
Deterministic Cube Attacks:
A New Method to Recover Superpolies in Practice

Chen-Dong Ye and Tian Tian

National Digital Switching System Engineering & Technological Research Center, P.O. Box 407,
62 Kexue Road, Zhengzhou, 450001, China. ye_chendong@126.com,tiantian_d@126.com

Abstract. Cube attacks are an important type of key recovery attacks against NFSR-
based cryptosystems. The key step in cube attacks closely related to key recovery is
recovering superpolies. However, in the previous well-known cube attacks including
original, division property based, and correlation cube attacks, the algebraic normal
forms of superpolies could hardly be proved to be exact, which involves a small
failure probability or unpractical computations. In this paper, we propose a new
variant of cube attacks called deterministic cube attacks, which aims at recovering
the exact algebraic normal forms of superpolies efficiently and practically. These
new attacks are developed based on degree evaluation method proposed by Liu in
CRYPTO2017. We apply our new cube attacks to the round-reduced Trivium. As
a result, we recover the exact algebraic normal forms of some superpolies for the
818-, 819-, 837-, and 838-round Trivium. By the way, it is proved that the best
cube of size 37 given by Liu in CRYPTO2017 is not a zero-sum distinguisher but a
zero-biased distinguisher by recovering its exact superpoly for the first time. To the
best of our knowledge, it is the first time that superpolies of cubes with the sizes less
than 40 could be practically recovered for Trivium up to 838 rounds. Hopefully, our
new attacks would provide some new insights on cube attacks against NFSR-based
ciphers.

Keywords: Trivium · cube attacks · key recovery attack · deterministic algorithms

1 Introduction
The cube attack was first proposed by Dinur and Shamir at Eurocrypt 2009 in [1]. Lat-
er, there were many improvements on it such as cube testers [2], dynamic cube attacks
[3], conditional cube attacks [4], division property based cube attacks [5, 6] and correla-
tion cube attacks [7]. Due to these improvements, cube attacks have become more and
more powerful. In particular, it is one of the most important cryptanalytic tools against
Trivium.

In the original cube attacks [1, 8, 9, 10], the main aim is to find cubes with low-degree
superpolies in key variables. In [1], the authors recovered 35 linear superpolies of the 767-
round Trivium. In [8], quadraticity tests were first applied to the cube attacks against
Trivium. As a result, the authors found 41 linear and 38 quadratic superpolies for the
709-round Trivium. In [9], the authors proposed two new ideas concerning cube attacks
against Trivium. One was a recursive method to construct useful cubes. The other was
simultaneously testing a lot of subcubes of a large cube using the Meobius transformation.
They found 12 linear and 6 quadratic superpolies for the 799-round Trivium. In [10], by
exploiting a kind of linearization technique, the authors proposed a new framework to
find nonlinear superpolies with low complexities. As a result, they found 6 linear and 2
nonlinear superpolies for the 802-round Trivium. In the above experimental cube attacks,

2

it needs to test a large number of cubes to find desirable ones, while testing cubes of size
greater than 35 is time consuming. Hence, the sizes of cubes are typically confined to 40.

In [5], Todo et al. introduced division property to cube attacks. For a cube CI , by
solving the corresponding mixed integer linear programming (MILP) models built accord-
ing to the propagation rules of division property, they could identify a set of key variables
which includes the key variables appearing in the superpoly pI . Then, by constructing the
truth tables of pI corresponding to randomly chosen assignments of non-cube variables,
they attempted to find a proper one ensuring pI was non-constant. Finally they recovered
pI by its truth table. Due to division property and the power of MILP solvers, large cubes
could be explored. For example, in [5], it was shown that the superpoly of a given 72-
dimensional cube was dependent on at most five key variables for the 832-round Trivium.
In [6], the authors improved the work in [5] in finding a proper non-cube variables assign-
ment and reducing the complexity of recovering the superpoly. It was shown in [6] that
the superpoly of a given 78-dimensional cube was dependent on at most one key variable
for the 839-round Trivium. For division property based cube attacks, the advantage is
that large cubes could be explored and the complexity of recovering superpolies could be
estimated theoretically. The implicit disadvantage is that the theory of division property
could not ascertain that a superpoly for a cube is non-constant. Hence the key recovery
attacks on the 832-round Trivium in [5] and on the 839-round Trivium in [6] are only
possible which may be only a distinguisher.

In [7], the authors proposed the correlation cube attacks. For a cube CI , the authors
first tried to find a set of low-degree polynomials G, called a basis, such that the superpoly
pI could be factored into pI =

⊕
g∈G g · fg formally. Then, by exploiting the correlation

relations between the low-degree basis G and the superpoly pI , they could obtain a set of
probabilistic equations on the secret key variables since fg is unknown. It was reported
in [7] that five secret key bits of the 835-round Trivium could be recovered with 244 time
complexity, 245 keystream bits, and 251 preprocessing time.

Recently, in [11], Fu et al. gave a dedicated attack on the 855-round Trivium which
somewhat resembled dynamic cube attacks. Their main idea is finding a simple polynomial
P1 such that the output bit polynomial z could be formally represented as z = P1P2⊕P3
where P2 is complex while P3 is a low-degree polynomial on IV variables compared to z.
If so (P1 ⊕ 1)z = (P1 ⊕ 1)P3 will be a low-degree polynomial on IV variables. Then they
guessed some secret key expressions involved in P1. For a group of right guesses, (P1⊕1)z
will be a low-degree polynomial on IV variables. Otherwise, (P1 ⊕ 1)z is expected to be
a high-degree polynomial. They declared that three secret key bits could be recovered
for the 855-round Trivium with the online complexity of 274. A shortage of the attack
described in [11] is that no estimation was given on the successful probability for wrong
guesses.

1.1 Our Contributions.
In this paper, we propose a new variant of cube attacks, named deterministic cube attacks,
which improves the experimental cube attacks in recovering the superpolies with proved
correctness and overcoming the low-degree restriction.

