 + L3 + L2 + L + 1, L5 + L4 + L2 + L + 1, L5 + L4 + L3 + L + 1,
L5 + L4 + L3 + L2 + 1, L6 + L + 1, L6 + L3 + 1, L6 + L4 + L2 + L + 1, L6 + L4 + L3 + L + 1,

L6 + L5 + 1, L6 + L5 + L2 + L + 1, L6 + L5 + L3 + L2 + 1, L6 + L5 + L4 + L + 1,
L6 + L5 + L4 + L2 + 1, L7 + L3 + L2 + L + 1, L7 + L5 + L3 + L + 1, L7 + L6 + 1,

L7 + L6 + L4 + L2 + 1, L7 + L6 + L5 + L4 + 1, L8 + L6 + L5 + L3 + 1,
L8 + L7 + L3 + L + 1, L8 + L7 + L6 + L3 + L2 + L + 1}.

(7)

Assume the XOR cost of a binary linear function (L) is denoted with the symbol #L.
Therefore, the implementation cost of B for m-bit input is equal to:

#B1︷︸︸︷
(3m) +

#B2︷ ︸︸ ︷
(3m + 3(#L) +

#B3︷︸︸︷
(3m) +

#B4︷︸︸︷
(3m) +

#B5︷ ︸︸ ︷
(3m + 3(#L2) +

#B6︷︸︸︷
(3m) = 18m + 3(#L) + 3(#L2). (8)

Next, we get 8 × 8 non-singular matrices L over F2 such that the given elements in (7)
are non-singular matrices over F2 by applying L. For instance, the following non-singular
binary matrices Lj with 1 ≤ j ≤ 4, are obtained.

L1 = [[1, 8], [1], [2, 7], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1], [2], [3], [4, 7], [5], [6], [7]],
L3 = [[3, 8], [1], [2], [3], [4], [5, 6], [6], [7]], L4 = [[5, 8], [1], [2], [3], [4], [5], [6, 7], [7]]. (9)

The implementation cost of Lj ’s, given in (9), is two XOR. In addition L2
j with 1 ≤ j ≤ 4,

can be implemented with four XOR. Therefore, it follows from (8) that the implementation
cost of B is 18× 8 + 3× 2 + 3× 4 = 162 XOR. Moreover, B−1 is implemented with 162
XOR, since the implementation cost of B−1 =

∏6
i=1 A−1

7−i is equal to (8).

Proposition 1 follows a condition which can be applied to reduce the complexity of the
step 9 given in Algorithm 1 when we run Algorithm 1 to construct MDS matrices with
the large dimensions.

Proposition 1. Let r = {f1, f2, · · · , fk} be a set of pairwise distinct irreducible polyno-
mials over F2 for some positive integer k. Suppose that A is an n× n binary matrix such
that its minimal polynomial is g. If prime factors of g over F2 are not elements of the set
r, then matrices fi(A) with 1 ≤ i ≤ k are non-singular matrices over F2 .
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Proof. First, we prove the matrices fi(A) with 1 ≤ i ≤ k are nonzero matrices over F2. It
follows from assumptions that g is minimal polynomial of A. Suppose that fi(A) is equal
to zero matrix for some 1 ≤ i ≤ k. Then we get a contradiction to our assumptions, since
fi’s are irreducible polynomials over F2 such that fi’s are not prime factors of g over F2.
Now assume that fi(A) is equal to a singular matrix for some 1 ≤ i ≤ k which implies
that the determinant of fi(A) is equal to zero. From linear algebra [HJ13] we know that
det(fi(A)) =

∏n
j=1 fi(λj) where λj ’s are eigenvalues of A. Therefore, there is at least an

integer 1 ≤ j ≤ n such that fi(λj) = 0 and this is in contradiction to this fact that two
distinct irreducible polynomials have no common roots.

It follows from Proposition 1 that in step 9, given in Algorithm 1, it is sufficient to
obtain an m×m non-singular binary matrix such that the prime factors of its minimal
polynomial are not elements of the base set of the matrix B [BKL16, Kol19].

5 Construction of MDS Matrices by Applying Primitive
GFS Matrices

In this section, using primitive GFS matrices, we propose 4× 4 and 8× 8 MDS matrices
for 8 bit input. The proposed 4 × 4 and 8 × 8 MDS matrices are implemented with 68
and 264 XOR. Moreover, the given results in this section are optimal according to the
terminology of XOR cost and the number of binary linear functions. In other words, it is
not possible to achieve better results by applying the proposed approach in Section 4. In
fact, in order to obtain the results of this section, an exhaustive search has been applied to
Algorithm 1. Although the given results in this section are not better than the presented
results in Section 6, we intend to show the importance of Algorithm 1 for the construction
of lightweight MDS matrices with the large dimensions.

5.1 Construction of 4 × 4 MDS Matrices
Consider the primitive GFS matrix C = R(2,1(m), [p1,p2]) over two permutations p1 =
{1, 2} and p2 = {2, 1}. It follows from (3) that C is a 4-primitive matrix over R. In the
rest, based on the structure of matrix C, the following primitive GFS matrices are applied
to construct a lightweight 4× 4 MDS matrix for m-bit input.

A1 = R(2, 1(m), [p1, p2]), A2 = R(2, L(m), [p1, p2]),

A3 = R(2, L(m), [p1, p2]), A4 = R(2, 1(m), [p1, p2]).

It can be checked that B = A1A2A3A4, given in (10), is an MDS matrix over F2[L].

B =
( 1 1 0 0

0 0 1 0
0 0 1 1
1 0 0 0

)( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)

=

 L2 + 1 L2 1 L + 1
L + 1 1 L2 L2

1 L + 1 L2 + 1 L2

L2 L2 L + 1 1

 .

(10)

Then the implementation cost of B, for m-bit input, is equal to
#A1︷ ︸︸ ︷
(2m) +

#A2︷ ︸︸ ︷
(2m+ 2(#L)) +

#A3︷ ︸︸ ︷
(2m+ 2(#L)) +

#A4︷ ︸︸ ︷
(2m) = 8m+ 4(#L). (11)

There are
(8

4
)
− 1 = 69 subdeterminants in B. The base set of these subdeterminants is:

{L,L + 1,L2 + L + 1,L3 + L + 1,L3 + L2 + 1,L4 + L + 1} (12)
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For m = 4, consider the following 4× 4 non-singular matrices over F2. It can be verified
that using Li with 1 ≤ i ≤ 4 , the given elements in (12) are non-singular matrices over
F2. Moreover, the implementation cost of Li’s is one XOR.

L1 = [[1, 4], [1], [2], [3]], L2 = [[4], [1, 2], [2], [3]], L3 = [[4], [1], [2, 3], [3]], L4 = [[4], [1], [2], [3, 4]].

Hence, by applying Li’s and relation (11), B is implemented with 8 × 4 + 4 × 1 = 36
XOR for 4-bit input. Moreover, L4 + L3 + 1 is not an element of (12). Therefore, B is
implemented with 36 XOR over F24/0x19. Furthermore, using Li with 1 ≤ i ≤ 4, the
implementation cost of B−1 is 36 XOR, since we have

B−1 =

( 0 0 0 1
1 0 0 1
0 1 0 0
0 1 1 0

)( 0 0 0 1
1 0 0 L
0 1 0 0
0 L 1 0

)( 0 0 0 1
1 0 0 L
0 1 0 0
0 L 1 0

)( 0 0 0 1
1 0 0 1
0 1 0 0
0 1 1 0

)
. (13)

For m = 8, consider 8 × 8 non-singular matrices Lj with 1 ≤ j ≤ 4 in (14). It can be
verified that by applying Lj ’s the given elements in (12) are non-singular matrices over F2.

L1 = [[2, 8], [1], [2], [3], [4], [5], [6], [7]], L2 = [[8], [1, 3], [2], [3], [4], [5], [6], [7]],
L3 = [[8], [1], [2, 4], [3], [4], [5], [6], [7]], L4 = [[8], [1], [2], [3, 5], [4], [5], [6], [7]]. (14)

The implementation cost of Lj ’s is one XOR. Therefore, using Lj ’s and relation (11), B is
implemented with 8× 8 + 4× 1 = 68 XOR for 8-bit input. Moreover, it follows from (13)
that the implementation cost of B−1 is 68 XOR for 8-bit input. Furthermore, B can be
implemented with at least 8× 8 + 4× 2 = 72 XOR over F28 , since some roots of irreducible
polynomials of degree 8 require only two XOR [BKL16].

5.2 Construction of 8 × 8 MDS Matrices
First of all, we select two permutations p̂1 = {1, 3, 2, 4} and p̂2 = {2, 1, 4, 3}. Then we
construct the primitive GFS matrix C = R(4,1(m), [p̂1, p̂2]). It follows from (6) that C is
a 6-primitive GFS matrix over R. Moreover, it follows from exhaustive search that there
are no primitive GFS matrices Ai = S(4, f (i)

(m), [p̂1, p̂2]) with 1 ≤ i ≤ 6 such that
∏6

i=1 Ai

is an MDS matrix over F2[L] provided that f (i) ∈ {L−2,L−1,1,L,L2}. Now consider the
following primitive GFS matrices Ai with 1 ≤ i ≤ 7.

A1 = R(4, L(m), [p̂1, p̂2]), A2 = R(4, 1m, [p̂1, p̂2]), A3 = R(4, 1m, [p̂1, p̂2]), A4 = R(4, L2
(m), [p̂1, p̂2]),

A5 = R(4, L−1
(m), [p̂1, p̂2]), A6 = R(4, L−1

(m), [p̂1, p̂2]), A7 = R(4, 1m, [p̂1, p̂2]).

