
Rectangle and Impossible-differential

Cryptanalysis on Versions of ForkAES

Jannis Bossert, Eik List and Stefan Lucks

Bauhaus-Universität Weimar

firstname.lastname(at)uni-weimar.de

Abstract. The rapid distribution of lightweight devices raised the demand for effi-
cient encryption and authenticated encryption schemes for small messages. For this
purpose, Andreeva et al. recently proposed forkciphers, which fork the middle state
within a cipher and encrypt it twice further under two smaller independent permuta-
tions. So, forkciphers can produce two output blocks which can allow to authenticate
and encrypt small messages more efficiently.
As instance of particular interest, Andreeva et al. proposed ForkAES, a tweakable
forkcipher based on the AES-128 round function, which forks the state after five out
of ten rounds. While their authenticated encrypted schemes were accompanied by
proofs, the security discussion for ForkAES could not be covered in their work, and
founded on existing results on the AES and KIASU-BC; so, the study of advanced
differential attacks remained to be filled by the community.
This work tries to foster the understanding of the security of ForkAES. It outlines
a rectangle and an impossible-differential attack on nine rounds in the single-key
related-tweak model; moreover, it describes a rectangle attack on ten rounds for a
fraction of approximately 232 keys. We emphasize that our results do not break
ForkAES in the single-key setting, but shed more light on its security margin.

Keywords: AES · differential cryptanalysis · tweakable block cipher

1 Introduction

Lightweight Designs. The fast distribution of resource-constrained devices demands
novel approaches for efficient encryption and authentication of short messages. The recent
NIST call for submissions on lightweight cryptography emphasized the need of a standard
[Nat18]. Though, since the analysis of new proposals takes considerable time, schemes
and primitives based on well-analyzed operations are preferable.

Forkciphers. Forkciphers are a recent proposal by Andreeva et al. [ARVV18] for light-
weight encryption of short messages. A (tweakable) fork cipher is similar to a (tweakable)
block cipher: it takes a key and a plaintext block, and computes a ciphertext block. How-
ever, it also computes a second ciphertext block from the same input under an independent
permutation. The crucial idea of their work is to speed up the computation by deriving
the second output block from the state in the middle, and only reencrypt it over the
remaining rounds twice. Therefore, forkciphers could yield efficient AE schemes since the
computation of a ciphertext and tag reduces for messages of length at most a block.
As instance of particular interest, [ARVV18] proposed ForkAES, which employs the original
key schedule and round function of the AES-128. Moreover, ForkAES is a tweakable block
cipher that adopts the concept from KIASU-BC [JNP14]: in every round where the round
key is XORed to the state, an additional 64-bit public tweak T is XORed to the topmost
two state rows. So, ForkAES encrypts the plaintext over the first five rounds exactly as in

Table 1: Summary of our related-tweak cryptanalysis of ForkAES. CP = #chosen plaintexts;
Encs. = encryption equivalents; MAs = memory accesses.

Time Data Memory

#Rds. Model |Key space| Attack type (Encs.) (MAs) (CP) (bytes) Ref.

9 Single-key Full Impossible Diff. 275.4 2110.2 270.2 2104 Sect. 4

9 Single-key Full Rectangle 286.6 292.4 285 290.4 Sect. 3.2

10 Weak-key ≈ 232 Rectangle 2100.6 2106.7 299 2104.4 Sect. 3.1

the KIASU-BC. Thereupon, it forks the state X and produces from it a ciphertext C0

exactly as KIASU-BC with the round keys K5 through K10, and a second ciphertext C1

under six further round keys K11 through K16. As a minor difference to the AES, ForkAES

does not omit the MixColumns operation in the final round. So, ForkAES requires only
five additional rounds and six more key-schedule iterations to compute a second output
block that can be used for authentication.

Existing Security Arguments. The adoption of the AES round function and the tweak
process from KIASU-BC allow to profit from existing results. It is well-known that any
four-round differential characteristic of the AES has at least 25 active S-boxes [DR02] in
the single-key model. For KIASU-BC, however, the number decreases to eight since the
tweak is also public, and provides additional degrees of freedom to the adversary [JNP14].
Andreeva et al. also considered meet-in-the-middle attacks briefly. Against other attacks,
they state that: “the security of our forkcipher design can be reduced to the security of the
AES and KIASU ciphers for further type of attacks” [ARVV18, Sect 3.2]. Concerning the
computation of C0, which is computed almost exactly as in KIASU-BC and only adds a
final MixColumns operation, the designers’ claim is clearly correct. However, the forking
operation produces a difference between not only a pair of two states in the middle, but
forms a quartet, which demands closer analysis. Thus, it is an interesting task for the
community to study ForkAES in more detail.1

Contribution. This work describes a related-tweak rectangle attack on ten-round ForkAES

for a subset of 232 keys among the space. It further describes a rectangle attack in
the single-key related-tweak setting and an impossible-differential attack on nine rounds.
Their properties are summarized in Table 1. Our attacks are made possible by the forking
step, which produces rectangle quartets from pairs of plaintexts.
We emphasize that our attacks do not endanger the security of the full ForkAES construc-
tion in the single-key setting nor that of the general forkcipher concept. However, our
results contradict the designer’s claim quoted above: impossible-differential attacks apply
(at the moment) to at most seven rounds of AES-128, and to at most eight for KIASU-BC

[DL17, TAY16]. Thus, the security margin of ForkAES is smaller than anticipated.
The research direction of lightweight AES-based designs in general and that of ForkAES

and forkciphers in particular appear promising. Similar as for previous AES-round-based
constructions (e.g. Simpira [GM16], or Haraka [KLMR16]), we can anticipate further
developments of the construction. Throughout this work, we focus on the ForkAES con-
struction from the original ePrint publication [ARVV18].

Outline. The remainder is structured as follows: after Section 2 briefly revisited the
necessary preliminaries, Section 3 provides related-key rectangle attacks. Thereupon, Sec-
tion 4 describes an impossible-differential attack. Section 5 concludes.

1We can anticipate other groups to also work on fostering the understanding of the security properties

of ForkAES. We are open to all constructive comments or collaborations.

2

2 Preliminaries

2.1 Notations and Security Definitions

General Notation. We assume that the reader is familiar with the concepts of block
ciphers and their cryptanalysis. Most of the time, we consider bit strings of fixed length.
We mostly use uppercase letters (e.g., X) for bit strings, lowercase letters for indices (x),
and calligraphic letters for sets (X). Given some positive integer n, we interpret bit strings
X ∈ {0, 1}n as vector elements of Fn

2 , where addition is the bit-wise XOR, denoted by ⊕.
Moreover, the AES works on byte vectors or byte matrices, i.e., 16-element vectors in F28 .
So, we interpret byte matrices of r rows and c columns as elements of Fr×c

28 . We denote by
|X | the length in bits of a bit string X = (Xn−1, . . . , X1, X0); by X ‖ Y the concatenation
of two bit strings X and Y ; and by Xi the i-th bit of X , where X0 denotes the least
and Xn−1 the most significant bit. We define by lsbm(X) =def (Xm−1, . . . , X0) and by
msbm(X) =def (Xn−1, . . . , Xn−m). Given an integer x, 〈x〉 denotes the encoding of x as
an n-bit string, where the length n should be clear from the context. Given sets X and

T , we define Perm(X) for the set of all permutations over X , and P̃erm(T ,X) = {π̃ | π̃ :
T ×X → X} for the set of all tweakable permutations over X such that for each element

π̃ ∈ P̃erm(T ,X), π̃T (·) is a permutation for all T ∈ T . We write X և X to denote that
X is sampled uniformly and independently at random from X .
An adversary A is assumed to be an information-theoretic distinguisher that interacts with
a set of oracles, and can ask queries to them. A has to distinguish between a real world
Oreal and an ideal world Oideal. The real world is given by a real construction keyed under
some key K և K sampled uniformly at random from some given key space K. We write

∆A(Oreal;Oideal) =def |Pr[AOreal ⇒ 1]−Pr[AOideal ⇒ 1]| for the distinguishing advantage
of A. For a security notion xx on a cryptographic scheme F , We write Advxx

F (A) for the
maximal advantage of A to distinguish F from the ideal primitive.