The basic idea of our attacks is, by making use of internal state bit variables s(r1) =
(s(r1)

1 , s
(r1)
2 , . . . , s

(r1)
N), dividing the polynomial representation fr(key, iv) of a r-round ci-

pher into a r1-round polynomial representation s(r1)(key, iv) and a r2-round polynomial
representation gr2(s(r1)) such that fr = gr2(s(r1)(key, iv)). Then it is possible for us
to compute superpolis algebraically for a class of cubes which are called useful cubes
in the following paper. The criterion of a useful cube plays a key role in calculating
superpolies in practice. In particular, for a useful cube I, to compute the superpoly
Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

} of I in the polynomial s
(r1)
i1

(key, iv)s(r1)
i2

(key, iv) · · · s(r1)
il

(key, iv) for

Chen-Dong Ye and Tian Tian 3

a term s
(r1)
i1

s
(r1)
i2
· · · s(r1)

il
appearing in the algebraic normal form of gr2(s(r1)), it is only

necessary to know the maximum degree terms in each s
(r1)
ij

(key, iv) for 1 ≤ j ≤ l. Hence a
superpoly Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

} could be computed in practice and so is the targeted super-
poly pI in fr(key, iv) which equals to the summation of all possible Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

}.

As an illustration, we apply the attacks to some variants of round-reduced Trivium,
and we obtain the following results.

1. For Trivium variants with 800-832 initialization rounds, we randomly test 10000
cubes of size 33-36, and obtain about 175 useful cubes for each variant in average.
It indicates that useful cubes exist widely and can be found easily. In particular, by
exhausting cubes of size 35 (with conditions), we find more than 20000 useful cubes
for the 819-round Trivium within several hours on a PC.

2. We recover the superpolies of some useful cubes for the 818-, 819-, 837-, and 838-
round Trivium. To the best of our concern, for the Trivium variants with more than
810 initialization rounds, it is the first time that the superpolies could be recovered
exactly and practically.

3. In [12], Liu proposed a cube of 37 which was proved to be a zero-sum distinguisher for
the 837-round Trivium by the degree evaluation and was tested to be zero-constant
under 100 random secret keys for the 838-round Trivium. For this cube, we prove
that its superpoly is not zero-constant for the 838-round Trivium by recovering its
exact superpoly with our method. Consequently, based on the newly recovered
superpoly, we easily give several keys under which the values of the superpoly are
1’s.

We further compare our attacks with the original cube attacks, the division property
based cube attacks, and correlation cube attacks. First, our attacks can recover the
superpoly exactly. Second, we can attack Trivium variants with high rounds using cubes
of relative small sizes, i.e., we can reach the 838-round Trivium with cubes of sizes 36-37.
Compared with original cube attacks, we can improve more than 30 rounds at the cost
of increasing the sizes of cubes slightly. Furthermore, in division property based cube
attacks, they need cubes of sizes over 70 to attack Trivium variants with more than 830
initialization rounds. Although, in correlation cube attacks, they can attack the 835-round
Trivium with cubes of sizes 36-37, they can not recover the exact superpoly of a cube. We
summarise these comparisons in Table 1.

Table 1: Comparison with previous cube attacks

cube attacks exact superpolies attack rounds/cube size ref.

Original cube attacks no

767/28-31 [1]
709/19-23 [8]
799/32-37 [9]
802/34-36 [10]

DP1 based cube attacks yes 832/72 [5, 13]
839/78 [6]

Correlation cube attacks no 835/36-37 [7]
Deterministic cube attacks yes 838/36-37 Sect.4

4

1.2 Organization
The rest of this paper is organized as follows. In Section 2, we provide necessary prelimi-
naries. In Section 3, we show the general idea of our attacks. In Section 4, we apply our
attacks to Trivium. Finally, Section 5 concludes this paper.

2 Preliminaries
2.1 Boolean Functions and Algebraic Degree.
A Boolean function on n variables is a mapping from Fn

2 to F2, where F2 is the finite field
of two elements and Fn

2 is an n-dimensional vector space over F2. A Boolean function f
can be represented by a polynomial on n variables over F2,

f(x1, x2, . . . , xn) =
⊕

c=(c1,c2,...,cn)∈Fn
2

ac

n∏
i=1

xci
i ,

which is called the algebraic normal form (ANF) of f . In this paper, u = ac

∏n
i=1 xci

i (ac ̸=
0) is called a term of f . The algebraic degree of a Boolean function is denoted by deg(f)
and defined as

deg(f) = max{wt(c)|ac ̸= 0},
where wt(c) is the Hamming Weight of c. In this paper, we also care about the algebraic
degree of f on a subset I of {x1, x2, . . . , xn}, which is denoted by degI(f) and defined as

degI(f) = max{wtI(c)|ac ̸= 0},

where wtI(c) = |{i|ci ̸= 0 and xi ∈ I}|.

2.2 Description of Trivium
Trivium is a bit oriented synchronous stream cipher designed by Cannière and Preneel,
which is one of eSTREAM hardware-oriented portfolio ciphers. It accepts an 80-bit key
and an 80-bit initialization vector. For a more detailed and formal description, we refer
the reader to [14].

The main building block of Trivium is a 288-bit Galois nonlinear feedback shift register
with three registers. In every clock cycle, there are three bits of the internal state updated
by quadratic feedback functions and all the other bits of the internal state are updated
by shifting. The internal state of Trivium, denoted by (s1, s2, . . . , s288), is initialized
by loading an 80-bit secret key and an 80-bit IV into the registers, and setting all the
remaining bits to 0 except for the last three bits of the third register. Then, the algorithm
would not output any keystream bit until the internal state is updated 1152 rounds, see
Algorithm 1 for details.

2.3 Superpoly.
The concept of superpoly was first proposed in [1]. Let f(x1, x2, . . ., xm) be an m-variable
polynomial and I = {xi1 , xi2 , . . . , xid

} be a subset of {x1, x2, . . . , xm}. Denote tI =∏d
j=1 xij , the product of variables in I. Then it is clear that the following representation

f = f1 · tI + f2

for f is unique, where f1 does not contain any common variable with tI and every term
in f2 is not divisible by tI . The polynomial f1 is called the superpoly of tI in f . For the
sake of convenience, we denote f1 by f

tI
in the following paper.

Chen-Dong Ye and Tian Tian 5

Algorithm 1 Pseudo-code of Trivium
1: (s1, s2, . . . , s93)← (k0, k1, . . . , k79, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v0, v1, . . . , v79, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: if i > 1152 then
6: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
7: end if
8: t1 ← s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171;
9: t2 ← s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264;

10: t3 ← s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69;
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

2.4 Cube Attacks.
The idea of cube attack was first proposed by Dinur and Shamir in [1]. In the cube attack
against stream ciphers, an output bit z is described as a tweakable polynomial f on key
variables key = (k0, k1, . . . , kn−1) and public IV variables iv = (v0, v1, . . . , vm−1), where
n and m are positive integers, i.e.,

z = f(key, iv).

