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Abstract. We present a new cryptanalytic algorithm on obfuscations
based on GGH15 multilinear map. Our algorithm, statistical zeroizing
attack, directly distinguishes two distributions from obfuscation while it
follows the zeroizing attack paradigm, that is, it uses evaluations of zeros
of obfuscated programs.
Our attack breaks the recent indistinguishability obfuscation candidate
suggested by Chen et al. (CRYPTO’18) for the optimal parameter set-
tings. More precisely, we show that there are two functionally equivalent
branching programs whose CVW obfuscations can be efficiently distin-
guished by computing the sample variance of evaluations.
This statistical attack gives a new perspective on the security of the in-
distinguishability obfuscations: we should consider the shape of the dis-
tributions of evaluation of obfuscation to ensure security. In other words,
while most of the previous (weak) security proofs have been studied with
respect to algebraic attack model or ideal model, our attack shows that
this algebraic security is not enough to achieve indistinguishability ob-
fuscation. In particular, we show that the obfuscation scheme suggested
by Bartusek et al. (TCC’18) does not achieve the desired security in a
certain parameter regime, in which their algebraic security proof still
holds.
The correctness of statistical zeroizing attacks holds under a mild as-
sumption on the preimage sampling algorithm with a lattice trapdoor.
We experimentally verify this assumption for implemented obfuscation
by Halevi et al. (ACM CCS’17).
Keywords: Cryptanalysis, indistinguishability obfuscation, multilinear
map

1 Introduction

Indistinguishability obfuscation (iO) is one of the most powerful tools used to
construct many cryptographic applications such as non-interactive multiparty

? We add an assumption on preimage sampling algorithm, and the parameter condi-
tions for our attack. In particular, BGMZ obfuscation with optimal parameter is not
broken by our attack.



key exchange and functional encryption [5,17,33]. While constructing a general-
purpose iO has been posed as a longstanding open problem, Garg et al. [17]
first proposed a plausible candidate for the general-purpose iO exploiting a
multilinear map in 2013. Starting from this work, many subsequent studies
have proposed plausible constructions of iO upon candidate multilinear maps
[1–3,6, 17,18,24–27,30,31,35].

However, all of the current constructions of multilinear map, essentially clas-
sified as GGH13, CLT13 and GGH15 [15, 16, 19], are merely candidates. These
constructions are not known to have the desired security of the multilinear map
due to the first class of zeroizing attacks, such as the CHLRS attack and Hu-
Jia attack [11, 15, 26]; these attacks commonly exploits several encodings of
zero to show the multi-party key exchange protocol instantiated by candidate
multilinear maps are not secure.

On the other hand, the first class of zeroizing attacks does not damage the
security of current iO constructions from the candidate multilinear maps. It
later turns out that most candidates iO fail to achieve the desired security due
to subsequent works, the second class of zeroizing attacks [9–14, 32], which em-
ploys algebraic relations of the top level encodings of zero. In this light, many
researches focus on algebraic security of obfuscation using the weak multilin-
ear map models [4,18,28] to capture the currently known techniques to analyze
obfuscations and multilinear map itself.

Recently, GGH15 multilinear map has been in the spotlight because it is
shown that GGH15 and its variants can be exploited to construct provable se-
cure special-purpose obfuscations and other cryptographic applications including
constraint pseudorandom functions under the hardness of LWE and its vari-
ants [7, 8, 10, 21, 34]. Therefore, the GGH15 multilinear map has been believed
to be the most plausible candidate for constructing the general-purpose obfus-
cation.

In this respect, Chen et al. [10] proposed a new iO candidate over GGH15,
called CVW obfuscation, to be secure against all known attacks. Then, Bartusek
et al. [4] provided a new candidate over GGH15, called BGMZ obfuscation, which
is provably secure against generalized algebraic zeroizing attacks. The security
of these two schemes in more general setting remains as an open problem.

1.1 Our Result

We give a new polynomial time cryptanalysis, statistical zeroizing attack, on the
candidates of iO based on the GGH15 multilinear map. This attack directly dis-
tinguishes the distributions from zeros of obfuscated programs instead of finding
algebraic relations of evaluations. We particularly exploit the sample variance
as a distinguisher of the distributions, while this attack introduces wide class of
distinguishing methods. In particular, under an assumption on lattice preimage
sampling algorithm with a trapdoor, our attack breaks the security of

• CVW obfuscation for the optimal parameter choice. Further, our attack still
works for the relatively small variance σ2 of Gaussian distribution such as
σ = poly(λ) for the security parameter λ, and
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• BGMZ obfuscation for large variance of Gaussian distribution, e.g. σ = 2λ,
which still enables the security proof in the weak GGH15 multilinear map
model.1

This result refutes the open problem posed in [10] in a certain parameter
regime: the CVW obfuscation is not secure even when the adversary gets or-
acle access to the honest evaluations as matrix products instead of obfuscated
program.

Our attack leads a new perspective to the study of iO: we should focus on
the statistical properties such as shapes of distributions as well to achieve indis-
tinguishability obfuscation. In particular, the distributions of evaluations should
be (almost) the same regardless of the choice of target branching program. Pre-
viously, most attacks and constructions only focused on the algebraic structure
of evaluations.

Attack Overview. Suppose that the adversary has two functionally equivalent
branching programs M and N, and an obfuscated program O(P) where P = M
or N. The purpose of the adversary is to determine whether P = M or N. Note
that the recent obfuscation constructions compute its output via two processes:
the first step is to compute a value, we call evaluation here according to the
evaluating rules, which is usually to compute a product of given matrices. The
second step is to determine the output from the size of the evaluation in the first
step.

The basic form of statistical zeroizing attack is incredibly simple; just com-
pute the evaluation of obfuscated program (right before computing output) and
check if an entry is larger than a threshold value. Since two evaluations of ob-
fuscated programs O(M) and O(N) have the different variance, this attack may
work.

Technically speaking, we consider a bit complex form of statistical zeroizing
attack in this paper to give a rigorous analysis. The above form is simple, but it
is hard to check the correctness of attack.2 Thus we consider the multiple-sample
problem instead of one evaluation, and then compute the sample variance. Then
we determine P by checking the inequality of the sample variance and a thresh-
old value. Note that these distributions of evaluations are polynomial-time con-
structible, i.e. the sampling algorithm is done in polynomial time, since every
parameter to do obfuscation process is given to adversary. Therefore the dis-
tinguishing algorithm of two distributions implies the distinguishability of two
corresponding evaluations by the standard hybrid argument.

Though the attack is conceptually simple, it is difficult to verify that the
attack works well for certain obfuscation schemes, and this verification requires
several complex computational tasks. Thus we give the sufficient conditions that
attack works well using sample variance for a simpler description of the attack.

1 That is, our attack is lying outside the considered attack class in [4].
2 The difference of variance is even not enough to distinguish. For example, the dis-

tributions that 0 with overwhelming probability cannot be efficiently distinguished
though these can have any variance.
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And we assign most papers including appendix to show that those conditions
hold under an assumption, dealing with many random variables that might be
dependent themselves. We derive many lemmas to deal with such intertwined
random variables.

Assumption on Lattice Preimage Sampling. The analysis of attack requires
an assumption on lattice preimage sampling algorithm. This assumption states
that the variance and kurtosis of products of matrices from preimage sampling
have almost the same size as one assumed the independency of those matrices.
This assumption is experimentally verified for matrices used in implemented
obfuscation scheme [22]. For more detailed description, see Assumption 1 and
Appendix C.

Example of Statistical Zeroizing Attack. We give an example to show
how our attack intuitively works. We consider a simple construction of GGH15-
obfuscation without all safeguards. For brevity we only give the result of evalu-
ation. A detailed description of this simple obfuscation is given in Appendix A.
We also do not give a computational analysis of the attack, but this example
still is enough to shows that the two distributions of evaluations from different
branching programs may have quite different shape.

We consider two functionally equivalent branching programs

M = {Mi,b}i∈[h],b∈{0,1} and N = {Ni,b}i∈[h],b∈{0,1}

where

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1

0w×w otherwise
.

For these BPs, the evaluations are of the form

O(M)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
and

O(N)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
+ I ·E2,xinp(2)

·
h∏
k=3

Dk,xinp(k)
.

Here D’s are preimage-sampled matrices and E’s are error matrices, whose en-
tries are all following discrete Gaussian distribution.

If we choose polynomial-size variances for those matrices, these two distri-
butions have noticeably different shape. Therefore one can hope to distinguish
two distribution; indeed, the sample variance will be served as a distinguisher
in this paper. Or, more efficiently, one can distinguish them by looking at the
size of sample, but is not easy to show the correctness as noted in above without
strong assumption on shape of distributions.

Applicability and Limitation. The class of branching programs constructed
from CNF formulas, suggested in [10, Construction 6.4], is in the range of our
attack as well. For example, as we choose two branching programs N = {Ni,b}
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and M = {Mi,b} as follows: N1,b as the identity matrix with w×w size and all
other matrices of M and N as the zero matrix. These two branching programs
M and N correspond to some CNF formulas following the construction. This is
exactly the same to the target branching programs described in Section 4.2 as
an attack example.

On the other hand, there is a class of branching programs that seems robust
against our attack: permutation matrix branching programs. For this class of
branching programs, the distributions of evaluations except bookend vectors are
the same for any choice of permutation branching program M in many obfusca-
tion constructions (under the assumption on trapdoor matrices). Interestingly,
(a variant of) the first candidate iO over the GGH15 multilinear map [17, 19]
has targeted such branching programs so it is robust against our attack.

Further, the obfuscation schemes over the CLT13 or GGH13 multilinear maps
seems to be secure against statistical zeroizing attack. This is due to the structure
of those schemes; encodings CLT13 and GGH13 have large randomness in the
zero-testing results compared to the message-dependent parts. In other words,
the randomness dominates the zero-testing values and the message only gives
negligible perturbation on the zero-testing distributions.

Counter Measures. There are two countermeasures on our attack: 1) modify-
ing construction to obfuscate permutation branching programs and 2) adjusting
parameters to rule out our attack. We remark that both countermeasures are
plausibly blocking the attack but not in the provable security level.

As noted above, we can simply use the known obfuscations to obfuscate
permutation branching programs only. Unfortunately, CVW and BGMZ obfus-
cations in the suggested form are not appropriate to obfuscate the permutation
branching programs.3 We can modify CVW obfuscation to obfuscate the per-
mutation branching programs; this modified construction is secure against all
existing attacks including the attack suggested in this paper. This can be done
by choosing the bookends appropriately for permutations. A more precise de-
scription is placed in Appendix B. The similar modification works well in BGMZ
obfuscation.

Another simple countermeasure for our attack is to take another parameter
choice for variance σ, especially to adjust the variance of several discrete Gaus-
sian distributions appropriately. For example, one can consider the following
modifications.

• For CVW obfuscation, the condition of our attack (using sample variance)
does not hold for large σ2, e.g. σ2 = Ω(m`) for the sampled dimension m of
preimage sampling and the length ` of branching program.

3 Though there is a general transformation from permutation branching program into
Type I branching program [10, Claim 6.2], this induces the bookend vector of the
form (v|−v) rather than the implicitly supposed bookend 11×w in CVW obfuscation.
If we directly obfuscate permutation branching programs, the functionality of them
is all-rejection. Indeed, if we obfuscate permutation branching programs using CVW
obfuscation as this trivial functionality (without transformation), the iO security for
these trivial BPs can be proven by the proof technique of [7].
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• For BGMZ obfuscation, the small choice of σ, e.g. σ2 = O(ν) for the size
bound of the bookend vector’s entry ν.

Both countermeasures yield the exponential bound in the first attack condition
(See Proposition 3.1). We remark that the preimage sampling procedure with
large σ can be done in polynomial time using [20].

It is interesting that the large σ yields countermeasure on CVW obfuscation
while it allows the attack on BGMZ obfuscation. This difference comes from
the structure of scheme, or the dominating term of evaluation’s variance. More
precisely, the main parts to induce the difference are

– In BGMZ obfuscation, there are auxiliary random matrices terms, which
flood other terms. For large σ, a dominating term moves to the message
dependent terms.

– In CVW obfuscation, auxiliary random matrices are only larger than the
message dependent terms up to polynomial factor, which gives the enough
difference to distinguish. When σ is increased, the ratio is going to exponen-
tial and yields noise-flooding.

Open Questions. We also leave some open problems:

1. The presented attack shows some weakness of obfuscation for non-permutation
branching program, while this class of branching programs is known to have
several advantages compared to permutation branching programs including
efficiency [10]. Can we construct a provably secure obfuscation against all
zeroizing attack without choosing the permutation branching programs?