Block Ciphers and Tweakable Block Ciphers. Let B = {0, 1}n be some block space for

some fixed integer n, hereafter. A TBC Ẽ with associated key space K, tweak space T ,
and message space B is a mapping Ẽ : K × T × B → B such that for every key K ∈ K
and tweak T ∈ T , it holds that Ẽ(K, T, ·) is a permutation over B. We also write ẼT

K(·)
as short form of Ẽ(K, T, ·) in the remainder.

Definition 1 (TPRP Advantage). Let K be a non-empty set and B, and T be message

and tweak space, respectively. Let Ẽ : K × T × B → B denote a tweakable block cipher.

Let π̃ և P̃erm(T ,B) and K և K. Then, the TPRP advantage of an adversary A w.r.t.

Ẽ is defined as AdvTPRP

Ẽ
(A) =def ∆A(ẼK ; π̃).

Forkciphers. A tweakable forkcipher Ẽ is a tuple of three deterministic algorithms: An
encryption algorithm Ẽ : K × T × B → (B)2; a decryption algorithm D̃ : K × T × B ×
{0, 1} → B; and a tag-reconstruction algorithm R̃ : K × T × B × {0, 1} → B. The

encryption produces ẼT
K(P) = (C0 ‖C1). We define ẼT

K(P)[0] = C0 and ẼT
K(P)[1] = C1

The decryption and tag-reconstruction take a bit b such that it holds D̃T,b
K (ẼT

K(P)[b]) = P ,

for all K, T, P, b ∈ K×T ×B×{0, 1}. The tag-reconstruction produces R̃T,b
K (ẼT

K(P)[b]) =

ẼT
K(P)[b ⊕ 1] for all tuples of inputs.

The ideal tweakable forked permutation Π̃ encrypts messages P under two independent

permutations π̃0, π̃1 և P̃erm(T ,B), and outputs (C0 ‖C1) as Cb ← π̃b(P), for b ∈ {0, 1}.
We define ˜ForkedPerm(T ,B) for the set of all tweakable forked permutations with tweak
space T and block space B. The security definition is then defined simply as the maximal
advantage to distinguish an instance from the ideal:

3

Definition 2 (PRTFP Advantage). Let K be a non-empty set and B, and T be message

and tweak space, respectively. Let Ẽ : K×T ×B×{0, 1} → (B)2 denote a tweakable forked

permutation. Let Π̃ և
˜ForkedPerm(T ,B) and K և K. Then, the PRTFP advantage of

an adversary A w.r.t. Ẽ is defined as AdvPRTFP

Ẽ
(A) =def ∆A(ẼK ; Π̃).

Iterate-Fork-Iterate. A secure (tweakable) forkcipher could be instantiated easily from
two secure independent (tweakable) permutations π̃0 and π̃1. Andreeva et al. presented
the Iterate-Fork-Iterate (IFI) construction, which employs three independent permuta-

tions π̃, π̃0, π̃1 և P̃erm(T ,B) to encrypt tweak-plaintext tuples (T, P) as

IFI[π̃, π̃0, π̃1]T (P)
def
= π̃T

0

(
π̃T (P)

)
‖ π̃T

1

(
π̃T (P)

)
.

Their crucial idea was to instantiate those permutations with round-reduced AES to
reduce the computational costs.

2.2 Brief Introduction of AES, KIASU-BC, and ForkAES

The AES-128. We try to follow the notation conventions from the AES and KIASU-

BC as far as possible. The AES-128 is a substitution-permutation network over 128-
bit inputs, which transforms the input through ten rounds consisting of SubBytes (SB),
ShiftRows (SR), MixColumns (MC), and a round-key addition with a round key Ki. Before
the first round, a whitening key K0 is XORed to the state; the final round omits the
MixColumns operation. We write Si for the state after Round i, and Si[j] for the j-th
byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15, where the byte ordering is given by:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 .

We will use a similar convention for the round keys Ki and their bytes Ki[j], for 0 ≤ i ≤ 16.
Moreover, we denote by Sr,SB, Sr,SR, and Sr,MC also the states in the r-th round directly
after SubBytes, ShiftRows, and MixColumns operation, respectively. More details can be
found in [DR02, Nat01].

KIASU-BC. KIASU-BC [JNP14] is a tweakable block cipher that aimed to be as close
as possible to the AES-128. It differs only in the fact that it XORs a 64-bit tweak T to
the topmost two rows of the state when ever a round key is XORed. We denote the tweak
by T and by T [j], for 0 ≤ j ≤ 7, the bytes of T . Note that the tweak bytes are ordered as

[
0 2 4 6

1 3 5 7

]
.

Moreover, we write KS for an iteration of the AES-128 key schedule.

ForkAES. ForkAES is a forkcipher that bases largely on KIASU-BC. It forks the state
after five rounds and processes it twice to two ciphertexts C0 and C1. We denote the
states of the first branch by X i =def Si, for 5 ≤ i ≤ 10, where X5 = S5 and X10 = C0.
Moreover, we denote the states of the second branch by Y i, for 5 ≤ i ≤ 10, where Y 5 = S5

and Y 10 = C1. A schematic illustration is given in Figure 1, and more details can be found
in [ARVV18].

4

Figure 1: ForkAES. R denotes the round function and KS an iteration of the AES-128 key
schedule.

We denote the round function by RT
Ki ; i.e., RT

Ki(x) =def MC(SR(SB(x))) ⊕ Ki ⊕ T . We
will also write R for the operation sequence MC ◦ SR ◦ SB. For i < j, we denote by RT

Ki..j

the sequence of rounds RT
Ki..j =def RT

Kj ◦RT
Kj−1 ◦ · · · ◦RT

Ki. As a shortcut, RT
Ki..j ,L denotes

RT
L ◦ RT

Ki..j .
Later, we will sometimes use the fact that linear operations can be reordered; in particular,
we will reorder the MixColumns operation and the round-key addition. For this purpose,
we define K̂r = MixColumns−1(Kr) for the corresponding round keys.

2.3 Properties of the AES

Subspaces of the AES. We adopt the notation of subspaces for the AES from Grassi
et al. [GRR16]. We recall the definition of a coset from Grassi et al: given a vector space
W and a subspace V ⊆ W . If a is an element of W , then, a coset V ⊕ a of V in W
is a subset V ⊕ a = {v ⊕ a|∀v ∈ V} We consider vectors and vector spaces over F4×4

28 ,

and denote by {e0,0, . . . , e3,3} the unit vectors of F4×4
28 , i.e., ei,j has a single 1 in the i-th

row and j-th column. For a vector space V and a function F : F4×4
28 → F4×4

28 , we let
F (V) =def {F (v)|v ∈ V}. For a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces
{V1,V2, . . . ,Vn}, we define VI =def

⊕
i∈I Vi. We adopt the definitions by Grassi et al. of

four families of subspaces for the AES. For each i ∈ {0, 1, 2, 3}, the following spaces are
defined:

• the column spaces Ci as Ci = 〈e0,i, e1,i, e2,i, e3,i〉,

• the diagonal spaces Di as Di = SR−1(Ci),

• the inverse-diagonal spaces IDi as IDi = SR(Ci), and

• the mixed spaces Mi as Mi = MC(IDi).

For I ⊆ {0, 1, 2, 3}, the spaces CI , DI , IDI , and MI are defined as

CI
def
=

⊕

i∈I

Ci, DI
def
=

⊕

i∈I

Di, IDI
def
=

⊕

i∈I

IDi, and MI
def
=

⊕

i∈I

Mi.

The S-box S : F28 → F28 of the AES has a few well-analyzed properties; here, we briefly
recall two that are relevant in our later attacks.

5

Property 1. Let α ∈ F28 \{08} be an arbitrary but fixed input difference. Let x, y և F28 .
Then, for F ∈ {S, S−1}, it holds that Pr [F (x) ⊕ F (x⊕ α) = F (y)⊕ F (y ⊕ α)] = 520

216 ≈
2−6.98.