It can be verified that B =
∏7

i=1 Ai is an MDS matrix over F2[L]. Moreover, using
exhaustive search, B is one of the optimal results in relation to the number of binary
linear functions. Actually, it is not possible to construct an MDS matrix B by applying
primitive GFS matrices Ai = S(4, f (i)

(m), [p̂1, p̂2]) with 1 ≤ i ≤ 7 provided that Ai’s are
constructed from less than twenty binary linear functions (L,L,L,L,L−1,L−1,L−1,L−1,
L−1,L−1,L−1,L−1,L2,L2,L2, and L2). Now, it follows from B =

∏7
i=1 Ai that the imple-

mentation cost of B for m-bit input is equal to

#A1︷ ︸︸ ︷
(4m + 4(#L)) +

#A2︷︸︸︷
(4m) +

#A3︷︸︸︷
(4m) +

#A4︷ ︸︸ ︷
(4m + 4(#L2)) +

#A5︷ ︸︸ ︷
(4m + 4(#L−1)) +

#A6︷ ︸︸ ︷
(4m + 4(#L−1)) +

#A7︷︸︸︷
(4m)

= 28m + 4(#L) + 4(#L2) + 8(#L−1)

(15)

The base set of subdeterminants of B has 380 elements. In this base set, there are all
irreducible polynomials of degree 4 and 8, except for the irreducible polynomial 0x1A3. It
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can be checked that the elements of the base set of B are non-singular matrices over F2 by
applying the following non-singular 8× 8 binary matrices Li with 1 ≤ i ≤ 4.

L1 = [[3], [7], [2], [5], [1, 8], [4], [6], [4, 8]], L2 = [[6], [3], [1, 4], [2, 4], [7], [5], [8], [2]],
L3 = [[7], [1, 5], [2], [8], [3, 5], [4], [6], [3]], L4 = [[1, 5], [7], [2], [8], [6], [1, 4], [5], [3]]. (16)

Notice the implementation cost of Li’s is two XOR. In addition, L−1
i and L2

i with 1 ≤ i ≤ 4
can be implemented with two and four XOR, respectively. Therefore, by applying Li’s and
relation (15), B is implemented with 28× 8 + 4× 2 + 4× 4 + 8× 2 = 264 XOR for 8-bit
input. Moreover, it can be verified that the implementation cost of B−1 is 264 XOR for
8-bit input. Furthermore, it follows from Proposition 1 that the matrix B is implemented
with 264 XOR over F28/0x1A3, since the minimal polynomial of Li’s over F2 is 0x1A3.

6 Construction of MDS Matrices by Applying Extended
Primitive GFS Matrices

In this section, using an extension of Definition 4, we define some types of sparse matrices
called EGFS matrices. Then, by applying EGFS matrices we propose 4×4, 6×6 and 8×8
lightweight MDS matrices with the implementation cost 67, 156 and 260 XOR for 8-bit
input, respectively. Moreover, we propose an 6× 6 MDS matrix for 4-bit input such that
its implementation cost is 90 XOR. The proposed MDS matrices are not only suitable by
the terminology of implementation cost, but also are efficient with respect to the number
of binary linear functions which are used in the construction of the presented matrices.
Although, we could not obtain 8× 8 MDS matrices from EGFS matrices for 4-bit input,
we propose 8× 8 near-MDS matrices such that the depth and the implementation cost of
the proposed matrices are low and may be used in lightweight cryptography.

The proposed 4 × 4 MDS matrix is obtained by exhaustive search. But a random
search is applied to achieve the proposed 6× 6 and 8× 8 MDS matrices. Actually, there is
an extensive search space to obtain lightweight 6× 6 and 8× 8 MDS matrices using EGFS
matrices. Therefore, by performing a full search on EGFS matrices, better implementation
results may be achieved to construct 6× 6 and 8× 8 lightweight MDS matrices.

Assume that 1 and 0 are m × m identity and zero matrices over F2, respectively.
Consider Lj with 1 ≤ j ≤ 3n such that Lj ’s are m×m non-singular matrices over F2. In
Definition 5, the following 2× 2 block-matrices with 1 ≤ i ≤ n are used.

c(1,m)
i =

(
L3i−2 L3i−1

0 0

)
, c(2,m)

i =
(

0 0
L3i 0

)
, z(m) =

(
0 0
0 0

)
. (17)

Definition 5 (Extended Primitive GFS Matrices). Suppose that p1 = {a1, a2, · · · , an}
and p2 = {b1, b2, · · · , bn} are two permutations from 1 to n such that ai 6= bi for 1 ≤ i ≤ n.
Consider 2× 2 block-matrices c(1,m)

i , c(2,m)
i and z(m) with 1 ≤ i ≤ n that are given in (17).

Assume that using the two permutations p1 and p2, the ith row of an n× n block-matrix
E = (ei,j) with 1 ≤ i, j ≤ n, is filled in the following form.

ei,j =


c(1,m)

i j = ai,

c(2,m)
i j = bi,
z(m) j 6∈ {ai, bi}.

The block-matrix E is called an extended primitive GFS matrix, denoted with EGFS
matrix, if E be a primitive matrix over R.

In Definition 5, it can be verified that det(E) =
∏n

i=1 L3i−1L3i over F2[L]. Therefore,
det(E) 6= 0 over F2[L], since it is assumed that Lj with 1 ≤ j ≤ 3n are non-singular
matrices over F2. In other words, EGFS matrices are non-singular matrices over F2[L].
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Example 7. For n = 2, consider the two permutations p1 = {1, 2} and p2 = {2, 1}. Then
the following two EGFS matrices E1 and E2 are 4-primitive matrices over R.

c(1,m)
1 =

(
1 1
0 0

)
, c(1,m)

2 =
(

L 1
0 0

)
,

c(2,m)
1 =

(
0 0
1 0

)
, c(2,m)

2 =
(

0 0
L−1 0

)
,

E1 =

( 1 1 0 0
0 0 1 0
0 0 L 1

L−1 0 0 0

)
.

c(1,m)
1 =

(
L 1
0 0

)
, c(1,m)

2 =
(

1 1
0 0

)
,

c(2,m)
1 = c(2,m)

2 =
(

0 0
1 0

)
,

E2 =

( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
.

6.1 Construction of 4 × 4 MDS Matrices from EGFS
In this subsection, we propose four EGFS matrices Ei with 1 ≤ i ≤ 4 such that Ei’s are
4-primitive matrices over R. Moreover, the proposed EGFS matrices are constructed of
the two permutations p1 = {1, 2} and p2 = {2, 1}. In other words, Ei’s are with the
same structure. Next, using Ei’s we obtain an MDS matrix H over F2[L] such that the
implementation cost of H over 4 and 8-bit input are 35 and 67 XOR, respectively.

H =

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
·

( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
·

( 1 1 0 0
0 0 1 0
0 0 L 1

L−1 0 0 0

)
·

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
,

=

 L + 1 L 1 L + 1
L−1 + 1 L−1 L L

L−1 L−1 + 1 L + 1 L
L L L + 1 1

 .

Let H = E1E2E3E4. Then the implementation cost of H for m-bit input is equal to
#E1︷ ︸︸ ︷
(2m) +

#E2︷ ︸︸ ︷
(2m+ #L) +

#E3︷ ︸︸ ︷
(2m+ #L + #(L−1)) +

#E4︷ ︸︸ ︷
(2m) = 8m+ 2(#L) + #(L−1). (18)

The base set of subdeterminants of H is:
{L,L + 1,L2 + L + 1,L3 + L + 1,L3 + L2 + 1}. (19)

For m = 4, consider 4× 4 non-singular binary matrices Li with 1 ≤ i ≤ 3 in (20). It can
be checked that by applying Li’s the given elements in (19) are non-singular matrices over
F2. In addition, the implementation cost of Li and L−1

i with 1 ≤ i ≤ 6 are one XOR.
L1 = [[1, 4], [1], [2], [3]], L2 = [[3, 4], [1], [2], [3]], L3 = [[4], [1, 2], [2], [3]]. (20)

Therefore, by applying Li’s and relation (18), the implementation cost of H is 8 × 4 +
2× 1 + 1× 1 = 35 XOR for 4-bit input. Moreover, it follows from (19) that the matrix
H can be implemented with 35 XOR over F24 , since the two irreducible polynomials
0x13 and 0x19 are not elements of (19). For m = 8, the next 8× 8 non-singular binary
matrices L1 = [[2, 8], [1], [2], [3], [4], [5], [6], [7]] and L2 = [[6, 8], [1], [2], [3], [4], [5], [6], [7]] are
obtained such that the given elements in (19) are non-singular matrices over F2 by applying
L1 and L2. Moreover, the implementation cost of Lj and L−1

j with 1 ≤ j ≤ 2 are one
XOR. Hence, it follows from (18) that the implementation cost of H by applying Lj ’s is
8× 8 + 2× 1 + 1× 1 = 67 XOR. Moreover, some roots of irreducible polynomials of degree
8 require only two XOR [BKL16]. Therefore, H are implemented with 70 XOR over F28 .

Moreover, the implementation cost of E−1
2 and E−1

3 are (2m+ #L) and (2m+ 2(#L)),
respectively. For instance, set x = [x1, x2, x3, x4]. Consider E−1

3 · xT = [y1, y2, y3, y4]T.
Then we get y1 = Lx4, y2 = y1 + x1, y3 = x2 and y4 = Lx2 + x3. Therefore, the
implementation cost of H−1 for m-bit input is equal to (8m + 3(#L)) and hence by
applying the given 4× 4 and 8× 8 non-singular binary matrices, the matrix H−1 can be
implemented with 35 and 67 XOR for 4 and 8-bit input, respectively.
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6.2 Construction of 6 × 6 MDS Matrices from EGFS Matrices
In this section, we propose 6 × 6 MDS matrices for 4,6 and 8-bit input such that the
implementation cost of the proposed matrices and their inverses are equal.

6.2.1 Construction of 6 × 6 MDS Matrix for 4-bit input

In this subsection, by applying distinct EGFS matrices, we propose a 6× 6 MDS matrix
which is implemented with 90 XOR for 4-bit input. In fact, we could not obtain 6 × 6
EGFS matrices Ei with 1 ≤ i ≤ 6 provided that Ei’s satisfy the following conditions.
First, Ei’s are with the same structure. Second, the multiplication of Ei’s denoted with
H =

∏6
i=1 Ei, is an MDS matrix over F2[L]. Finally, at least one of the two irreducible

polynomials 0x13 and 0x19 are not elements of the base set of H. Therefore, we used
distinct EGFS matrices to construct a lightweight 6 × 6 MDS matrix for 4-bit input.
Consider the following EGFS matrices Ei with 1 ≤ i ≤ 6.