Let I be a subset containing d public variables called cube variables, where 1 ≤ d ≤ m.
Without loss of generality, we assume that I = {v0, v1, . . . , vd−1}. Let us denote

pI(key) = f

tI
, (1)

the superpoly of tI in f under the condition that all m IV variables are set to 0 except the
d variables in I. Let CI be a set of assignments for IV variables containing 2d m-tuples
in which the variables in I are assigned to all the possible combinations of 0/1 while all
the other IV variables are assigned to 0 (or fixed constants). The set CI is called a d-
dimensional cube defined by I. A key observation in cube attacks is that the summation
of f over all the 2d possible vectors in CI leads to pI , i.e.,

pI(key) =
⊕
v∈CI

f(key, v). (2)

If pI(key) is not a constant polynomial, then this means that by choosing IVs, one can
obtain an equation in key variables. Otherwise, (2) provides a distinguisher on the ci-
pher. Hence an attacker in cube attacks focuses on recovering pI(key). Because f is
treated as a black-box polynomial, in practice pI is not algebraically calculated from (1).
Hence, original cube attacks resort to low-degree polynomial tests with a certain failure
probability.

2.5 The Numeric Mapping.
The numeric mapping was firstly introduced by Liu in [12], which was the core technique
of the degree evaluation method for NFSR-based cryptosystems in [12]. Let

f(x1, x2, . . . , xm) =
⊕

c=(c1,c2,...,cm)∈Fm
2

ac

m∏
i=1

xci
i

6

be an m-variable Boolean function. The numeric mapping, denoted by DEG, is defined
as follows

DEG : Bm × Zm → Z

(f, D) 7→ maxac ̸=0

m∑
i=1

cidi,

where D = (d1, d2, . . . , dm), Bm is the set of all m-variable Boolean functions.
With the numeric mapping, the numeric degree of a composite function can be defined.

Assume that g1, g2, . . . , gm are n-variable Boolean functions and h = f(g1, g2, . . . , gm) is
a composite function. The numeric degree of h is defined as DEG(f, deg(G)), where
G = (g1, g2, . . . , gm) and deg(G) = (deg(g1), deg(g2), . . . , deg(gm)). Furthermore, if we
have deg(gi) ≤ di for 1 ≤ i ≤ m, then it can be seen that

deg(h) ≤ DEG(f, deg(G)) ≤ DEG(f, D)

where D = (d1, d2, . . . , dm).
Based on the numeric mapping, in [12], Liu proposed an iterative algorithm for giving

an upper bound on the algebraic degree of the output bit after r rounds for a Trivium-like
cipher. In this algorithm, they first initialized the degrees of the initial internal state
bits and then iteratively estimated the algebraic degree of the internal state bits at time
instance t for 1 ≤ t ≤ r. Thus, the estimated degree of the output bit could be calculated
according to the output function. Moreover, when estimating the algebraic degree of the
update bits, the author treated the product of two adjacent internal state bits as a whole
and recursively expressed these two bits to obtain a more accurate estimation.

2.6 The IV Representation.
The IV representation was first proposed by Fu et al. in [15], which was used to determine
the nonexistence of some IV terms in the output bit of Grain-128. For a stream cipher
with m IV variables, i.e., v0, v1, . . . , vm−1, and n key variables, i.e., k0, k1, . . . , kn−1, an
internal state bit (or the output bit) s can be seen as a polynomial on key and IV variables,
i.e.,

s = f(key, iv) =
⊕
I,J

∏
vi∈I

vi

∏
kj∈J

kj .

The IV representation of a term u =
∏

vi∈I vi

∏
kj∈J kj is defined as uIV =

∏
vi∈I vi. Based

on the definition of IV representation of a term, the IV representation of s is defined as
follows,

sIV =
∑

I

∏
vi∈I

vi.

3 Deterministic Cube Attacks
Recall that in an original cube attack, a desirable superpoly is not algebraically calculated
from (1), since the output bit polynomial is treated as a black-box polynomial. Hence
original cube attacks resort to low-degree polynomial tests such as BLR linearity tests with
a certain failure probability. Consequently, previously recovered superpolies in original
cube attacks are convincing but without proved correctness. In this section, we shall give
a deterministic and algebraical algorithm to recover superpolies in cube attacks against
an NFSR-based stream cipher.

In Subsection 3.1, we describe the rationality of our idea and the general framework
for realizing the idea. Then to make our idea practical, we introduce a new criterion
of useful cubes in Subsection 3.2. Consequently, an algorithm is proposed to find useful

Chen-Dong Ye and Tian Tian 7

cubes efficiently in Subsection 3.3. Finally, in Subsection 3.4, for a useful cube, we show
how to recover its superpoly as well as some auxiliary techniques.

3.1 An Overview of Our Attacks
We represent the superpoly of a cube by internal state bits for the target cipher. Let us
fix a time instance t ≥ 0 which is less than the number of initialization rounds and denote
the internal state bits of the target cipher at the time instance t by s = (s(t)

1 , s
(t)
2 , . . . , s

(t)
N),

where N is the internal state size of the target cipher. Then an output bit z of the target
cipher also can be described by a polynomial on s = (s(t)

1 , s
(t)
2 , . . . , s

(t)
N), i.e.,

z = gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N) =

⊕
c=(c1,c2,...,cN)∈FN

2

ac

N∏
i=1

(s(t)
i)ci , (3)

where ac ∈ {0, 1}. Furthermore, note that each internal state bit s
(t)
i (1 ≤ i ≤ N) could

be represented by a polynomial on key and IV variables, i.e.,

s
(t)
i = s

(t)
i (key, iv). (4)

Taking (4) into (3) yields

z = gt(s(t)
1 (key, iv), s

(t)
2 (key, iv), . . . , s

(t)
N (key, iv)). (5)

It follows from (5) that

pI =
gt(s(t)

1 (key, iv), s
(t)
2 (key, iv), . . . , s

(t)
N (key, iv))

tI

=

⊕
c=(c1,c2,...,cN)∈FN

2

ac

∏N
i=1(s(t)

i (key, iv))ci

tI

=
⊕

c=(c1,c2,...,cN)∈FN
2

ac=1

ac

∏N
i=1(s(t)

i (key, iv))ci

tI
. (6)

For the sake of convenience, we simply denote s
(t)
i (key, iv) by s

(t)
i in the rest of the paper.

