
Analysis of Deterministic Longest-Chain Protocols

Elaine Shi

November 6, 2018

Abstract

Most classical consensus protocols rely on a leader to coordinate nodes’ voting efforts. One
novel idea that stems from blockchain-style consensus is to rely, instead, on a “longest-chain”
idea for such coordination. Such a longest-chain idea was initially considered in randomized
protocols, where in each round, a node has some probability of being elected a leader who can
propose the next block. Recently, well-known systems have started implementing the determin-
istic counterpart of such longest-chain protocols — the deterministic counterpart is especially
attractive since it is even simpler to implement than their randomized cousins. A notable
instantiation is the Aura protocol which is shipped with Parity’s open-source Ethereum imple-
mentation.

Interestingly, mathematical analyses of deterministic, longest-chain protocols are lacking
even though there exist several analyses of randomized versions. In this paper, we provide the
first formal analysis of deterministic, longest-chain-style consensus. We show that a variant of
the Aura protocol can defend against a Byzantine adversary that controls fewer than 1

3 fraction
of the nodes, and this resilience parameter is tight by some technical interpretation. Based
on insights gained through our mathematical treatment, we point out that Aura’s concrete
instantiation actually fails to achieve the resiliene level they claim.

Finally, while our tight proof for the longest-chain protocol is rather involved and non-trivial;
we show that a variant of the “longest-chain” idea which we call “largest-set” enables a textbook
construction that admits a simple proof (albeit with slower confirmation).

1 Introduction

A central abstraction in distributed systems is called consensus or state machine replication [6,
13, 23]. In state machine replication, a distributed system of nodes reach agreement on an ever-
growing, linearly ordered log. State machine replication protocols have been studied for three
decades [6, 13, 15] and two major approaches exist: classical-style consensus (e.g., PBFT [6] and
Paxos [13]) and blockchain-style consensus (e.g., Bitcoin and Ethereum’s proof-of-work blockchains
and proof-of-stake blockchain constructions [7, 8, 12,21]).

In both classical and blockchain consensus, nodes vote to reach a decision. In classical consensus,
the voting process is typically coordinated by a leader (possibly rotating over time); and whenever
the leader is honest and proposes the same item (e.g., block or batch of transactions) to everyone,
everyone will vote on the same item and a decision can be made very soon by collecting majority or
super-majority votes (possibly over multiple rounds of voting). In blockchain-style protocols, the
leader election and voting processes are coalesced into one: whenever one is elected leader it has the
opportunity to cast a vote. To coordinate nodes voting effort, a new “longest-chain” idea is adopted
— in some sense, people vote on the most-popular history observed so far. Such coordination is
important for consistency: intuitively, if nodes fail to concentrate their voting efforts, it can lead
to many forks and no chain will emerge as the dominant decision. Besides using the longest chain

1

idea as a coordination mechanism, the blockchain data structure is also elegant because it creates a
hash-chain among the entire history: by cryptographically binding each block to the entire history,
in some sense each decision reinforces the agreement on past blocks.

In the past few years, the community has made amazing progress in formally understanding
the security properties of blockchain-style consensus [8, 10, 12, 19–21]. While most existing math-
ematical analyses focus on randomized blockchain protocols, some practical systems [2, 3] have
started adopting deterministic blockchain protocols that also embody the “longest-chain” idea,
possibly because the deterministic variants are even simpler to implement than their randomized
cousins. Unfortunately, to the best of our knowledge, the security of such deterministic blockchain
constructions is not yet well-understood.

A representative deterministic, longest-chain-style protocol is Aura [2] (short for Authority
Round)1. Aura is well-known in the cryptocurrency community since it is one of the few blockchain
consensus algorithms shipped with Parity’s open-source Ethereum implementation [1]. Roughly
speaking, Aura’s blockchain protocol works as follows:

• There are n nodes each with a well-known public key. In round r, node (r mod n) is the
leader.

• In every round r , the leader chooses the longest chain seen so far, and extends the chain by
signing the next block containing 1) the current round number r, henceforth also called the
block’s timestamp, 2) a batch of transactions, and 3) the hash of the parent block.

• In a valid blockchain, the blocks’ timestamps must strictly increase, and moreover honest
nodes reject blocks with timestamps in the future.

• At any time, a node takes its longest chain and chops off some number of blocks at the end,
and the prefix is considered finalized.

Specifically, Aura makes the following choices and claims: for finalization, they choose to chop
off bn2 c+ 1 trailing blocks signed by distinct signers. Their documentation claims that the protocol
defends against minority Byzantine corruptions.

1.1 Our Results and Contributions

Formal analyses of deterministic blockchains. To the best of our knowledge we are the first
to provide mathematical proofs for deterministic, longest-chain-style protocols. More concretely,
we make the following contributions:

• We present a variant of Aura’s protocol that is provably secure. In this variant, in round r,
all blocks in the longest chain whose timestamps are at most r − n are considered finalized
(c.f. Aura chops off only bn2 c+ 1 blocks from distinct signers).

• We prove that this variant ensures consistency and liveness in the presence of any adversary
that can control fewer than 1

3 fraction of the nodes; further, transaction confirmation takes
Θ(n) rounds since we need to chop off Θ(n) trailing blocks for finalization. Note that the

1Another notable example is EOS’s consensus protocol called DPoS — EOS is among the top five cryptocurrencies
by market cap at the time of the writing. Although in online blog posts and forums [3,4] there have been back-and-forth
discussions about the DPoS algorithm, we have not found a formal specification or an open-source implementation
from EOS. It also looks likely that EOS might implement a partition-tolerant variant of the longest-chain idea, and
not the family of algorithms we analyze in this paper.

2

round complexity of this protocol is asymptotically optimal due to the well-known lower
bound [5,9,11,14,16,17] that any deterministic consensus protocol must incur at least f + 1
rounds where f is the number of corrupt nodes (and this lower bound holds even for crash
fault).

• Unlike existing proofs for randomized blockchains that require stochastic analyses that reason
about the good properties respected by an overwhelming fraction of execution traces (as
opposed to the worst-case execution trace), our proof relies on elementary discrete math —
nonetheless as we show, proving an asymptotically tight bound on transaction confirmation
time is rather non-trivial. The most sophisticated part of the proof involves a combinatorics
argument that a particular good event called a “pivot” appears every n rounds even against
the worst-case attack.

• We show that the 1
3 resilience parameter is tight for this protocol; specifically, we show that

if the adversary can control how honest nodes break ties among multiple chains of the same
length, then there is an explicit 1

3 attack against this protocol (note that our security proof
admits arbitrary tie-breaking).

• Last but not the least, inspired by the longest-chain idea, we construct a new consensus
protocol that relies on a similar “largest-set” idea, i.e., nodes always vote on the item that
has collected the most number of votes so far. This protocol is of particular interest for
pedagogy (e.g., to illustrate why and how a longest-chain-type idea works), since it admits a
simple and elementary proof; moreover the proof is in some sense a deterministic counterpart
of the recent analyses of randomized blockchains [10,12,19,21].

We point out that it is an interesting observation that the most natural embodiment of the
“deterministic, longest-chain” idea defends only against less than 1

3 corruptions while in comparison,
the randomized counterparts can secure against up to minority corruption [10,12,19,21]. Thus for
future work, a technically intriguing question is whether there exist other natural embodiments of
the “deterministic, longest-chain” idea that achieves stronger resilience.

Analysis of Aura’s instantiation. Based on our mathematical analysis, we reflect on Aura’s
specific choices and claims for their deterministic blockchain instantiation.