E1 =


0 0 0 0 1 1
0 0 1 0 0 0
0 0 1 1 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0

 , E2 =


0 0 0 0 1 L−6

1 0 0 0 0 0
1 L−6 0 0 0 0
0 0 1 0 0 0
0 0 1 L−6 0 0
0 0 0 0 1 0

 ,

E3 =


1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0

 , E4 =


0 0 L−1 1 0 0
0 0 0 0 1 0
0 0 0 0 L−1 1
1 0 0 0 0 0

L−1 1 0 0 0 0
0 0 1 0 0 0

 ,

E5 =


0 0 0 0 L−1 1
0 0 1 0 0 0
0 0 L−1 1 0 0
1 0 0 0 0 0

L−1 1 0 0 0 0
0 0 0 0 1 0

 , E6 =


1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

 .

The two EGFS matrices E1 and E5 are with the same structure and are constructed from
the two permutations p1 = {3, 2, 1} and p2 = {2, 1, 3} and also are 5-primitive matrices
over R. The EGFS matrix E2 is constructed from p1 = {3, 1, 2} and p2 = {1, 2, 3} and
also is an 6-primitive matrix over R. Moreover, EGFS matrices E3 and E4 are 6-primitive
matrices and E6 is a 5-primitive matrix over R. Next, applying EGFS matrices Ei with
1 ≤ i ≤ 6, the proposed lightweight 6× 6 MDS matrix H is given by

H = E1E2E3E4E5E6

=


L−2 + L−6 + L−7 + 1 L−2 + L−6 L−2 + 1

1 L−1 + 1 L−8 + 1
L−2 + 1 L−1 + L−2 + 1 L−8

L−8 + 1 L−8 L−2 + L−6 + L−7

L−8 L−1 + L−8 + 1 L−2 + L−6 + L−7 + 1
L−2 + L−6 + L−7 L−2 + L−6 1

L−1 + L−2 + 1 L−8 L−1 + L−8 + 1
L−8 L−2 + L−6 + L−7 L−2 + L−6

L−1 + L−8 + 1 L−2 + L−6 + L−7 + 1 L−2 + L−6

L−2 + L−6 1 L−1 + 1
L−2 + L−6 L−2 + 1 L−1 + L−2 + 1

L−1 + 1 L−8 + 1 L−8

 .

The implementation cost of H for m-bit input is equal to

#H =

#E1︷︸︸︷
(3m) +

#E2︷ ︸︸ ︷
(3m + 3(#L−6)) +

#E3︷︸︸︷
(3m) +

#E4︷ ︸︸ ︷
(3m + 3(#L−1)) +

#E5︷ ︸︸ ︷
(3m + 3(#L−1)) +

#E6︷︸︸︷
(3m)

= 18m + 6(#L−1) + 3(#L−6).

(21)
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The base set of subdeterminants of H has 149 elements such that L4 + L + 1(0x13) is
not an element of the base set. For m = 4, consider the next 4× 4 non-singular matrices
over F2. It can be verified that using Li with 1 ≤ i ≤ 2 , the elements of base set are
non-singular matrices over F2. Moreover, the implementation cost of Li and L−1

i with
1 ≤ i ≤ 2 are one XOR.

L1 = [[3, 4], [1], [2], [3]], L2 = [[4], [1, 4], [2], [3]].

In addition, L−6
i with 1 ≤ i ≤ 2 can be implemented with four XOR. For instance, consider

x = [x1, x2, x3, x4] and assume that L−6
1 · xT = [y1, y2, y3, y4]T. Then we get y1 = x1 + x3,

y2 = y1 + x2, y3 = y2 + x4 and y4 = y3 + x1. Next, by applying Li’s and relation (21),
H is implemented with 18× 4 + 6× 1 + 3× 4 = 90 XOR for 4-bit input. Moreover, H is
implemented with 90 XOR over F24/0x13. Furthermore, it is easy to check that H−1 can
be implemented with 90 XOR for 4-bit input.

6.2.2 Construction of 6 × 6 MDS Matrix for 6-bit and 8-bit input

In this subsection, using EGFS matrices, we propose a new lightweight 6× 6 MDS matrix
which is implemented with 156 XOR for 8-bit input. Moreover, the proposed 6× 6 MDS
matrix is implemented with 114 XOR for 6-bit input. The result of this subsection is not
only efficient from hardware perspective, but also are suitable by software terminology. In
fact, in order to construct the proposed 6× 6 MDS matrix for 8-bit input, six binary linear
functions (L) are used such that the cost of L is very small compared to the total XOR.

Consider the following EGFS matrices Ei with 1 ≤ i ≤ 2 such that E1 is constructed
from the two permutations p1 = {1, 2, 3} and p2 = {3, 1, 2} and also E2 is obtained from
p1 = {3, 2, 1} and p2 = {2, 1, 3}. It can be checked that E1 and E2 are 6-primitive and
5-primitive matrices over R, respectively.

E1 =


1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0

 , E2 =


0 0 0 0 L 1
0 0 1 0 0 0
0 0 L 1 0 0
1 0 0 0 0 0
L 1 0 0 0 0
0 0 0 0 1 0

 .

Now based on the EGFS matrices Ei with 1 ≤ i ≤ 2, the proposed lightweight 6× 6 MDS
matrix H is constructed as follows.

H = E2
1×E2

2×E2
1 =


L2 + L L2 + 1 L2 1 L + 1 L2 + L + 1
L + 1 L L2 + L + 1 L + 1 L2 + L + 1 L2 + 1
L + 1 L2 + L + 1 L2 + L L2 + 1 L2 1

L2 + L + 1 L2 + 1 L + 1 L L2 + L + 1 L + 1
L2 1 L + 1 L2 + L + 1 L2 + L L2 + 1

L2 + L + 1 L + 1 L2 + L + 1 L2 + 1 L + 1 L

 .

The implementation cost of H for m-bit input is equal to

2(#E1)︷ ︸︸ ︷
2(3m) +

#2(E2)︷ ︸︸ ︷
2(3m+ 3(#L)) +

2(#E1)︷ ︸︸ ︷
2(3m) = 18m+ 6(#L) (22)

The base set of subdeterminants of H has 20 elements that are listed in (23).

{0x2, 0x3, 0x7, 0xB, 0xD, 0x13, 0x19, 0x1F, 0x25, 0x29, 0x2F,
0x37, 0x3B, 0x3D, 0x61, 0x57, 0x5B, 0x67, 0x6D, 0x75} (23)

Consider 8× 8 non-singular binary matrices Li with 1 ≤ i ≤ 4 that are given in (24). It
can be verified that by applying Li’s, the given elements in (23) are non-singular matrices
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over F2. Moreover, the implementation cost of Li and L−1
i with 1 ≤ i ≤ 4 are two XOR.

L1 = [[1, 8], [1], [2, 5], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1], [2, 7], [3], [4], [5], [6], [7]],
L3 = [[1, 8], [1], [2], [3, 6], [4], [5], [6], [7]], L4 = [[1, 8], [1], [2], [3], [4, 7], [5], [6], [7]]. (24)

Therefore, by applying Li’s and relation (22), H is implemented with 18× 8 + 6× 2 = 156
XOR for 8-bit input. Moreover, H can be implemented with 156 XOR over F28 , since
some roots of the irreducible polynomials of degree 8 require only two XOR [BKL16] and
there are no irreducible polynomials of degree 8 in (23). Furthermore, it is easy to verify
that H−1 is implemented with 156 XOR over F28 .

Finally, we implement H for 6-bit input with the low XOR cost. In the base set of H,
given in (23), there are all irreducible polynomials of degree 6 except the three irreducible
polynomials 0x43, 0x49 and 0x73. Next, we search on 6× 6 binary matrices provided that
the implementation cost of these matrices is one XOR and their minimal polynomials over
F2 are 0x43 or 0x49. For instance, consider the following 6× 6 binary matrices.

L1 = [[5, 6], [1], [2], [3], [4], [5]], L2 = [6], [1, 4], [2], [3], [4], [5]].

The implementation cost of Li with 1 ≤ i ≤ 2 is one XOR. Moreover, the minimal
polynomial of L1 and L2 are 0x43 and 0x49, respectively. Therefore, by applying Li’s the
given elements in (23) are non-singular matrices over F2. Hence, using Li’s in (22), H and
H−1 are implemented with 18× 6 + 6× 1 = 114 XOR for 6-bit input. Moreover, based on
Proposition 1 the implementation cost of H over F26/0x43 and F26/0x49 is 114 XOR.

6.3 Construction of 8 × 8 MDS and Near-MDS Matrices from EGFS
First, we propose two 8 × 8 near-MDS matrices such that the implementation cost of
the proposed matrices are 116 and 108 XOR for 4-bit input. Moreover, the proposed
near-MDS matrices are implemented with 212 and 204 XOR for 8-bit input, respectively.
The first proposed near-MDS matrix can be applied to hardware implementation, since
has low XOR cost and also the depth of its circuit is 6. The second proposed near-MDS
matrix can be used in software implementation, since the proposed matrix is constructed
from 12 binary linear functions. Next, we propose two 8× 8 MDS matrices for 8-bit input.
The first proposed MDS matrix is implemented with 272 XOR and the second 8× 8 MDS
matrix is implemented with 260 XOR for 8-bit input.

6.3.1 Construction of Lightweight 8 × 8 Near-MDS Matrices for 4 and 8-bit inputs

The best results for the construction of 8 × 8 near-MDS matrices for 4 and 8-bit input
are 216 and 432 XOR which are given in [LW17]. In this subsection, the proposed 8× 8
near-MDS matrices are not only with low implementation cost, but also the depth of their
circuits are low. Consider the two proposed 8× 8 EGFS matrices E1 and E2, which are
constructed from the two permutations p1 = {4, 3, 2, 1} and p2 = {3, 2, 1, 4}. It can be
checked that E1 and E2 are 6-primitive matrices over R.