2. On the other hand, can we extend the zeroizing attack to more general
obfuscation or branching programs such as evasive functions or permutation
branching programs? Can we derive a new attack that combines algebraic
and statistical structure of evaluations?

3. The candidate witness encryption in [10] shares almost the same structure
with the CVW obfuscation but we do not know whether it is secure or not.

Organization. In Section 2, we introduce preliminary related to the branching
program, iO, and lattices. We describe the statistical zeroizing attack in Section
3. In Section 4, we briefly describe CVW obfuscation and its cryptanalysis. In
addition, we review BGMZ obfuscation and its cryptanalysis in Section 5.

2 Preliminaries

Notations. N,Z,R denote the sets of natural numbers, integers, and real num-
bers, respectively. For an integer q ≥ 2, Zq is the set of integers modulo q.
Elements are in Zq are usually considered as integers in [−q/2, q/2). We denote
the set {1, 2, · · · , h} by [h] for a natural number h.

Lower bold letters means row vectors and capital bold letters denote matrices.
In addition, capital italic letters denote random matrices or random variables.
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For a random variable X , we let E(X ) be the expected value of X , V ar(X ) the
variance of X .

The n-dimensional identity matrix is denoted by In×n. For a row vector v,
a i-th component of v is denoted by vi, and for a matrix A, a (i, j)-th entry
of a matrix A is denoted by ai,j , respectively. A notation 1a×b means a a × b
matrix such that all entries are 1. The `p norm of a vector v = (vi) is denoted
by ‖v‖p = (

∑
i |vi|p)1/p. We denote ‖A‖∞ by the infinity norm of a matrix A,

‖A‖∞ = maxi,j ai,j with A = (ai,j).

We use a notation x ← χ to denote the operation of sampling element x
from the distribution χ. Especially, if χ is the uniform distribution on a finite
set X, we denote x← U(X).

For two matrices A = (ai,j) ∈ Rn×m, B ∈ Rk×`, the tensor product of matrix
A and B is defined as

A⊗B :=


a1,1 ·B · · · a1,m ·B

...
. . .

...

an,1 ·B, · · · , an,m ·B

 .

For four matrices A,B,C,D such that one can form products A ·C and B ·D,
the equation (A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D) holds.

2.1 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-to-input
function and several matrix chains.

Definition 2.1 A width w, length h, and a s-ary matrix branching program P
over a `-bit input is a set which consists of index-to-input maps {inpµ : [h] →
[`]}µ∈[s], sequences of matrices, and two disjoint sets of target matrices

P = {(inpµ)µ∈[s], {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}s ,P0,P1 ⊂ Zw×w}.

The evaluation of P on input x = (xi)i∈[`] ∈ {0, 1}` is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinpµ(i))µ∈[s] ∈ P0

1 if
∏h
i=1 Pi,(xinpµ(i))µ∈[s] ∈ P1

.

When s = 1 (s = 2), the BP is called a single-input (dual-input) BP. In this
paper, we usually use P0 = 0w×w and P1 is the set of all nonzero matrices
in Zw×w. Also, we call {Pi,b}b∈{0,1}s the i-th layer of the BP. Remark that
CVW obfuscation and BGMZ obfuscation take as input different BP type (e.g.
single and dual BP) and the required properties of BP for each obfuscation are
different. Therefore, we mention the required properties used to construct an
obfuscation again before describing each obfuscation.
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2.2 Indistinguishability Obfuscation

Definition 2.2 (Indistinguishability Obfuscation) A probabilistic polyno-
mial time machine O is an indistinguishability obfuscator for a circuit class
C = {Cλ} if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ Cλ, for all inputs x,
the following probability holds:

Pr [C ′(x) = C(x) : C ′ ← O(λ,C)] = 1.

– For any p.p.t distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ Cλ, C0(x) = C1(x) for all inputs x implies

|Pr [D(O(λ,C0)) = 1]− Pr [D(O(λ,C1)) = 1] | ≤ α(λ).

2.3 Lattice Trapdoor Background

A lattice L of dimension n is a discrete additive subgroup of Rn. If L is generated
by the set {b1, · · · ,bn}, all elements in L are of the form

∑n
i=1 xi · bi for some

integers xi’s. In this case, the lattice L is called the full rank lattice. Throughout
this paper, we only consider the full rank lattice. Now we give several definitions
and lemmas used in this paper.

For any σ > 0, the Gaussian function on Rn centered at c with parameter σ
is defined as

ρσ,c(x) = e−π‖x−c‖/σ
2

for all x ∈ Rn.

Definition 2.3 (Discrete Gaussian Distribution on Lattices) For any el-
ement c ∈ Rn, σ > 0 and any full rank lattice L of Rn, the discrete Gaussian
distribution over L is defined as

DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
for all x ∈ L

where ρσ,c(L) =
∑

x∈L ρσ,c(x).

Lemma 2.4 ([29]) For integers n ≥ 1, q ≥ 2 and m ≥ 2n log q, there is a p.p.t
algorithm TrapSam(1n, 1m, q) that outputs a matrix A ∈ Zn×mq and a trapdoor τ
such that A is statistically indistinguishable from U(Zn×mq ) with a trapdoor τ .

Lemma 2.5 ([20]) There is a p.p.t. algorithm Sample(A, τ,y, σ) that outputs
a vector d from a distribution DZm,σ. Moreover, if σ ≥ 2

√
n log q, then with all

but negligible probability, we have

{A,d,y : y← U(Znq ),d← Sample(A, τ,y, σ)} ≈s {A,d,y : d← DZm,σ,Ad = y}.
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3 Statistical Zeroizing Attack

In this section, we introduce our attack, statistical zeroizing attack. We give an
abstract model for branching program obfuscation and the attack description in
this model. In this attack, we are given two functionally equivalent branching
programs M and N, which will be specified later, and an obfuscated program
O(P) for P = M or N. Our purpose is to distinguish whether P = M or P = N.
The targeted branching programs of the obfuscation output 0 when the product
corresponding to input is zero. The obfuscated program O(P) consists of{

S, {Di,b}1≤i≤h,b∈{0,1}s ,T, inp = (inp1, · · · , inps) : [h]→ [`]s, B
}

where every element is a matrix over Zq (possibly identity) except the input
function inp. The output of the obfuscated program at x = (x1, · · · , x`) ∈ {0, 1}`
is computed by considering the value

O(P)(x) = S ·
h∏
i=1

Di,xinp(i) ·T

where xinp(i) = (xinp1(i), · · · , xinps(i)). Note that O(P)(x) can be a matrix, vector
or an element (over Zq). Regard it as matrix/vector/integer over Z and check the
value: if ‖O(P)(x)‖∞ < B < q then it outputs 0, otherwise outputs 1. We call
O(P)(x) the evaluation of the obfuscated program (at x). We also call O(P)(x)
evaluation of zero if P(x) = 0 in the plain program. We stress that the output and
evaluation of the obfuscated program is different; the output of the obfuscated
program is the same to output of original program, and the evaluation is the
value O(P)(x), which is computed right before determining the output.

To distinguish two different obfuscated programs, we see the distribution of
valid evaluations of zero of O(M) and O(N). For the evaluation of zero, the size
of these products is far smaller that q (or B), thus we can obtain the integer
value rather than the element in Zq. Now, if the evaluation is of the matrix or
vector form, we consider only the first entry, namely (1, 1) entry of the matrix
or the first entry of the vector, in the whole procedure of the attack. We call
all of these entries by the first entry of the evaluation, including the case of the
evaluation is just a real value.

Our strategy is to compute the sample variance of the first entries of many
independent evaluations which follow the same distribution. The key of the at-
tack is that this variance heavily depends on the plain program of the obfuscated
program and the variance is sufficiently different to distinguish for two certain
programs. Therefore, from the variance of the independent evaluations follow the
same distribution, we can decide the obfuscated program is from which program.

Some natural questions arise for this strategy, for example, how can we ob-
tain the samples following the identical, independent distributions from O(M)
and/or O(N)? This question is resolved by considering multiple samples of eval-
uation at the same input. Note that the distributions of obfuscations’ evaluation
are polynomial-time constructible by adversary because there is no secret key
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in obfuscation process. Therefore, by the standard hybrid argument, the distin-
guishing problems for two distributions with one-sample and polynomially-many
sample are equivalent.

Then we consider two distributions of evaluation. Fix an input x = x0 such
that M(x) = 0. Let DM and DN be distributions of the first entry of evalua-
tions O(M)(x) and O(N)(x), respectively. Here the distributions are defined by
random choices of every random value in obfuscation process such as bookend
vectors/samples from discrete Gaussian distributions, etc. We remark that these
distributions have a quite different variance for appropriate choices of branching
programs. Thus computing the sample variance gives a distinguishing algorithm
for these two distributions, as well as for the obfuscated programs.

In the next subsection, we analyze the distinguishing algorithm using sample
variance for distributions. We will show that this attack works well for several
obfuscations in Section 4 and 5.

3.1 Distinguishing Distributions using Sample Variance

Now we give the detailed analysis of distinguishing by sample variance. In this
algorithm, we compute the variance of the samples, and check whether the dis-
tance between the sample variance we computed and the expected variance of
DM and DN. If the distance from the sample variance to the variance of DM

is less than the distance to the variance of DN, we decide the given samples
are from DM. Otherwise we decide the samples are from DN. The result of this
method is stated in the following proposition.

Proposition 3.1 Suppose that two random variables XM and XN that follow
distributions DN and DM and have the means µM and µN and the variances
σ2
N and σ2

M, respectively. For the security parameter λ and polynomials p, q, r =
poly(λ), there is a polynomial time algorithm that distinguishes DM and DN with
non-negligible probability when O(p · (√q+

√
r)) = poly(λ) independent samples

from DP are given and the following conditions hold:∣∣∣∣max(σ2
N , σ

2
M )

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣E[(XN − µN)4]

σ4
N

∣∣∣∣ ≤ q(λ), and

∣∣∣∣E[(XM − µM)4]

σ4
M

∣∣∣∣ ≤ r(λ).

In other words, if two known distributions satisfy the conditions, we can solve
the distinguishing problem of two distribution with multiple samples. Thus to
cryptanalyze the concrete obfuscation schemes, it suffice to show the conditions
in Proposition 3.1. We conclude this section by giving the proof of this proposi-
tion.

Proof (Proposition 3.1). We call definitions and useful lemmas first.

Lemma 3.2 (Chebyshev’s inequality) Let X be a random variable with a
finite expected value µ and a finite variance σ2 > 0. Then, it holds that

Pr[|X − µ| ≥ kσ] ≤ 1/k2

for any real number k > 0.
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Definition 3.3 (Sample variance) Given random n samples x1, x2, · · · , xn of
D, the sample variance of D is defined by

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2

where x̄ = 1
n

∑n
i=1 xi is the sample mean.

Definition 3.4 (Kurtosis) Let X be a random variable with a finite expected
value µ and a finite variance σ2 > 0. The kurtosis of X is defined by

Kurt[X] =
E[(X − µ)4]

E[(X − µ)2]2
=
E[(X − µ)4]

σ4
.

Lemma 3.5 Let S2 be the sample variance of size κ samples of a distribution
D. Let X be a random variable following D and µn = E[(X − E[X])]n be the
n-th central moment. Then the variance of S2 satisfies

V ar(S2) =
1

κ

(
µ4 −

κ− 3

κ− 1
µ2

2

)
.

Now we return to the proof. Suppose that all of the conditions hold for
polynomials p, q, r ∈ poly(λ) and σ2

M < σ2
N. We compute the 99% confidence

interval of variance of S2. By Lemma 3.2 and 3.5,

Pr

[
|S2 − σ2

P | ≥ 10 ·

√
1

κ
·
(
E[(XP − µP )4]− κ− 1

κ− 3
· σ4

P

)]
≤ 1

100

with κ number of samples. If two intervals (for M and N) are disjoint, we can

distinguish two distribution with the probability ≥
(

99
100

)2
. More precisely, when

κ ≥ 100 · (p(λ) ·
√
q(λ) + p(λ) ·

√
r(λ)) that is poly(λ), we can distinguish two

random variables with probability more than or equal to
(

99
100

)2
since σ2

M +

10σ2
M ·

√
1

κ
·
(
E[(XM−µM)4]

σ4
M

− κ−1
κ−3

)
< σ2

N − 10σ2
N ·
√

1

κ
·
(
E[(XN−µN )4]

σ4
N

− κ−1
κ−3

)
holds. ut

4 Cryptanalysis of CVW Obfuscation

In this section, we briefly describe the construction of CVW obfuscation scheme
and show that the statistical zeroizing attack works well for CVW obfuscation.