Then (6) implies that

pI =
⊕

c=(c1,c2,...,cN)∈FN
2

ac=1

ac

∏N
i=1(s(t)

i)ci

tI
. (7)

Note that ac

∏N
i=1(s(t)

i)ci with ac = 1 is a term of gt. If we denote all terms of gt by T (gt),
i.e.,

T (gt) = {ac

N∏
i=1

(s(t)
i)ci |ac = 1, c = (c1, c2, . . . , cN) ∈ FN

2 },

then it follows from (7) that

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

∈T (gt)

s
(t)
i1

s
(t)
i2
· · · s(t)

il

tI
. (8)

8

This indicates that if we could calculate the superpoly of tI in s
(t)
i1

s
(t)
i2
· · · s(t)

il
for every term

s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt, then their summation is the desirable superpoly pI in cube attacks.

In the following paper, we shall recover pI based on the equality (8). Hence it is clear
that the superpolies recovered in our attacks will be correct with probability 1. In specific,
for a given set of cube variables I and a time instance t, there are three main steps:

• Step 1. Compute the ANF of gt.

• Step 2. For each term s
(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (gt), compute the superpoly

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
s

(t)
i1

s
(t)
i2
· · · s(t)

il

tI
.

• Step 3. Compute
pI =

⊕
s

(t)
i1

s
(t)
i2

···s(t)
il

∈T (gt)

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}.

We give some explanations for this attack framework. First, all IV variables are set
to zero except the d cube variables in I. That is to say, s

(t)
i (key, iv) is a polynomial on

n + d variables consisting of n key variables and d cube variables, 1 ≤ i ≤ N . Second, the
choice of the time instance t obeys the following two rules:

Rule 1 One can compute the algebraic normal form of gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N), where s

(t)
i is

treated as a bit variable. As t decreases, the algebraic normal form of gt(s(t)
1 , s

(t)
2 , . . . ,

s
(t)
N) will become more and more complex.

Rule 2 For i form 1 to N , one can compute the algebraic normal form of s
(t)
i (key, iv). As

t increases, the algebraic normal form of s
(t)
i (key, iv) will become more and more

complex.

Third, we point out that to compute Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} is a difficult problem in this frame-

work even when the above two rules are satisfied, since the product s
(t)
i1

s
(t)
i2
· · · s(t)

il
is difficult

to expand in ANF form when treating s
(t)
ij

as a polynomial in key and IV variables. To
solve this problem, in Subsection 3.2, we give a criterion to choose useful cubes for which
we could calculate Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} in practice without completely expanding the product

s
(t)
i1

s
(t)
i2
· · · s(t)

il
in its ANF form.

3.2 A New Criterion of Useful Cubes
Let Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} be as in the previous subsection. To compute Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}, we
use the following expression

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕ t1t2 · · · tl

tI
, (9)

where tj runs through T (s(t)
ij

) independently for 1 ≤ j ≤ l. The difficulty of computing
(9) lies in that there are too many products, say t1t2 · · · tl, need to compute. If t1t2 · · · tl

is not divisible by tI , then we have

t1t2 · · · tl

tI
= 0,

Chen-Dong Ye and Tian Tian 9

which implies that t1t2 · · · tl has no contribution to Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. Hence an effective
t1t2 · · · tl should satisfy that t1t2 · · · tl is divisible by tI . To make this point clear we
rewrite (9) as

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕

tI |t1t2···tl

t1t2 · · · tl

tI
, (10)

where tj runs through T (s(t)
ij

) independently for 1 ≤ j ≤ l. To reduce the number
of effective terms or summation in (10) we propose a criterion for useful cubes in this
subsection.

To characterize a useful cube, we shall give some definitions first.

Definition 1. Let I be a set of cube variables, t ≥ 0, and 1 ≤ i ≤ N . If a term u of s
(t)
i

satisfies degI(u) = degI(s(t)
i), then u is called a maximum degree term of s

(t)
i on I.

A maximum degree term of s
(t)
i on I is a term whose degree on I attains the max-

imum. It is obvious that a maximum degree term of s
(t)
i is not unique. For example,

I = {v1, v2, v3, v4} and s
(t)
i = v1v2k1 ⊕ v2v3k1k2 ⊕ v4k3. Then v1v2k1 and v2v3k1k2 are

maximum degree terms of s
(t)
i whose degrees on I are 2.

Definition 2. Let I be a set of cube variables and t ≥ 0. For a term u =
∏l

j=1 s
(t)
ij

, if

l∑
j=1

degI(s(t)
ij

) = |I|,

then u is called a tight term for I.

The following property gives a relationship between tight terms and maximum degree
terms concerning the right hand side of (10).

Property 1. Let I be a set of cube variables and u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for I.

If t1t2 · · · tl is divisible by tI where tj is a term of s
(t)
ij

for 1 ≤ j ≤ l, then tj is a maximum
degree term of s

(t)
ij

on I.

Let s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for I. Due to Property 1, when computing

s
(t)
i1

s
(t)
i2

···s(t)
il

tI
,

we only need to consider maximum degree terms of s
(t)
ij

on I. Moreover, maximum degree

terms are usually a very small part of s
(t)
ij

. Thus, in this case the computation of
s

(t)
i1

s
(t)
i2

···s(t)
il

tI

could be simplified greatly.

Example 1. Let I = {v0, v1, v2, v3}, s1 = v0v1k0 ⊕ v2 ⊕ v3, s2 = v2v3k5 ⊕ v0 ⊕ v2,
s3 = v2 ⊕ v3, u1 = s1s2, and u2 = s2s3. Then it can be seen that u1 is a tight term for
I, while u2 is not a tight term for I. The sets of maximum degree terms of s1 and s2 are
{v0v1k0} and {v2v3k5}, respectively. According to Property 1, we have

u1

tI
= k0k5,

which is computed only using the maximum degree terms of s1 and s2.

Based on tight terms, we propose a new criterion of useful cubes.

10

Criterion 1. Let I be a set of cube variables and z = gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N). If every term

s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt satisfies

l∑
j=1

degI(s(t)
ij

) ≤ |I|, (11)

then CI is called a useful cube.