E1 =


0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , E2 =


0 0 0 0 0 0 L−2 L
0 0 0 0 1 0 0 0
0 0 0 0 L−2 L 0 0
0 0 1 0 0 0 0 0
0 0 L−2 L 0 0 0 0
1 0 0 0 0 0 0 0

L−2 L 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 .

(25)
By applying the two EGFS matrices E1 and E2, we propose the following 8× 8 matrix.
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H = E3
1E2E2

1 =
L L + L−2 L + L−2 + 1 L + L−2 L + L−2 L + 1 1 L−2 + 1

L−2 + 1 1 0 L−2 L + L−2 L + L−2 L + 1 L
1 L−2 + 1 L L + L−2 L + L−2 + 1 L + L−2 L + L−2 L + 1

L + 1 L L−2 + 1 1 0 L−2 L + L−2 L + L−2

L + L−2 L + 1 1 L−2 + 1 L L + L−2 L + L−2 + 1 L + L−2

L + L−2 L + L−2 L + 1 L L−2 + 1 1 0 L−2

L + L−2 + 1 L + L−2 L + L−2 L + 1 1 L−2 + 1 L L + L−2

0 L−2 L + L−2 L + L−2 L + 1 L L−2 + 1 1

 .

(26)
The implementation cost of H for m-bit input is equal to

3(#E1)︷ ︸︸ ︷
3(4m) +

#(E2)︷ ︸︸ ︷
(4m+ 4(#L) + 4(#L−2)) +

2(#E1)︷ ︸︸ ︷
2(4m) = 24m+ 4(#L) + 4(#L−2). (27)

Consider the following 4 × 4 and 8 × 8 binary matrices, given in (28). The minimal
polynomials of Li with 1 ≤ i ≤ 2 over F2 are L4 +L+ 1 and (L4 +L+ 1)2. Moreover, the
implementation cost of Li’s and L−2

i ’s are one and two XOR, respectively.

L1 = [[4], [1, 4], [2], [3]], L2 = [[8], [1], [2, 8], [3], [4], [5], [6], [7]]. (28)

Now, by applying Li’s it can be check that the matrix H is a 8 × 8 near-MDS matrix
over F2[L]. Therefore, using Li with 1 ≤ i ≤ 2 and relation (27), the matrix H can be
implemented with 24× 4 + 4× 1 + 4× 2 = 108 and 24× 8 + 4× 1 + 4× 2 = 204 XOR for
4 and 8-bit input, respectively. Furthermore, the implementation cost of the matrix E−1

2
are 4m+ 4(#L−1) + 4(#L−2). In fact, consider x = [x1, x2, · · · , x8]. Then we get

E−1
2 · xT =[
x6,L−1(x7 + L−2x6), x4,L−1(x5 + L−2x4), x2,L−1(x3 + L−2x2), x8,L−1(x1 + L−2x8)

]
.

The above relation implies that the implementation cost of H−1 for m-bit input is equal
to the implementation cost of the matrix H, since L−1

i ’s are implemented with one XOR.
It follows from Fig. 6 that the depth of H, given in (26), is 7. In the rest, we propose

a 8 × 8 near-MDS matrix such that the depth of its circuit is 6 and has low XOR cost.
Consider the given 8× 8 EGFS matrices Êi with 1 ≤ i ≤ 3 in (29). The proposed matrices
in (29) are with the same structure with E1 and E2 which are given in (25).

Êi =


0 0 0 0 0 0 1 1
0 0 0 0 fi 0 0 0
0 0 0 0 1 1 0 0
0 0 fi 0 0 0 0 0
0 0 1 1 0 0 0 0
fi 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 fi 0

 , f1 = 1, f2 = L2, f3 = L3. (29)

Based on the given matrices in (29), we propose the following 8×8 matrix Ĥ = Ê3
1Ê2Ê3Ê1.

It is easy to check that the implementation cost of Ĥ for m-bit input is equal to 24m+
4(#L2) + 4(#L3). Moreover, using L1 and L2 in (28), it can be checked that Ĥ is a 8× 8
near-MDS matrix over F2[L]. Therefore, by applying the given binary matrices in (28), the
matrix Ĥ can be implemented with 24×4+4×2+4×3 = 116 and 24×8+4×2+4×3 = 212
XOR for 4 and 8-bit input, since the implementation cost of L2

i and L3
i with 1 ≤ i ≤ 2 are

two and three XOR, respectively.
Furthermore, the implementation cost of Ê−1

i with 1 ≤ i ≤ 3 are equal to 4m,
4m+ 4(#L−2) and 4m+ 4(#L−3), respectively. For instance, consider x = [x1, x2, · · · , x8]
and assume that Ê−1

3 · xT = [y1, y2, · · · , y8]T. Then we get

y1 = L−3x6, y2 = y1 + x7, y3 = L−3x4, y4 = y3 + x5,
y5 = L−3x2, y6 = y5 + x3, y7 = L−3x8, y8 = y7 + x1.
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Hence, the implementation cost of Ĥ−1 form-bit input is equal to 24m+4(#L−2)+4(#L−3).
In addition, the implementation cost of L−2

i and L−3
i with 1 ≤ i ≤ 2 are two and three

XOR, respectively. Therefore using L1 and L2, given in (28), the implementation cost of
Ĥ−1 is equal to the implementation cost of the matrix Ĥ.

6.3.2 Construction of a 8 × 8 MDS Matrix with 272 XOR Cost

First of all, by applying Appendix A, we tried to obtain 8 × 8 EGFS matrices Ei with
1 ≤ i ≤ 6 such that Ei’s satisfy the following conditions. First, Ei’s are with the same
structure and are 6-primitive matrices over R. Second, the multiplication of Ei’s denoted
with H =

∏6
i=1 Ei, is an MDS matrix over F2[L]. Finally, the implementation cost of H is

less than 392 XOR for 8-bit input. But we could not get EGFS matrices under the stated
conditions. Therefore, we increased the number of 8× 8 EGFS matrices.

Consider 8 × 8 EGFS matrices Ei with 1 ≤ i ≤ 5, given in (30). The structures of
Ei’s are the same, since Ei’s are constructed from two permutations p1 = {4, 3, 2, 1} and
p2 = {3, 2, 1, 4}. Moreover, using Appendix A, it can be checked that EGFS matrices Ei

with 1 ≤ i ≤ 5 are 6-primitive matrices over R.

c(1,m)
1 = · · · = c(1,m)

4 =
(

1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

E1 =


0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0


c(1,m)

1 = · · · = c(1,m)
4 =

(
1 L
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

c(1,m)
1 = · · · = c(1,m)

4 =
(

L 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

E2 =


0 0 0 0 0 0 1 L
0 0 0 0 1 0 0 0
0 0 0 0 1 L 0 0
0 0 1 0 0 0 0 0
0 0 1 L 0 0 0 0
1 0 0 0 0 0 0 0
1 L 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , E3 =


0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0
0 0 0 0 L 1 0 0
0 0 1 0 0 0 0 0
0 0 L 1 0 0 0 0
1 0 0 0 0 0 0 0
L 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0


c(1,m)

1 = · · · = c(1,m)
4 =

(
1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
L−1 0

)
,

c(1,m)
1 = · · · = c(1,m)

4 =
(

1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
L 0

)
,

E4 =


0 0 0 0 0 0 1 1
0 0 0 0 L−1 0 0 0
0 0 0 0 1 1 0 0
0 0 L−1 0 0 0 0 0
0 0 1 1 0 0 0 0

L−1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L−1 0

 , E5 =


0 0 0 0 0 0 1 1
0 0 0 0 L 0 0 0
0 0 0 0 1 1 0 0
0 0 L 0 0 0 0 0
0 0 1 1 0 0 0 0
L 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L 0


(30)
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Now, using EGFS matrices Ei with 1 ≤ i ≤ 5, the following 8× 8 matrix is proposed.

H = E1E2E1E3E4E5E1

=


L2 + L + 1 L2 + L + 1 L + L−1 L2 + L

L2 + L + L−1 + 1 L + 1 L2 + L + L−1 L2 + L−1

L + L−1 L2 + L L2 L2 + L + L−1

L2 + L + L−1 L2 + L−1 L3 + L + 1 L3 + L
L2 L2 + L + L−1 L3 + L−1 + 1 L3 + L + L−1

L3 + L + 1 L3 + L L2 L2 + 1
L3 + L−1 + 1 L3 + L + L−1 L2 + L + 1 L2 + L + 1

L2 L2 + 1 L2 + L + L−1 + 1 L + 1

L2 L2 + L + L−1 L3 + L−1 + 1 L3 + L + L−1

L3 + L + 1 L3 + L L2 L2 + 1
L3 + L−1 + 1 L3 + L + L−1 L2 + L + 1 L2 + L + 1

L2 L2 + 1 L2 + L + L−1 + 1 L + 1
L2 + L + 1 L2 + L + 1 L + L−1 L2 + L

L2 + L + L−1 + 1 L + 1 L2 + L + L−1 L2 + L−1

L + L−1 L2 + L L2 L2 + L + L−1

L2 + L + L−1 L2 + L−1 L3 + L + 1 L3 + L

 .

(31)

It follows from (31) that the implementation cost of matrix H for m-bit input is equal to

#E1︷ ︸︸ ︷
(4m) +

#E2︷ ︸︸ ︷
(4m+ 4(#L)) +

#E1︷ ︸︸ ︷
(4m) +

#E3︷ ︸︸ ︷
(4m+ 4(#L)) +

#E4︷ ︸︸ ︷
(4m+ 4(#L−1)) +

#E5︷ ︸︸ ︷
(4m+ 4(#L))

+
#E1︷ ︸︸ ︷
(4m) = 28m+ 12(#L) + 4(#L−1).