4.1 Construction of CVW Obfuscation

Chen, Vaikuntanathan and Wee proposed a new candidate of iO which is robust
against all existing attacks. We here give a brief description of the candidate
scheme. For more details, we refer to original paper [10].
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First, we start with the description of BPs they used. The authors use single-
input binary BPs, i.e., inp = inp1. They employ a new function, called an input-
to-index map ω̄: {0, 1}` → {0, 1}h such that ω̄(x)i = xinp(i) for all i ∈ [h],

x ∈ {0, 1}`. As used in the paper [10], we denote the
∏h
i=1 Mi,ω̄(x)i by Mω̄(x) or

simply Mx. We sometimes abuse the notion Mi,xi to denote Mi,ω̄(x)i .
A target BP P = {inp, {Pi,b}i∈[h],b∈{0,1},P0,P1}, which is called Type I BP

in the original paper, satisfies the following conditions.

1. All the matrices Pi,b are w × w matrices.
2. For a vector v = 11×w, the target sets P0,P1 satisfies v · P0 = {01×w},

v · P1 6= {01×w}.4
3. An index length h is set to (λ+ 1) · ` with the security parameter λ.
4. An index-to-input function satisfies inp(i) = (i mod `). Thus, index-to-input

function iterates λ+ 1 times.

Construction. CVW obfuscation is a probabilistic polynomial time algorithm
which takes as input a BP P with an input length `, and outputs an obfuscated
program preserving the functionality. The algorithm process consists of the fol-
lowing steps. Here we use new parameters n,m, q, t := (w + 2n`) · n, σ for the
construction. We will specify the parameter settings later.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (11×2` ⊗
In×n) ·Rx′ · (12`×1 ⊗ In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h.

More precisely, Ri,b is a block diagonal matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ).

Each R
(k)
i,b ∈ Z2n×2n is one of the following three cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1} and compute

J := (11×(w+2n`) ⊗ In×n) ∈ Zn×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := (1(w+2n`)×1 ⊗ In×n) ∈ Zt×n

4 As noted in the remark of introduction, it is assumed implicitly that v = 11×w for
the targeted BP, while the definition of Type I BP uses v ∈ {0, 1}1×w.
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• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zn×nq ),

{Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1} and {Eh,b ← Dt×nZ,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

Evaluation. Evaluation process consists of two steps. The first step is to com-
pute a matrix AJ · Dω̄(x) mod q. The last step is size comparison: If ‖AJ ·
Dω̄(x) mod q‖∞ ≤ B, output 0 for some fixed B. Otherwise, output 1.

Parameters. Let λ and λLWE for the security parameters of obfuscation itself
and underlying LWE problem satisfying λLWE = poly(λ) and the following
constraints. Set n = Ω(λLWE log q) and χ = DZ,2

√
λLWE

. Moreover, for the

trapdoor functionality, m = Ω(t log q) and σ = Ω(
√
t log q) for t = (w+ 2n`) ·n.

B ≥ (w+2n`) ·h · (m ·σ2
√
n(w + 2n`)σ)h and q = B ·ω(poly(λ)) for correctness,

and q ≤ (σ/λLWE) · 2λ
1−ε
LWE for a fixed ε ∈ (0, 1) for security. For more details,

we refer readers to the original paper [10].

Remark 1. The original paper [10] only uses one security parameter λ, but the
correctness does not hold in that setting. Instead, the trick that uses two security
parameters λ and λLWE resolves this problem as in [4].

Zerotest Functionality. From the construction of the obfuscation, the follow-
ing equality always holds, which is essentially what we need.

[AJ ·Dω̄(x)]q =

J ·

(
h∏
i=1

Ŝi,xi

)
·Ah + J ·

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

The honest evaluation with Px = 0w×w gives Ŝx = 0t×t due to the con-
struction of Ri,b is zero for the valid evaluation. Then, the following inequality
holds:

‖[AJ ·Dω̄(x)]q‖∞ =

∥∥∥∥∥∥
J ·

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

∥∥∥∥∥∥
∞

(1)

≤

∥∥∥∥∥∥J ·
h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk

∥∥∥∥∥∥
∞

(2)

≤ h ·
(

max
i,b
‖Ŝi,b‖ · σ ·m

)h
≤ B (3)

13



for all but negligible probability due to the choice of B. If Px is not the zero
matrix, then Ŝx is also not the zero matrix with overwhelming probability. It
implies that ‖[AJ ·Dω̄(x)]q‖∞ is larger than B with overwhelming probability
because of Ah ← U(Zn×nq ).

4.2 Cryptanalysis of CVW Obfuscation

We apply the statistical zeroizing attack to the CVW obfuscation. As stated in
Section 3, it is enough to show that the conditions of Proposition 3.1 hold. We
only consider small variance σ2 so that σ = poly(λ), and sufficiently large `.5

This includes the optimal parameter choice as well.
Our targeted two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and

N = {Ni,b}i∈[h],b∈{0,1} are of the form

Mi,b = 0w×w for all i, b and Ni,b =

{
1w×w if i = 1

0w×w otherwise
.

Suppose that we have an obfuscated program O(P) for P = M or P = N. Our
goal is to determine whether the program O(P) is an obfuscation of M or N.

By the standard hybrid argument, it suffices to distinguish the distributions
DM or DN where DM and DN is the distributions of the (1,1) entry of evalua-
tion at a fixed vector x of the obfuscated program of M or N, respectively. To
exploit Proposition 3.1, we transform the CVW construction into the language
of random variables. We denote the random matrix by the capital italic words
whose entry follows a distribution that corresponds to the distribution of entry
of the bold matrix. For example, the entry of random matrix Ei,b follows the
distribution DZ,σ since the matrix Ei,b is chosen from Dt×mZ,σ in the CVW con-

struction. More precisely, we define random matrices R̃
(k)
i,b following Dn×nZ,σ , Si,b

following Dn×nZ,σ and Ai as in the trapdoor sampling algorithm. Then we obtain

random matrices Ŝ
(P)
i,b , R

(P)
i,b , E

(P)
i,b and D

(P)
i,b as in the construction of CVW

obfuscation for the branching programs P = M or N. We note that only Ŝ
(P)
i,b

and D
(P)
i,b depend on the choice of branching program, but we put P in some

other random variables for convenience of distinction.
Under this setting, it suffices to show the following proposition.

Proposition 4.1 For a security parameter λ, fix the Gaussian variance param-
eter σ = poly(λ). Then, there are two functionally equivalent branching programs
M and N with sufficiently large input length ` satisfying the following statement:
let ZM and ZN be random variables satisfying

ZM =

[(
J ·A0 ·D (M)

ω̄(x)

)
(1,1)

]
q

, ZN =

[(
J ·A0 ·D (N)

ω̄(x)

)
(1,1)

]
q

5 Indeed, the attack requires the condition σ4 < m`/n`+1.
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where every random matrix is defined as the above. Let µM and µN, σ2
M and

σ2
N be mean and variance of the random variables of ZM and ZN, respectively.

Then, it holds that∣∣∣∣max(σ2
N , σ

2
M )

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣E[(ZN − µN)4]

σ4
N

∣∣∣∣ ≤ q(λ), and

∣∣∣∣E[(ZM − µM)4]

σ4
M

∣∣∣∣ ≤ q(λ).

for some p, q = poly(λ) under Assumption 1.

We remark that since the random matrices D’s are dependent each other, we
need to assume the statistical property for verifying conditions of Proposition 4.1
as follows.

Assumption 1 For an integer 0 ≤ k ≤ h− 2 and P = M or N, let D̂
(P)
k be a

random matrix such that D̂
(P)
k =

∏h
i=k+2 D

(P)
i , where D

(P)
i is the random matrix

which follows a distribution corresponding preimage-sampled matrix D
(P)
i . Then,

the following equations hold

1. the variance is approximated by the same one assumed that D’s are indepen-
dent Gaussian, that is, it holds that

V ar[D̂
(P)
k ] = Θ

(
mh−k−2(σ2)h−k−1

)
.

2. the kurtosis is bounded by constant, that is, it holds that

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

= O(poly(λ)).

We experimentally verify this assumption using the implementation of GGH15
BP obfuscation by Halevi et al. [22]. More detailed experimental results are
presented in Appendix C. We remark that if we assume that D ’s are independent
matrices that have discrete Gaussian entry with the variance σ2, the following
computations hold:

– the variance of D̂
(P)
k is exactly mh−k−2 · (σ2)h−k−1, and

– the kurtosis of D̂
(P)
k is 3 · (1 + 2/m)h−k = Θ(1).

The honest evaluation of the CVW obfuscation [AJ ·D(P)
ω̄(x)]q is the matrix

of the form

J ·
h−1∑
j=0

( j∏
i=1

Ŝi,xi

)
·Ej+1,xj+1

·
h∏

k=j+2

D
(P)
k,xk

 ,

which does not contain the term including the trapdoor matrices Ai for i =
0, · · · , h − 1. Thus, to establish the statistical properties including variance in
Proposition 4.1, it suffices to analyze the statistical properties of the random

matrices Ŝ
(P)
i,b , E

(P)
i,b , D

(P)
i,b and their products.
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By the definition of ZP with P = M or P = N, it is rewritten as

ZP = J ·
h−1∑
j=0

( j∏
i=1

Ŝi,xi

)
· Ej+1,xj+1

·
h∏

k=j+2

D
(P)
k,xk

 .

Now we give the lemmas to prove Proposition 4.1. The proofs of lemmas are
placed in Appendix E and sub-lemmas in Appendix D. The proof of Proposi-
tion 4.1 using the lemmas is placed in the concluding part of this section.

For the convenience of the statement, let (Z
(M)
1,1 )j be random variables of

(1, 1)-th entry of the random matrices

J ·
j∏
i=1

Ŝ
(M)
i · E (M)

j+1 ·
h∏

k=j+2

D
(M)
k

for j = 0, 1, · · · , h − 1. In this notation, ZM is the summation of (Z
(M)
1,1 )j for

j ∈ {0, 1, · · · , h − 1}. Similarly, we define (Z
(N)
1,1 )j for all j = 0, · · · , h − 1. We

employ additional notations constants c, d and (possibly polynomial) c0 such
that for all 0 ≤ k ≤ h− 2,

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We remark that variances of many terms for M and N are exactly the same
since the only D1, Ŝ1 are different and the different terms in products of Ŝ are
canceled for j ≥ 2. Note that most of lemmas hold under Assumption 1, but we
omit this repeated statement under Assumption 1 for brevity.

Lemma 4.2 E[(Z
(M)
1,1 )j ] = E[(Z

(N)
1,1 )j ] = 0 for all j = 0, · · · , h− 1.

Lemma 4.3 E[(Z
(M)
1,1 )µ1

· (Z(M)
1,1 )µ2

] = E[(Z
(N)
1,1 )µ1

· (Z(N)
1,1 )µ2

] = 0 for µ1 6= µ2.

Lemma 4.4 (j = 0) It holds that

V ar[(Z
(M)
1,1 )0] = V ar[(Z

(N)
1,1 )0] = Θ

(
(w + 2n`) ·mh−1 · σ2h

)
and∣∣∣∣∣ E[(Z

(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

0]

V ar[(Z
(N)
1,1 )0]2

∣∣∣∣∣ ≤ 3c0 · (w + 2n`)2 ·m2 ·
(
d

c

)2

= poly(λ).

Lemma 4.5 (j = 1) It holds that

V ar[(Z
(M)
1,1 )1] = Θ

((
n3σ2 + (2`− 1) · n2

)
·mh−2(σ2)h

)
,

V ar[(Z
(N)
1,1 )1] = Θ

(
w3 · n ·mh−2(σ2)h

)
+ V ar[(Z

(M)
1,1 )1]∣∣∣∣∣ E[(Z

(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4n2m2 ·
(
d

c

)2

= poly(λ).
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Lemma 4.6 (1 < j ≤ λ · `) Let j be a fixed integer with j = ` · j1 + j2 > 1 for
0 ≤ j2 < ` and 2 ≤ j ≤ λ · `. Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

= Θ
((
j2n

j+j1+2(σ2)j1+1 + (`− j2)nj+j1+1(σ2)j1 + `nj+1
)
mh−j−1(σ2)h

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0(w + 2n`)4n2m2

(
1 +

2

n

)j1+j−1(
d

c

)2

= poly(λ).