Property 2. Let α, β ∈ F28 \ {08}. Then,

|{x : S(x) ⊕ S(x⊕ α) = β}| =

4 in 1 case

2 in 126 cases

0 in 128 cases.

So, for any non-trivial differential α→ β, there exists one input x on average that satisfies
the differential. This implies that for each input difference α ∈ F28 \ {08}, there exists
one output difference β ∈ F28 \ {08} s. t. Pr[S(x) ⊕ S(x ⊕ α) = β] = 2−6, 126 differences
β such that Pr[S(x) ⊕ S(x ⊕ α) = β] = 2−7, and 128 differences β s. t. the probability is
zero. The same property also holds through the inverse S-box.

2.4 Boomerang and Rectangle Attacks

Boomerangs. Boomerang attacks [Wag99] are one form of advanced differential crypt-
analysis. They allow to apply an attack from the composition of two short high-probability
differentials in cases where long differentials with sufficient probability are unknown or
lacking. Given a cryptographic transform E : Fn

2 → Fn
2 , it is decomposed into parts

E = E2 ◦ E1 such that there exist a differential α → β with probability p over E1 and a
differential γ → δ with probability q over E2. Often, the differentials are referred to as
upper and lower differentials or trails. A boomerang distinguisher then chooses plaintext
pairs (P, P ′), with P ′ = P ⊕α, and asks for the corresponding ciphertexts (C, C′) through
E. It derives D = C ⊕ δ and D′ = C′ ⊕ δ to obtain the ciphertext pair (D, D′), and asks
for the corresponding plaintext tuples (Q, Q′). If Q ⊕ Q′ = α, then (P, P ′, Q, Q′) forms
a correct quartet. The probability of a correct quartet is often approximated by (pq)2

since the trails must hold for both pairs. The probability can be increased by considering
all possible internal trails α → β′ and γ′ → δ as long as both pairs in the quartet have
differences β′ and γ′ in the middle and β 6= γ. Hence, the simplified probability of a
correct quartet increases to (p̂q̂)2 with

p̂ =

√∑

β′

Pr2 [α→ β′] and q̂ =

√∑

γ′

Pr2 [γ′ → δ].

Clearly, the attack demands that p̂q̂ ≫ 2−n/2 for the differential to be probable. Given N
plaintext pairs, one expects about N · (p̂q̂)2 correct quartets in an attack, but only N ·2−n

correct quartets for an ideal primitive, which yields a distinguishing event.
For the AES S-box, it follows from Property 1 for arbitrary α, δ ∈ F28 \ {0} that

√∑

β′

Pr2
[
α

S−→ β′
]
≃ 2−3.5

√∑

γ′

Pr2
[
γ′ S←− δ

]
≃ 2−3.5.

Rectangle Attacks. Rectangle attacks [BDK01, BDK05] are a chosen-plaintext form of
the boomerang concept. The core difference of rectangles is to encrypt many plaintext
(P, P ′) with difference α and simply hope that some of those will form a quartet with the
desired differences in the middle. Given N plaintext pairs, the number of correct quartets
is reduced to N2 · 2−n · (p̂q̂)2 by a birthday argument. The left side of Figure 2 illustrates
a related-tweakey rectangle. Biham et al. presented further technical improvements to
the technique in [BDK02]. The major disadvantages of rectangle compared to boomerang
attacks are the higher data complexity and the large number of potential quartets that
have to be handled.

6

D D′

E2 E2

β′

E1 E1

Q Q′
α

C C′

E2 E2

β′

E1 E1

P P ′
α

γ′ γ′

δ δ

Figure 2: Schematic illustrations of a related-tweakey rectangle (left) and an impossible-
differential attack (right).

Verification. Boomerangs and rectangles represent oversimplified equation systems, as
was first stressed by Murphy [Mur11]. Cid et al. [CHP+18] proposed the concept of a
Boomerang-connectivity Table for S-box-based ciphers as a tool that allows to identify
if boomerangs can really hold. We consider their approach later in this work. For the
interested reader, we note that the approach was recently refined in [BC18], and the effort
for its computation was reduced in [Dun18].

2.5 Impossible-differential Attacks

Impossible-differential attacks have been proposed independently by Knudsen [Knu98] and
Biham et al. [BBS99]. Throughout this work, we follow the generic framework by Boura
et al. [BNS14]; the interested reader is referred to recent refinements by Blondeau [Blo17].
The search of an impossible-differential attack usually consists of two steps: first, one
searches for a differential ∆X 6→ ∆Y with probability zero through a sub-cipher; there-
upon, one propagates the start difference ∆X backwards through rin rounds to an input
difference ∆in, and the end difference ∆Y forwards through rout rounds to an output dif-
ference ∆out. The complexity can be reduced by considering ∆in and ∆out as vector spaces
that can contain multiple allowed start and end differences.
The adversary queries plaintexts Pi and constructs pairs (Pi, Pj) s. t. their difference lies
in ∆in; it asks for their corresponding ciphertexts Ci, and considers only ciphertext pairs
(Ci, Cj) whose differences fall into the space spanned by ∆out. Next, it guesses key bits
through the rin inner rounds and the rout outer rounds. All key candidates that yield ∆X
and ∆Y for any pair in the middle must be wrong and can be discarded. Boura et al.
denoted by cin the number of bit conditions that have to be fulfilled for a pair with input
difference in ∆in to yield ∆X . Similarly, they denoted the number of bit conditions that
must be fulfilled to get from ∆out to ∆Y by cout. We denote the key sets by Kin and Kout.
The number of key bits involved is denoted by kin and kout respectively. The right image
of Figure 2 comprises the notations of an impossible-differential attack.
The number of pairs needed to filter is chosen such that the probability of a key to survive
is low. Following [Blo17, Knu98], let TK be the random variable that counts the number

7

of pairs that allow discard key candidate K. Knudsen [Knu98] assumed that TK follows
a binomial distribution with parameters (N, p = 2−(cin+cout)) that a pair leads to the
impossible differential for a given key, the probability that this key candidate survives all
pairs can be approximated by

psurvive = Pr [TK = 0] =

(
N

0

)
· p0 · (1− p)N =

(
1− 2−(cin+cout)

)N

.

This probability can be approximated by e−pN . The complexities are given by:

• Data: CN ·N . For obtaining the necessary number of pairs N , Boura et al. [BNS14]
formulated the following complexity, based on the limited birthday problem:

CN = max

{
min

∆∈{∆in,∆out}

{√
N · 2n+1−|∆|

}
, N · 2n+1−|∆in|−|∆out|

}
. (1)

• Memory: N pairs;

• Time:

CN · CE +

(
1 +

2|kin∪kout|

2cin+cout

)
·N · CE′ + 2k−α · CE . (2)

The number of plaintext pairs is chosen s. t. N , the expected number of the ciphertext
pairs with difference in ∆out fulfills that psurvive ≤ 2−α; so, the attack reduces the key
spaces by α bits on average. In the most conservative fashion, N is chosen to be smaller
than 2−|kin∪kout|, so that only the correct key is expected to survive. The term CN simply
refers to the complexity of finding N pairs with ciphertext difference in ∆out. CE is the
cost for evaluating the primitive, k denotes the key size, and CE′ the costs of the partial
encryption to detect impossible differentials.
One can consider multiple impossible differentials to employ the same data for multiple
impossible trails. Boura et al. point out that this strategy affects only the first term, CN ,
but not the further terms of the memory complexity.
Boura et al. aimed at providing generic formulas for the complexities of impossible-
differential attacks. At FSE 2016, Derbez pointed out cases where the generic time-
complexity calculation was not correct [Der16]; those counter-examples considered op-
timized attacks wherein the key was recovered part by part. In their follow-up work
[BLNS18], Boura et al. addressed Derbez’ findings and emphasized that also given their
generic formulas, the exact complexity of each attack needs to be carefully computed.
Later in this work, we will refrain from employing those optimizations. Therefore, the
complexity calculations for our attacks should be sub-optimal, but circumvent the pitfalls
pointed out by Derbez.