As mentioned, our deterministic, longest-chain protocol described above defends against any
< 1

3 attack, and this is tight when tie-breaking can be arbitrary (for scoring two chains of the same
length). Aura’s instantiation employs a specific tie-breaking rule: when two chains are of the same
length, they prefer the “earlier” one, i.e., whose last block has an earlier timestamp. We show
that even under their tie-breaking rule, and even if we chop off all blocks with the most recent n
rounds for finalization (i.e., more than what they actually chop off), there is a 3

7 attack against
consistency. Further, if we actually chop off only bn2 c + 1 trailing blocks with distinct signers for
finalization (and using their tie-breaking rule), there is an explicit attack that breaks consistency
when the adversary controls slightly more than 3

8 fraction of nodes. We conclude that Aura’s claim
of defending against minority corruptions is incorrect under the classical notion of a Byzantine
adversary. Our analysis also implies that their concrete instantiation actually achieves a resilience
parameter that is between 1

6 and 3
8 .

Disclosure and recommendations to Parity. We have emailed Parity regarding our findings,
and have suggested that they chop off more blocks from the end for higher resilience, and weaken
their public claim that they defend against upto minority Byzantine corruptions.

3

2 Preliminaries

2.1 Model

We consider a standard, synchronous model of execution, where an adversary A is allowed to
adaptively corrupt nodes during the protocol execution. In this section, we describe the model in
more detail and introduce relevant notations.

Protocol execution. We use the standard Interactive Turing Machine (ITM) approach to model a
protocol’s execution. Each node in the protocol (also referred to as a party or a protocol participant)
is modeled as an ITM. Besides the protocol participants, there are also two special ITMs, the
adversary denoted A, and the environment denoted Z respectively.

The environment Z spawns a set of n nodes at the start of protocol execution; further Z is
responsible for providing inputs to honest nodes and receiving output from honest nodes. At any
time during protocol execution, a node is either honest or has been corrupt. All corrupt nodes
are in control of the adversary A, i.e., all messages received by corrupt nodes are forwarded to A,
and A controls all corrupt nodes’ actions. The adversary A and the environment Z are allowed to
communicate freely at any time during the protocol.

Communication model. We assume a fully synchronous communication model, where honest
nodes’ messages are delivered to honest recipients at the beginning of the next round.

Our protocol adopts a multicast communication pattern — whenever an honest node multicasts
a message, it is destined for all nodes including itself. Corrupt nodes, on the other hand, may send
messages to only a subset of the nodes.

We assume a rushing adversary, i.e., the adversary A can observe messages sent by honest nodes
in a round before deciding what messages corrupt nodes will send in the same round.

Corruption model. We assume that A may adaptively corrupt nodes during protocol execution.
Given a protocol that has a fixed termination time Tend (which may be a function dependent on
total number of nodes), if a node becomes corrupt in or before round Tend, we say that the node
is eventually-corrupt; else we say that the node is honest-forever. The protocols described in this
paper will have provable security when n ≥ 3f + 1 where f is the number of eventually-corrupt
nodes, and n denotes the total number of nodes.

Henceforth we say that (A,Z) is (n, f)-respecting w.r.t. some protocol Π iff with probability 1
during an execution of Π, (A,Z) spawns n nodes and adaptively corrupts up to f number of nodes
by the end of protocol execution.

2.2 Byzantine Agreement: Definitions

For simplicity, we begin our exposition not with state machine replication which aims to confirm a
linearly ordered log through repeatedly reaching consensus, but with the 1-bit single-shot version,
i.e., byzantine agreement. We formally define byzantine agreement below. Later in Section 4, we
describe how to naturally extend our protocol to support state machine replication.

In a byzantine agreement protocol, there is a designated sender that is part of the common
knowledge. Henceforth, without loss of generality, we may assume that node 0 is the designated
sender.

Syntax. Prior to protocol start, the sender receives an input b ∈ {0, 1} from the environment Z.
At the end of the protocol, every node i (including the sender) outputs a bit bi to the environment
Z.

4

Security definition. A byzantine agreement protocol must satisfy consistency, validity, and
Tend-termination. Specifically, let Tend := poly(κ, n) be a polynomial in κ and n we say that
a protocol Π satisfies consistency, validity, or Tend-termination w.r.t. (A,Z) iff there exists a
negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability over the choice
of view←$EXEC

Π(A,Z, κ), the following properties hold:

• Consistency. If an honest node outputs bi and another honest node outputs bj in view, then it
must hold that bi = bj .

• Validity. If the sender remains honest till the end of the execution and the sender’s input is b in
view, then all honest nodes must output b in view.

• Tend-termination. By the end of round Tend(κ, n), all honest nodes output a bit.

We say that a protocol Π satisfies consistency, validity, or Tend-termination in (n, f)-environments
iff iff for every p.p.t. (A,Z) that is (n, f)-respecting w.r.t. Π, Π satisfies consistency, validity, or
Tend-termination w.r.t. (A,Z).

2.3 Notations and Assumptions

We assume a permissioned, classical setting with a public-key infrastructure (PKI). In other words,
assume that there are n nodes numbered 0, 1, 2, . . . , n−1 whose public keys are common knowledge.
Henceforth we use the notation pki to denote node i’s public key for i ∈ [n].

Without loss of generality, we shall assume that node 0 is the designated sender.

3 A Determinisitic, Longest-Chain Protocol

As mentioned, for clarity, we begin our exposition with byzantine agreement (i.e., 1-bit single-
shot consensus). Later in Section 4 we show how our protocol naturally extends to state machine
replication (i.e., agreeing on a linearly ordered log through repeated consensus).

3.1 Useful Definitions and Notations

Leader. In every round i, node (i mod n) is the leader. Thus each round has a unique leader.

Valid blockchain. A blockchain of length L is an ordered list of blocks where each block is of the
form chain := {(t`, data`, σ`)}`∈[L] where t` ∈ N denotes the purported round in which this block
was mined (also referred to the block’s timestamp), data` denotes an arbitrary payload string, σ`
denotes a signature of the chain up to length `.

Henceforth given a chain chain := {(t`, data`, σ`)}`∈[L], we define extract(chain) to be the opera-
tor removes the signature from every block outputting {(ti, datai)}i∈[L]. We use chain[i] to denote
the i-th block in chain and we use chain[: i] to denote the prefix of chain upto the i-th block
(inclusive).

A blockchain chain := {(t`, data`, σ`)}`∈[L] is said to be valid iff

• For any 1 ≤ i < j ≤ L, it holds that ti < tj ;

• For any ` ∈ [L], σ` is a valid signature of the prefix extract(chain[: ` − 1]) under pki where
i = t` mod n is the leader of round t`.

5

Remark 1. Note that a practical optimization is to build a hash chain: let h0 = 0 and let hi :=
H(hi−1, ti, datai). In this case, the signature for the i-th block would be computed over hi; and
further we include hi in the block chain[i].

3.2 Protocol Πchain

• Round 0: sender (i.e., node 0) signs its input and multicasts the input along with the signature.

• For every round r = 1, 2, . . ., every node (including the sender) performs the following:

1. Receive chains from the network. Discard any invalid chains and any chains containing
timestamps greater than or equal to r. Chains that are not discarded are considered part of
the nodes’ view so far.

2. Let chain be the longest valid blockchain that has been observed in the node’s view so far2.
If there are multiple such longest chains, break ties arbitrarily. If no such chain has been
observed, let chain be the empty chain.