Lemma 4.7 (j > λ · `)) Let j be a fixed integer with j = ` · j1 + j2 > 1 for
0 ≤ j2 < ` and j > λ · `. Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

= Θ
((

(`+ j2) · nλ+j+1 · (σ2)λ + (`− j2) · nj+1
)
·mh−j−1 · (σ2)h

)
.

In addition, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0(w + 2n`)4n2m2

(
1 +

2

n

)λ+j−2(
d

c

)2

= poly(λ).

Now we give a proof of the proposition 4.1 using above lemmas.

Proof (of Proposition 4.1). Fix ` be a sufficiently large so that σ4 < m`/n`+1

and choose BP M and N as the given in the first page of this section. These two
branching programs have the same functionality and length.

Using the results of lemmas, we can prove the proposition by analyzing the
summation of random matrices. We first verify the results for ZM. The similar
result holds for ZN since the bounds of lemmas are almost same.

From Lemma 4.2, 4.3 and the definition of ZM, we have

V ar[ZM] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

2

 = E

h−1∑
j=0

(Z
(M)
1,1 )2

j

 =

h−1∑
j=0

V ar[(Z
(M)
1,1 )j ].

On the other hands, applying to the Cauchy-Schwarz inequality, it also holds

E[Z4
M] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

4

 ≤ E
h3 · (

h−1∑
j=0

(Z
(M)
1,1 )4

j )

 .
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When dividing both sides by V ar[ZM]2, we obtain the inequality∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[h3 · (

∑h−1
j=0 (Z

(M)
1,1 )4

j )]

V ar[ZM]2

∣∣∣∣∣ = h3 ·

∣∣∣∣∣E[
∑h−1
j=0 (Z

(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣
= h3 ·

h−1∑
j=0

∣∣∣∣∣E[(Z
(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣ ≤ h3 ·
h−1∑
j=0

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ .
By Lemma 4.4,4.5,4.6 and 4.7,

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ is bounded by poly(λ) for all

j = 0, 1, · · · , h− 1. Therefore, the following inequality holds.∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤ poly(λ) =: q(λ)

The same holds for N as well.
Moreover, V ar[ZN] − V ar[ZM] = Θ

(
w3 · n ·mh−2(σ2)h

)
holds by Lemma

4.5. Then the values
∣∣∣V ar[(Z (M)

1,1 )j ]/(V ar[ZN]− V ar[ZM])
∣∣∣ is bounded by poly(λ)

for every j since σ4 < m`/n`+1. This implies the first condition also holds. ut

Remark 2. In the original paper [10], the authors give two different choice of
the distributions of Ei,b; DZ,σ with corresponding dimension in Section 11, and
χ = DZ,2

√
λLWE

with appropriate dimension in Section 5. This paper focus on
DZ,σ but the result still holds for χ = DZ,2

√
λLWE

with slight modification.

5 Cryptanalysis of BGMZ Obfuscation

In this section, we briefly review the BGMZ obfuscation and apply the statistical
zeroizing attack on BGMZ obfuscation for exponentially large variance σ. Note
that the security proof of BGMZ obfuscation under GGH15 zeroizing model
(and underlying BPUA assumption) is independent of the parameter σ, so our
attack implies that the algebraic security proof is not enough to achieve the ideal
security of iO.

5.1 Construction of BGMZ Obfuscation

Bartusek et al. proposed a new candidate of iO which is provably secure in the
GGH15 zeroizing model. We briefly review the construction of this scheme. For
more detail, we refer to the original paper [4].

We start with the conditions of BP they used. The authors use a dual-input
binary BP’s. i.e., inp(i) = (inp1(i), inp2(i)). For simplicity, they use the notation
x(i) = (xinp1(i), xinp2(i)). Moreover, they employ the new parameter η = poly(`, λ)
with η ≥ `4 which decides the minimum number of the BP layer for the security
parameter λ and input length `.

The targeted BP P also satisfies the following conditions.
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1. All the matrices {Pi,b}i∈[h],b∈{0,1}2 are w × w matrices.

2.
∏h
i=1 Pi,x(i) = 0w×w.

3. Each pair of input bits (j, k) is read in at least 4`2 different layers of branch-
ing program.

4. There exist layers i1 < i2 < · · · < iη such that inp1(i1), · · · , inp1(iη) cycles
η/` times through [`].

To obfuscate a branching program that does not satisfy the condition 3 or 4,
one pads the identity matrices to satisfy the conditions while preserving the
functionality.

Remark 3. The original construction consider the straddling set and asymmetric
level structures to prohibit invalid evaluations. The description below omitted
them because our attack only exploits the valid evaluations whose results are
the same regardless of them.

Construction. BGMZ obfuscation is a probabilistic polynomial time algorithm
which takes as input a BP P with a length h, and outputs an obfuscated program
with the same functionality. We use several parameter such as n,m, q, t := (w+
1) ·n, σ, ν, g in the construction. We will describe the setting for new parameters
such as g, ν later.

The obfuscation procedure consists of the following steps.

• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zt×mq ),
{Ei,b ← χt×m}i∈[h−1],b∈{0,1}2 and Eh ← χt×m where t := (w + 1) · n.

• Sample matrices Bi,b ∈ Zg×gν and invertible matrices Ri ∈ Z(m+g)×(m+g)
q

randomly.
• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h−1],b∈{0,1}2 and a final encoding Dh as

Dh ∈ Zm×m ← Sample(Ah−1, τh−1,

(
Iwn×wn

0n×n

)
·Ah + Eh, σ),

and compute bookend vectors v and w as

v = [v′ · J ·A0 | bv] ·R1,

Ŝi,b :=

(
Pi,b ⊗ Si,b

Si,b

)
∈ Zt×t

wT = R−1
h ·

(
Dh ·w′T

bTw

)
where v′ ← DnZ,σ, w′ ← DmZ,σ, bv,bw ← U(Zkν) and J := [J′|In×n] with a

randomly chosen matrix J′ ← {0, 1}n×wn.
• Compute matrices

Di, ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) with 1 ≤ i ≤ h− 1,

and Ci,b = R−1
i ·

(
Di,b

Bi,b

)
·Ri+1 with i = 1, · · · , h− 1.
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Evaluation. Outputs 0 if |v ·
∏h−1
i=1 Ci,x(i) ·wT | ≤ B. Otherwise, outputs 1.

Parameters. We first consider several security parameters. Let λ and λLWE =
poly(λ) be security parameters depending on the obfuscation itself and the hard-
ness of LWE satisfying following constraints, respectively. Set n = Ω(λLWE log q),
χ = DZ,s with s = Ω(

√
n). Moreover, for the trapdoor functionality, we set

m = Ω(t log q) and σ = Ω(
√
t log q). In addition, they use parameters g = 5 and

ν = 2λ. For correctness we set zerotest bound B = (m ·β ·σ ·
√
t)h+1 + (k · ν)h+1

and B · ω(poly(λ)) ≤ q ≤ (σ/λLWE) · 2λ
1−ε
LWE for some fixed ε ∈ (0, 1). For more

detail we refer readers to the original paper [4].

Zerotest Functionality. From the construction of obfuscation, the following
equality always holds if C :=

∏h−1
i=1 Ci,x(i) is an encoding of zero computed by

honest evaluation.

‖[v ·C ·wT ]q‖∞

=

∥∥∥∥∥∥
v′ · J ·

h∑
j=1

((

j−1∏
i=1

Ŝi,x(i)) ·Ej,x(j) ·
h∏

k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw


q

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥v′ · J ·
h∑
j=1

((

j−1∏
i=1

Ŝi,x(i)) ·Ej,x(j) ·
h∏

k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw

∥∥∥∥∥∥
∞

≤ σ2 ·m2 · (m · β · σ ·
√
t)h−1 + (k · ν)h+1

Since ‖[v ·C ·wT ]q‖∞ is bounded by σ2 ·m2 ·(m ·β ·σ ·
√
t)h−1 +(k ·ν)h+1 ≤ B

for all but negligible probability. Moreover, if
∏h
i=1 Pi,x(i) is a nonzero matrix,

then
∏h
i=1 Ŝi,x(i) is also nonzero matrix. Thus, ‖[v ·C ·wT ]q‖∞ is larger than B

with overwhelming probability because of Ah ← U(Zt×mq ).

5.2 Cryptanalysis of BGMZ Obfuscation

In this section, we analyze the conditions for the statistical zeroizing attack on
the BGMZ obfuscation when we assume σ ≥ ν = 2λ. (More precisely, the same
result holds when σ2 ≥ ν2g/12m.). As in Section 4.2, the notation written in
the capital italic words are regarded as the random matrix whose entry follows
a distribution that corresponds to the distribution of entry of the bold-written
matrix.

The targeted BPs are M = {Mi,b}i∈[h],b∈{0,1}2 and N = {Ni,b}i∈[h],b∈{0,1}2

such that

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1

0w×w otherwise
.

Note that two branching programs always output zero. Now we suppose that
we have polynomially many samples from the one of two distributions DM and
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DN, where DM and DN are the distributions of the evaluations of obfuscations
of M and N.

Then our purpose is to distinguish whether the samples come from DM or

DN by Proposition 3.1. We obtain random matrices S
(P)
i,b , E

(P)
i,b , D

(P)
i,b and C

(P)
i,b

as in the construction of BGMZ obfuscation for branching programs P = M or
N. Thus, it suffices to prove the following proposition.

Proposition 5.1 Let λ be a security parameter and σ the Gaussian variance
parameter satisfying σ2 ≥ ν2g/12m for parameters m, ν and g of BGMZ obfus-
cation. Then, there are two functionally equivalent branching programs M and N
satisfying the following statement: let ZM and ZN be random variables satisfying

ZM =

[
v ·

h−1∏
i=1

C
(M)
i,x(i) · w

T

]
q

and ZN =

[
v ·

h−1∏
i=1

C
(N)
i,x(i) · w

T

]
q

.

where every random matrix is defined as the above. Let µM and µN, σ2
M and

σ2
N be mean and variance of the random variables of ZM and ZN, respectively.

Then, it holds that∣∣∣∣max(σ2
N , σ

2
M )

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣E[(ZN − µN)4]

σ4
N

∣∣∣∣ ≤ q(λ), and

∣∣∣∣E[(ZM − µM)4]

σ4
M

∣∣∣∣ ≤ q(λ).

for some p, q = poly(λ) under Assumption 1.

Note that Assumption 1 (for BGMZ obfuscation) is also needed to verify the

proposition. With the honest evaluation
[
v ·
∏h−1
i=1 Ci,x(i) ·wT

]
q

of the BGMZ

obfuscation, we obtain the integer of the form

v′ · J
h∑
j=1

((

j−1∏
i=1

Ŝi,x(i))Ej,x(j)

h∏
k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw

which does not contain the term including trapdoor matrices Ai’s. Thus, simi-
larly to the CVW obfuscation case, we need to analyze the statistical properties

of the random vectors v ′(P),w ′(P), b
(P)
v , b

(P)
w and random matrices Ŝ

(P)
i,b , E

(P)
i,b ,

D
(P)
i,b and their products to prove the statistical properties including the variance

in Proposition 5.1.
The proof of Proposition 5.1 is based on the following lemmas and placed in

the concluding part of this section. All proofs of these lemmas are in Appendix F.
Note that most lemmas in this section also hold under Assumption 1 as the
section 4.2, so we omit repeated under Assumption 1 in statements. Notations
c0, c, and d are similarly defined as Section 4.

For j = 0, 1, · · · , h− 1, let (Z (M))j be a random variable of the form

v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,x(i) · E

(M)
j+1,x(j+1) ·

h∏
k=j+2

D
(M)
k,x(k) · w

′(M)T ,
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and for j = h, (Z (M))h a random variable of the form

b(M)
v ·

h−1∏
i=1

B
(M)
i,x(i) · b

(M)T

w .

We similarly define (Z (N))j for j = 0, 1, · · · , h, and ZP =
∑h
i=0(Z (P))j for

P = M and N.

Lemma 5.2 E[(Z (M))j ] = E[(Z (N))j ] = 0 for all j = 0, 1, · · · , h.

Lemma 5.3 E[(Z (M))µ1 · (Z (M))µ2 ] = E[(Z (N))µ1 · (Z (N))µ2 ] = 0 for µ1 6= µ2.

Lemma 5.4 (j = 0) It holds that

V ar[(Z (M))0] = V ar[(Z (N))0] = Θ
(
wn ·mh · (σ2)h+1 · s2

)
,∣∣∣∣ E[(Z (M))4

0]

V ar[(Z (M))0]2

∣∣∣∣ , ∣∣∣∣ E[(Z (N))4
0]

V ar[(Z (N))0]2

∣∣∣∣ ≤ 108c0(w + 1)2 · n2m4 ·
(
d

c

)2

= poly(λ).