(32)
The base set of subdeterminants of H has 285 elements that is given in Appendix D. In this
base set, there are all irreducible polynomials of degrees 4 and 8, except for the primitive
polynomial 0x1E7. It can be checked the elements of Appendix D, are non-singular matrices
over F2 by applying the following non-singular 8× 8 binary matrices Li with 1 ≤ i ≤ 4.

L1 = [[1, 8], [1, 3, 7], [2], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1, 3], [2, 8], [3], [4], [5], [6], [7]],
L3 = [[1, 8], [1, 7], [2, 4], [3], [4], [5], [6], [7]], L4 = [[1, 8], [1, 7], [2], [3, 5], [4], [5], [6], [7]].

(33)
Moreover, the implementation cost of Li’s, given in (33), is three XOR. Furthermore, it can
be verified that the inverse of Li’s can be implemented with the three XOR. Hence, using
Li with 1 ≤ i ≤ 24 and relation (32), H is implemented by 28× 8 + 12× 3 + 4× 3 = 272
XOR for 8-bit input. Also, it can be checked that the minimal polynomial of Li’s is the
irreducible polynomial 0x1E7. Therefore, using Proposition 1, H is implemented with 272
XOR over F28/0x1E7. In addition, the implementation cost of E−1

i with 1 ≤ i ≤ 5 are
equal to 4m, 4m+ 4(#L−1), 4m+ 4(#L), 4m+ 4(#L) and 4m+ 4(#L−1), respectively.
For instance, set x = [x1, x2, · · · , x8] and suppose that Ê−1

5 · xT = [y1, y2, · · · , y8]T. Then

y1 = L−1x6, y2 = y1 + x7, y3 = L−1x4, y4 = y3 + x5,
y5 = L−1x2, y6 = y5 + x3, y7 = L−1x8, y8 = y7 + x1.

Therefore, the implementation cost of H−1 for m-bit input is equal to 28m + 8(#L) +
8(#L−1) which implies that the implementation cost of H−1 and H is equal.

6.3.3 Construction of a 8 × 8 MDS Matrix with Depth 8

In this subsection, we propose an 8× 8 MDS matrix H such that the proposed matrix is
implemented with 260 XOR for 8-bit input. Moreover, the depth of its circuit is 8 which
means H can be considered as a candidate for 8 × 8 lightweight MDS matrices in the
lightweight cryptography. Consider 8× 8 EGFS matrices Ei with 1 ≤ i ≤ 4, given in (34)
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which are constructed from two permutations p1 = {4, 3, 2, 1} and p2 = {3, 2, 1, 4}.

E1 =


0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , E3 =


0 0 0 0 0 0 L3 1
0 0 0 0 1 0 0 0
0 0 0 0 L3 1 0 0
0 0 1 0 0 0 0 0
0 0 L3 1 0 0 0 0
1 0 0 0 0 0 0 0

L3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 ,

E2 =


0 0 0 0 0 0 1 1
0 0 0 0 L 0 0 0
0 0 0 0 1 1 0 0
0 0 L 0 0 0 0 0
0 0 1 1 0 0 0 0
L 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L 0

 , E4 =


0 0 0 0 0 0 1 1
0 0 0 0 L−1 0 0 0
0 0 0 0 1 1 0 0
0 0 L−1 0 0 0 0 0
0 0 1 1 0 0 0 0

L−1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L−1 0

 .

(34)
Next, using EGFS matrices Ei with 1 ≤ i ≤ 4, the proposed lightweight 8× 8 MDS

matrix H is presented by

H = E1E2E3E1E1E4E1

=


L4 + L2 + L L4 + L2 + 1 L + L−1 L3 + L + L−1 + 1

L3 + L−1 L−1 + 1 1 L3 + 1
L + L−1 L3 + L + L−1 + 1 L4 L3

1 L3 + 1 L3 + L−1 + 1 L3 + L−1

L4 L3 L3 + L−1 + 1 L4 + L3 + L−1

L3 + L−1 + 1 L3 + L−1 L2 L2 + 1
L3 + L−1 + 1 L4 + L3 + L−1 L4 + L2 + L L4 + L2 + 1

L2 L2 + 1 L3 + L−1 L−1 + 1

L4 L3 L3 + L−1 + 1 L4 + L3 + L−1

L3 + L−1 + 1 L3 + L−1 L2 L2 + 1
L3 + L−1 + 1 L4 + L3 + L−1 L4 + L2 + L L4 + L2 + 1

L2 L2 + 1 L3 + L−1 L−1 + 1
L4 + L2 + L L4 + L2 + 1 L + L−1 L3 + L + L−1 + 1

L3 + L−1 L−1 + 1 1 L3 + 1
L + L−1 L3 + L + L−1 + 1 L4 L3

1 L3 + 1 L3 + L−1 + 1 L3 + L−1

 .

(35)

By applying (35) the implementation cost of H for m-bit input is equal to
#E1︷ ︸︸ ︷
(4m) +

#E2︷ ︸︸ ︷
(4m+ 4(#L)) +

#E3︷ ︸︸ ︷
(4m+ 4(#L3)) +

#E1︷ ︸︸ ︷
(4m) +

#E1︷ ︸︸ ︷
(4m) +

#E4︷ ︸︸ ︷
(4m+ 4(#L−1)) +

#E1︷ ︸︸ ︷
(4m)

= 28m+ 4(#L) + 4(#L−1) + 4(#L3).
(36)

The base set of subdeterminants of H has 324 elements that is given in Appendix C.
In this base set, there are all irreducible and primitive polynomials of degree 4 and 8,
except for the primitive polynomial 0x187. Now using the following non-singular 8 × 8
binary matrices Li with 1 ≤ i ≤ 6, it can be verified that the elements of Appendix C are
non-singular matrices over F2.

L1 = [[1, 8], [1, 7], [2], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1], [2, 8], [3], [4], [5], [6], [7]],
L3 = [[6, 8], [1], [2], [3], [4], [5], [6, 7], [7]], L4 = [[6, 8], [1], [2], [3], [4], [5], [6], [7, 8]],
L5 = [[8], [1, 2], [2, 8], [3], [4], [5], [6], [7]], L6 = [[8], [1, 7], [2], [3], [4], [5], [6], [7, 8]].

The implementation cost of Li with 1 ≤ i ≤ 6 is two XOR. Moreover, L−1
i and L3

i with
1 ≤ i ≤ 6 can be implemented with two and five XOR, respectively. For instance, set
x = [x1, x2, · · · , x8]. Then the implementation cost of L3

6 can be reduced to five XOR.

L3
6 · xT = [x6 + x7 + x8, x5 + x7 + x8, x6 + x8, x1 + x7, x2, x3, x4, x5 + x6 + x7 + x8]T,
u1 = x1 + x7, u2 = x6 + x8, u3 = u2 + x7, u4 = u3 + x5, u5 = u4 + x6.
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Therefore, by applying Li’s and relation (36), H is implemented with 28× 8 + 4× 2 + 4×
2 + 4× 5 = 260 XOR for 8-bit input. Furthermore, it can be checked that the minimal
polynomial of Li’s is the irreducible polynomial 0x187. Hence, using Proposition 1 the
matrix H is implemented with 260 XOR over F28/0x187.

Moreover, the implementation cost of E−1
i with 1 ≤ i ≤ 4 are equal to 4m, 4m +

4(#L−1), 4m+ 4(#L3) and 4m+ 4(#L), respectively. Hence, the implementation cost of
H−1 is equal to 28m+ 4(#L−1) + 4(#L3) + 4(#L). Therefore, the implementation cost
of H−1 and H are the same. A summary of results of this paper is presented in Table 2.

Table 2: A summary of results of this paper.

Iteration Implementation Cost Total Cost Inverse Cost Depth Fig.

4× 4 MDS Matrices for 4-bit input

4 Round 8 XOR4-bit, 4 L 36 XOR1-bit 36 XOR1-bit 6 1

4 Round 8 XOR4-bit, 3 L 35 XOR1-bit 35 XOR1-bit 5 2

4× 4 MDS Matrices for 8-bit input

4 Round 8 XOR8-bit, 4 L 68 XOR1-bit 68 XOR1-bit 6 1

4 Round 8 XOR8-bit, 3 L 67 XOR1-bit 67 XOR1-bit 5 2

6× 6 MDS Matrices for 4, 6, and 8-bit input

6 Round 18 XOR4-bit, 24 L 90 XOR1-bit 90 XOR1-bit 9 4

6 Round 18 XOR6-bit, 6 L 114 XOR1-bit 114 XOR1-bit 8 3

6 Round 18 XOR8-bit, 6 L 156 XOR1-bit 156 XOR1-bit 8 3

8× 8 Near-MDS Matrices for 4 and 8-bit input

6 Round 24 XOR4-bit, 20 L 116 XOR1-bit 116 XOR1-bit 6 5

6 Round 24 XOR4-bit, 12 L 108 XOR1-bit 108 XOR1-bit 7 6

6 Round 24 XOR8-bit, 20 L 212 XOR1-bit 212 XOR1-bit 6 5

6 Round 24 XOR8-bit, 12 L 204 XOR1-bit 204 XOR1-bit 7 6

8× 8 MDS Matrices for 8-bit input

7 Round 28 XOR8-bit, 16 L 272 XOR1-bit 272 XOR1-bit 9 7

7 Round 28 XOR8-bit, 20 L 260 XOR1-bit 260 XOR1-bit 8 8
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7 Conclusion
This paper proposed a construction heuristic method to design MDS matrices with the
low hardware implementation cost using generalized Feistel structures (GFS). Feistel-
based structures such as GFS are suitable choices to construct MDS matrices, since their
inverses can be implemented with simplicity. First of all, by applying GFS, some types of
sparse matrices, called primitive GFS matrices, are proposed. Next, using an extension of
primitive GFS matrices we defined another type of sparse matrices called EGFS matrices.
Then based on the EGFS matrices, 4× 4, 6× 6 and 8× 8 MDS matrices are implemented
with 67, 156 and 260 XOR for 8-bit input, respectively. In addition, we have proved the
inverses of the proposed matrices can be implemented such as the proposed matrices.
Moreover, we proposed two 8× 8 near-MDS matrices such that the implementation cost
of the given matrices are 116 and 108 XOR for 4-bit input and also the proposed matrices
are implemented with 212 and 204 XOR for 8-bit input, respectively. Furthermore, the
proposed 8× 8 MDS and near-MDS matrices are not only with low implementation cost,
but also the depth of their circuits are low. In other words, the proposed 8× 8 matrices
may be applied as diffusion layers in the lightweight cryptography.
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Appendix A
Case p1 p2 Order