3 Rectangle Cryptanalysis

This section presents two related-tweak rectangle attacks: Our primary focus is on a
related-key attack on ten rounds in Section 3.1. However, this attack requires a specific
type of difference K5 ⊕K11 ∈ D1 between the round keys K5 and K11 that applies to a
fraction of approximately 232 keys. We describe an attack on nine rounds that works on
the full key space afterwards in Section 3.2.

Notation. Given two plaintext-tweak tuples (P, T) and (P ′, T ′) that are encrypted to
(C0, C1) and (C′

0, C′
1), respectively, we denote by X = Y and X ′ = Y ′ their states in

the middle after five rounds. We define ∆Xr = Xr ⊕ X ′r for the differences between
the states after Round r, that lead to C0; similarly, we define ∆Y r = Y r ⊕ Y ′r for the

8

Figure 3: Schematic illustration of our weak-key rectangle attack on ten-round ForkAES.

differences of the states that lead to C1. So, we consider two differential trails: (∆X =
∆Y)→ (∆C0, ∆C1). We use ∆X = ∆Y interchangeably for the differences in their states
in the middle. This is illustrated in Figure 3.

3.1 Weak-key Attack on Ten Rounds

Top Differentials. From a high-level perspective, the top trail covers Round 6 without
the final key and tweak addition, whereas the bottom trail consists of the key and tweak
addition at the end of Round 6 as well as Rounds 7 through 10. The top trail concerns
the differential between X and Y , i.e., the differential path of the first portion of the
trail from X → C0 and Y → C1. Clearly, this difference stems purely from the subkey
differences. In contrast to the pure AES or KIASU-BC, the forking step guarantees
that the difference between the inputs of Round 6 and Round 11 is the same for every
plaintext, because the subkeys do not change from encryption to encryption. If the input
to Round 11 would be the output of Round 10 ⊕ K11, it would not be guaranteed that
the difference would be the same for every encryption. The bottom trail then considers
the difference between Xi and Xj as well as between Yi and Yj . There, the differences
stem from two different plaintexts, but the key difference is zero in the bottom trail.
For the top trail, we assume that the key difference of K5 ⊕ K11 ∈ D1, i.e., only the
second diagonal is active, as illustrated on the left side of Figure 4. Since we have 32
conditions, we expect the fraction of the key space for which the attack holds to consist
of approximately 232 elements. The probability that the truncated top trail has the same
β̂ in both pairs of approximately 2−4·6.98 ≃ 2−28. With probability 2−128, we obtain a
chosen difference in the middle after the MixColumns operation in Round 6, where we
choose the start difference of the bottom trail.

Bottom Differentials. The bottom trail is shown on the right side of Figure 4. There are
four active S-boxes at the start of Round 6. Since we need only equal differences γ, their
probability is approximately (2−6.98)4 ≈ 2−28 for both pairs. Moreover, we need a certain
difference so that ∆X7,MC[0] = ∆T [0], which holds with probability 1/(28 − 1) ≃ 2−8.
Then, both pairs pass through Round 8 with probability one and have a difference of
∆T [0] at the end of Round 8. We guess 2 · 8 key bits of K̂9[0] and K̂15[0] in Round 9. We

guess 2 · 32 key bits in K̂10[0, 7, 10, 13] and K̂16[0, 7, 10, 13]. So, the probability for the
bottom trail is approximately 2−28−8 = 2−36 for both pairs. The difference δ in Figure 3
corresponds to the differences ∆X8 and ∆Y 8 at the end of our distinguisher.

Initial Preparation. We define a linear mapping F : F4×4
28 → F96

2 of rank 96, s. t.
F (∆X10,SR) = 096. So, we can identify later ciphertext pairs Ci, C′

i with difference δ
from collisions of the form F (Ci) = F (C′

i) using two evaluations of F per text instead

9

Figure 4: Trails of our ten-round rectangle attack. Left: Top trail over Round 6. Right:

Bottom trail, covering the round-key and tweak addition in Round 6 and Rounds 7 through 10.
The operations below the dashed horizontal line are considered during the key recovery.

of comparing all differences. In general, such a mapping F (x) =def F · x can be defined
by a matrix F ∈ F128×128

2 s. t. rank(F) = 96 and ∆X10,SR ∈ kernel(F). F can be
chosen efficiently and almost arbitrarily as long as the property holds. For ForkAES and
our difference, this task reduces to getting a vector of the 12 inactive bytes in ∆X10,SR,
which can be realized with a few operations, e.g., with three shifts, four XORs, and four
ANDs per ciphertext. A code listing is given in Appendix A.

Further Preparation Steps. We can perform a preparation step that will save compu-
tational effort later in the attack. Let x = X10,SB[0, 7, 10, 13], x′ = X ′10,SB

[0, 7, 10, 13],

k9 = K̂9[0], and k10 = K̂10[0, 7, 10, 13] be short forms. We further construct a hash map

H : F28 × F28 × F4
28 × F4

28 →
(
F5

28

)∗

s. t. for all inputs (T [0], T ′[0], x, x′), H returns exactly those keys (k9, k10) that map x
and x′ to a zero difference at ∆X8,MC = 04×8. We obtain:

• A single fixed difference α = ∆T [0];

• The difference α maps to 127 non-zero differences β ∈ F28 due to Property 2.

• The 127 differences β are mapped uniquely to 127 differences γ by MixColumns.

• X10[0, 7, 10, 13] and X ′10
[0, 7, 10, 13] are fixed and possess a fixed difference δ.

The trail contains 32 bit conditions that have to be fulfilled. So, H maps to approx-
imately 28 suggestions of 40 key bits on average. The same map H can be used also
to obtain suggestions for K̂15[0] and K̂16[0, 7, 10, 13] from inputs y = Y 10,SB[0, 7, 10, 13],

y′ = Y ′10,SB
[0, 7, 10, 13], T [0], and T ′[0].

10

Attack Steps. The steps in the attack are as follows:

1. Initialize an empty list Q. Initialize a zeroed list K of byte counters for the 40 key
bits K̂9[0], K̂10[0, 7, 10, 13]. Initialize another zeroed list L of byte counters for the

40 key bits (K̂15[0], K̂16[0, 7, 10, 13]).

2. Precompute H.

3. Choose an arbitrary base tweak T ∈ F2×4
28 . Construct 28 sets Si from iterating over

all values of T [0] = i. For each set, choose 2s plaintexts P . All texts in a set use the
same tweak value T . Ask for their 2s+8 encryptions (T, C0, C1) from an encryption
oracle. Invert the final tweak addition, and the final MixColumns operation for each
output tuple (C0, C1).

4. Process all ciphertexts by F to obtain Q0 and Q1 from C0 and C1; we define Qb =
F (MC−1(T ⊕ Cb)), for b ∈ {0, 1}. store (T, Q0, Q1) into buckets of Q.

5. Only consider pairs of tuples (T, Q0, Q1) and (T ′, Q′
0, Q′

1) if T [0] 6= T ′[0], F (Q0) =
F (Q′

0) and F (Q1) = F (Q′
1). We call such pairs of tuples with our desired property

quartets. Discard all tuples that do not form quartets.

6. For each quartet:

6.1 Lookup from H the suggestions of the 40 key bits K̂9[0], K̂10[0, 7, 10, 13] from

∆T [0] = T [0]⊕ T ′[0], and the states X10[0, 7, 10, 13] and X ′10
[0, 7, 10, 13]. We

expect 28 suggestions on average. For each suggestion, increment the corre-
sponding counter in K.

6.2 Similarly, lookup from H the suggestions for the 40 key bits K̂15[0], K̂16[0, 7,
10, 13]. We expect 28 suggestions on average. For each suggestion, increment
the corresponding counter in K.