Lemma 5.5 (j = 1) It holds that

V ar[(Z (M))1] = Θ
(
n2mh−1 · (σ2)h+1 · s2

)
,

V ar[(Z (N))1] = Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
+ V ar[(Z (M))1]

Moreover, it holds that∣∣∣∣ E[(Z (M))4
1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81c0 · n4m4 ·
(
d

c

)2

= poly(λ),∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324c0(w + 1)2 · n6m4 ·
(
d

c

)2

= poly(λ).

Lemma 5.6 (2 ≤ j ≤ h− 1) It holds that

V ar[(Z (M))j ] = V ar[(Z (N))j ] = Θ
(
nj+1mh−j · (σ2)h+1 · s2

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z (N))4

j ]

V ar[(Z (N))j ]2

∣∣∣∣∣ ≤ 81c0 · n4m4

(
1 +

2

n

)j−1(
d

c

)2

= poly(λ).

Lemma 5.7 (j = h) It holds that

V ar[(Z (M))h] = V ar[(Z (N))h] = gh ·
{

1

12
· ν(ν + 2)

}h+1

.

Moreover, it holds that

E[(Z (M))4
h], E[(Z (N))4

h] ≤ 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h+1)

.
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Now we give a proof of the proposition 5.1 using the above lemmas.

Proof (of Proposition 5.1). Choose BPs M and N as given in the first page of
this section. They have the same functionality and length.

Note that elements (Z (M))j in the above Lemmas are of the form

(Z (M))j = v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,x(i) · E

(M)
j+1,x(j+1) ·

h∏
k=j+2

D
(M)
k,x(k) · w

′(M)T for j < h

(Z (M))h = b(M)
v ·

h−1∏
i=1

B
(M)
i,x(i) · b

(M)T

w

Let ZM be the summation of (Z (M))j for j ∈ {0, 1, · · · , h}. From Lemma 5.3,
we have

V ar[ZM] = E

[
(

h∑
i=0

(Z (M))i)
2

]
= E

[
h∑
i=0

(Z (M))2
i

]
=

h∑
i=0

V ar[(Z (M))i],

E[Z 4
M] = E

[
(

h∑
i=0

(Z (M))i)
4

]
≤ E

[
(h+ 1)3 · (

h∑
i=0

(Z (M))4
i )

]
.

After dividing both sides by V ar[ZM]2, we obtain the following inequality∣∣∣∣ E[Z 4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[(h+ 1)3 · (

∑h
i=0(Z (M))4

i )]

V ar[ZM]2

∣∣∣∣∣ = (h+ 1)3 ·

∣∣∣∣∣E[
∑h
i=0(Z (M))4

i ]

V ar[ZM]2

∣∣∣∣∣
= (h+ 1)3 ·

h∑
i=0

∣∣∣∣E[(Z (M))4
i ]

V ar[ZM]2

∣∣∣∣
≤ (h+ 1)3 ·

(
h−1∑
i=0

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣+

∣∣∣∣E[(Z (M))4
h]

V ar[ZM]2

∣∣∣∣
)

By Lemma 5.4,5.5, 5.6 and 5.7,

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣ is bounded by poly(λ) for all

i = 0, 1, · · · , h − 1 regardless of P = M or P = N. Since σ2 ≥ ν2g/12m, we
obtain the following upper bound.∣∣∣∣E[(Z (M))4

h]

V ar[ZM]2

∣∣∣∣ ≤ ∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))0]2

∣∣∣∣
= O

(
(g2)4 ·

(
g(g + 2)

m2

)h−2

·
(
ν(ν + 2)

12σ2

)h+1
)

= poly(λ)
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Thus the kurtosis is bounded by polynomial of security parameter λ.
Moreover, by the definition of ZN and ZM and lemmas, we obtain the equal-

ity |σ2
N − σ2

M| = Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
. Using lemmas,

∣∣∣∣max(σ2
N, σ

2
M)

σ2
N − σ2

M

∣∣∣∣ is

bounded by poly(λ). ut
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A Simple GGH15 obfuscation

We briefly describe the construction of single input BP obfuscation based GGH15
without safeguard.

For an index to input function inp : [h]→ [`], let

P =
{
inp, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1},P0 = 0w×w,P1 = Zw×w \ P0

}
be a single input BP.

For parameters w,m, q,B ∈ N and σ ∈ R+, the BP obfuscation based GGH15
consists of the matrices and input function, namely

O(P) =
{
inp,A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}

}
.

In this case, the matrix T in the abstract model is the identity matrix and
S = A0. The output of the obfuscation at x is computed as follows: compute
the matrix A0 ·

∏h
i=1 Di,xinp(i)

mod q and compare its ‖ · ‖∞ to a zerotest bound
B. If it is less than B, outputs zero. Otherwise, outputs 1.

The algorithm to construct an obfuscated program O(P) proceeds as follows:

• Sample matrices (Ai, τi)← TrapSam(1w, 1m, q) for i = 0, 1, · · · , h−1, Ah ←
U(Zw×mq ) and Ei,b ← χw×m where χ is a distribution related to the hardness
of LWE problem.
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• By using the trapdoor τi, sample matrices

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1,Pi,b ·Ai + Ei,b, σ) with 1 ≤ i ≤ h.

• Output matrices {A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}}.

Then, we observe the product O(P)(x) = [A0 ·
∏h
i=1 Di,xinp(i)

]q is equal to

h∏
i=1

Pi,xinp(i)
·Ah +

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


over Zq. If

∏h
i=1 Pi,xinp(i)

= 0w×w, then O(P)(x) can be regarded as a summation
of matrices over integers instead of Zq under the certain choice of parameters as
follows

O(P)(x) =

[
A0 ·

h∏
i=1

Di,xinp(i)

]
q

=

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


since the infinity norm of the above matrix is less than B � q. Note that
the evaluation values only rely on the matrices Pi,b, Ei,b and Di,b. Thus, the
evaluation result depends on the message matrices Pi,b.

Suppose that we have two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1}
and N = {Ni,b}i∈[h],b∈{0,1} satisfies

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1

0w×w otherwise
,

and an obfuscated program O(P). The goal of adversary is to determine whether
P is M or not. For all x ∈ {0, 1}`, the evaluation of the obfuscation is of the
form

O(M)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
and

O(N)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
+ I ·E2,xinp(2)

·
h∏
k=3

Dk,xinp(k)
.

Note that they correspond to the distributions DM and DN for a fixed vector x.
These equations show the difference of two distributions in this case.

B Modified CVW Obfuscation

We give a modification of CVW obfuscation, which can obfuscate the permuta-
tion matrix branching programs. This modification is, as far as we know, robust
against all existing attacks. We first describe the transformation of branching
programs. Then, we describe the modification of CVW obfuscation.
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B.1 Transformation of Branching Programs

We first introduce the transformation from single-input permutation matrix
branching programs to Type I BP. This transformation is applicable to BPs
which outputs 0 when the product of BP matrices is the identity matrix. The
output of transformation is a new branching program that outputs 0 when the
product of BP matrices is the zero matrix. Through this transformation, the
width of branching program is doubled. Note that this is adapted version of [10,
Claim 6.2].

We are given a branching program with input size `

P =
{
{Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, inp : [h]→ [`]

}
where the evaluation of P at x ∈ {0, 1}` is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinp(i)) = Iw

1 otherwise

Then the transformation is done by changing branching program matrices as

P′ =


{

P′i,b =

(
Pi,b 0

0 Iw

)
∈ {0, 1}2w×2w

}
i∈[h],b∈{0,1}

, inp : [h]→ [`]


and the evaluation is similar but uses new vectors v′ = (v|−v) and w′ = (w|w)
for v,w ∈ Zw:

P′(x) =

{
0 if v′ ·

∏h
i=1 P′i,(xinp(i))

·w′T = 0

1 otherwise

We will choose v and w as random Gaussian vectors. Note that the resulting
branching program is also a permutation BP.

B.2 Modification of CVW Obfuscation

We give here how to modify the CVW obfuscation to be applicable to the re-
sulting permutation BPs of the above transform. We also assume that the index
length h = (λ+1) ·` and the index-to-input function satisfies inp(i) = (i mod `)
as in the CVW obfuscation. We also assume that the BP is (λ+ 1)-input repe-
tition BP as in the original construction. The changed parts are written in red.
Note that the targeted BPs have width 2w. Thus we set t := (2w + 2n`) · n.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (11×2` ⊗
In×n) ·Rx′ · (12`×1 ⊗ In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h.
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More precisely, Ri,b is a block diagonal matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ).

Each R
(k)
i,b ∈ Z2n×2n is one of the following three cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1}, bookend vectors v← DwZ,σ and
w← DwZ,σ and compute

J := ((v| − v|11×2n`)⊗ In×n) ∈ Zn×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := ((w|w|11×2n`)T ⊗ In×n) ∈ Zt×n

• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zn×nq ),

{Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1} and {Eh,b ← Dt×nZ,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

We omit the procedure and correctness of evaluation that are almost the same
as the original one.

C Assumptions of lattice preimage sampling

In this section we provide the experimental results of Assumption 1. Our experi-
ments are built upon the preimage sampling algorithm in the [23], an implemen-
tation of BP obfuscation [22].6 The results imply that the variance and kurtosis
move almost the same as one assumed independency, the correctness of attack
only requires much relaxed assumption.

6 We also verify the correctness of the attack itself for [22], but with large entry
BPs. It requires very large number of samples (say 220 but polynomially many) to
verify the attack with binary entry BPs, which is not easy to experiment because
the obfuscation/evaluation of [22] takes long time (say few minutes to obtain one
evaluation).
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Parameters Experiments Expected

#products m log2 σ
2
x log2 S

2 E[X4]/σ4 log2 σ
2

2 2191 34.9 80.8 2.937 80.8

2 2771 35.2 81.4 2.702 81.7

2 3352 35.4 82.4 2.677 82.5

3 2771 35.2 128.7 3.025 128.4

4 3352 35.4 177.0 2.900 176.8

5 3932 35.6 225.9 3.068 225.9

7 5621 36.1 328.1 3.210 327.5

Table 1. Experiment results on statistical value of preimage sampling. #products
stands for the number of producted preimage matrices, σ2

x the variance of preimage
sampling, S2 the sample variance, E[X4]/σ4 the sample kurtosis and σ2 the expected
variance. Every experiment is done using 100 samples. The expected variance is com-
puted under the assumption on independency of D’s. Every expected kurtosis assuming
independency of D’s is about 3.

D Useful Tools for Computing the Variances

We introduce useful lemmas to help our computation. We note that we consider
the random matrix A whose entries are independent.

Lemma D.1 Let A = (Ai,j) be a n× n random matrix where Ai,t and Aj,t are
independent for every 1 ≤ i < j ≤ n and 1 ≤ t ≤ n. and X = [X1, X2, · · · , Xn]
a n-dimensional random vector which is independent to A. Assume that the
following conditions for all distinct i, j, k, l ∈ [n]:

E[Xi] = 0, E[Xi ·Xj ] = 0, E[X3
i ·Xj ] = 0,

E[X2
i ·Xj ·Xk] = 0, and E[Xi ·Xj ·Xk ·Xl] = 0.

Then, a n-dimensional random vector Y = [Y1, Y2, · · · , Yn] = A ·X also satisfies
the similar constraints

E[Yi] = 0, E[Yi · Yj ] = 0, E[Y 3
i · Yj ] = 0,

E[Y 2
i · Yj · Yk] = 0, and E[Yi · Yj · Yk · Yl] = 0.

for all distinct i, j, k, l ∈ [n].

Proof.

E[Yi · Yj ] = E

[
n∑
t=1

n∑
s=1

Ai,t ·Xt ·Aj,s ·Xs

]

=

n∑
t=1

n∑
s=1

E[Ai,t ·Xt ·Aj,s ·Xs]
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=
∑

1≤t,s≤n,t6=s

E[Ai,t ·Aj,s] · E[Xt ·Xs] +

n∑
t=1

E[Ai,t] · E[Aj,t] · E[Xt ·Xt]

= 0

ut

Lemma D.2 Let {Ai = (Aj,ki )}1≤i≤t be n× n random matrices where

• Aj,ki follow Gaussian distribution DZ,σ for all 1 ≤ j, k ≤ n and 1 ≤ i ≤ t,
• Aj,si and Ak,si are independent for every 1 ≤ j < k ≤ n, 1 ≤ s ≤ n and

1 ≤ i ≤ t,
• Ai1,j11 , · · · , Ait,jtt are mutually (entrywise) independent for every 1 ≤ ik, jk ≤
n for all k

and X = (Xi,j) =
∏t
k=1 Ak n × n random matrix. For all i, j, k ∈ [n], it holds

that

E[Xi,j ] = 0, V ar[Xi,j ] = nt−1 · (σ2)t,

E[X4
i,j ] = 3 (n(n+ 2))

t−1 · (σ2)2t,

E[X2
i,j ·X2

k,j ] = (n(n+ 2))
t−1 · (σ2)2t

Proof. We apply mathematical induction on t. For t = 1, it is clear because of
the property of Gaussian distribution.