1 {1, 2, 3, 4} {2, 1, 4, 3} non
2 {1, 2, 3, 4} {2, 3, 4, 1} 8
3 {1, 2, 3, 4} {2, 4, 1, 3} 8
4 {1, 2, 3, 4} {3, 1, 4, 2} 8
5 {1, 2, 3, 4} {3, 4, 1, 2} non
6 {1, 2, 3, 4} {3, 4, 2, 1} 8
7 {1, 2, 3, 4} {4, 1, 2, 3} 8
8 {1, 2, 3, 4} {4, 3, 1, 2} 8
9 {1, 2, 3, 4} {4, 3, 2, 1} non
10 {1, 2, 4, 3} {2, 1, 3, 4} non
11 {1, 2, 4, 3} {2, 3, 1, 4} 7
12 {1, 2, 4, 3} {2, 4, 3, 1} 7
13 {1, 2, 4, 3} {3, 1, 2, 4} 7
14 {1, 2, 4, 3} {3, 4, 1, 2} 6
15 {1, 2, 4, 3} {3, 4, 2, 1} 7
16 {1, 2, 4, 3} {4, 1, 3, 2} 7
17 {1, 2, 4, 3} {4, 3, 1, 2} 7
18 {1, 2, 4, 3} {4, 3, 2, 1} 6
19 {1, 3, 2, 4} {2, 1, 4, 3} 6
20 {1, 3, 2, 4} {2, 4, 1, 3} 7
21 {1, 3, 2, 4} {2, 4, 3, 1} 7
22 {1, 3, 2, 4} {3, 1, 4, 2} 7
23 {1, 3, 2, 4} {3, 2, 4, 1} 7
24 {1, 3, 2, 4} {3, 4, 1, 2} 6
25 {1, 3, 2, 4} {4, 1, 3, 2} 7
26 {1, 3, 2, 4} {4, 2, 1, 3} 7
27 {1, 3, 2, 4} {4, 2, 3, 1} non
28 {1, 3, 4, 2} {2, 1, 3, 4} 7
29 {1, 3, 4, 2} {2, 4, 1, 3} 6
30 {1, 3, 4, 2} {2, 4, 3, 1} 6
31 {1, 3, 4, 2} {3, 1, 2, 4} 6
32 {1, 3, 4, 2} {3, 2, 1, 4} 7
33 {1, 3, 4, 2} {3, 4, 2, 1} 6
34 {1, 3, 4, 2} {4, 1, 2, 3} 6
35 {1, 3, 4, 2} {4, 2, 1, 3} 6
36 {1, 3, 4, 2} {4, 2, 3, 1} 7
37 {1, 4, 2, 3} {2, 1, 3, 4} 7
38 {1, 4, 2, 3} {2, 3, 1, 4} 6
39 {1, 4, 2, 3} {2, 3, 4, 1} 6
40 {1, 4, 2, 3} {3, 1, 4, 2} 6
41 {1, 4, 2, 3} {3, 2, 1, 4} 7
42 {1, 4, 2, 3} {3, 2, 4, 1} 6
43 {1, 4, 2, 3} {4, 1, 3, 2} 6
44 {1, 4, 2, 3} {4, 2, 3, 1} 7
45 {1, 4, 2, 3} {4, 3, 1, 2} 6
46 {1, 4, 3, 2} {2, 1, 4, 3} 6
47 {1, 4, 3, 2} {2, 3, 1, 4} 7
48 {1, 4, 3, 2} {2, 3, 4, 1} 7
49 {1, 4, 3, 2} {3, 1, 2, 4} 7
50 {1, 4, 3, 2} {3, 2, 1, 4} non
51 {1, 4, 3, 2} {3, 2, 4, 1} 7
52 {1, 4, 3, 2} {4, 1, 2, 3} 7
53 {1, 4, 3, 2} {4, 2, 1, 3} 7
54 {1, 4, 3, 2} {4, 3, 2, 1} 6

Case p1 p2 Order
55 {2, 1, 3, 4} {1, 2, 4, 3} non
56 {2, 1, 3, 4} {1, 3, 4, 2} 7
57 {2, 1, 3, 4} {1, 4, 2, 3} 7
58 {2, 1, 3, 4} {3, 2, 4, 1} 7
59 {2, 1, 3, 4} {3, 4, 1, 2} 6
60 {2, 1, 3, 4} {3, 4, 2, 1} 7
61 {2, 1, 3, 4} {4, 2, 1, 3} 7
62 {2, 1, 3, 4} {4, 3, 1, 2} 7
63 {2, 1, 3, 4} {4, 3, 2, 1} 6
64 {2, 1, 4, 3} {1, 2, 3, 4} non
65 {2, 1, 4, 3} {1, 3, 2, 4} 6
66 {2, 1, 4, 3} {1, 4, 3, 2} 6
67 {2, 1, 4, 3} {3, 2, 1, 4} 6
68 {2, 1, 4, 3} {3, 4, 1, 2} non
69 {2, 1, 4, 3} {3, 4, 2, 1} 8
70 {2, 1, 4, 3} {4, 2, 3, 1} 6
71 {2, 1, 4, 3} {4, 3, 1, 2} 8
72 {2, 1, 4, 3} {4, 3, 2, 1} non
73 {2, 3, 1, 4} {1, 2, 4, 3} 7
74 {2, 3, 1, 4} {1, 4, 2, 3} 6
75 {2, 3, 1, 4} {1, 4, 3, 2} 7
76 {2, 3, 1, 4} {3, 1, 4, 2} 6
77 {2, 3, 1, 4} {3, 2, 4, 1} 6
78 {2, 3, 1, 4} {3, 4, 2, 1} 6
79 {2, 3, 1, 4} {4, 1, 2, 3} 6
80 {2, 3, 1, 4} {4, 1, 3, 2} 6
81 {2, 3, 1, 4} {4, 2, 3, 1} 7
82 {2, 3, 4, 1} {1, 2, 3, 4} 8
83 {2, 3, 4, 1} {1, 4, 2, 3} 7
84 {2, 3, 4, 1} {1, 4, 3, 2} 7
85 {2, 3, 4, 1} {3, 1, 2, 4} 7
86 {2, 3, 4, 1} {3, 2, 1, 4} 7
87 {2, 3, 4, 1} {3, 4, 1, 2} 8
88 {2, 3, 4, 1} {4, 1, 2, 3} non
89 {2, 3, 4, 1} {4, 1, 3, 2} 7
90 {2, 3, 4, 1} {4, 2, 1, 3} 7
91 {2, 4, 1, 3} {1, 2, 3, 4} 8
92 {2, 4, 1, 3} {1, 3, 2, 4} 7
93 {2, 4, 1, 3} {1, 3, 4, 2} 7
94 {2, 4, 1, 3} {3, 1, 2, 4} 7
95 {2, 4, 1, 3} {3, 1, 4, 2} non
96 {2, 4, 1, 3} {3, 2, 4, 1} 7
97 {2, 4, 1, 3} {4, 1, 3, 2} 7
98 {2, 4, 1, 3} {4, 2, 3, 1} 7
99 {2, 4, 1, 3} {4, 3, 2, 1} 8
100 {2, 4, 3, 1} {1, 2, 4, 3} 7
101 {2, 4, 3, 1} {1, 3, 2, 4} 7
102 {2, 4, 3, 1} {1, 3, 4, 2} 6
103 {2, 4, 3, 1} {3, 1, 2, 4} 6
104 {2, 4, 3, 1} {3, 1, 4, 2} 6
105 {2, 4, 3, 1} {3, 2, 1, 4} 7
106 {2, 4, 3, 1} {4, 1, 2, 3} 6
107 {2, 4, 3, 1} {4, 2, 1, 3} 6
108 {2, 4, 3, 1} {4, 3, 1, 2} 6
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Case p1 p2 Order
109 {3, 1, 2, 4} {1, 2, 4, 3} 7
110 {3, 1, 2, 4} {1, 3, 4, 2} 6
111 {3, 1, 2, 4} {1, 4, 3, 2} 7
112 {3, 1, 2, 4} {2, 3, 4, 1} 6
113 {3, 1, 2, 4} {2, 4, 1, 3} 6
114 {3, 1, 2, 4} {2, 4, 3, 1} 6
115 {3, 1, 2, 4} {4, 2, 1, 3} 6
116 {3, 1, 2, 4} {4, 2, 3, 1} 7
117 {3, 1, 2, 4} {4, 3, 1, 2} 6
118 {3, 1, 4, 2} {1, 2, 3, 4} 8
119 {3, 1, 4, 2} {1, 3, 2, 4} 7
120 {3, 1, 4, 2} {1, 4, 2, 3} 7
121 {3, 1, 4, 2} {2, 3, 1, 4} 7
122 {3, 1, 4, 2} {2, 4, 1, 3} non
123 {3, 1, 4, 2} {2, 4, 3, 1} 7
124 {3, 1, 4, 2} {4, 2, 1, 3} 7
125 {3, 1, 4, 2} {4, 2, 3, 1} 7
126 {3, 1, 4, 2} {4, 3, 2, 1} 8
127 {3, 2, 1, 4} {1, 3, 4, 2} 7
128 {3, 2, 1, 4} {1, 4, 2, 3} 7
129 {3, 2, 1, 4} {1, 4, 3, 2} non
130 {3, 2, 1, 4} {2, 1, 4, 3} 6
131 {3, 2, 1, 4} {2, 3, 4, 1} 7
132 {3, 2, 1, 4} {2, 4, 3, 1} 7
133 {3, 2, 1, 4} {4, 1, 2, 3} 7
134 {3, 2, 1, 4} {4, 1, 3, 2} 7
135 {3, 2, 1, 4} {4, 3, 2, 1} 6
136 {3, 2, 4, 1} {1, 3, 2, 4} 7
137 {3, 2, 4, 1} {1, 4, 2, 3} 6
138 {3, 2, 4, 1} {1, 4, 3, 2} 7
139 {3, 2, 4, 1} {2, 1, 3, 4} 7
140 {3, 2, 4, 1} {2, 3, 1, 4} 6
141 {3, 2, 4, 1} {2, 4, 1, 3} 6
142 {3, 2, 4, 1} {4, 1, 2, 3} 6
143 {3, 2, 4, 1} {4, 1, 3, 2} 6
144 {3, 2, 4, 1} {4, 3, 1, 2} 6
145 {3, 4, 1, 2} {1, 2, 3, 4} non
146 {3, 4, 1, 2} {1, 2, 4, 3} 6
147 {3, 4, 1, 2} {1, 3, 2, 4} 6
148 {3, 4, 1, 2} {2, 1, 3, 4} 6
149 {3, 4, 1, 2} {2, 1, 4, 3} non
150 {3, 4, 1, 2} {2, 3, 4, 1} 8
151 {3, 4, 1, 2} {4, 1, 2, 3} 8
152 {3, 4, 1, 2} {4, 2, 3, 1} 6
153 {3, 4, 1, 2} {4, 3, 2, 1} non
154 {3, 4, 2, 1} {1, 2, 3, 4} 8
155 {3, 4, 2, 1} {1, 2, 4, 3} 7
156 {3, 4, 2, 1} {1, 3, 4, 2} 7
157 {3, 4, 2, 1} {2, 1, 3, 4} 7
158 {3, 4, 2, 1} {2, 1, 4, 3} 8
159 {3, 4, 2, 1} {2, 3, 1, 4} 7
160 {3, 4, 2, 1} {4, 1, 3, 2} 7
161 {3, 4, 2, 1} {4, 2, 1, 3} 7
162 {3, 4, 2, 1} {4, 3, 1, 2} non