3. If the current node is the leader of round r, then let data be the set

{(b, σb) : b ∈ {0, 1} and at least one valid signature σb has been observed for b}

Sign extract(chain)||(r, data) thus obtaining the signature σ; and multicast the new chain

chain||(r, data, σ)

• At the beginning of round Tend (the choice of Tend will be stated later), do the following. Let
chain be the current longest valid blockchain in view. In all blocks in chain whose timestamp is
at most n, look for the first bit b with a valid signature from the sender, and output the bit b.
If such a bit is not found, output 0.

Parameters. We will prove that the above protocol satisfies the definition of byzantine agreement
for Tend ≥ 2n+ 1, as long as the adversary controls fewer than n

3 nodes.
Note that our consistency proof actually shows that in round r > n, all blocks in an honest node’s

chain with round numbers r − n or smaller must have stabilized. However, here the termination
parameter Tend is set to 2n+1 to account for the fact that the earliest block containing the sender’s
signature may not be the first block in a blockchain.

3.3 Proofs

For clarity, in the main body of the paper, we first present a simpler proof but for worse termination
parameters. Specifically, let n denote the total number of nodes; let f denote the number of corrupt
nodes; and let ε := 1

3 −
f
n . In this looser but simpler proof, we will set Tend := (1 + d1

ε e)n. In
particular, if n = 3f + 1, then the protocol will run for Θ(n2) number of rounds.

Later in Appendix B, we will present a tighter proof for the termination parameter Tend = 2n+1.
However, this tighter proof requires several additional non-trivial techniques.

2Henceforth this is referred to as the node’s longest chain in the current round r. Note that here we refer to the
longest chain at the beginning of the round.

6

3.3.1 Additional Terminology

We define the following helpful terminology.

• Blocks. For convenience, when the context is clear, we also use the term “the i-th block in chain”
as an alias for the prefix of chain upto the i-th block, i.e., chain[: i]. Given two blockchains
chain and chain′, the two length-` blocks chain[: `] and chain′[: `] are said to be distinct iff
extract(chain[: `]) and extract(chain′[: `]) are distinct (i.e., we ignore the signature when defining
distinctness for blocks).

• Honest-forever and eventually-corrupt blocks. A block whose timestamp corresponds to an
honest-forever leader round is said to be an honest-forever block; otherwise it is said to be
an eventually-corrupt block.

• Honest chain. If in some execution trace view, some honest node’s longest chain in round r is
chain, then we say that chain is an honest chain in view (or an honest chain in round r in view).

• Honest-forever and eventually corrupt leader round. A round t is said to be an honest-forever
leader round if node (t mod n) remains honest forever in view; else t is said to be an eventually-
corrupt leader round.

In our proofs, we often ignore the negligible fraction of views where signature forgery occur, and
prove properties for the remaining good views. This is formalized in the fact below.

Fact 1. Suppose that the signature scheme is secure. Then, except with negligible probability over
the choice of view, if the leader for round t, i.e., node i := (t mod n) is honest-forever in view,
then no honest node will ever have in its view a signature σ on a message that is valid under pki
— but node i never signed the message in view.

Proof. Straightforward by signature security.

3.3.2 Validity

Special boundary blocks. In the remainder of this section, we shall assume that an honest node’s
longest chain in some round r consists of i) an imaginary “end-of-chain block” whose timestamp is
r, and whose length is the original chain length plus 1; and ii) an imaginary genesis block whose
timestamp is 0 and whose chain length is 0.

The special genesis and end-of-chain blocks are assumed to be honest-forever blocks.

Lemma 1 (Chain growth). With probability 1, the following holds. Let chain denote some node’s
longest chain in some round. Suppose that chain[`] := (t, ,) and chain[`′] := (t′, ,) are both
honest-forever blocks (including genesis or end-of-chain blocks) in chain and moreover t′−t−1 ≥ kn
for some positive integer k. It holds that `′ − `− 1 ≥ k(n− f).

Proof. Consider any execution trace view: suppose that in some round r in view an honest node i
is the leader and suppose that node i’s longest chain is of length `r at the beginning of round r. By
definition of the protocol, every honest-forever node’s longest chain will be of length at least `r + 1
at the beginning of round r + 1.

The remainder of the proof follows by observing that with probability 1, in every n consecutive
rounds, at least (n−f) rounds have leaders that are honest-forever, and for honest node (r mod n),
its longest chain is of length `′ − 1 in round r (and thus it appended a new block at length `′).

7

Lemma 2 (Chain quality). With probability 1, the following holds. Let chain denote an honest
node’s longest chain in round r + 1. Then, for any n consecutive rounds [t + 1, t + n] ⊆ [r], there
must be an honest-forever block in chain with a timestamp in the range [t+ 1, t+ n].

Proof. For the sake of contradition, suppose that in some execution trace view, in some honest
chain chain, there exist honest-forever blocks chain[`] := (t, ,) and chain[`′] := (t′, ,) such that 1)
there are no honest-forever blocks in between; and 2) t′− t−1 ≥ n. Let k ≥ 1 be the largest integer
such that t′ − t− 1 ≥ kn. By Lemma 1, `′ − `− 1 ≥ k(n− f). Now, all blocks chain[`+ 1..`′ − 1]
are eventually-corrupt blocks with distinct timestamps in the range (t, t′). Since there are at most
f eventually-corrupt nodes, we have that at most (k + 1)f of the timestamps in the range (t, t′)
correspond to eventually-corrupt leaders.

To reach a contradiction, it suffices to observe that the following cannot be true given that
n > 3f + 1 and `′ − `− 1 ≥ k(n− f):

`′ − `− 1 ≤ (k + 1)f

Theorem 1 (Validity and liveness). Suppose that the signature scheme is secure and that n ≥ 3f+1.
Then, except with negligible probability, every honest-forever node will output a bit (i.e., liveness
holds). Moreover, if the sender is honest-forever, then every honest-forever node must output the
sender’s input bit (i.e., validity holds).

Proof. Liveness trivially holds by protocol definition. For validity, if the sender is honest-forever, it
will sign its input bit and multicast it in round 0. Due to Lemma 2, at the beginning of round Tend,
any honest node’s longest chain must have an honest-forever block whose timestamp is between
[1, n]. By protocol definition, this honest-forever block must contain the sender’s signature on its
input bit. The remainder of the validity proof follows in a straightforward fashion by Fact 1.

3.3.3 Consistency

Fact 2. Assume that the signature scheme is secure. Then, except with negligible probability, the
following holds. Suppose that node i is an honest-forever leader in some round t and signed a chain
of length ` in round t; further, suppose that node j is an honest-forever leader in some round t′ 6= t
and it signed a chain of length `′ in round t′: we have that ` 6= `′.

Proof. Straightforward by protocol definition. When node i signs a chain of length ` in round t,
in every round r > t, every honest node’s longest chain must be of length at least ` and thus no
honest node will ever sign a chain of length ` in any round r > t.

Fact 3. Suppose that the signature scheme is secure. Then except with negligible probability over the
choice of view, the following holds. Let chain and chain′ denote two honest chains in view. Suppose
that chain[`] and chain′[`] are both honest-forever blocks. Then, it holds that chain[: `] = chain′[: `].

Proof. Straightforward if we ignore the negligible fraction of views where bad events related to
Fact 1 take place, and from Fact 2.

Given two blockchains chain and chain′, if extract(chain[: `]) = extract(chain′[: `]), we say that
chain and chain′ share the block chain[: `].