7. Output the keys in K and L in descending order of their counters.

Data Complexity. The adversary chooses 28 sets of 2s texts each. So, it can combine

all texts of each pair of distinct sets to pairs, which yields
(

28

2

)
≃ 215 combinations of

sets of 22s text pairs, or 22s+15 pairs. The top trail has a probability of 2−28, which
yields 22s−13 pairs in the middle. The probability that a pair of tuples forms one of our
desired differences γ′ for both pairs at the start of the bottom trail is approximately by
2−128. So, we can expect 22s−141 quartets. Since the bottom trail has a probability of
2−36 until ∆X8,MC, we expect 22s−177 correct quartets that share a four-byte difference
at the bottom. Choosing s = 91 yields 25 quartets on average, and requires 2s+8 = 299

chosen plaintexts-tweak queries.

Computational Complexity. In Step (2), the adversary precomputes H with 280 compu-
tations of twice a quarter round of the AES, which can be approximated by 280 ·2/15·1/4 ≃
275.1 computations of ForkAES. In Step (3), the adversary has to ask for the encryptions
of 2s+8 plaintext-tweak tuples from an oracle. Each encryption requires the evaluation of
15 AES rounds. Step (4) costs 2 · 2s+8 evaluations of F , which we estimate by a ForkAES

encryption equivalent. Moreover, we need 2 ·2s+8 ·(s+8) memory accesses to Q. This step
yields 22s+15 · 2−192 = 22s−177 wrong quartets plus 22s−177 correct quartets on average.
So, we expect 22s−176 quartets on average.
For each surviving quartet, it requires 2 · 28 memory accesses to H plus 2 · 28 memory
accesses to K and L on average. We expect an average sum of all counters of 28 ·22s−176 =
214 in each of both lists, distributed normally over the keys. For s = 91, we expect 214

11

Table 2: Histogram of the Boomerang-connectivity Table and our setting in the ten-round
rectangle attack for the AES S-box.

#Solutions

0 2 4 6 8 10 12 14 16 18 20 256 Average

BCT [CHP+18] 32,640 31,620 255 510 511 1.035

Our setting 30,572 15,373 11,531 4,611 1,957 640 252 60 19 8 2 511 2.014

counters over the 40 key bits in each list, but at most only a few that have at least 16
counts or more. So, we obtain an attack complexity of

275.1 + 2s+8 + 2 · 2s+8 ≃ 2100.6 Encryptions and

2 · 2s+8 · (s + 8) + 22s−176 · 2 · 28 + 22s−176 · 2 · 28 + 214 ≃ 2106.63 Memory accesses.

Memory Complexity. The attack needs 280 · 28 · 40 bits, or approximately 290.33 bytes
for H. In addition, one needs 280 byte counters for the keys in K and L. Finally, the
list Q requires 2s+8 · (2 · 16 + 8) < 2s+13.33 < 2104.4 bytes, which dominates the memory
complexity.

Computational Verification. We aimed to verify the middle step of the ten-round attack.
We can observe that, among the four active S-boxes in Round 6 in the top trail and the
four active S-boxes in Round 7 in the bottom trail, only a single S-box, ∆X6[5], is shared
in the middle; more detailed, we consider the mapping

α = X5[9]⊕ Y 5[9]
SB,SR,MC−−−−−−→ ∆X6[5]

AT[K6[5],T [3]],SB,SR−−−−−−−−−−−−−→

∆X7,SR[1]
MC,AT[K7[0],T [0]]−−−−−−−−−−−→ ∆T [0] = δ.

The inverse MixColumns matrix defines a unique mapping ∆X7,SR[1] = 0x09·∆T [0] in F28 .
The remaining active S-boxes are independent and can be assumed to have probability
approximately 2−3.5 per pair and S-box. We evaluated the approach illustrated on the
right side of Figure 5: over all (28)3 combinations of (x, α, δ), obtain (w, z) from passing
(x, x ⊕ α) into two applications of the S-box S; derive w′ = w ⊕ δ and z′ = z ⊕ δ and
compute (x′, y′) from two applications of S−1. Increase the counter in a list L[α][δ] if
x′ ⊕ y′ = α.
The results are given in Table 2. The number of solutions is on average

∣∣{x ∈ F28 : S−1(S−1(S(S(x)) ⊕ δ)⊕ S−1(S−1(S(S(x ⊕ α))⊕ δ) = α
∣∣} ≃ 2.01.

So, we expect a probability of approximately 2.01/28 ≃ 2−7 for each (α, δ) = (X5[9] ⊕
Y 5[9], ∆T [0]). Multiplying this probability with (2−3.5·3)2 for the three further active S-
boxes ∆X5[3, 4, 13] in the top trail and with (2−3.5·3)2 for the three further active S-boxes
∆X6[0, 10, 15] in the bottom trail yields a probability of the middle step of approximately
2−49. So, the probability in practice might be 27 times higher than the theoretical expec-
tation; we employ the conservative estimation in our complexity calculation.

3.2 A Nine-round Attack on The Full Key Space

From our attack above, we can derive in straight-forward manner a more efficient attack
on the full key space on nine rounds, which omits Round 6 and inherits the remaining
steps. For the sake of clarity, we define that the key schedule produces the round keys K0,

12

Figure 5: Left: The setting of Cid et al.’s Boomerang-connectivity Table; Right: Our setting
for verifying the middle phase, where α = X5[9] ⊕ Y 5[9], γ = ∆X6[5], and δ = ∆X7,SR[1].

. . . , K14; we say that the computation from the forking state X to C0 employs the round
keys K5 through K9, and the computation from X to C1 employs K10 through K14. An
overview and the bottom trail are visualized in Figure 6.

Top Differential. Again, we construct 28 sets of 2s plaintext-tweak tuples as before
where the sets differ again in the value of T [0] and all plaintexts in a set share the same
tweak. The top trail is reduced to the key addition of K5 for the X branch and K10

to the Y branch. So, α = β′ = K5 ⊕ K10, which holds with probability one for each
pair. The adversary simply collects pairs and waits for the difference at the beginning of
the bottom trail which occurs with probability of 2−128. We obtain approximately 22s+15

quartets, among which 2−128 are expected to have the difference γ′ in the middle, which
yields 22s−113 quartets at the forking step.

Bottom Differentials. The bottom trail is shown on the right side of Figure 6; it differs
from that one used in the previous attack in the fact that it covers Rounds 6 through 9
here. The probability that a quartet follows the bottom trail until ∆X8,MC is 2−36; so, we
expect 22s−149 correct quartets. At the end, we consider the round keys K̂9[0, 7, 10, 13],

K̂8[0], K̂14[0, 7, 10, 13] and K̂13[0]. The attack steps are analogous to those above.

Data Complexity. We choose 28 sets of 2s texts each, and expect 22s−149 correct quartets.
Using s = 77 yields 25 correct quartets on average, and needs 285 plaintext-tweak tuples.

Computational Complexity. In Step (3), the adversary asks for the encryption of 2s+8

plaintext-tweak tuples from an oracle, which requires 13 AES rounds each. Step (4)
costs 2 · 2s+8 evaluations of F and 2 · 2s+8 · (s + 8) memory accesses. This step yields
22s+15 · 2−192 = 22s−177 wrong quartets plus 22s−149 correct quartets on average. So,
we expect 25 quartets on average. So, there is no need to precompute H here, but the
adversary can instead test the keys on the fly, for 2 · 25 states of 240 keys, of 1/4 of the
state through two out of 13 rounds of the construction.
For each surviving quartet, it requires 2 · 28 memory accesses to H plus 2 · 28 memory
accesses to K and L on average. We expect an average sum of all counters of 28 ·22s−149 =
213 in each of both lists, distributed normally over the keys. For s = 77, we expect
(2−23 · 28) + 25 · 28 ≃ 213 counters over the 40 key bits on average. We can expect that

13

Figure 6: Overview (left) and bottom trail (right) of our nine-round rectangle attack. The
operations below the dashed horizontal line are considered during the key recovery.

the correct keys have a significantly higher number of counts. So, we obtain

2 · 25 · 240 · 1

4
· 2

13
+ 2s+8 + 2 · 2s+8 ≃ 286.6 Encryptions and

2 · 2s+8 · (s + 8) + 2 · 22s−177 · 2 · 28 + 2 · 25 · 28 ≃ 292.4 Memory accesses.