Case p1 p2 Order
163 {4, 1, 2, 3} {1, 2, 3, 4} 8
164 {4, 1, 2, 3} {1, 3, 4, 2} 7
165 {4, 1, 2, 3} {1, 4, 3, 2} 7
166 {4, 1, 2, 3} {2, 3, 1, 4} 7
167 {4, 1, 2, 3} {2, 3, 4, 1} non
168 {4, 1, 2, 3} {2, 4, 3, 1} 7
169 {4, 1, 2, 3} {3, 2, 1, 4} 7
170 {4, 1, 2, 3} {3, 2, 4, 1} 7
171 {4, 1, 2, 3} {3, 4, 1, 2} 8
172 {4, 1, 3, 2} {1, 2, 4, 3} 7
173 {4, 1, 3, 2} {1, 3, 2, 4} 7
174 {4, 1, 3, 2} {1, 4, 2, 3} 6
175 {4, 1, 3, 2} {2, 3, 1, 4} 6
176 {4, 1, 3, 2} {2, 3, 4, 1} 6
177 {4, 1, 3, 2} {2, 4, 1, 3} 6
178 {4, 1, 3, 2} {3, 2, 1, 4} 7
179 {4, 1, 3, 2} {3, 2, 4, 1} 6
180 {4, 1, 3, 2} {3, 4, 2, 1} 6
181 {4, 2, 1, 3} {1, 3, 2, 4} 7
182 {4, 2, 1, 3} {1, 3, 4, 2} 6
183 {4, 2, 1, 3} {1, 4, 3, 2} 7
184 {4, 2, 1, 3} {2, 1, 3, 4} 7
185 {4, 2, 1, 3} {2, 3, 4, 1} 6
186 {4, 2, 1, 3} {2, 4, 3, 1} 6
187 {4, 2, 1, 3} {3, 1, 2, 4} 6
188 {4, 2, 1, 3} {3, 1, 4, 2} 6
189 {4, 2, 1, 3} {3, 4, 2, 1} 6
190 {4, 2, 3, 1} {1, 3, 2, 4} non
191 {4, 2, 3, 1} {1, 3, 4, 2} 7
192 {4, 2, 3, 1} {1, 4, 2, 3} 7
193 {4, 2, 3, 1} {2, 1, 4, 3} 6
194 {4, 2, 3, 1} {2, 3, 1, 4} 7
195 {4, 2, 3, 1} {2, 4, 1, 3} 7
196 {4, 2, 3, 1} {3, 1, 2, 4} 7
197 {4, 2, 3, 1} {3, 1, 4, 2} 7
198 {4, 2, 3, 1} {3, 4, 1, 2} 6
199 {4, 3, 1, 2} {1, 2, 3, 4} 8
200 {4, 3, 1, 2} {1, 2, 4, 3} 7
201 {4, 3, 1, 2} {1, 4, 2, 3} 7
202 {4, 3, 1, 2} {2, 1, 3, 4} 7
203 {4, 3, 1, 2} {2, 1, 4, 3} 8
204 {4, 3, 1, 2} {2, 4, 3, 1} 7
205 {4, 3, 1, 2} {3, 1, 2, 4} 7
206 {4, 3, 1, 2} {3, 2, 4, 1} 7
207 {4, 3, 1, 2} {3, 4, 2, 1} non
208 {4, 3, 2, 1} {1, 2, 3, 4} non
209 {4, 3, 2, 1} {1, 2, 4, 3} 6
210 {4, 3, 2, 1} {1, 4, 3, 2} 6
211 {4, 3, 2, 1} {2, 1, 3, 4} 6
212 {4, 3, 2, 1} {2, 1, 4, 3} non
213 {4, 3, 2, 1} {2, 4, 1, 3} 8
214 {4, 3, 2, 1} {3, 1, 4, 2} 8
215 {4, 3, 2, 1} {3, 2, 1, 4} 6
216 {4, 3, 2, 1} {3, 4, 1, 2} non
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Appendix B
x0 x1

⊕

x2 x3

⊕

Π

⊕L L ⊕

Π

⊕L ⊕L

Π

⊕ ⊕

Π

y0 y1 y2 y3
Figure 1: 4× 4 MDS matrix with depth 6:

Π(0,1,2,3) = (3,0,1,2)

x0 x1

⊕

x2 x3

⊕

Π

⊕ L ⊕
L−1

Π

⊕L ⊕

Π

⊕ ⊕

Π

y0 y1 y2 y3
Figure 2: 4× 4 MDS matrix with depth 5:

Π(0,1,2,3) = (3,0,1,2)

x0 x1 x2 x3 x4 x5

⊕ ⊕ ⊕

Π1

⊕ ⊕ ⊕

Π1

L ⊕ L ⊕ L ⊕

Π2

L ⊕ L ⊕ L ⊕

Π2

⊕ ⊕ ⊕

Π1

⊕ ⊕ ⊕

Π1

y0 y1 y2 y3 y4 y5
Figure 3: 6× 6 MDS matrix with depth 8:

Π1(0, 1, 2, 3, 4, 5, 6) = (3, 0, 5, 2, 1, 4)
Π2(0, 1, 2, 3, 4, 5, 6) = (3, 4, 1, 2, 5, 0)
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x0 x1 x2 x3 x4 x5

⊕ ⊕ ⊕

Π1(0, 1, 2, 3, 4, 5) = (3, 0, 1, 4, 5, 2)

L−1 ⊕ L−1 ⊕ L−1 ⊕

Π2(0, 1, 2, 3, 4, 5) = (3, 4, 1, 2, 5, 0)

L−1 ⊕ L−1 ⊕ L−1 ⊕

Π3(0, 1, 2, 3, 4, 5) = (3, 4, 5, 0, 1, 2)

⊕ ⊕ ⊕

Π4(0, 1, 2, 3, 4, 5) = (3, 0, 5, 2, 1, 4)

⊕
L−6

⊕
L−6

⊕
L−6

Π5(0, 1, 2, 3, 4, 5) = (1, 2, 3, 4, 5, 0)

⊕ ⊕ ⊕

Π6(0, 1, 2, 3, 4, 5) = (3, 4, 1, 2, 5, 0)

y0 y1 y2 y3 y4 y5

Figure 4: 6× 6 MDS matrix with depth 9
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x0 x1 x2 x3 x4 x5 x6 x7

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕
L3 L3 L3 L3

Π

⊕ ⊕ ⊕ ⊕
L2 L2 L2 L2

Π

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

y0 y1 y2 y3 y4 y5 y6 y7

Figure 5: 8× 8 Near-MDS matrix with depth 6:
Π(0,1,2,3,4,5,6,7) = (5,6,3,4,1,2,7,0)
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x0 x1 x2 x3 x4 x5 x6 x7

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

L−2 ⊕

L

L−2 ⊕

L

L−2 ⊕

L

L−2 ⊕

L

Π

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

y0 y1 y2 y3 y4 y5 y6 y7

Figure 6: 8× 8 Near-MDS matrix with depth 7:
Π(0,1,2,3,4,5,6,7) = (5,6,3,4,1,2,7,0)
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x0 x1 x2 x3 x4 x5 x6 x7

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕
L L L L

Π

⊕ ⊕ ⊕ ⊕
L−1 L−1 L−1 L−1

Π

⊕L ⊕L ⊕L ⊕L

Π

⊕ ⊕ ⊕ ⊕

Π

⊕

L

⊕

L

⊕

L

⊕

L

Π

⊕ ⊕ ⊕ ⊕

Π

y0 y1 y2 y3 y4 y5 y6 y7

Figure 7: 8× 8 MDS matrix with depth 9:
Π(0,1,2,3,4,5,6,7) = (5,6,3,4,1,2,7,0)
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x0 x1 x2 x3 x4 x5 x6 x7