We assume that the equations hold when t = s and will show that the same

results hold for t = s + 1. Let X ′ =

s∏
i=1

Ai and Y = As+1 · X ′. Note that all

entries of Ai follow Gaussian distribution DZ,σ satisfy the same condition of the

lemma. We denote As+1 = (Ai,j) for brevity and Yi,j =

n∑
k=1

Ai,k ·Xk,j . Note that

the results of Lemma D.1 holds for every column of X, which can be shown in
the inductively applying Lemma D.1.

1. E[Yi,j ] = 0 is clear.

2. Since E[Yi,j ] = 0, V ar[Yi,j ] is the same to E[Y 2
i,j ]. Note that we can obtain

E[Xk,j · Xl,j ] = 0 and for k 6= l by applying Lemma D.1 inductively, thus
E[Ai,k ·Xk,j · Ai,l ·Xl,j ] = E[Ai,k · Ai,l] · E[Xk,j ·Xl,j ] = 0 also holds. Now
we obtain

V ar[Yi,j ] = E[Y 2
i,j ] = E

[
(

n∑
k=1

Ai,k ·Xk,j)
2

]

= E

[
n∑
k=1

A2
i,k ·X2

k,j

]
=

n∑
k=1

E[A2
i,k] · E[X2

k,j ]

= n · σ2 · ns−1 · (σ2)s = ns · (σ2)s+1

The last equality holds by the inductive hypothesis.
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3. Note that E[Y 4
i,j ] = E[(

∑n
k=1Ai,k ·Xk,j)

4]. It holds that, for k 6= l,

E[(Ai,k ·Xk,j)
3 · (Ai,l ·Xl,j)] = E[A3

i,k ·Ai,l] · E[X3
k,j ·Xl,j ] = 0

E[(Ai,k ·Xk,j)
2 · (Ai,l ·Xl,j) · (Ai,m ·Xm,j)] = 0

E[(Ai,k ·Xk,j) · (Ai,l ·Xl,j) · (Ai,m ·Xm,j) · (Ai,u ·Xu,j)] = 0

for all for all distinct k, l,m, u ∈ {1, · · · , n}. By the induction hypothesis, it
holds that

E[A4
i,k ·X4

k,j ] = E[A4
i,k] · E[X4

k,j ] = 3σ4 · 3(n(n+ 2))s−1 · (σ2)2s.

Therefore, we conclude that

E[(

n∑
k=1

Ai,k ·Xk,j)
4] = 3(n(n+ 2))s · (σ2)2(s+1).

4. Note that E[Y 2
i,j ·Y 2

k,j ] = E[(
∑n
m=1Ai,m ·Xm,j)

2 · (
∑n
u=1Ak,u ·Xu,j)

2]. Then
we obtain the similar result as follows:

E[(

n∑
m=1

Ai,m ·Xm,j)
2 · (

n∑
u=1

Ai,u ·Xu,j)
2] = E

[
(

n∑
m=1

A2
i,m ·X2

m,j) · (
n∑
u=1

A2
k,u ·X2

u,j)

]

=

n∑
u=1

n∑
m=1

E[A2
i,m ·A2

k,u] · E[X2
m,j ·X2

u,j ] = (n(n+ 2))
s · (σ2)2(s+1).

ut

Lemma D.3 Let A = (Ai,j) be a n × m random matrix whose entries sat-
isfy E[Ai,j ] = 0, E[A2

i,j ] = σ2
1 and E[A4

i,j ] ≤ Cσ4
1 for all i ∈ [n], j ∈ [m]

with some constant C, where the entries of A need not to be independent. Let
v = [v1, · · · , vn] and w = [w1, · · · , wm] be n-dimensional random vectors whose
entries are mutually independent and follow the Gaussian distribution DZ,σ2

. If
the entries of A are independent to the entries of v and w, then Y = v ·A · wT

satisfies the following condition:

E[Y ] = 0, E[Y 2] = nm · σ2
1 · σ4

2 , E[Y 4] ≤ (nm)4 · (Cσ4
1) · (3σ4

2)2.

Proof. Note that Y =
m∑
j=1

n∑
i=1

vi ·Ai,j · wj .

1. E[Y ] = E[

m∑
j=1

n∑
i=1

vi ·Ai,j · wj ] =

m∑
j=1

n∑
i=1

E[vi]E[Ai,j ]E[wj ] = 0.

2. For all i, k ∈ [n], j, l ∈ [m] satisfy (i, j) 6= (k, l), E[(vi·Ai,j ·wj)·(vk·Ak,l·wl)] =
E[vi ·vk]E[Ai,j ·Ak,l]E[wj ·wl] = 0 since one of E[vi ·vk] or E[wj ·wl] is zero.
Then it holds that

E[Y 2] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)2] = E[

m∑
j=1

n∑
i=1

v2
i ·A2

i,j · w2
j ]
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=

m∑
j=1

n∑
i=1

E[v2
i ]E[A2

i,j ]E[w2
j ] = nm · σ2

1 · σ4
2 .

3. By the Cauchy-Schwarz Inequality, it holds

E[Y 4] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)4] ≤ E[(nm)3 · (
m∑
j=1

n∑
i=1

v4
i ·A4

i,j · w4
j )]

= (nm)3 ·
m∑
j=1

n∑
i=1

E[v4
i ]E[A4

i,j ]E[w4
j ] ≤ (nm)4 · (Cσ4

1) · (3σ4
2)2.

ut

E Analysis of CVW Obfuscation

In this seciton, we describe how to prove the Lemmas in Section 4.2. We use the
same notation as in Section 4. We re-use or abuse the some notations for the
different proof for the convenience of the writing. Fix a x satisfyingO(P)(x) = 0.

Note that the appeared random matrices are of the form

(Z
(P)
1,1 )j = J ·

j∏
i=1

Ŝ
(P)
i,xi
· E (P)

j+1,xj+1
·

h∏
k=j+2

D
(P)
k,xk

,

where all random matrices included in (Z
(P)
1,1 )j for each j are mutually indepen-

dent except the matrices D’s. Thus, we are only need to carefully deal with the
product of preimage sampled matrices D ’s to compute sample variances for each
j. This issue is resolved assuming the variance of products of D ’s and bounds of
their kurtosises.

More precisely, by the Assumption 1, a product of the random matrices

D̂
(P)
j =

∏h
i=j+2 D

(P)
i has the variance Θ(mh−j−2(σ2)h−j−1) and its kurtosis

is bounded by O(poly(λ)). We denote (possibly polynomial) c0 by the bound of

kurtosises in Assumption 1, and c and d the lower and upper bound of V ar[D̂
(P)
k ]

for all k, respectively. In other words, it holds that for all k

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We also remark that all distributions corresponding to random variables ap-

peared in lemmas except
(
Z

(P)
1,1

)
1

are the same as regardless of the choice of

P = M or N, because the matrices of branching programs are all zero except
the first matrix. Thus we consider the choice of the branching program only in

Lemma 4.5, which discusses the random variable
(
Z

(P)
1,1

)
1
.

Proof (of Lemma 4.2 and 4.3). We assume that µ1 < µ2 and it is enough to show

the result for M. Note that the random matrix E
(M)
j is only (possibly) dependent
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to D
(M)
j and the random variables (Z

(M)
1,1 )µ1

and (Z
(M)
1,1 )µ2

do not contain such

random variables at the same time. In addition, (Z
(M)
1,1 )µ1 and (Z

(M)
1,1 )µ2 both

contain the random matrix E
(M)
µ1+1 whose expectation of each entry is zero. Thus,

we obtain the desired result.
Similarly, when we express (Z

(M)
1,1 )µ1

· (Z(M)
1,1 )µ2

into the polynomials of ran-

dom variables, then every monomial includes one entry of E
(M)
µ1+1 and does not

include the entries of D
(M)
µ1+1. Since the expectation of every entry of E

(M)
µ1+1 is

zero, it completes proof. ut
Proof (of Lemma 4.4). As stated above, it suffice to show the result for M. We

define X
(M)
u,v , Y

(M)
u,v and (Z

(N)
u,v )0 be random variables of the (u, v)-th entry of

the random matrix
∏h
k=2 D

(M)
k,xk

, E
(M)
1,x1
·
∏h
k=2 D

(M)
k,xk

and J · E (M)
1,x1
·
∏h
k=2 D

(M)
k,xk

,
respectively.

Then, for all u ∈ [t], v ∈ [n], all random variables X
(M)
u,v have the variance

Θ(mh−2(σ2)h−1) by Assumption 1. Moreover, it holds that E[X
(M)
u,v ] = 0 and

E[X
(M)
u,v

4
]

V ar[X
(M)
u,v ]2

≤ c0 by Assumption 1.

Let E
(M)
u,v be the random variables of (u, v)-th entry of the random matrix

E
(M)
1,x1

. Then we can compute variance and kurtosis of Y
(M)
u,v .

E[Y (M)
u,v ] = E[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ] =

m∑
i=1

E[E
(M)
u,i ] · E[X

(M)
i,v ] = 0,

E[Y (M)
u,v · Y

(M)
u′,v ] = E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ) · (

m∑
j=1

E
(M)
u′,j ·X

(M)
j,v )]

=

m∑
i=1

m∑
j=1

E[E
(M)
u,i · E

(M)
u′,j ] · E[X

(M)
i,v ·X

(M)
j,v ] = 0,

V ar[Y (M)
u,v ] = V ar[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ]

= E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v )2]− E[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ]2

= E[(

m∑
i=1

E
(M)
u,i

2
·X(M)

i,v

2
)] = Θ(mh−1(σ2)h),

E[Y (M)
u,v

4
] = E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v )4]

≤ E[m3 · (
m∑
i=1

E
(M)
u,i

4
·X(M)

i,v

4
)]

≤ m4 · 3σ4 · c0 · (mh−2(σ2)h−1 · d)2
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We observe (Z
(M)
1,1 )0 =

∑w+2n`
i=1 Y

(M)
n·(i−1)+1,1. Then,

V ar[(Z
(M)
1,1 )0] = E

(w+2n`∑
i=1

Y
(M)
n·(i−1)+1,1

)2


= E

[
w+2n`∑
i=1

Y
(M)2

n·(i−1)+1,1

]
= Θ((w + 2n`) ·mh−1(σ2)h).

In addition, the upper bound of E[(Z
(M)
1,1 )4

0] can be computed as follows:

E[(Z
(M)
1,1 )4

0] = E[(

w+2n`∑
i=1

Y
(M)
n(i−1)+1,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

n(i−1)+1,1)]

≤ (w + 2n`)4 ·m2 · 3c0 · d2 ·m2h−2 · (σ2)2h.

Combining them, we obtain the inequality∣∣∣∣∣ E[(Z
(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ≤ 3c0 ·m2(w + 2n`)2 ·
(
d

c

)2

= poly(λ).

All arguments with respect to N also hold well. ut

Proof (of Lemma 4.5). Only for this lemma, we give the proof of the two cases;
P = M and P = N.

Case 1: P= M. We now consider a random matrix J · Ŝ (M)
1,x1
·E (M)

2,x2
·
∏h
k=3 D

(M)
k,xk

.
Then, this case is a special case of Lemma 4.6. Readers refer to the proof of
Lemma 4.6. Therefore, we can obtain that

V ar[(Z
(M)
1,1 )1] = Θ((n3 · σ2 + (2`− 1) · n2) ·mh−2 · (σ2)h)

and
E[(Z

(M)
1,1 )4

1] ≤ m2(w + 2n`)4 · 9n8 · 3c0 ·m2h−4 · (σ2)2(h+1) · d2.

Combining this we obtain the inequality∣∣∣∣∣ E[(Z
(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 ·m2(w + 2n`)4 · n2 ·
(
d

c

)2

= poly(λ).