8

Lemma 3. Except with negligible probability over the choice of view, the following holds. Let chain
and chain′ be the longest chains of two honest nodes at the beginning of round Tend. Suppose that
the last honest-forever block shared by extract(chain) and extract(chain′) has the timestamp t∗. It
must hold that Tend − t∗ − 1 < n · d1

ε e.

Proof. Suppose not, i.e., suppose that Tend − t∗ − 1 ≥ n · d1
ε e. Let k ≥ d1

ε e be the largest integer
such that Tend− t∗− 1 ≥ kn. Recall that “block” is used as an alias of a prefix of a blockchain and
that distinctness of two blocks is defined disregarding the signatures (see Section 3.3.1).

Due to chain growth (Lemma 1), there are at least k(n− f) blocks after time t∗ in either chain
or chain′ (not counting the end-of-chain special boundary block). Due to chain quality (Lemma 2)
and Fact 3, chain and chain′ must diverge in round t∗ + n — otherwise the block at t∗ cannot be
the latest shared honest-forever block of chain and chain′. This means that the number of distinct
blocks in chain and chain′ after time t∗ must be at least 2k(n− f)− n.

On the other hand, during every honest-forever leader round, only a unique block will be signed
by the honest-forever leader. For every eventually-corrupt round t, chain and chain′ can each contain
a block with the timestamp t. Thus, we have that the total number of distinct blocks after time t∗

in chain and chain′ must be upper bounded by (k + 1)f + (k + 1)n.
Our goal is to show the following inequality which would suffice for reaching a contradiction:

2k(n− f)− n > (k + 1)f + (k + 1)n

Plugging in f = (1
3 − ε)n, it suffices to show that 2k(2

3 + ε)n − n ≥ (k + 1)(1
3 − ε)n + (k + 1)n.

Simplifying the above, it suffices to show that 2k(2
3 + ε) − 1 ≥ (k + 1)(1

3 − ε) + (k + 1), i.e.,
4
3k+ 2kε− 1 ≥ 1

3k+ 1
3 − kε− ε+ (k+ 1), i.e., ε+ 3kε > 2 + 1

3 . The last inequality holds as long as
k ≥ d1

ε e.

Theorem 2 (Consistency for Πchain). Assume that the signature scheme is secure and let Tend :=
(1 + d1

ε e)n. Then, the longest-chain protocol Πchain satisfies consistency in (n, f)-environments as
long as n ≥ 3f + 1.

Proof. Straightforward from Lemma 3 and the definition of the protocol.

Tighter proof. In Appendix B, we present a tighter but more sophisticated proof for Tend := 2n+1.
The most technical part of the proof is a combinatorics argument that a certain good event called
a “pivot” happens every n rounds.

3.4 An Explicit Attack with 1
3

Corruption

We now show that our analysis is tight in resilience by demonstrating a 1
3 attack against the

deterministic blockchain protocol Πchain. We consider 8 nodes numbered 0, 1, . . . , 8, and every node
i that is a multiple of 3 is corrupt; every remaining node is honest. Note that exactly 1

3 of the
nodes are corrupt. The goal of the adversary is to maintain two equal-length chains forever; and
he does so by diverging the honest nodes’ mining attempts. The attack is graphically illustrated
below where red blocks denote corrupt blocks and green blocks denote honest blocks — we will
explain the attack in detail below.

1 3 4 6 7 0 1 3 4 . . .

0 2 3 5 6 8 0 2 3 . . .

We now explain how the attack works — we assume that when there are two chains of equal
length, the adversary can control how honest nodes break ties, e.g., by delivering one chain slightly

9

earlier than the other within the same round. Note that our proofs earlier admit arbitrary tie-
breaking. For convenience, we number the rounds starting from 0 too. Henceforth, without risk of
ambiguity, we use a block’s timestamp to denote the block.

• Round 0: corrupt node 0 signs a block but he does not release this block yet.

• Round 1: the honest node 1 mines a block. At this moment, the adversary releases the
0-block.

• Round 2: the honest node 2 sees two longest chains, the “0”-chain and the “1”-chain respec-
tively. He chooses to extend the “0”-chain and mines the next block 2.

• Round 3: corrupt node 3 extends the “1”-chain and releases this block. Additionally, he also
extends the “0-2”-chain, but he withholds this block.

• Round 4: the honest node 4 extends the “1-3”-chain. In the same round, the adversary
releases the “0-2-3”-chain.

• Round 5: the honest node 5 sees two longest chains, the “1-3-4”-chain and the “0-2-3”-chain.
He chooses to extend the “0-2-3”-chain.

• Round 6: corrupt node 6 extends the “1-3-4”-chain and releases this block. Additionally, he
also extends the “0-2-3-5”-chain but he withholds this block.

• Round 7: the honest node 7 extends the “1-3-4-6”-chain. In the same round, the adversary
releases the “0-2-3-5-6”-chain.

• Round 8: honest node 8 sees two longest chains ending at the blocks 6 and 7 respectively. He
chooses to extend the chain ending at 6.

• Round 9: corrupt node 0 extends the “1-3-4-6-7” chain with the next block, and releases this
block. Additionally, he extends the “0-2-3-5-6-8” chain with the next block but withholds
this block.

• This goes on.

4 State Machine Replication

Byzantine agreement allows us to reach agreement only once. In practical applications, we often
need to reach agreement many times establishing a linearly ordered log (e.g., of transactions). A
protocol that allows a set of nodes to agree on an ever-growing, linearly ordered log is called a state
machine replication protocol.

4.1 Definitions: State Machine Replication

A state machine replication protocol can be defined as below.

Syntax. In a state machine replication protocol, in every round, an honest node receives as input
a set of transactions txs from Z at the beginning of the round, and outputs a LOG collected thus
far to Z at the end of the round.

10

Security. Let Tconfirm be a polynomial function in the security parameter κ and possibly other
parameters of the execution such as the number of nodes participating, the corrupt fraction, the
network delay, etc.

Definition 1 (Security of a state machine replication protocol). We say that a state machine
replication protocol Π satisfies consistency (or Tconfirm-liveness resp.) w.r.t. some (A,Z), iff there
exists a negligible function negl(·), such that for any κ ∈ N, except with negl(κ) probability over
the choice of view← EXECΠ(A,Z, κ), consistency (or Tconfirm-liveness resp.) is satisfied:

• Consistency: A view satisfies consistency iff the following holds:

– Common prefix. Suppose that in view, an honest node i outputs LOG to Z at time t, and an
honest node j outputs LOG′ to Z at time t′ (i and j may be the same or different), it holds that
either LOG ≺ LOG′ or LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention
we assume that ∅ ≺ x and x ≺ x for any x.

– Self-consistency. Suppose that in view, a node i is honest during [t, t′], and outputs LOG and
LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.

• Liveness: A view satisfies Tconfirm-liveness iff the following holds: if in some round t ≤ |view| −
Tconfirm, some node honest in round t either received from Z an input set txs that contains some
transaction tx or has tx in its output log to Z in round t, then, for any node i honest at any
time t′ ≥ t+ Tconfirm, let LOG be the output of node i at time t′, it holds that tx ∈ LOG.

Intuitively, liveness says that transactions input to an honest node get included in honest nodes’
LOGs within Tconfirm time; and further, if a transaction appears in some honest node’s LOG, it
will appear in every honest node’s LOG within Tconfirm time.