In Criterion 1, if
∑l

j=1 degI(s(t)
ij

) = |I|, then s
(t)
i1

s
(t)
i2
· · · s(t)

il
is a tight term of gt for I;

otherwise we have
∑l

j=1 degI(s(t)
ij

) < |I| which implies that s
(t)
i1

s
(t)
i2
· · · s(t)

il
is not divisible

by tI , and so
s

(t)
i1

s
(t)
i2

···s(t)
il

tI
= 0. Therefore, this criterion implies that every term u of gt is

either a tight term or u
tI

= 0. Accordingly for a useful cube CI , we simply have

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term in T (gt)

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

=
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term in T (gt)

 ⊕
t1 is a maximum

degree term of s
(t)
i1

· · ·
⊕

tl is a maximum
degree term of s

(t)
il

t1t2 · · · tl

tI

 . (12)

It can be seen that the computation of pI is relatively easier for a useful cube CI . In the
next subsection, we will show how to pick up useful cubes.

3.3 An Algorithm to Find Useful Cubes
In this subsection, we discuss how to find useful cubes efficiently. According to Rule 1, we
assume that gt is known, and so T (gt) is known. It can be seen from Criterion 1 that to
judge whether CI is useful we need to solve

l∑
j=1

degI(s(t)
ij

)

for every term s
(t)
i1

s
(t)
i2
· · · s(t)

il
in T (gt). This is in essence a degree evaluation problem. On

one hand, to quickly judge whether a cube is useful, we need an efficient degree evaluation
algorithm. On the other hand, to accurately identify a useful cube, we need an accurate
degree evaluation algorithm since a useful cube may be missed if the results of a degree
evaluation algorithm are far from real degrees. Considering this issues, we choose to use
the idea of numeric mapping in [12]. Details are given in Algorithm 2. As for the definition
and methodology of numeric mapping and numeric degree please refer to [12] and Section
2.

The general idea of Algorithm 2 is first computing the numeric degree of s
(t)
i on I for

1 ≤ i ≤ N denoted by DEGI(s(t)
i) and then computing the numeric degree for every term

s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt by

DEGI(s(t)
i1

s
(t)
i2
· · · s(t)

il
) =

l∑
j=1

DEGI(s(t)
ij

).

If DEGI(s(t)
i1

s
(t)
i2
· · · s(t)

il
) ≤ |I| for every term s

(t)
i1

s
(t)
i2
· · · s(t)

il
of gt, then we keep CI in

Algorithm 2 which is a useful cube. Since the algebraic degree of s
(t)
i is always less than

or equal to the numeric degree of s
(t)
i , i.e., degI(s(t)

i) ≤ DEGI(s(t)
i), it follows that a cube

outputted by Algorithm 2 satisfies Criterion 1.

Chen-Dong Ye and Tian Tian 11

Algorithm 2 Finding Useful Cubes with Degree Evaluation
Require: the chosen cube variables I, the chosen time instance t

1: Express the output bit z as z = gt(s(t));
2: Iteratively calculate DEGI(s(t)

i) for i ∈ {1, 2, . . . , N};
3: for each term u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
of gt do

4: Set DEGI(u) =
∑l

j=1 DEGI(s(t)
ij

);
5: if DEGI(u) > |I| then
6: return useless;
7: end if
8: end for
9: return useful;

3.4 Recover the Exact Superpoly of a Useful Cube
After finding a useful cube CI , we will recover the superpoly pI by (12). The critical part
of this phase is calculating the superpoly of tI in each tight term for I. We present the
details in Algorithms 3 and 4.

Let u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for I. In Algorithm 3, the procedure Recover-

Coefficient is called to calculate Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. Following from (12), Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

is the summation of t1t2···tl

tI
, where t1t2 · · · tl is divisible by tI and tj is a maximum degree

term of s
(t)
ij

for j ∈ {1, 2, . . . , l}. Hence, we need to find all such products of maximum
degree terms of s

(t)
i1

, s
(t)
i2

, . . . , s
(t)
il

to obtain Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. In RecoverCoefficient, it
can be done in the following three steps.

Collect and Preprocess the Maximum Degree Terms. The first step is to collect
and preprocess the maximum degree terms of s

(t)
ij

for j ∈ {1, 2, . . . , l}. Assume that the
maximum degree terms of s

(t)
ij

are stored in MaxDegTerms[j], where MaxDegTerms is
a list of sets and MaxDegTerms[j] represents the j-th set in MaxDegTerms.

Our goal is to find all the combinations (t1, t2, . . . , tl) such that
∏l

j=1 tj is divisible
by tI , where tj ∈ MaxDegTerms[j] for 1 ≤ j ≤ l. Let t′

j be the IV representation
of tj for 1 ≤ j ≤ l. Then, if

∏l
j=1 tj is divisible by tI , then

∏l
j=1 t′

j = tI (the IV
variables except cube variables are set to 0). Therefore, we apply the Reduce operation to
MaxDegTerms[j] for 1 ≤ j ≤ l. In the Reduce operation, we first do IV representation
for each term in MaxDegTerms[j]. Then, for the repeated terms which are generated
by the terms containing the same cube variables, we only keep one of them. Finally, the
reduced terms of MaxDegTerms[j] are stored in RedMaxDegTerms[j], which is called
a set of reduced maximum degree terms.

In this paper, a combination (t1
j1

, t2
j2

, . . . , tl
jl

) satisfying
∏l

i=1 ti
ji

= tI , where ti
ji
∈

RedMaxDegTerms[i] for 1 ≤ i ≤ l, is called a valid combination. It can be seen that,
by finding all the valid combinations, we could find all the combinations (t1, t2, . . . , tl)
such that

∏l
i=1 ti is divisible by tI , where ti ∈MaxDegTerms[i] for 1 ≤ i ≤ l. Note that∏l

i=1 |RedMaxDegTerms[i]| would be much smaller than
∏l

i=1 |MaxDegTerms[i]|, since
MaxDegTerms[i] (1 ≤ i ≤ l) may have many terms whose results of IV representation
are the same. Thus, the complexity could be reduced dramatically.