Memory Complexity. The attack needs again 280 byte counters for the keys in K and
L; Q needs 2s+8 · (2 · 16 + 8) < 2s+13.33 ≃ 290.4 bytes of memory, which dominates the
memory complexity.

4 Impossible-differential Cryptanalysis

Model. This section outlines a related-tweak impossible-differential attack on nine-round
ForkAES. Note that the tweak is public; hence, our analysis is again in the single-secret-key
model. The adversary queries plaintext-tweak tuples (Pi, Ti) and obtains the correspond-
ing ciphertexts (Ci,0, Ci,1) from an oracle that holds a random secret key. The goal of the
attack described hereafter is to identify the secret key by filtering out all wrong keys more
efficiently than by exhaustive search.

Notation. The notation is similar to that in the previous section. We assume that
(C0, C1) are returned after nine rounds of encryption. So, compared to the full ForkAES,
we omit only the final AES round and key-schedule iteration in both branches, as in the
rectangle attack in Section 3.2. The states X = Y are still equal after almost five rounds,
without the key addition after Round 5. In the following, we will consider two differential
trails: (∆X, ∆Y)→ (∆C0, ∆C1), where ∆X = ∆Y .

Impossible Differentials. The high-level idea is straight-forward: The adversary queries
plaintexts under distinct tweaks and waits for tuples (Ci,0, Ti) and (Cj,0, Tj). It changes a

14

single byte in the tweaks, s. t. Ti[0] 6= Tj[0]. It inverts the final MixColumns operation and

tweak addition, and uses the ciphertexts only if their difference ∆Ĉ0 (before MixColumns)

activates only the inverse diagonal ID0. It deduces five key bytes K̂9[0, 7, 10, 13] and one

in K̂8[0] such that their differences cancel after the tweak addition at the end of Round 7.
Then, there is a zero difference through the inverse Round 7, which leads to a single active
byte in ∆X5,MC, and to a single active diagonal at the beginning of Round 6: ∆X5 ∈ D0.
This is illustrated on the left side of Figure 7.
Given this trail, the adversary concerns the second trail from ∆C1 backwards to ∆Y . It
must hold that ∆X = ∆Y and therefore ∆Y 5 ∈ D0. This implies that at least one of the
following three cases for ∆Y 7 must hold:

(1) ∆Y 7 has at least one fully active column: ∆Y 7 ∈ Ci.

(2) Bytes ∆Y 7[1, 2, 3] are active.

(3) ∆C1 ∈M0, i.e., is in the mixed space, generated by ∆Y 9,SR ∈ ID0. Note that this
event can be tested in O(1).

In Case (3), it holds that ∆Y 9,SR ∈ ID0, which means that the ∆Y trail is similar to the
∆X trail. So, we have a differential that can strongly reduce the key space, e.g., using the
rectangle distinguisher on nine rounds from the previous section. However, this section
tries to exploit a different distinguisher with lower data complexity and does not have to
wait for such an event.
In the former two cases, the columns 1, 2, and 3 of ∆Y 7 are either completely active or
completely inactive. So, the adversary can guess eight bytes of K̂14 that are mapped to
one of those columns and can filter out all key guesses where one of those columns would
become partially active. Hereafter, we prove this property briefly.

Theorem 1. Let ∆X7 ∈ C0 ∩ D0 and let ∆X7[0] = ∆T [0]. Let I ⊆ {0, 1, 2, 3}. Then,
one of the following statements holds: (1) ∆Y 7,MC = 0; (2) ∆Y 7,MC ∈MI .

Proof. Let us consider the top trail ∆X : ff ∆X7 ∈ C0 ∩ D0 holds, then only ∆X7[0] is
active. Since ∆X7[0] = ∆T [0], it holds that ∆X7,MC = 0. Tracing it backwards implies
that ∆X6,MC is also active only in the 0-th byte, which has difference ∆T [0]. This yields
∆X5 ∈ D0, and leads to ∆X ∈ D0, as shown on the left side of Figure 7. It may hold
that ∆X [0] = 0, though.
Since both Y and Y ′ use the same key difference, and X = Y and X ′ = Y ′ hold, we
have that ∆Y = ∆X ; since the tweak addition is linear, it follows that ∆Y 5 = ∆X5, i.e.,
∆Y 5 ∈ D0, from which ∆Y 6,MC ∈ C0 follows. So, at least one byte of ∆Y 6,MC must be
active, but all bytes can be active. The round tweakey addition to ∆Y 6 then influences
only the difference in ∆Y 6[0]. After Round 7, the leftmost column may have either a
single active byte in ∆Y 7[0], three active bytes ∆Y 7[1, 2, 3], or four active bytes, due to
the tweak addition at the end of Round 7. In contrast, Columns 1, 2, and 3 of ∆Y 7

have each either a zero difference, or are fully active. So, if any of those columns is only
partially active in the backward computations from ∆C1 to ∆Y 7 after guessing a key
candidate, that candidate must be wrong. This is illustrated on the right side of Figure 7.
Our claim in Theorem 1 follows.

Initial Steps. As in the previous section, we can define a linear mapping F : F4×4
28 → F96

2

of rank 96 s. t. F (MC−1(∆C0)) = 0. So, we can later identify ciphertext pairs C0, C′
0

with difference δ from collisions of the form F (C0) = F (C′
0) using two evaluations of F

per text instead of comparing all differences. Such a mapping can be found and evaluated

15

Figure 7: Left: ∆X-trail ∆X ← ∆C0. In the states, white bytes are inactive (zero difference);
light-blue bytes are possibly active, and dark-blue bytes are active. Key bytes with G are guessed.
Right: One variant of an impossible ∆Y -trail ∆Y 6→ ∆C1. If any of the three rightmost columns
in ∆Y is active, then it is fully active. The parts below the dashed line represent the computations
in the on-line phase of the attack.

efficiently and we will overestimate the effort for its evaluation by a complete ForkAES

encryption equivalent. For simplicity, we define

X̂r,SR def
= SR(SB(Xr−1))⊕ K̂r and Ŷ r,SR def

= SR(SB(Y r−1))⊕ K̂r,

and X̂ ′
r,SR

and Ŷ ′
r,SR

analogously. Moreover, we denote by K̃r = SR−1(K̂r).
Similarly as in our rectangle attack on ten rounds, we construct a hash map

H0 : F28 × F28 × F4
28 × F4

28 → (F5
28)∗.

Here, it maps x = (T [0], T ′[0], X̂9,SR[0, 7, 10, 13], X̂ ′
9,SR

[0, 7, 10, 13]) to all five-byte keys
that yield ∆X7,MC = 0. Moreover, we construct a second hash map

H1 : F8
28 × F8

28 → (F8
28)∗,

s. t. for all inputs x = (Ŷ 9,SR[2, 3, 5, 6, 8, 9, 12, 15], Ŷ ′
9,SR

[2, 3, 5, 6, 8, 9, 12, 15]), H1(x)

returns exactly those keys K̂14[2, 3, 5, 6, 8, 9, 12, 15] = K̃14[8, 9, 10, 11, 12, 13, 14, 15] s. t.
they yield one of the impossible differentials in ∆Y 8,SR.
The final tweak addition, MixColumns, and ShiftRows operation can be inverted before the
lookup in H1 is performed; the tweak addition at the end of Round 8 does not affect the
difference in ∆Y 8,SR. Hence, H1 does not require the tweak as input.
Note that the columns can be computed independently, and H1 can be built from several
smaller lookup tables internally. There exist four combinations of bytes: ∆Y 8,SR[i, j]
with (i, j) ∈ {(8, 15), (9, 12), (10, 13), (11, 14)}. Moreover, there exist two options whether
Byte i or Byte j has a zero difference whereas the other one must have a non-zero difference.
There are eight bit conditions that have to be fulfilled for an input difference to MC−1

16

to be mapped to an output difference with a zero-difference byte, i.e., 224 inputs yield a
difference with a zero-byte at a given byte index. On the other hand, 232 − 224 inputs
yield a non-zero difference at a given byte index. Thus, given an input Y 9,SB, H1 returns
4 · 2 combinations of 224 · (232− 24) ≃ 256 keys that yield the impossible differential. This
can be evaluated with 4 · 2 calls to two 32-bit tables each, or 16 tables that map 32 state
bits to 232 or 224 keys. So, H1 needs 8 · 232 · 232 · 4 bytes + 8 · 232 · 224 · 4 bytes ≃ 272

bytes of memory. The tables can be computed with at most 16 · 232 · 232 quarter rounds
of the AES, or 16/13 · 264 ≃ 264.3 equivalents of nine-round ForkAES.