We say that a state machine replication protocol Π satisfies consistency and Tconfirm-liveness
in (n, f)-environments iff for every p.p.t. (A,Z) that is (n, f)-respecting w.r.t. Π, Π satisfies
consistency and Tconfirm-liveness w.r.t. (A,Z).

4.2 A Longest-Chain-Based SMR Protocol Πsmr

Although our earlier Byzantine agreement protocols are described for the binary case (i.e., when
the sender’s input is a bit), it is easy to modify the protocols to support multi-valued Byzantine
agreement (i.e., when the sender’s input is an arbitrary string rather than a single bit). In the
synchronous model, it is relatively easy to construct state machine replication (SMR) from multi-
valued Byzantine agreement (MV-BA), e.g., in each round, fork n instances of MV-BA where node
i is the sender in the i-th instance; and the final log would be the concatenation of the output of all
these MV-BA instances [22]. This simple transformation from MV-BA to SMR, however, incurs a
rather large overhead.

One advantage of longest-chain-style protocols is that these protocols themselves naturally give
rise to state machine replication protocols. For example, our longest-chain protocol described in
Section 3 requires only a couple simple modifications to become a state machine replication protocol
(henceforth denoted Πsmr):

• Transaction propagation. Upon receiving a set of transactions txs from the environment Z,
multicast txs to everyone.

• Block content. Whenever creating a block, instead of placing in the data field any bit that has
a signature from the sender, place in the data field any transaction the node has observed but
has not appeared in the current prefix of the blockchain.

11

• Output log. At the end of every round r, let chain be the longest chain at the beginning of this
round — output the prefix of chain with timestamps at most r − n.

Theorem 3. Assume that the signature scheme is secure. Then, the state machine replication
protocol Πsmr satisfies consistency and (2n+1)-liveness in (n, f)-environments as long as n ≥ 3f+1.

The proofs are a somewhat straightforward extension of our proofs for byzantine agreement.
We present the proofs in the next sub-section.

4.3 Proofs for State Machine Replication

We now prove Theorem 3. Note that to obtain confirmation time Tconfirm := n+ 1, the proofs here
build on the conclusions from our tighter analysis in Appendix B.

The consistency proof is implied by Theorem 4. We now prove the liveness of Πsmr for Tconfirm :=
2n+ 1. It suffices to prove the following lemma.

Lemma 4. Suppose that the signature scheme is secure. Then, except with negligible probability
over the choice of view, the following holds:

a) Suppose that Z inputs a set containing the transaction tx to some honest node in round r, then
in round r + 2n+ 1, every honest node’s output to Z must contain tx; and further,

b) Suppose that in some round r some honest node’s output to Z includes the transaction tx, then
in any round r′ ≥ r + n+ 1, any honest node’s output to Z must contain tx as well

Proof. Claim (a) holds due to the following. If some honest node i receives tx from Z in some
round r, it will mulicast tx to everyone in round r. Thus all honest nodes will have received tx at
the beginning of round r + 1. In round r′ = r + 1 + 2n, let chain denote the longest chain of some
honest node i, i will will output to Z the prefix of chain whose timestamps are at most r+n+ 1 by
protocol definition. By chain quality3 (Lemma 2), in chain, there must be an honest block whose
timestamp is in the range [r + 1, r + n+ 1] — by honest protocol definition, this honest block (or
the prefix chain till this block) must contain tx.

Claim (b) holds due to the following. Suppose that some honest node’s longest chain in round
r is chain, and some block in chain with the timestamp t ≤ r − n contains tx (and thus the node
outputs tx to Z in round r). Now, in round r′ = r + n+ 1, every honest node will output a prefix
of their longest chain then containing all blocks whose timestamps are no greater than r + 1. Due
to chain quality, there is at least one honest-forever block whose timestamp is between r − n and
r + 1. The remainder of the proofs follows due to consistency.

5 Analysis of Aura’s Instantiation

Based on the insights gained from our earlier mathematical analysis, we turn our attention to
Aura’s specific instantiation. As mentioned, Aura’s specific choice and claim are

1. they chop off only bn2 c+ 1 blocks for finalization;

3Note that Lemma 2 holds for Πsmr too in the same way it holds for Πchain.

12

2. they employ the following tie-breaking rule: for two equal-length chains, they prefer the chain
whose last block has an earlier timestamp and

3. they claim to defend against any minority, Byzantine adversary [2].

We now reflect on Aura’s choices and claims.

A 3
7-attack even with tie breaking. Recall that earlier we argued that 1

3 is the best we can
hope for when tie breaking is arbitrary and can be adversarially manipulated. We now demonstrate
a 3

7 -attack against consistency even with their tie-breaking. The attack is depicted below — based
on this illustration, the detailed description of the attack is similar to Section 3.4. Note that this
attack works even if we chop of n rounds at the end for finalization (i.e., more than what Aura
actually chops off).

0 2 3 5 1 3 4 6 0 . . .

1 3 4 6 0 2 3 5 1 . . .

Reduced resilience when chopping off fewer blocks. We now consider what resilience Aura
can achieve by chopping off only bn2 c+ 1 blocks with distinct signers (and using their specific tie-
breaking rule). We show that a consistency attack is possible if the adversary controls just slightly
more than 3

8 fraction of the nodes. The attack depicted above has the following generalization: 3f
corrupt nodes can sustain two equal-length forks of length 4f (each fork having distinct signers).
Thus with 3f corrupt nodes we have to chop off at least 4f blocks (if not more) for consistency.
Now suppose n = 8f − 3, then Aura would actually chop off only 4f − 1 blocks and this would lead
to a consistency attack when 3f out of 8f − 3 nodes are corrupt.

Finally, it is not difficult to generalize our proof to see that if one actually chops off only bn2 c+1
trailing blocks with distinct signers, we can still guarantee consistency and liveness as long as
f < n

6 . This means that Aura’s concrete instantiation actually gives a resilience parameter that is
somewhere between 1

6 and 3
8 , and they cannot defend against corrupt minority as they claim.

Acknowledgments

We thank Danlu Huang, Xia Yu, Yizhou Yu, Jiaheng Zhang, for helpful discussions. Through a
course project in “Distributed Consensus and Blockchains” class, Danlu, Yizhou, Jiaheng looked
into the Aura protocol and performed a security analysis. Xia Yu kindly helped the author under-
stand the Aura implementation.

References

[1] https://github.com/paritytech/parity-ethereum/tree/master/ethcore/src/

engines/authority_round.

[2] Aura - authority round. https://wiki.parity.io/Aura.

[3] DPOS consensus algorithm - the missing white paper. https://steemit.com/dpos/

@dantheman/dpos-consensus-algorithm-this-missing-white-paper.

[4] Fix dpos loss of consensus due to conflicting last irreversible block. https://github.com/

EOSIO/eos/issues/2718.

13

https://github.com/paritytech/parity-ethereum/tree/master/ethcore/src/engines/authority_round
https://github.com/paritytech/parity-ethereum/tree/master/ethcore/src/engines/authority_round
https://wiki.parity.io/Aura
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://github.com/EOSIO/eos/issues/2718
https://github.com/EOSIO/eos/issues/2718

[5] M. K. Aguilera and S. Toueg. A simple bivalency proof that t-resilient consensus requires t +
1 rounds. Inf. Process. Lett., 71(3-4):155–158, 1999.

[6] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

[7] P. Daian, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. Cryptology ePrint
Archive, Report 2016/919, 2016.

[8] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake protocol. Cryptology ePrint Archive, Report 2017/573, 2017. http:
//eprint.iacr.org/2017/573.