Find All the Valid Combinations. Accordingly, the second step is to find all
the valid combinations. Although

∏l
i=1 |RedMaxDegTerms[i]| would be much smaller

than
∏l

i=1 |MaxDegTerms[i]|, it may still be very large. Hence, we would not check
each combination (t1

j1
, t2

j2
, . . . , tl

jl
) directly, where ti

ji
∈ RedMaxDegTerms[i] for 1 ≤

i ≤ l. Instead, we pick up elements from RedMaxDegTerms gradually to form a full

12

combination. Moreover, we propose the following two strategies to throw away some
invalid combinations in advance. To illustrate these two strategies, assume that we have
picked up the first d elements of a combination, i.e., t1

j1
, t2

j2
, . . . , td

jd
.

Strategy 1. If degI(t1
j1

t2
j2
· · · td

jd
) < degI(t1

j1
) + degI(t2

j2
) + · · · + degI(td

jd
), then we

would throw away all the combinations whose first d components are t1
j1

, t2
j2

, . . . , td
jd

.
Let (t1

j1
, t2

j2
, . . . , td

jd
, td+1

jd+1
, . . . , tl

jl
) be a combination such that the condition in Strategy

1 is satisfied. Then,

degI(t1
j1

t2
j2
· · · tl

jl
) ≤ degI(t1

j1
t2
j2
· · · td

jd
) + degI(td+1

jd+1
td+2
jd+2
· · · tl

jl
)

<
d∑

i=1
degI(ti

ji
) + degI(td+1

jd+1
td+2
jd+2
· · · tl

jl
)

≤
l∑

i=1
degI(ti

ji
) = |I|.

Namely, degI(t1
j1

t2
j2
· · · tl

jl
) < |I|. Hence, combinations satisfying the condition in Strategy

1 are not valid ones and should be thrown away.
Strategy 2. For some d + 1 ≤ w ≤ l, if each term tw ∈ RedMaxDegTerms[w]

satisfies that degI(tw · t1
j1

t2
j2
· · · td

jd
) < degI(tw) + degI(t1

j1
t2
j2
· · · td

jd
), then we would throw

away all the combinations whose first d components are t1
j1

, t2
j2

, . . . , td
jd

.
Let (t1

j1
, t2

j2
, . . . , td

jd
, td+1

jd+1
, . . . , tl

jl
) be a combination such that the condition in Strategy

2 is satisfied. Without loss of generality, we assume that w = d + 1. Then,

degI(t1
j1

t2
j2
· · · tl

jl
) ≤ degI(t1

j1
t2
j2
· · · td+1

jd+1
) + degI(td+2

jd+2
td+3
jd+3
· · · tl

jl
)

< degI(t1
j1

t2
j2
· · · td

jd
) + degI(td+1

jd+1
) + degI(td+2

jd+2
td+3
jd+3
· · · tl

jl
)

≤
l∑

i=1
degI(ti

ji
) = |I|.

Namely, degI(t1
j1

t2
j2
· · · tl

jl
) < |I|. Hence, combinations satisfying the condition in Strategy

2 are not valid ones and should be thrown away.
If the chosen first d components do not satisfy the condition in Strategy 1 nor the condi-

tion in Strategy 2, then we would pick up the d+1-th component from RedMaxDegTerms
[d + 1]. Note that, Strategies 1 and 2 can be applied again to judge whether the combi-
nations which contain the chosen first d + 1 components should be thrown away. Namely,
Strategies 1 and 2 can be used again and again until a full combination is formed. Ben-
efited from these two strategies, we can throw away many combinations in advance and
the phase of finding all the valid combinations can be accelerated dramatically.

Recover the Superpoly of tI in u. The final step is to recover the superpoly of tI

in u according to all the valid combinations. Let (t1
j1

, t2
j2

, . . . , tl
jl

) be a valid combination.
Since the terms in RedMaxDegTerms[i] are reduced from MaxDegTerms[i], the com-
bination (t1

j1
, t2

j2
, . . . , tl

jl
) may correspond to several combinations (t1, t2, . . . , tl) such that∏l

j=1 tj is divisible by tI , where tj ∈ MaxDegTerms[j] for 1 ≤ j ≤ l. All the combina-
tions which (t1

j1
, t2

j2
, . . . , tl

jl
) corresponds to can be covered by a vector (λ1

j1
, λ2

j2
, . . . , λl

jl
),

where λw
jw

= s
(t)
iw

tw
jw

for w ∈ {1, 2, . . . , l}. In this paper, (λ1
j1

, λ2
j2

, . . . , λl
jl

) is called the
superpoly vector of (t1

j1
, t2

j2
, . . . , tl

jl
). Then, the contribution of the valid combination

Chen-Dong Ye and Tian Tian 13

Algorithm 3 Recover the Exact ANF of a Useful Cube
Require: The set of cube variables I, the chosen time instance t to compute gt

1: Call Algorithm 2, and store the tight terms in the set T (I);
2: Calculate the ANF of s

(t)
i on cube and key variables for i ∈ {1, 2, . . . , N} ;

3: Set pI = 0;
4: for each u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (I) do

5: Set Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =RecoverCoefficient(u,I);
6: Set pI = pI ⊕Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

};
7: end for
8: return pI ;

(t1
j1

, t2
j2

, . . . , tl
jl

) to the superpoly of tI in u is
∏l

i=1 λw
jw

. Thus,

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕

(t1
j1

,t2
j2

,...,tl
jl

)
is valid

l∏
w=1

λw
jw

.

Algorithm 4 Recover the Superpoly of tI in a Tight Term
1: procedure RecoverCoefficient(u,I)
2: Assume that u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
;

3: for 1 ≤ j ≤ l do
4: Collect maximum degree terms of s

(t)
ij

and store them in MaxDegTerms[j];
5: Apply the Reduce operation to MaxDegTerms[j] and store the reduced terms

in RedMaxDegTerms[j];
6: end for
7: Figure out all valid combinations;
8: Set Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} = 0;

9: for each valid combination (t1
j1

, t2
j2

, . . . , tl
jl

) do
10: Recover the corresponding superpoly vector (λ1

j1
, λ2

j2
, . . . , λl

jl
);

11: Set Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} = Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} ⊕
∏l

w=1 λw
jw

;
12: end for
13: return Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

};
14: end procedure

As an illustration of Algorithms 3 and 4, we provide the following example.