Steps. The steps in the attack are as follows:

1. Initialize an empty list Q. Further initialize a list K that will hold all 13-byte keys
K̂8[0], K̂9[0, 7, 10, 13], and K̂14[1, 2, 5, 6, 8, 9, 12, 15].

2. Choose an arbitrary base tweak T ∈ F2×4
28 . Construct 28 sets Si from iterating over

all values of T [0] = i. For each set, choose 2s plaintexts P . All texts in a set use
the same tweak T i with T i[0] = i. Ask for their 2s+8 encryptions (T, C0, C1) from
an encryption oracle.

3. For each ciphertexts, invert the final tweak addition, the final MixColumns operation,
and process all ciphertexts by F : Qb = F (MC−1(Cb ⊕ T)), for b ∈ {0, 1}. Store
(T, C0, C1, Q0, Q1) into buckets of Q.

4. Only consider pairs of tuples (T, C0, C1, Q0, Q1) and (T ′, C′
0, C′

1, Q′
0, Q′

1) if it holds
that T 6= T ′ and F (Q0) = F (Q′

0). Discard all other tuples. We call pairs of tuples
with our desired property quartets.

5. For each quartet:

5.1 Derive from H0 the key candidates K̂8[0] and K̂9[0, 7, 10, 13] that yield zero
difference in ∆X6,MC.

5.2 Derive from H1 all key candidates for K̂14[1, 2, 5, 6, 8, 9, 12, 15] that yield one
of our eight impossible differentials. Remove all those candidates from K.

6. Output the 13-byte key candidates remaining in K.

Conditions and Data Complexity. The adversary queries 28 sets of 2s texts each, which
yields 2s+8 chosen plaintexts. The sets differ in their value of T [0], such that all texts in

the set share the same T . One can form
(

28

2

)
pairs of sets each with 2s · 2s pairs, which

yields ≃ 22s+15 text pairs. The adversary guesses 13 key bytes in total: K̂9[0, 7, 10, 13],

K̂8[0], and K̂14[2, 3, 5, 6, 8, 9, 12, 15], i.e., 13 · 8 = 104 key bits.
The adversary requires texts for which it holds that ∆C0 ∈ M0, which occurs with
probability of approximately p ≃ 2−96. For simplicity, we assume that (∆C0, ∆C1) ∈
M0 ×M0 never occurs by accident. From an ideal permutation, this event would have
a probability of approximately 2−96·2 per pair. Note that this event can still occur since
this property is exploited in our rectangle distinguisher from Section 3.2. However, we
concern a different distinguisher here..
The probability that a key K̂9[0, 7, 10, 13] reduces the four active bytes in ∆X9,SR to a
single active byte in ∆X8,MC is 2−24. Moreover, the probability that this byte is mapped
to ∆T [0] in ∆X7 is 2−8. So, the probability that a key in the ∆X trail yields our
desired differential is approximately 2−32. There are four options of which columns in
∆Y 7 becomes partially active. There are two options in which order the two known
bytes in this column are active/inactive. The probability to have one inactive byte is

17

2−8 · (1 − 2−8). Hence, the probability that a key yields an impossible differential in
∆Y 7,MC is approximately

2−8 · (1− 2−8) · 4 · 2 ≃ 2−5.

So, we have a probability of approximately 2−37 that a guessed key candidate yields our
desired impossible differential. Following the framework by Boura et al. [BNS14], this
amounts to c ≃ 37 bit conditions that have to be fulfilled for a key to be filtered out,
given a correct pair. From our 104 key bits, we can filter out about

4 · 2 · 232 · (232 − 224) · 28 ≃ 267

keys with a correct pair on average. The probability for a wrong key pair to survive is

psurvive =
(
1− 2−c

)N
,

where c = cin +cout ≃ 37 is the number of bit conditions and N the number of correct pairs.
For psurvive = 2−104, we obtain N ≈ 243.2 correct pairs to reduce the number of keys to the
correct one, plus at most a few further false-positive key candidates. So, we need about
243.2 correct pairs to reduce the key space, which implies that 243.2 · 296 = 2139.2 pairs
are necessary to find the 243.2 ones with our desired difference ∆X̂9,SR. We can construct
about 22s+15 pairs, which leads to s = 62.1 or CN = 2s+8 = 270.1 chosen plaintext-tweak
queries. For comparison, the generic Equation (1) would yield

CN =
√

N · 2n+1−|∆out| ≃ 269.6 chosen plaintexts,

where N ≃ 243.2 is the number of necessary pairs and |∆out| = (28 − 1)4 ≃ 231.98. Note
that the other terms in the generic Equation (1) are inapplicable here. The term N ·
2n+1−|∆in|−|∆out| described the complexity if multiple structures are required, which we do
not need here. Similarly, the term

√
N · 2n+1−|∆in| would hold only in a chosen-ciphertext

attack, which is inapplicable here. Our data complexity of CN ≃ 270.1 is slightly higher
than the result of the generic equation since we have to consider structures of sets with
equal tweaks whereas the generic equation considers an untweaked cipher.

Computational Complexity. The computational complexity consists of the following:

• Precompute H0 with 280 computations of twice a quarter round of the AES, which
can be approximated by 280 · 2/13 · 1/4 ≃ 275.3 encryption equivalents.

• Precompute H1 with 264.3 encryption equivalents.

• Encrypt 2s+8 plaintext-tweak tuples through nine-round ForkAES.

• Invert 2s+8 · 2 times the final tweak addition, MixColumns, and ShiftRows operation,
which can be overestimated by 270.1 · 2 · 1/13 ≈ 267.5 encryptions.

• Apply a rank-96 linear function F to all states C0, which is approximated by 2s+8

ForkAES computations, or 270.1 · 2 ≃ 270.1 encryptions. Moreover, we need 2 · 2s+8 ·
(s + 8) = 2 · 70.1 · 270.1 ≃ 277.3 memory accesses on average with an efficient data
structure. We obtain approximately 22s+15−96 ≃ 22s−81 = 243.2 remaining quartets.

• For each of the 243.2 quartets, obtain fromH0 andH1 with two memory accesses each
267 keys on average. So, we have to remove them from the list with 22s−14 = 2110.2

memory accesses.

• Our attack aims at recovering 104 bit conditions of K̂9 and K̂14. So, the final
term for recovering the remaining bits can be safely overestimated by recovering the
remaining 64 key bits of K̂14 with 264 nine-round encryptions.

18

Applying Equation (2), the attack requires approximately

275.3 + 264.3 + 270.1 + 267.5 + 270.1 + 264 ≃ 275.4 Encryptions and

2 · 270.1 + 277.3 + 243.2 · 2 + 243.2 · 267 ≃ 2110.2 Memory accesses.

Memory Complexity. The attack needs 280 · 28 · 40 bits, or approximately 290.33 bytes
for H0. Moreover, it requires at most 272 bytes for the components of H1, and requires
2104 byte counters for the keys in K. Finally, the attack needs 2s+8 = 270.2 · (2 · 16 + 8) <
2s+14 = 276.2 bytes for Q. Hence, it needs memory for

280 + 272 + 2104 + 276.2 ≃ 2104 bytes.

Those parts can be optimized further; though, the purpose of this work is to demonstrate
attack vectors.