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕
L−1 L−1 L−1 L−1

Π

⊕ ⊕ ⊕ ⊕

Π

⊕ ⊕ ⊕ ⊕

Π

L3 ⊕ L3 ⊕ L3 ⊕ L3 ⊕

Π

⊕ ⊕ ⊕ ⊕
L L L L

Π

⊕ ⊕ ⊕ ⊕

Π

y0 y1 y2 y3 y4 y5 y6 y7

Figure 8: 8× 8 MDS matrix with depth 8:
Π(0,1,2,3,4,5,6,7) = (5,6,3,4,1,2,7,0)
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Appendix C
{0x2, 0x3, 0x7, 0xB, 0xD, 0x13, 0x19, 0x1F, 0x25, 0x29, 0x2F, 0x37, 0x3B, 0x3D, 0x43, 0x49,
0x61, 0x57, 0x5B, 0x67, 0x6D, 0x73, 0x75, 0x83, 0x89, 0x91, 0xC1, 0x8F, 0x9D, 0xA7, 0xAB,
0xB9, 0xCB, 0xD3, 0xD5, 0xE5, 0xF1, 0xBF, 0xEF, 0xF7, 0xFD, 0x11B, 0x11D, 0x12B, 0x12D,
0x139, 0x14D, 0x163, 0x165, 0x169, 0x171, 0x18B, 0x18D, 0x1A3, 0x1A9, 0x1B1, 0x1C3,
0x13F, 0x15F, 0x177, 0x17B, 0x19F, 0x1BD, 0x1CF, 0x1D7, 0x1DD, 0x1E7, 0x1F3, 0x1F5,
0x1F9, 0x203, 0x221, 0x301, 0x217, 0x21B, 0x233, 0x24B, 0x259, 0x265, 0x269, 0x287,
0x295, 0x299, 0x2A3, 0x2A5, 0x2D1, 0x313, 0x315, 0x323, 0x331, 0x349, 0x361, 0x385,
0x3A1, 0x25F, 0x26F, 0x277, 0x27D, 0x2AF, 0x2B7, 0x2BD, 0x2CF, 0x2DB, 0x2F5, 0x2F9,
0x31F, 0x33B, 0x34F, 0x35B, 0x36D, 0x373, 0x38F, 0x3B5, 0x3B9, 0x3C7, 0x3CB, 0x3D5,
0x3E3, 0x3E9, 0x37F, 0x3FB, 0x409, 0x481, 0x40F, 0x41B, 0x41D, 0x427, 0x42D, 0x435,
0x447, 0x499, 0x4C9, 0x50B, 0x50D, 0x523, 0x531, 0x543, 0x561, 0x5A1, 0x615, 0x631,
0x685, 0x689, 0x6C1, 0x711, 0x721, 0x781, 0x46F, 0x4AF, 0x4D7, 0x51F, 0x567, 0x56B,
0x597, 0x59B, 0x5AB, 0x5B9, 0x5C7, 0x637, 0x6A7, 0x6AD, 0x6B5, 0x6D3, 0x70F, 0x739,
0x747, 0x74D, 0x759, 0x763, 0x793, 0x4FF, 0x5FB, 0x67F, 0x6BF, 0x6DF, 0x6FD, 0x77B,
0x77D, 0x7DB, 0x7FF, 0x805, 0xA01, 0x817, 0x863, 0x871, 0x8D1, 0x90D, 0x913, 0x929,
0x945, 0x949, 0xA29, 0xA61, 0xC0B, 0xD03, 0xE21, 0x87B, 0x89F, 0xAB5, 0xAE3, 0xB33,
0xB4B, 0xB65, 0xB95, 0xBC9, 0xC73, 0xC75, 0xCCD, 0xCD3, 0xD27, 0xD2D, 0xDC9, 0xDE1,
0xE2B, 0xE33, 0xE4B, 0xE55, 0xEC9, 0xF19, 0xF83, 0xF91, 0x97F, 0xAEF, 0xBAF, 0xBBD,
0xBED, 0xCF7, 0xD9F, 0xDBB, 0xE7B, 0xE9F, 0xECF, 0xEDD, 0xF79, 0xFA7, 0xFAD, 0xFD3,

0x1161, 0x1431, 0x1823, 0x1883, 0x18A1, 0x1905, 0x103F, 0x10ED, 0x123D, 0x144F, 0x16A5,
0x1715, 0x186D, 0x192D, 0x1935, 0x1A2B, 0x1B19, 0x1CC9, 0x1DC1, 0x147F, 0x1B2F, 0x1B57,
0x1B8F, 0x1D2F, 0x1D67, 0x1DB3, 0x1E8F, 0x1EB9, 0x1ED3, 0x1EF1, 0x1F39, 0x1FC3, 0x1FC9,
0x17BF, 0x1FAF, 0x1FBD, 0x1FFF, 0x201B, 0x2189, 0x2461, 0x24C1, 0x2603, 0x21E3, 0x290F,
0x2AA9, 0x2E15, 0x320F, 0x324B, 0x3293, 0x3299, 0x344D, 0x3817, 0x3C23, 0x22EF, 0x274F,
0x2A7D, 0x2D37, 0x2EAB, 0x32B7, 0x32DB, 0x36D3, 0x3967, 0x3B63, 0x3F91, 0x2F5F, 0x2FF5,
0x37DD, 0x3BE7, 0x41D9, 0x5271, 0x612D, 0x6549, 0x6CC1, 0x7119, 0x6C3D, 0x6DA3, 0x7FD7,

0x8B3B, 0x94F5, 0x974D, 0xB0F3, 0xB84F, 0xE28F, 0xF40F, 0xB797, 0x1594B, 0x26B0B}

Appendix D
{0x2, 0x3, 0x7, 0xB, 0xD, 0x13, 0x19, 0x1F, 0x25, 0x29, 0x2F, 0x37, 0x3B, 0x3D, 0x43, 0x49,
0x57, 0x5B, 0x61, 0x67, 0x6D, 0x73, 0x75, 0x83, 0x89, 0x8F, 0x91, 0x9D, 0xA7, 0xAB, 0xB9,
0xBF, 0xC1, 0xCB, 0xD3, 0xD5, 0xE5, 0xEF, 0xF1, 0xF7, 0xFD, 0x11B, 0x11D, 0x12B, 0x12D,
0x139, 0x13F, 0x14D, 0x15F, 0x163, 0x165, 0x169, 0x171, 0x177, 0x17B, 0x187, 0x18B,
0x18D, 0x19F, 0x1A3, 0x1A9, 0x1B1, 0x1BD, 0x1C3, 0x1CF, 0x1D7, 0x1DD, 0x1F3, 0x1F5,
0x1F9, 0x203, 0x21B, 0x221, 0x22D, 0x233, 0x24B, 0x25F, 0x265, 0x269, 0x277, 0x27D,
0x287, 0x295, 0x299, 0x2A3, 0x2A5, 0x2B7, 0x2CF, 0x2DB, 0x2F5, 0x2F9, 0x313, 0x315,
0x31F, 0x331, 0x33B, 0x34F, 0x35B, 0x361, 0x36B, 0x36D, 0x373, 0x37F, 0x385, 0x3A1,
0x3B9, 0x3C7, 0x3CB, 0x3CD, 0x3D5, 0x3D9, 0x3E3, 0x3E9, 0x3FB, 0x409, 0x41B, 0x435,
0x447, 0x453, 0x465, 0x46F, 0x481, 0x4A9, 0x4C5, 0x4E7, 0x4F3, 0x4FF, 0x523, 0x53D,
0x543, 0x557, 0x58F, 0x59B, 0x5A1, 0x5AB, 0x5C7, 0x5F7, 0x615, 0x623, 0x631, 0x637,
0x64F, 0x65B, 0x679, 0x67F, 0x685, 0x689, 0x6A7, 0x6AD, 0x6B5, 0x6C1, 0x6CD, 0x711,
0x717, 0x71D, 0x721, 0x72B, 0x735, 0x755, 0x759, 0x77B, 0x77D, 0x781, 0x787, 0x7B1,
0x7C5, 0x7DB, 0x7F3, 0x7F9, 0x7FF, 0x805, 0x82D, 0x88D, 0x8A9, 0x8C3, 0x8CF, 0x8D1,
0x8E7, 0x93B, 0x949, 0x951, 0x973, 0x975, 0x9E5, 0x9EF, 0xA07, 0xA13, 0xA15, 0xA6D,
0xA79, 0xA7F, 0xAD5, 0xADF, 0xB11, 0xB33, 0xB3F, 0xB87, 0xB95, 0xBAF, 0xBBD, 0xBC9,
0xC0D, 0xC97, 0xCBF, 0xCC7, 0xD0F, 0xD1D, 0xD27, 0xD93, 0xDBB, 0xDC9, 0xDD7, 0xE27,

0xE2B, 0xE7B, 0xEA3, 0xEC9, 0xECF, 0xEF9, 0xF0B, 0xF19, 0xF6B, 0x1069, 0x1077,
0x10D1, 0x11EF, 0x1219, 0x13A9, 0x14B5, 0x154D, 0x1593, 0x15BB, 0x15C5, 0x16E7,
0x17FB, 0x1823, 0x1879, 0x197B, 0x19CF, 0x19F9, 0x1A69, 0x1BFD, 0x1C03, 0x1C27,
0x1CBB, 0x1CED, 0x1E3D, 0x1F11, 0x1F1B, 0x1FAF, 0x1FC3, 0x1FE1, 0x227F, 0x232B,
0x2429, 0x25BD, 0x2B2F, 0x2B97, 0x2F5F, 0x329F, 0x33E5, 0x3499, 0x3A61, 0x3FB5,
0x49E1, 0x4A17, 0x549F, 0x5585, 0x6A6B, 0x6D05, 0x7327, 0x74C7, 0x7BB9, 0x7CA3,

0xA6C7, 0xA7D1, 0xAF2F, 0xB08D, 0xB24F, 0xB909, 0xBB15, 0xD91B, 0xE05F, 0xEB97, 0x14ABF}
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