Example 2. Let I = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} be a set of cube variables. Assume
that u = s1s4s6s8, where

s1 = v4v5k2k3 ⊕ v4v5k4 ⊕ v4v5k5 ⊕ v2v3 ⊕ v5v6 ⊕ k3,

s4 =v0v1v2v3k0 ⊕ v0v1v2v3k1 ⊕ v0v1v3v4k0 ⊕ v0v1v4v6k2

⊕ v1v2v3k2 ⊕ v1v2v3k44 ⊕ v2v3 ⊕ v4k0 ⊕ v5k1,

s6 = v3v6 ⊕ v4v6 ⊕ v6v7, and s8 = v6v9 ⊕ v7v9 ⊕ v8v9.

14

The first step is to collect the reduced maximum degree terms. It can be obtained that
the set of maximum degree terms of s1 is

MaxDegTerms[1] = {v4v5k2k3, v4v5k4, v4v5k5, v2v3, v5v6}.

Then, the Reduce operation is applied and the set of reduced maximum degree terms of
s1 is

RedMaxDegTerms[1] = {v2v3, v4v5, v5v6}.
Similarly, the sets of reduced maximum degree terms of s4,s6 and s8 are

RedMaxDegTerms[2] = {v0v1v2v3, v0v1v3v4, v0v1v4v6},

RedMaxDegTerms[3] = {v3v6, v4v6, v6v7},
and

RedMaxDegTerms[4] = {v6v9, v7v9, v8v9}
respectively.

After obtaining the sets of reduced maximum degree terms, we need to find all the valid
combinations. Due to the first strategy, we can throw away the combinations whose first t-
wo components are in {(v2v3, v0v1v2v3), (v2v3, v0v1v3v4), (v4v5, v0v1v3v4), (v4v5, v0v1v4v6),
(v5v6, v0v1v4v6)}. Furthermore, according to the second strategy, we can throw away the
combinations whose first two components belong to {(v5v6, v0v1v2v3), (v5v6, v0v1v3v4),
(v2v3, v0v1v4v6)}. Totally, we throw away 8 out of all the 9 combinations for the first
two components. We use these two strategies again and again to form a full combina-
tion. As a result, we can obtain the only valid combination (v0v1v2v3, v4v5, v6v7, v8v9)
without checking every combination. The superpoly vector of (v0v1v2v3, v4v5, v6v7, v8v9)
is (k0 ⊕ k1, k2k3 ⊕ k4 ⊕ k5, 1, 1). Immediately, we have that

Q(s1,s4,s6,s8) = (k0 ⊕ k1)(k2k3 ⊕ k4 ⊕ k5).

4 Applications to Trivium
In this section, we apply our attacks to Trivium. First, we introduce some details of
applications to Trivium. Then, we perform several experiments on some variants of round-
reduced Trivium. Finally, we have some discussion on our attacks.

4.1 The Optimization for Applications to Trivium
In this subsection, according to the structure of Trivium, we do some optimization for
Algorithms 2, 3 and 4. Moreover, we introduce some heuristic rules of choosing cubes.
For the sake of convenience, we assume that the r-round Trivium is our target and the
output bit zr is presented by gt(s(t)) for some properly chosen t.

4.1.1 The Algorithm of Finding Useful Cubes for Trivium

In order to identify useful cubes more accurately, we make some optimization and im-
provements to Algorithm 2 based on the structure of Trivium.

Treating Two Adjacent Internal State Bits as a Whole. Let u = s
(t)
i1

s
(t)
i2
· · · s(t)

il

be a term of gt. When judging whether u is a tight term, if u has two adjacent internal
state bits in the same register, i.e., s

(t)
j and s

(t)
j+1 for some j, then we would treat these

two bits as a whole. Namely, we evaluate the degree of the product of two adjacent bits
instead of estimating the degrees of these two bits separately. Liu also did so in [12]. In
the rest of this paper, we refer to two adjacent internal state bits in the same register as
two adjacent internal state bits for short. The following is an illustrative example.

Chen-Dong Ye and Tian Tian 15

Example 3. Let u = s
(t)
1 s

(t)
2 s

(t)
3 s

(t)
4 s

(t)
5 be a term of gt. The degree of u is evaluated as

DEGI(u) = DEGI(s(t)
1 s

(t)
2) + DEGI(s(t)

3 s
(t)
4) + DEGI(s(t)

5).

A Small Improvement. We make a small improvement of the degree evaluation
method proposed by Liu in [12]. We take s

(t)
91 s

(t)
92 as an example to illustrate this improve-

ment. For any t ≥ 92, s
(t)
91 and s

(t)
92 can be recursively represented by

s
(t)
91 = st−91

286 st−91
287 ⊕ st−91

288 ⊕ st−91
243 ⊕ st−91

69

and
s

(t)
92 = st−92

286 st−92
287 ⊕ st−92

288 ⊕ st−92
243 ⊕ st−92

69 ,

respectively. It worth noting that st−92
287 = st−91

288 . Hence, we evaluate the degree of
st−92

286 st−92
287 (st−91

288 ⊕ st−91
243 ⊕ st−91

69) as DEGI(st−92
286 st−92

287) + DEGI(st−91
243 ⊕ st−91

69) instead of
DEGI(st−92

286 st−92
287) + DEGI(st−91

288 ⊕ st−91
243 ⊕ st−91

69) as Liu did in [12]. When the degree
of st−91

288 ⊕ st−91
243 ⊕ st−91

69 is determined by st−91
288 , our improvement would work. For some

cubes, this situation would happen in early rounds. Moreover, this improvement could
also be made in the cases of s

(t)
175s

(t)
176 and s

(t)
286s

(t)
287, since the update functions of three

registers are similar.
Based on the above optimization and improvements, we propose a more accurate

algorithm of finding useful cubes for Trivium, see Algorithm 5 in Appendix 1.
Coincident with Algorithm 5, when recovering the superpoly of tI in a tight term u,

two adjacent internal state bits are treated as a whole. Namely, we would collect the
reduced maximum degree terms of the product of two adjacent internal state bits instead
of collecting the reduced maximum degree terms of these two bits separately. The detailed
procedure is described in Algorithm 7 in Appendix 1.