Case 2: P = N. For a random matrix J · Ŝ (N)
1,x1
·E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

, the random
variable can be written as

J · Ŝ (N)
1,x1
· E (N)

2,x2
·
h∏
k=3

D
(N)
k,xk

= J · diag(1w×w ⊗ S
(N)
1,x1

,0n
2×n2

) · E (N)
2,x2
·
h∏
k=3

D
(N)
k,xk
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+ J · diag(0wn×wn,R
(N)
1,x1
⊗ S

(N)
1,x1

)E
(N)
2,x2
·
h∏
k=3

D
(N)
k,xk

.

since Ŝ
(N)
1,x1

is diag(1w×w ⊗ S
(N)
1,x1

,0n
2×n2

) + diag(0wn×wn,R
(N)
1,x1
⊗ S

(N)
1,x1

).

By the lemma D.1, the variance of the random matrix J · Ŝ
(N)
1,x1
· E

(N)
2,x2
·∏h

k=3 D
(N)
k,xk

is equal to summation of variances of two above two random matri-
ces.

We only need to compute the variance of the first random matrix J·diag(1w×w⊗
S

(N)
1,x1

,0n
2×n2

) ·E (N)
2,x2
·
∏h
k=3 D

(N)
k,xk

; the variance of the latter term is a special case
of the Lemma 4.6 as the above case.

Let S
(N)
u,v be the random variables of (u, v)-th entry of the random matrix

S
(N)
1,x1

. We define X
(N)
u,v , Y

(N)
u,v and (Z

(N)
u,v )1 be random variables of the (u, v)-th

entry of the random matrix E
(N)
2,x2
·
∏h
k=3 D

(N)
k,xk

, Ŝ
(N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

and

J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

, respectively.

Then, we observe Y
(N)
1,1 =

∑n
i=1 S

(N)
1,i ·X

(N)
i,1 + · · ·+

∑n
i=1 S

(N)
1,i ·X

(N)
i+(w−1)n,1

from the definition of Kronecker tensor properties. Then, using Lemma D.1, we
can obtain

V ar[Y
(N)
1,1 ] = E[(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)2]

= E[

n∑
i=1

S
(N)2

1,i ·X(N)2

i,1 + · · ·+
n∑
i=1

S
(N)2

1,i ·X(N)2

i+(w−1)n,1]

= Θ(wn · (σ2) ·mh−2 · (σ2)h−1)

= Θ(wn ·mh−2 · (σ2)h).

Moreover, we can calculate an upper bound of E[Y
(N)4

1,1 ] as follows:

E[Y
(N)4

1,1 ] = E

[
(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)4

]

≤ E

[
(wn)3 · (

n∑
i=1

S
(N)4

1,i ·X(N)4

i,1 + · · ·+
n∑
i=1

S
(N)4

1,i ·X(N)4

i+(w−1)n,1)

]
≤ (wn)4 · 3(σ2)2 ·m4 · 3co ·m2h−6 · (σ2)2(h−1) · d2

= 9c0 · (wn)4m2 ·m2h−4 · (σ2)2h · d2.

Similarly, we can compute Y
(N)
i,1 for i = 2, · · · , wn in the exactly same way. The

equations and inequalities are all equal to the Y
(N)
1,1 case. For i > wn, Y

(N)
i,1 is

computed as in Case 1. In other words, it is the special case j = 1 of Lemma
4.6 and the result is equal to Case 1 as well. Thus, we omit the how to compute
this value.
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Note that Y
(N)
i,1 = Y

(N)
i+(k−1)n,1 for all k = 1, · · · , wn. Thus, we obtain the

desired results as follows:

V ar[(Z
(N)
1,1 )1] = E[(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)2]

= E[w2 · Y (N)2

1,1 +

w+2n`∑
i=w+1

Y
(N)2

1+(i−1)n,1]

= Θ((w3 · n+ n3 · σ2 + (2`− 1) · n2) ·mh−2(σ2)h)

E[(Z
(N)
1,1 )4

1] = E

[
(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)4

]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(N)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · 27n8m2 · c0 ·m2h−4 · (σ2)2(h+1) · d2

At last, with the two computations, we obtain∣∣∣∣∣ E[(Z
(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(
d

c

)2

= poly(λ).

ut

Proof (of Lemma 4.6). We remark that, as noted in the above proof, this proof
works for j = 1 as well and this case is used in the above proof. It suffice to
prove the case P = M. Let 1 ≤ j < λ · ` be an integer that j = ` · j1 +

j2 and X
(M)
u,v the random variables of the (u, v)-th entry of the random ma-

trix E
(M)
j+1,xj+1

∏h
k=j+2 D

(M)
k,xk

. Then, all random variables Xu,v have the variance

Θ(mh−j−1 ·(σ2)h−j), and we have E[X
(M)
u,v ] = 0, E[X

(M)
u,v ·X(M)

u′,v ] = 0 for distinct

u, u′ and E[X
(M)4

u,v ] ≤ 3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j) · d2 by Assumption 1.

Let S
(M)
u,v be the random variable of (u, v)-th entry of the random matrix∏j

i=1 S
(M)
i,xi

. Then, V ar[S
(M)
u,v ] = nj−1 · (σ2)j , E[S

(M)
u,v ·S(M)

u′,v ] = 0 for distinct u, u′

and E[S
(M)4

u,v ] = 3{n(n+ 2)}j−1 · (σ2)2j hold.

By the construction of the matrix R
(M)
i,xi

,
∏j
i=1 R

(M)
i,xi

is a block-diagonal ma-

trix that consists of
∏j
i=1 R

(k)(M)

i,xi
∈ Z2n×2n for k ∈ [`]. Note that

∏j
i=1 R

(k)(M)

i,xi
is of the form

j∏
i=1

R
(k)(M)

i,xi
=



(∏j1+1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = 1, 2, · · · , j2

(∏j1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = j2 + 1, · · · , `

37



Let R
(M)
u,v be the random variables of the (u, v)-th entry of the random matrix

upper-left quadrant of
∏j
i=1 R

(1)(M)

i,xi
. Then V ar[R

(M)2

u,v ] = nj1 ·(σ2)j1+1, E[R
(M)
u,v ·

R
(M)
u′,v ] = 0 and E[R

(M)4

u,v ] = 3(n(n+ 2))j1 · (σ2)2(j1+1).
Similarly, we consider the random variables of the (u, v)-th entry of the matrix(∏j
i=1 Ŝ

(M)
i,xi

)
· E (M)

j+1,xj+1
·
(∏h

k=j+2 D
(M)
k,xk

)
and denote it by Y

(M)
u,v . Then,

V ar[Y
(M)
1+wn,1] = E[(R

(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)2]

= Θ(n2 · nj1 · (σ2)j1+1 · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j)

= Θ(nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j)

because of Lemma D.1. Moreover, it holds that

E[Y
(M)4

1+wn,1] = E[(R
(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)4]

≤ E[(n2)3(R
(M)4

1,1

n∑
i=1

S
(M)4

1,i X
(M)4

i+wn,1 + · · ·+R
(M)4

1,n

n∑
i=1

S
(M)4

1,i X
(M)4

i+n(w+n−1),1)]

= 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2.

Therefore, we conclude that∣∣∣∣∣∣ E[Y
(M)4

1+wn,1]

V ar[Y
(M)
1+wn,1]2

∣∣∣∣∣∣ ≤ 27c0 · n4m2 ·
(

1 +
2

n

)j1+j−1

·
(
d

c

)2

= poly(λ).

Similarly, we can compute all variances of Yi,1 for each i.

V ar[Y
(M)
i,1 ] =



0 if i ∈ [wn]

Θ(nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j)
if i = a·n2+b+w·n with
a/2 ∈ {0} ∪ [j2 − 1], b ∈
[n2]

Θ(nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j)
if i = a·n2+b+w·n with
a/2 ∈ {j2, · · · , `}, b ∈
[n2]

Θ(nj · (σ2)j ·mh−j−1 · (σ2)h−j) otherwise.

Thus, we can derive upper bounds of E[Y
(M)4

i,1 ] as follows:

E[Y
(M)4

i,1 ] ≤


0

27n8m2 · {n(n+ 2)}j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

27n8m2 · {n(n+ 2)}j1+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+j1) · d2

9n4m2 · {n(n+ 2)}j−1 · c0 ·m2h−2j−2 · (σ2)2h · d2
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Let (Z
(M)
u,v )j be random variable of (u, v)-th entry of the matrix J·

(∏j
i=1 Ŝ

(M)
i,xi

)
·

E
(M)
j+1,xj+1

·
(∏h

k=j+2 D
(M)
k,xk

)
. Then, we observe (Z

(M)
1,1 )j =

∑w+2n`
i=1 Y

(M)
1+(i−1)n,1.

Since, by Lemma D.1, E[S
(M)
u,v · S(M)

u′,v ] = 0, E[R
(M)
u,v · R(M)

u′,v ] = 0, and E[X
(M)
u,v ·

X
(M)
u′,v ] = 0 hold for all distinct u, u′, the equation E[Y

(M)
u,1 · Y

(M)
v,1 ] = 0 holds for

all u, v.

With the similar method, we compute V ar[(Z
(M)
1,1 )j ] and upper bound of

E[(Z
(M)
1,1 )4

j ].

V ar[(Z
(M)
1,1 )j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2] = E[

w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1]

= Θ(j2n · nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j

+ (`− j2)n · nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j

+ `n · nj · (σ2)j ·mh−j−1 · (σ2)h−j)

= Θ(
(
j2n

j1+j+2 · (σ2)j1+1 + (`− j2)nj1+j+1 · (σ2)j1 + `nj+1
)
·mh−j−1 · (σ2)h)

E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)3{j2n · 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

+ (`− j2)n · 27n8m2 · (n(n+ 2))j1+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+j1) · d2

+ `n · 9n4m2 · (n(n+ 2))j−1 · c0 ·m2h−2j−2 · (σ2)2h · d2}
≤ (w + 2n`)4 · 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

Overall, we obtain∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(

1 +
2

n

)j1+j−1

·
(
d

c

)2

= poly(λ).

All arguments for N hold as well.
ut

Proof (of Lemma 4.7). Similarly, we also focus on the case P = M. Let j be an
integer that j > λ · ` and j = ` · λ + j2. This proof is very similar to Lemma

4.5. The difference only comes from a form of the random matrix
∏j
i=1 R

(M)
i,xi

.
Thus, in this proof, we focus on the form of the matrix. Note that, because of

the functionality, the matrices R
(M)
i,b are completely different for i ≤ λ · ` and for

i > λ · `.
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In this case,
∏j
i=1 R

(M)
i,xi

is the block diagonal matrix

j∏
i=1

R
(M)
i,xi

= diag(

j∏
i=1

R
(1)(M)

i,xi
,

j∏
i=1

R
(2)(M)

i,xi
, · · · ,

j∏
i=1

R
(`)(M)

i,xi
)

where
∏j
i=1 R

(k)(M)

i,xi
is of the form



−∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1) ∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

 if k = 1, 2, · · · , j2

(∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

I

)
if k = j2 + 1, · · · , `

Let Y
(M)
u,v and (Z

(M)
u,v )j be random variable of (u, v)-th entry of the matrix(∏j

i=1 Ŝ
(M)
i,xi

)
· E

(M)
j+1,xj+1

·
(∏h

k=j+2 D
(M)
k,xk

)
and J ·

(∏j
i=1 Ŝ

(M)
i,xi

)
· E

(M)
j+1,xj+1

·(∏h
k=j+2 D

(M)
k,xk

)
, respectively.

Similarly, we get

V ar[(Z
(M)
1,1 )j ] = E

[
(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2

]

= E

[
w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1

]
= Θ(

(
(`+ j2)nλ+j+1 · (σ2)λ + (`− j2)nj+1

)
·mh−j−1 · (σ2)h)

and

E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · 27n8m2 · (n(n+ 2))λ+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+λ) · d2

Then, we have∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(

1 +
2

n

)λ+j−2

·
(
d

c

)2

= poly(λ).

The arguments for N hold as well. ut
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F Analysis of BGMZ Obfuscation

In this section, we describe how to proof lemmas in Section 5.2. We modify the
notation as in the CVW obfuscation case. We replace n′, n with n, t. We re-use
or abuse the some notations for the different proof for the convenience of the
writing. For example, we omit the index j in the main body of the paper. Fix a
x ∈ {0, 1}` satisfying O(P)(x) = 0.

By Assumption 1, a product of the random matrices D̂P
j =

∏h
i=j+2 D

(P)
i has

the variance Θ(mh−j−2(σ2)h−j−1) and O(poly(λ)) upper bound of its kurtosises.
More precisely, We denote (possibly polynomial) c0 by the bound of kurtosises

in Assumption 1, and c and d the lower and upper bound of V ar[D̂
(P)
k ] for all

k, respectively. In other words, it holds that for all k

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We omit the proof of Lemma 5.2, 5.3 since it is almost the same to the proof of
Lemma 4.2 and Lemma 4.3.