[9] C. Dwork and Y. Moses. Knowledge and common knowledge in a byzantine environment i:
Crash failures. In Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning
About Knowledge, TARK ’86, pages 149–169, San Francisco, CA, USA, 1986. Morgan Kauf-
mann Publishers Inc.

[10] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Eurocrypt, 2015.

[11] V. Hadzilacos. A lower bound for byzantine agreement with fail-stop processors, 1983.

[12] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-
stake blockchain protocol. In Crypto, 2017.

[13] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[14] L. Lamport and M. Fischer. Byzantine generals and transaction commit protocols. Technical
report, 1982.

[15] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[16] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1996.

[17] Y. Moses and S. Rajsbaum. The unified structure of consensus: A Layered Analysis approach.
In PODC, pages 123–132. ACM, 1998.

[18] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[19] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[20] R. Pass and E. Shi. Rethinking large-scale consensus. In CSF, 2017.

[21] R. Pass and E. Shi. The sleepy model of consensus. In Asiacrypt, 2017.

[22] R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation.
Manuscript, 2017.

[23] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, Dec. 1990.

14

http://eprint.iacr.org/2017/573
http://eprint.iacr.org/2017/573

A A Largest-Set Protocol: Textbook Construction and Proof

In this section, we describe a variant of a deterministic, longest-chain protocol. In this variant,
when a node is elected as a leader in a round, it votes on the item with the most number of votes
seen so far. We call this protocol a “largest-set” protocol (as opposed to “longest-chain”). As we
shall see, this variant enables a very simple proof and we recommend it for pedagogical purposes.
The proofs for this protocol can be viewed as a simplified, deterministic variant of the analysis of
Nakamoto’s blockchain [18–20].

A.1 Useful Definitions

Leader. In every round i, node (i mod n) is the leader. Thus each round has a unique leader.

Valid votes. A valid vote for a normal bit b ∈ {0, 1} is a tuple (b, t, i, σ) where i ∈ [0..n − 1]
is a node identifier, t ≥ 1 is a round number (also called the vote’s timestamp), and σ is a valid
signature under pki for the tuple (b, t). A valid vote for the dummy bit ⊥ is a tuple (⊥, t, i, σ)
where i ∈ [0..n − 1] is a node identifier, t ≥ T⊥ is a round number no earlier than T⊥, and σ is a
valid signature under pki for the tuple (⊥, t).

Two votes (b, t, i, σ) and (b′, t′, i′, σ′) are said to be distinct iff (b, t, i) 6= (b′, t′, i′).

Vouch for. Given an execution trace view, we define “vouch for” as below:

• If b ∈ {0, 1} is a normal bit and node i does not have the sender’s signature on (propose, b) in
its view at the beginning of round r, then we say that there are no votes vouching for b w.r.t.
node i and round r.

• Else, the number of votes vouching for b̃ ∈ {0, 1,⊥} w.r.t. node i and round r is defined to be
the number of distinct valid votes for b̃ in node i’s view at the beginning of round r.

If b̃ ∈ {0, 1,⊥} has X votes vouching for it w.r.t. node i and round r in some execution trace view,
we sometimes also say: at the beginning of round r, node i has X votes vouching for b̃ in view. If b̃
has the most number of votes vouching for it (in comparison with any other bit) w.r.t. node i and
round r, we say that node i perceives b̃ as the most popular bit in round r.

A.2 A Largest-Set Protocol Πset

We now describe a simple largest-set protocol that realizes byzantine agreement as defined in
Section 2.2. In a longest-chain protocol such as Nakamoto’s blockchain [18] (and see also Section 3),
nodes vote by extending the longest chain; in this largest-set protocol, there is no such concept of
a chain, and nodes vote on the bit that so far has the largest number of votes vouching for it (i.e.,
the most popular bit).

Imprecisely speaking, in every round, every node looks for a bit signed by the sender and
carrying the most number of votes, and then signs that bit. At the end of the protocol, whichever
bit has the most number of signatures will be the bit output (i.e., decided). One issue is that if the
sender is corrupt, it may not sign any bit. To handle this case, we introduce a dummy bit denoted
⊥ sometime T⊥ into the protocol — nodes are allowed to sign ⊥ T⊥ time into the protocol start.
T⊥ is chosen to be large enough such that if the sender did sign a bit upfront, the dummy bit ⊥
cannot outnumber a normal bit in terms of number of votes and thus honest nodes will agree on
a normal bit. On the other hand, T⊥ must be chosen to be small enough (w.r.t. to the protocol
duration Tend) such that the protocol retains consistency.

15

More concretely, the protocol works as follows.

• Round 0: let b be the sender’s input bit. The sender signs (propose, b) and multicasts the bit
and the resulting signature.

• For round r = 1, 2, . . . , Tend:

– Receive all messages from the network and discard every vote whose timestamp is at least
the r (discarded votes do not become part of the node’s view in the protocol).

– If the current node is the leader of this round, perform the following steps (otherwise skip).
Let b̃ ∈ {0, 1,⊥} be the most popular bit (w.r.t. the current node and round r), sign (̃b, r),
and multicast 1) the resulting vote; 2) all valid votes the node has for b̃ so far in its view;
and 3) a sender’s signature on (propose, b̃) if applicable. If there are multiple most popular
bits, break ties arbitrarily.

• At the beginning of round Tend + 1: Find the most popular bit b̃ ∈ {0, 1,⊥} breaking ties
arbitrarily. If b̃ ∈ {0, 1}, output b̃. Otherwise output 0.

Parameters. Let ε = 1
3 −

f
n , we will choose T⊥ = n + 1, and Tend = 2n · d1

ε e. For example, if
n = 3f + 1, i.e., ε = 1

3n , then the protocol will run for Θ(n2) number of rounds.

A.3 Proofs

If a round’s leader is honest-forever, we say that this round is an honest-forever leader round.
Otherwise, we say that it is an eventually-corrupt leader round.

Fact 4. Suppose that the signature scheme is secure, then except with negligible probability, no
honest node’s view in the protocol will ever contain a signature valid under some honest-forever
node i but the signature was not signed by this node i during the protocol.

Proof. Straightforward by signature security.

Lemma 5 (Vote growth). Suppose that Tend−T⊥+1 ≥ kn. With probability 1, the following holds:
at the beginning of round Tend + 1, any honest node i’s most popular bit must have at least k(n− f)
votes vouching for it.

Proof. In every honest-forever leader round r ≥ T⊥, suppose that the leader (r mod n) of round
r’s most popular bit at the beginning of r has X votes vouching for it, then, at the beginning of
round r+ 1, every honest node’s most popular bit has at least X + 1 votes vouching for it — since
in round r node (r mod n) will add another vote to this most popular bit and multicast it to
everyone else. The remainder of the proof follows in a straightforward manner by observing that
there are at most f eventually-corrupt leader rounds among every n rounds.

Lemma 6 (Consistency). Assume that the signature scheme is secure and that f = (1
3 − ε)n.

Then, except with negligible probability over the choice of the execution trace view, at the beginning
of round Tend + 1, all honest nodes must output the same bit b̃ ∈ {0, 1,⊥}.