5 Conclusion

Conclusion. We proposed rectangle and impossible-differential attacks on nine-round
variants of ForkAES, and a rectangle attack for a fraction of approximately 232 keys for
the ten-round variant. We emphasize that our attacks do not break full ForkAES in the
single-key setting; however, they reduce the security margin to at most one round. We
leave room for optimizations of our attacks and can envision further angles: for instance,
meet-in-the-middle can also be applicable, as has been shown for KIASU-BC [TAY16].
We are also searching for longer impossible-differential trails.
The extension of ForkAES to more rounds seems recommendable, especially in the bottom
phase. Moreover, it appears interesting to investigate the security when the state is
forked before the fifth round, similarly to the analysis of AES-PRF [DIS+18]. The
attacks presented here would be inapplicable if the forking step would be, e.g., located
two rounds earlier. In Appendix B, we briefly outline the obvious implications for the
security of shifted variants. However, it remains an open problem to study in detail
attacks that arise from such design changes.
More generally, the impression remains that the generic forkcipher concept is at least not
as easy to instantiate as to simply fork the middle state and inherit the existing analysis
of a primitive, but demands deeper analysis: Our attacks exploited that the forking step
ensured that the values X and Y are equal in the middle: if Y would be chosen differently,
the difference in the middle would not be guaranteed and our attacks would not apply.

Future Work. Our primary future work is to verify computationally the critical parts
of our proposed attacks, which includes the middle phase of our rectangle attack, the
key-recovery phase of the impossible differential, and the size of the weak key space of
our ten-round attack. Secondary, it is interesting to study the effect on the authenticated
encryption schemes PAEF, SAEF, and fGCM. Finally, investigating the security of the
generic forkcipher construction is of independent relevance.
From a constructive angle, it may also be worth to consider forkciphers with more than
two forked branches, which could yield more efficient constructions. Furthermore, we can
observe that the forkcipher construction could be easily transformed into a highly secure
PRF when both outputs are XORed to a single output block. One can easily foresee
highly secure modes of operation. We are actively working on those aspects and plan to
address them in an updated version of this work.

Acknowledgments. We gratefully thank the forkcipher designers for their very helpful
comments that helped to greatly improve this work.

19

References

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Fork-
ing a Blockcipher for Authenticated Encryption of Very Short Messages. Cryp-
tology ePrint Archive, Report 2018/916, 2018. https://eprint.iacr.org/

2018/916, Version: 20180926:123554.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials. In Jacques Stern, editor,
EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 12–
23. Springer, 1999.

[BC18] Christina Boura and Anne Canteaut. On the Boomerang Uniformity of Cryp-
tographic Sboxes. IACR Transactions on Symmetric Cryptology, 2018(3):290–
310, Sep. 2018.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045
of LNCS, pages 340–357. Springer, 2001.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang
and Rectangle Attacks. In Joan Daemen and Vincent Rijmen, editors, FSE,
volume 2365 of LNCS, pages 1–16. Springer, 2002.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang
and Rectangle Attacks. In EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 507–525. Springer, 2005.

[BLNS18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the Impossible Possible. J. Cryptology, 31(1):101–133, 2018.

[Blo17] Céline Blondeau. Accurate Estimate of the Advantage of Impossible Differen-
tial Attacks. IACR Trans. Symmetric Cryptol., 2017(3):169–191, 2017.

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and
Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT
(1), volume 8873 of LNCS, pages 179–199. Springer, 2014.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
Boomerang Connectivity Table: A New Cryptanalysis Tool. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT II, volume 10821 of
LNCS, pages 683–714. Springer, 2018.

[Der16] Patrick Derbez. Note on Impossible Differential Attacks. In Thomas Peyrin,
editor, FSE, volume 9783 of Lecture Notes in Computer Science, pages 416–
427. Springer, 2016.

[DIS+18] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang
Wang, and Meiqin Wang. Cryptanalysis of AES-PRF and Its Dual. IACR
Trans. Symmetric Cryptol., 2018(2):161–191, 2018.

[DL17] Christoph Dobraunig and Eik List. Impossible-Differential and Boomerang
Cryptanalysis of Round-Reduced KIASU-BC. In Helena Handschuh, editor,
CT-RSA, volume 10159 of LNCS, pages 207–222. Springer, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer, 2002.

20

https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916

[Dun18] Orr Dunkelman. Efficient Construction of the Boomerang Connection Table.
IACR Cryptology ePrint Archive, 2018:631, 2018.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A Family of Efficient Permu-
tations Using the AES Round Function. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT I, volume 10031 of Lecture Notes in Computer
Science, pages 95–125, 2016.

[GRR16] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR Trans. Symmetric Cryptol.,
2016(2):192–225, 2016.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT (2), volume 8874 of LNCS, pages 274–288, 2014.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient Short-Input Hashing for Post-Quantum Applications.
IACR Trans. Symmetric Cryptol., 2016(2):1–29, 2016.

[Knu98] Lars Knudsen. DEAL – A 128-bit block cipher. Complexity, 258(2):216, 1998.

[Mur11] Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Trans.
Information Theory, 57(4):2517–2521, 2011.

[Nat01] National Institute of Standards and Technology. FIPS 197. National Institute
of Standards and Technology, November, pages 1–51, 2001.

[Nat18] National Institue of Standards and Technology. Lightweight Cryptography.
Technical report, Aug 27 2018.

[TAY16] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A Meet in
the Middle Attack on Reduced Round Kiasu-BC. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Science, E99-
A(10):21–34, Oct 2016.

[Wag99] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

A Linear Mapping F Used in The Attacks

Listing 1: Linear mapping of ∆C0 using Intel AES-NI intrinsics.

1 __m128i map_ciphertext(const __m128 c, const __m128 t) {
2 __m128i v = _mm_xor_si128(c, t);

3 v = _mm_aesimc_si128(v);
4 __m128i x0 = _mm_and_si128(v, _mm_set_epi32(0, 0, 0, 0 x0000FFFF));
5 v = _mm_bsrli_si128(v, 1);

6 __m128i x1 = _mm_and_si128(v, _mm_set_epi32(0, 0, 0, 0 xFFFF0000));
7 v = _mm_bsrli_si128(v, 1);

8 __m128i x2 = _mm_and_si128(v, _mm_set_epi32(0, 0, 0x0000FFFF , 0));
9 v = _mm_bsrli_si128(v, 1);

10 __m128i x3 = _mm_and_si128(v, _mm_set_epi32(0, 0xFFFFFFFF , 0xFFFF0000 , 0));
11 x0 = _mm_xor_si128(x0 , x1);
12 x2 = _mm_xor_si128(x2 , x3);

13 return _mm_xor_si128(x0 , x2);
14 }

B Shifted Variants

This section considers the security of variants of ForkAES where the forking step is shifted.

21

Figure 8: Shifted variant ForkAES[4].

Definition. We denote by ForkAES[r] the variant where the forking step is located af-
ter the MixColumns operation of Round r has been performed, i.e., directly before the
AddRoundTweaKey operation with T and Kr. So, the original ForkAES construction corre-
sponds to ForkAES[5]. As an example, Figure 8 illustrates ForkAES[4], where the forking
step is located after the MixColumns operation of Round 4. For a plausible range of
r′ ∈ {0, . . . , 9}, ForkAES[r′] needs 20− r′ AES rounds.

Security. It is easy to see that the security guarantees of variants ForkAES[r] with r > 5
can be at most those of ForkAES. In general, we can observe two informal statements:

Statement (1): The security guarantees of ForkAES[r] are at most those of ForkAES[r−1].

Statement (2): The security guarantees of ForkAES[r′] are at most those of a variant of
10− (r′ − r) rounds of ForkAES[r], for all r, r′ ≤ 10.

So, our attacks on nine-round ForkAES almost directly carry over to attacks on full-round
ForkAES[6], only the indices have to be shifted. Moreover, reduced-round attacks are
applicable to all variants ForkAES[7] through ForkAES[10].

22

	Introduction
	Preliminaries
	Notations and Security Definitions
	Brief Introduction of AES, KIASU-BC, and ForkAES
	Properties of the AES
	Boomerang and Rectangle Attacks
	Impossible-differential Attacks

	Rectangle Cryptanalysis
	Weak-key Attack on Ten Rounds
	A Nine-round Attack on The Full Key Space

	Impossible-differential Cryptanalysis
	Conclusion
	Linear Mapping F Used in The Attacks
	Shifted Variants