Proof (of Lemma 5.4). Let (X
(M)
u,v ) be random variables of the (u, v)-th entry

of the random matrix E
(M)
x(1)

∏h
k=2 D

(M)
k,x(k). Then, for all u ∈ [t], v ∈ [n], all

random variables X
(M)
u,v have the variance Θ(mh−1(σ2)h−1 · s2). Moreover, it

holds that E[X
(M)
u,v ] = 0, E[X

(M)
u,v ·X(M)

u′,v ] = 0 for distinct u, u′ and E[X
(M)4

u,v ] ≤
3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · d2 by Assumption 1.

Similarly, the random variables of the (u, v)-th entry of the random matrix

J (M) · E (M)
1,x(1)

∏h
k=2 D

(M)
k,x(k) are denoted by Y

(M)
u,v . J is defined by [J ′(M)|In×n]

and J ′(M) ← {0, 1}n×wn. Let the random variables of the (u, v)-th entry of the

random matrix J ′(M) be denoted by J
′(M)
u,v . Then we can observe that E[J

′(M)
u,v ] =

1
2 , E[J

′(M)2

u,v ] = 1
2 , E[J

′(M)4

u,v ] = 1
2 for all u, v.

Since Y
(M)
1,1 =

∑w
i=1 J

′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1,

V ar[Y
(M)
1,1 ] = E

( w∑
i=1

J
′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1

)2


= E

[
w∑
i=1

J
′(M)2

1,n·(t−1)+1 ·X
(M)2

n·(t−1)+1,1 +X
(M)2

wn+1,1

]
= Θ((

w

2
+ 1) ·mh−1 · (σ2)h−1 · s2).

In addition, the upper bound of E[Y
(M)4

1,1 ] can be computed

E[Y
(M)4

1,1 ] = E[(

w∑
i=1

J
′(M)
1,n(t−1)+1 ·X

(M)
n(t−1)+1,1 +X

(M)
wn+1)4]
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≤ E[(w + 1)3 · (
w∑
i=1

J
′(M)4

1,n(t−1)+1 ·X
(M)4

n(t−1)+1,1 +X
(M)4

wn+1)]

≤ (w + 1)4 · 3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · d2.

Similarly, we can derive the same results for Yu,v for all u, v. The variance of

(Z (M))0 = v ′(M) · J (M) · E (M)
1,x(1)

∏h
k=2 D

(M)
k,x(k) · w

′(M)T is computed by

V ar[(Z (M))0] = Θ(nm · (w
2

+ 1) ·mh−1 · (σ2)h−1 · s2 · σ4)

= Θ(nm · (w
2

+ 1) ·mh−1 · (σ2)h+1 · s2)

We also have

E[(Z (M))4
0] ≤ (nm)4 · (w + 1)4 · 3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 27c0 · (nm)4 · (w + 1)4 ·m2 ·m2h−2 · (σ2)2(h+1) · (s2)2 · d2

At last the upper bound is computed as∣∣∣∣ E[(Z (M))4
0]

V ar[(Z (M))0]2

∣∣∣∣ ≤ 108c0 · (nm)2 · (w + 1)2 ·m2 ·
(
d

c

)2

= poly(λ)

For N, all arguments are exactly same. ut

Proof (of Lemma 5.5). In this proof we consider the two cases; P = M and
P = N.

Case 1: P = M. Consider a random variable v ′(M) · J (M) · Ŝ (M)
1,x(1) · E

(M)
2,x(2) ·∏h

k=3 D
(M)
k,x(k) ·w

′(M)T . This is the special case j = 1 of Lemma 5.6. Readers refer

to the proof of Lemma 5.6. Based on this the following equation and inequalities
hold:

V ar[(Z (M))1] = Θ(nm · n ·mh−2 · (σ2)h+1 · s2)

E[(Z (M))4
1] ≤ 81c0 · (nm)4 · n4 ·m2 ·m2h−4 · (σ2)2(h+1) · s4 · d2∣∣∣∣ E[(Z (M))4

1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81c0 · (nm)2 · n2 ·m2 ·
(
d

c

)2

= poly(λ)

Case 2: P = N. Consider a random variable v ′(N) · J (N) · Ŝ
(N)
1,x(1) · E

(N)
2,x(2) ·∏h

k=3 D
(N)
k,x(k) · w ′(N)T . Let S

(N)
u,v be random variables of (u, v)-th entry of the

random matrix S
(N)
1,x(1). Similarly, we define X

(N)
u,v and Y

(N)
u,v are random variables

of the (u, v)-th entry of the random matrix E
(N)
2,x(2)

∏h
k=3 D

(N)
k,x(k) and J (N)·Ŝ (N)

1,x(1)·
E

(N)
2,x(2) ·

∏h
k=3 D

(N)
k,x(k), respectively. J (N) is defined by [J ′(N)|In×n] and J ′(N) ←
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{0, 1}n×wn. The random variables of the (u, v)-th entry of the random matrix

J ′(N) is denoted by J ′
(N)
u,v .

Then, we observe

Y
(N)
1,1 =

w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(M)
1,k ·X

(M)
wn+k,1.

By the Lemma D.1, it holds that

V ar[Y
(N)
1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

2


= E

 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)2

k+n(j−1) · S
(N)2

k,i−n(j−1)) ·X
(N)2

i,1 +

n∑
k=1

S
(N)2

1,k ·X(N)2

wn+k,1


= Θ(wn ·

(n
2
· σ2
)
·mh−2 · (σ2)h−2 · s2 + n · σ2 ·mh−2 · (σ2)h−2 · s2)

= Θ(

(
1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2)

In addition, the upper bound of E[Y
(N)4

1,1 ] can be computed

E[Y
(N)4

1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 ) +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

4


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1))

4 ·X(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k ·X(N)4

wn+k,1


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

n3 · (
n∑
k=1

J ′k+n(j−1)
(N)4

S
(N)4

k,i−n(j−1))X
(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k X
(N)4

wn+k,1


≤ {(w + 1)n}3{wn · n4 · (1

2
· 3σ4) · 3c0 ·m2 ·m2h−4 · (σ2)2(h−2) · (s2)2 · d2

+ n · (3σ4) · 3c0 ·m2 ·m2h−4 · (σ2)2(h−2) · (s2)2 · d2}
≤ 9c0 · {(w + 1)n}4 · n4 ·m2 · (σ2)2(h−1) · (s2)2 · d2

The same results for Y
(N)
u,v for all u, v can be shown in the same way. The vari-

ance of (Z (N))1 = v ′(N) · J (N) · Ŝ1,x(1) ·E
(N)
2,x(2)

∏h
k=3 D

(N)
k,x(k) ·w

′(N)T is computed

as follows:
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V ar[(Z (N))1] = Θ(nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2 · σ4)

= Θ(nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h+1 · s2).

Similarly, we have

E[(Z (N))4
1] ≤ (nm)4 · 9c0 · {(w + 1)n}4 · n4 ·m2 ·m2h−4 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 81c0 · (nm)4 · {(w + 1)n}4 · n4 ·m2 ·m2h−4 · (σ2)2(h+1) · (s2)2 · d2

Then,

∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324c0 ·(nm)2 ·{(w+1)n}2 ·n2 ·m2 ·
(
d

c

)2

= poly(λ).

ut

Proof (of Lemma 5.6). Let 2 ≤ j ≤ h − 1 be an integer and Xu,v the random

variables of the (u, v)-th entry of the random matrix E
(M)
j+1,x(j+1)

∏h
k=j+2 D

(M)
k,x(k).

All random variables X
(M)
u,v have the variance Θ(mh−j−1 · (σ2)h−j−1 · s2), and

E[X
(M)
u,v ] = 0, E[X

(M)
u,v · X(M)

u′,v ] = 0 holds for distinct u, u′ and E[X
(M)4

u,v ] ≤
3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j−1) · (s2)2 · d2 by Assumption 1.

We observe that
j∏
i=1

Ŝ
(M)
i,xi

=

(
0 ∏j

i=1 S
(M)
i,xi

)
.

Let S
(M)
u,v be the random variable of (i, j)-th entry of the random matrix∏j

i=1 S
(M)
i,xi

. Then, it hold that V ar[S
(M)2

u,v ] = nj−1 · (σ2)j , E[S
(M)
u,v ·S(M)

u′,v ] = 0 for

distinct u, u′ and E[S
(M)4

u,v ] = 3{n(n+ 2)}j−1 · (σ2)2j .

For a random variable of (u, v)-th entry of the random matrix J (M)·
(∏j

i=1 Ŝ
(M)
i,x(i)

)
·

E
(M)
j+1,x(j+1) ·

(∏h
k=j+2 D

(M)
k,x(k)

)
, we denote it by Y

(M)
u,v . Then a variance of Y

(M)
u,v

can be computed using Lemma D.1.

V ar[Yu,v] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)2
 = E

[
n∑
k=1

S
(M)2

u,k ·X(M)2

wn+k,v

]
= Θ(n · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j−1 · s2)

= Θ(nj ·mh−j−1 · (σ2)h−1 · s2)

Moreover, it holds that

E[Y (M)4

u,v ] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)4
 ≤ E [n3 ·

(
n∑
k=1

S
(M)4

u,k ·X(M)4

wn+k,v

)]
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≤ n4 · 3{n(n+ 2)}j−1 · (σ2)2j · 3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j−1) · (s2)2 · d2

= 9c0 · n4 ·m2 · {n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h−1) · (s2)2 · d2

By Lemma D.3, we can compute v ′(M)·J (M)·
∏j
i=1 Ŝ

(M)
i,x(i)·E

(M)
j+1,x(j+1)

∏h
k=j+2 D

(M)
k,x(k)·

w ′(M)T which is denoted by (Z (M))j . Then it hold that

V ar[(Z (M))j ] = Θ(nm · nj ·mh−j−1 · (σ2)h−1 · s2 · σ4)

= Θ(nm · nj ·mh−j−1 · (σ2)h+1 · s2)

E[(Z (M))4
j ] ≤ 9c0(nm)4n4m2{n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 81c0 · (nm)4 · n4 ·m2 · {n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h+1) · (s2)2 · d2.

Overall,

∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ≤ 81c0(nm)2n2m2 ·
(

1 +
2

n

)j−1

·
(
d

c

)2

= poly(λ).

All arguments hold as well for N. ut

Proof (of Lemma 5.7). Let X
(M)
u,v be the random variables of the (u, v)-th entry

of the random matrix
∏h−1
i=1 B

(M)
i,x(i). All random variables of entries of B

(M)
i,x(i)

are mutually independent and follow a uniform distribution [−ν2 ,
ν
2 ). For conve-

nience, we assume random variables follow a uniform distribution [−ν2 ,
ν
2 ]. The

complete proof is done by considering the statistical inditinsguishability of two
uniform random distributions.

We note that the similar computations as in Lemma D.2 hold as well for the
uniform distributions. More precisely, for the random variable U1, U2 following

the uniform distribution over [−ν2 ,
ν
2 ], it hold that E[U1] = 0, E[U2

1 ] =
1

12
·ν(ν+

2), E[U4
1 ] =

1

80
· ν(ν + 2){ν(ν + 2)− 4

3}.

Thus, the variance of X
(M)
u,v is

V ar[X(M)
u,v ] = gh−2 ·

{
1

12
· ν(ν + 2)

}h−1

.

We also have

E[X(M)4

u,v ] ≤ 3 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h−1)

.

By Lemma D.3, we can compute the variance and expectation of quadruple

of b
(M)
v ·

∏h−1
i=1 B

(M)
i,x(i) · b

(M)T

w which is denoted by (Z (M))h.

V ar[(Z (M))h] ≤ g2 · gh−2 ·
{

1

12
· ν(ν + 2)

}h−1

·
{

1

12
· ν(ν + 2)

}2
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= gh ·
{

1

12
· ν(ν + 2)

}h+1

,

E[(Z (M))4
h] ≤ (g2)4 · 3 · {g(g + 2)}h−2 ·

{
1

12
· ν(ν + 2)

}2(h−1)

·

[
3

{
1

12
· ν(ν + 2)

}2
]2

= 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h+1)

.

As a result,

∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))h]2

∣∣∣∣ ≤ 27 · (g2)2 ·
(

1 +
2

g

)h−2

. The same arguments

hold as well for N. However, this value is not poly(λ), since g is small constant.
ut
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