Proof. Due to Lemma 5, at the beginning of round Tend + 1, every honest node’s most popular bit
must have at least k(n−f) votes where k = d1

ε e−1 is the largest integer such that Tend−T⊥+ 1 ≥
kn. Suppose, for the sake of contradiction, that for a non-negligible fraction of the views, at the
beginning of round Tend + 1, two honest node’s most popular bit are different bits henceforth

16

denoted b and b′. Then it holds that there are at least 2k(n− f) = 2k(2
3 + ε)n distinct votes whose

timestamps are upper bounded by Tend in view.
On the other hand, note that in every honest-forever leader round, no more than one vote may

be cast for either b or b′ by the end of the protocol; whereas in every eventually-corrupt leader
round, one vote can be cast for each of b and b′ by the end of the protocol. Due to Fact 4, except
for a negligible fraction of the execution traces views, the total number of votes cast for either b or
b′ by the end of the protocol is at most (k + 1)(n+ f) = (k + 1)(4

3 − ε)n. We conclude that

(k + 1)

(
4

3
− ε
)
n ≥ 2k

(
2

3
+ ε

)
n

Simplifying the above equation, we have that

4

3
− ε ≥ 3ε

(
d1
ε
e − 1

)
≥ 3− 3ε ≥ 2

This is impossible and thus we reach a contradiction.

Fact 5. If the sender is honest in round 0, then at the beginning of round t ≥ kn+1 in the protocol,
any honest node’s most popular bit must have at least k(n− f) votes vouching for it.

Proof. Due to the same argument as Lemma 5 and the fact that the sender is honest and will sign
its input bit in round 0.

Lemma 7 (Validity). If the sender is honest-forever, then, all honest nodes must output the
sender’s input bit.

Proof. Henceforth we ignore the negligible fraction of views where Fact 4 fails. If the sender is
honest-forever, due to Fact 5, we have that at the beginning of round T⊥, any honest node’s most
popular bit must have at least n − f votes vouching for it; moreover, by Fact 4, its most popular
bit must be the sender’s input bit b∗.

Suppose for the sake of contradiction that some honest node did not output the sender’s input
bit b∗ at the end of the protocol. By Fact 4, this differing output bit must be ⊥. Let t∗ > T⊥ be
the first round in which some honest node’s most popular bit is ⊥. By definition of the protocol,
before round t∗, no honest node will vote for ⊥. Thus all valid votes for ⊥ at the beginning of round
t∗ must come from eventually-corrupt nodes and they must have timestamps between [T⊥, t

∗ − 1].
The total number of eventually-corrupt votes for ⊥ with timestamps between [T⊥, t

∗ − 1] must be
upper bounded by the number of eventually-corrupt leader rounds between [T⊥, t

∗ − 1]. Let k be
the largest integer such that t∗ − T⊥ ≥ kn. Then, the total number of eventually-corrupt votes for
⊥ with timestamps between [T⊥, t

∗ − 1] must be upper bounded by (k + 1)f .
On the other hand, due to Fact 5, at the beginning of round t∗, the most popular bit in any

honest node’s view must have at least (k + 1)(n− f) votes vouching for it.
We have that

(k + 1)f ≥ (k + 1)(n− f)

However, this is impossible if n ≥ 3f + 1.

17

B A Tighter Proof for the Longest-Chain Protocol

In this section, we present a tight proof for our deterministic longest-chain protocol. In the main
body, we presented a much simpler proof that requires chopping off up to O(nε) round numbers

for finalization where ε := 1
3 −

f
n . In particular, if n = 3f + 1, then we need to chop off quadratic

number of blocks. In this section, we prove that in fact, chopping off the most recent n round
numbers from the end of the chain is sufficient. This tighter proof is much more technical than the
earlier proof in Section 3.3.

We begin by defining a good event called a pivot. We then argue why a pivot contributes to
consistency. Finally, we present a combinatorics argument why a pivot happens every n rounds.

Pivot. Given an execution trace view, a pivot is a point of time t such that for any window [t0, t1]
that contains t, there are strictly more honest-forever leader rounds than eventually-corrupt leader
rounds. Our definition of a pivot is inspired by the earlier work by Pass and Shi [21].

Note that by definition, if t is a pivot in view, then node t mod n (i.e., the leader for round t)
must be an honest-forever node. Further, it is easy to see that the following fact holds:

Fact 6. Assume that n ≥ 2f + 1. Then the following holds for any execution trace view: t is a
pivot in view iff for any window [t0, t1] that contains t and t1 − t0 + 1 ≤ n, there are strictly more
honest-forever leader rounds than eventually-corrupt leader rounds in view.

Proof. Straightforward due to the following observation: for any consecutive n rounds, there must
be more honest-forever leader rounds than eventually-corrupt leader rounds.

Lemma 8 (Pivot leads to convergence). Assume that the signature scheme is secure, then the
following holds except for a negligible fraction of views. Suppose that t is a pivot in view; further,
suppose that chain is the longest chain belonging to an honest node in round r > t in view and chain′

is the longest chain belonging to an honest node in round s > t in view. It holds that extract(chain)
and extract(chain′) must agree for the prefix whose timestamps are at most t.

Proof. Ignore the negligible fraction of views where bad events related to Fact 1 take place.
For the remaining good views, suppose that the honest-forever node (t mod n) mined a block

at length ` in view. It suffices to prove that chain[`] and chain′[`] must both be this honest-forever
block. We prove it for chain since the argument for chain′ is identical.

If chain[`] is an honest-forever block, the the proof follows directly by Fact 3. We thus focus
on the case when chain[`] is an eventually-corrupt block. In this case, let chain[`L] := (tL, ,) be
the latest honest-forever block to the left of chain[`]; if no such block exists, simply let `L := 0
and tL = 0. Similarly, let chain[`R] := (tR, ,) be the earliest honest-forever block to the right
of chain[`]; if no such block exists, simply let `R := |chain| + 1 and let tR := r. Henceforth, we
imagine that chain has two imaginary blocks at length 0 and |chain|+1 denoting beginning and end
of chain respectively. For any t̃ ∈ (tL, tR), if some honest-forever leader mined a block at length
` in round t̃, then chain[`] must be an eventually-corrupt block. Since all blocks in chain must
have distinct timestamps, we have that between (tL, tR), there are at least as many eventually-
corrupt leader-rounds as there are honest-forever leader-rounds. This contradicts the fact that t is
a pivot.

Lemma 9 (Existence of a pivot every n rounds). Suppose that n ≥ 3f + 1. With probability 1, for
every n consecutive rounds (t, t+ n], there must exist a pivot t∗ ∈ (t, t+ n].

18

Proof. Placing numbers on a circle. Imagine we place m numbers, either +1 or −1 on a
circle such that fewer than m

3 of them are −1 — such a placement is henceforth said to be a valid
configuration.

Pivot. For any i, j ∈ [0..m − 1] such that i 6= j, we use the notation s→[i..j] to denote the
cumulative sum going from the i-th number clockwise until we reach the j-th number (inclusive of
both the i-th and the j-th number). We define s→[i..i] to be the i-th number. s←[i..j] is similarly
defined but going counter-clockwise.

The i-th number where i ∈ [0..m − 1] is said to be a pivot iff for any j ∈ [0..m − 1], we have
that s→[i..j] > 0 and s←[i..j] > 0. It is not difficult to see that this definition is equivalent to the
following: the i-th number is said to be a pivot iff for any clockwise segment spanning positions
a..b that includes i s→[a..b] > 0.

Configuration induced by an execution. Any execution trace view will induce a configuration
as explained below. We place n numbers on a circle based on view: for i ∈ [0..n − 1], if node i is
honest-forever in view, the i-th number is +1; otherwise it is −1. Since we assume that n ≥ 3f + 1,
it must hold that the configuration induced by view is a valid configuration.

To prove the above lemma, it suffices to prove that the configuration induced by any view has
a pivot. We prove a generalization of the statement:

Claim 1. Suppose that we place m numbers, either +1 or −1, on a circle as mentioned above. In
any valid configuration (i.e., fewer than m

3 of them are −1), there must exist a pivot.

Proof. We now prove the above claim. A negative group is a sequence of consecutive −1s on the
circle sandwiched by +1s on both sides. A positive group is sequence of consecutive +1s on the
circle sandwiched by −1s on both sides. If all numbers on the circle are +1 (or −1 resp.), all the
numbers form a single positive (or negative resp.) group. If a positive (or negative resp.) group
does not contain all numbers on the circle, it is said to be a proper positive (or negative resp.)
group.

Any proper positive (or negative resp.) has a left-most number and a right-most number:
essentially the group spans the left-most number going clockwise to the right-most number.

We now prove by induction.

Base case. All numbers form a single positive group. In this case the proof is trivial.

Induction step. If a valid configuration is not the base case, then it must contain a sequence of
alternating proper positive and proper negative groups — let T denote the total number of such
alternating positive and negative groups (the base case can be regarded as T = 1). We need to
prove the following: if a pivot exists for every valid configuration where T ≤ τ (i.e., induction
hypothesis), then a pivot exists for every valid configuration where T ≤ τ + 1.

We now perform the following elimination procedure:

• Start: Say we start from a valid configuration C that is not all positive.

• Find negative group: Find an arbitrary proper negative group, let its right-most number be
position iR and the left-most number be position iL.

• Counter-clockwise scan: Scan counter-clockwise from iR until we reach the first position j such
that s→[j..iR] = 0.

• Clockwise scan: Start from the left-most number of the negative group, say the iL-th number,
and scan clockwise until we reach the first position k such that s→[iL..k] = 0.

19

• Elimination: Eliminate all numbers between positions [j..k], and the ending configuration is
called C ′.

Henceforth all numbers eliminated due to the counter-clockwise scan together comprise the “counter-
clockwise elimination”; and all numbers eliminated due to the clockwise scan together comprise the
“clockwise elimination”. The clockwise and counter-clockwise eliminations overlap in the negative
group chosen.

We now prove that the following facts hold for the above elimination procedure.

Fact 7. A number that is pivot in C cannot be eliminated by the above procedure.

Proof. It suffices to argue that a position p is a pivot in C cannot be eliminated during a counter-
clockwise elimination (the argument is symmetric for clockwise). For p to be eliminated, it must
hold that s→[p..i] ≤ 0 where i is the right-most number of some proper negative group. This cannot
hold by the definition of a pivot.

Fact 8. A number that is pivot in C ′ must be a pivot in C.

Proof. For simplicity, we assume that the elimination simply rewrites eliminated numbers as 0s —
this way, we can use the same position labels for C and C ′.

Henceforth, we denote the cumulative sum s→[a..b] in C as S[a..b], and the cumulative sum
s→[a..b] in C ′ as S′[a..b]. Due to Fact 7, it suffices to prove that for any position p that is not
eliminated during the elimination procedure, for any p∗, we have that S[p..p∗] ≥ S′[p..p∗] (and the
other direction, i.e., counter-clockwise, is symmetric). We consider the following cases:

• Case 1: p∗ is not among the eliminated positions. In this case, the proof is obvious since the
eliminated positions sum up to 0.

• Case 2: p∗ is among the eliminated positions. Recall that j is the left-most among the eliminated
positions; and that iR is the right-most number of the negative group involved in the elimination
procedure. It suffices to prove that S[j..p∗] ≥ 0. This holds since otherwise j cannot the first
number scanning counter-clockwise from iR such that S[j..iR] = 0 — there must exist such a
number in between positions [p∗ + 1..iR].

Fact 9. If the elimination procedure eliminates x number of −1s, it can eliminate no more than
2x number of +1s.

Proof. Straightforward by observing that in both the clockwise and the counter-clockwise elimi-
nations, there are as many −1s elimanted as there are +1s. Further, the −1s eliminated in both
directions can overlap whereas the +1s cannot overlap in both directions (since it is not difficult to
see that there must be numbers left after the elimination).

Due to Facts 8 to prove the induction step, it suffices to prove that in C ′ there is a pivot — the
latter holds due to Fact 9 and the induction hypothesis.

Theorem 4 (Consistency). Assume that the signature scheme is secure. Then, except with negli-
gible probability, the following holds: let chain be some honest node’s longest chain in round r; and
let chain′ be some honest node’s longest chain in round t ≥ r, it holds that chain and chain′ agree
in the part of their prefixes with timestamps r − n or smaller.

Proof. Straightforward due to Lemma 8 and Lemma 9.

20

B.1 Proofs for State Machine Replication

We now prove Theorem 3. Note that to obtain confirmation time Tconfirm := n+ 1, the proofs here
build on the conclusions from our tighter analysis in Appendix B.

The consistency proof is implied by Theorem 4. We now prove the liveness of Πsmr for Tconfirm :=
2n+ 1. It suffices to prove the following lemma.

Lemma 10. Suppose that the signature scheme is secure. Then, except with negligible probability
over the choice of view, the following holds:

a) Suppose that Z inputs a set containing the transaction tx to some honest node in round r, then
in round r + 2n+ 1, every honest node’s output to Z must contain tx; and further,

b) Suppose that in some round r some honest node’s output to Z includes the transaction tx, then
in any round r′ ≥ r + n+ 1, any honest node’s output to Z must contain tx as well

Proof. Claim (a) holds due to the following. If some honest node i receives tx from Z in some
round r, it will mulicast tx to everyone in round r. Thus all honest nodes will have received tx at
the beginning of round r + 1. In round r′ = r + 1 + 2n, let chain denote the longest chain of some
honest node i, i will will output to Z the prefix of chain whose timestamps are at most r+n+ 1 by
protocol definition. By chain quality4 (Lemma 2), in chain, there must be an honest block whose
timestamp is in the range [r + 1, r + n+ 1] — by honest protocol definition, this honest block (or
the prefix chain till this block) must contain tx.

Claim (b) holds due to the following. Suppose that some honest node’s longest chain in round
r is chain, and some block in chain with the timestamp t ≤ r − n contains tx (and thus the node
outputs tx to Z in round r). Now, in round r′ = r + n+ 1, every honest node will output a prefix
of their longest chain then containing all blocks whose timestamps are no greater than r + 1. Due
to chain quality, there is at least one honest-forever block whose timestamp is between r − n and
r + 1. The remainder of the proofs follows due to consistency.

4Note that Lemma 2 holds for Πsmr too in the same way it holds for Πchain.

21

	Introduction
	Our Results and Contributions

	Preliminaries
	Model
	Byzantine Agreement: Definitions
	Notations and Assumptions

	A Determinisitic, Longest-Chain Protocol
	Useful Definitions and Notations
	Protocol chain
	Proofs
	Additional Terminology
	Validity
	Consistency

	An Explicit Attack with 13 Corruption

	State Machine Replication
	Definitions: State Machine Replication
	A Longest-Chain-Based SMR Protocol smr
	Proofs for State Machine Replication

	Analysis of Aura's Instantiation
	A Largest-Set Protocol: Textbook Construction and Proof
	Useful Definitions
	A Largest-Set Protocol set
	Proofs

	A Tighter Proof for the Longest-Chain Protocol
	Proofs for State Machine Replication