4.1.2 Recovering Superpolies for Trivium Variants with High Initialization Rounds.

As r (the target round) increases, it is hard to choose t such that Rules 1 and 2 mentioned
in Subsection 3.1 are satisfied at the same time. Fortunately, this dilemma can be solved
by taking an extra step when calculating the superpoly pI . Following from (12), we have

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term in T (gt)

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

=
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a
tight term in T (gt)

⊕
s

(t0)
j1

s
(t0)
j2

···s(t0)
jd

is a
term in T (f

{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}
)

Q{s
(t0)
j1

,s
(t0)
j2

...s
(t0)
jd

}, (13)

where t0 < t and f{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} is the expressed polynomial of s
(t)
i1

s
(t)
i2
· · · s(t)

il
on the

internal state s(t0). According to (13), when calculating the superpoly of tI in the tight
term s

(t)
i1

s
(t)
i2
· · · s(t)

il
of gt, we first express it as a polynomial on the internal state s(t0) and

then calculate the superpoly of tI in each term of f(s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

). The detailed procedure
is presented in Algorithm 6 in Appendix 1. Note that, in Algorithm 6, we choose the
smallest t of those satisfying Rule 1 and the largest t0 such that we can compute the
ANFs of s

(t0)
i for 1 ≤ i ≤ 288.

4.1.3 Rules of Choosing Cubes

Recall that, for a term u, DEGI(u) equals to the summation of some DEGI(s(t)
i)’s and

some DEGI(s(t)
i s

(t)
i+1)’s in Algorithm 5. In order to make DEGI(u) ≤ |I| hold for each

16

term u of gt, DEGI(s(t)
i)’s and DEGI(s(t)

i s
(t)
i+1)’s should be as small as possible. Note

that DEGI(s(t)
i)’s and DEGI(s(t)

i s
(t)
i+1)’s are evaluated iteratively. Accordingly, we should

choose cube variables such that DEGI(si)’s and DEGI(sisi+1)’s are kept small for rela-
tively early time instances. As a result, we set the following heuristic rule of choosing
cubes variables.

Rule 3. The chosen set of cube variables I does not contain vi and vj satisfying
|i− j| = 1, |i− j| = 14 or |i− j| = 16.

For a relatively early t, we have s
(t)
286 = vi ⊕ vi+13vi+14 ⊕ vi+15 and s

(t)
287 = vi+1 ⊕

vi+14vi+15⊕ vi+16. When the first condition is satisfied (the non-cube variables are set to
0), the nonlinear terms of s

(t)
286 and s

(t)
287 would disappear, since we would not choose cube

variables with adjacent indices. Moreover, if the second and third conditions are satisfied
as well, then

s
(t)
286s

(r)
287 = (vi ⊕ vi+15)(vi+1 ⊕ vi+16) = vivi+1 ⊕ vi+15vi+16 ⊕ vivi+16 ⊕ vi+1vi+15

would equal to 0, since each quadratic term at least one variable which is not in I and set
to 0. Namely, the nonlinear term of the feedback bit

st+1
1 = s

(t)
243 ⊕ s

(t)
286s

(t)
287 ⊕ s

(t)
288 ⊕ s

(t)
69

would disappear. Thus, DEGI(st+1
1) = DEGI(s(t)

243 ⊕ s
(t)
288 ⊕ s

(t)
69), which is usually smaller

than DEGI(s(t)
243 ⊕ s

(t)
286s

(t)
287 ⊕ s

(t)
288 ⊕ s

(t)
69). As a result, for relatively early time instances,

DEGI(si)’s and DEGI(sisi+1)’s would be relatively small. It is reasonable that cubes
chosen according to the above rule would have a larger chance to be a useful cube.

Another key point is determining the sizes of cubes. Note that, for a cube CI′ yielding
a zero-sum distinguisher, the degree on I ′ of each term of gt is less than |I ′|. Meanwhile,
for a useful cube CI , gt only has tight terms for I and terms whose degrees on I is less
than I. In this respect, a useful cube is close to one yielding a zero-sum distinguisher.
Hence, when searching for useful cubes, it is reasonable to set the sizes of cubes close to
those of cubes yielding zero-sum distinguishers.

4.2 Experimental Results
In this subsection, to illustrate the efficiency and effectiveness of our attacks, we perform
various experiments on Trivium variants. All of our experiments are completed under a
PC with an i7-7700k CPU inside.

4.2.1 Results for Trivium Variants with 800-832 Rounds.

First, we try to find useful cubes for Trivium variants with 800-832 initialization rounds.
For these variants, in order to get enough cube variables, we choose cubes which do not
contain variables vi, vj satisfying |i− j| = 1 or |i− j| = 16. Second, we use cubes of sizes
33-36, since experiments show that the sizes of distinguishers found for these variants are
around 33-36. Finally, for each variant with r initialization rounds (800 ≤ r ≤ 832), we
randomly test 10000 cubes of size 33-36. As a result, we find useful cubes for each variant,
and the average number is about 175. This indicates that useful cubes exist widely and
can be found easily.

4.2.2 Results for the 818- and 819-round Trivium.

We take the 818- and 819-round Trivium as an example to show more details of our attacks.
To find useful cubes, we exhaust all cubes of size 35 which do not contain variables vi, vj

satisfying |i−j| = 1 or |i−j| = 16 with Algorithm 5. In this phase, we express the output

Chen-Dong Ye and Tian Tian 17

Table 2: The number of tight terms of useful cubes for the 819-round Trivium

#Tight terms [1, 10] [11, 30] [31, 60] [61, 100] [100, +∞]
#Useful cubes 1352 7175 11800 876 94

bit z819 as a polynomial on the internal state s(418), i.e., z819 = g418(s(418)). We complete
this phase in several hours and find 21297 useful cubes, see Table 2.

In the following, we would show the details of recovering the superpoly of useful cube
by taking

I = {v1, v3, v6, v8, v10, v12, v14, v16, v21, v23, v25, v27, v29, v31, v34, v36, v38, v40,

v42, v44, v49, v51, v53, v55, v57, v59, v62, v64, v66, v68, v70, v72, v74, v77, v79}

as an example. First, we filter out all the 24 tight terms for I of g418. Then, we call
Algorithm 6 to calculate the superpoly pI . In Algorithm 6, to recover the superpoly of tI

in each tight term u of g418, we first express it as a polynomial on the internal state s(363),
denoted by fu(s(363)), and then calculate the superpoly of tI in each term of fu(s(363)).
Hence, we only need to calculate the exact ANFs of s

(363)
1 , s

(363)
2 , . . . , s

(363)
288 . The key point

in this phase is finding all the valid combinations in each tight term u′ of fu. This could
be done efficiently with the help of the two strategies proposed in Subsection 3.4. For
instance,

u′ = s
(363)
64 s

(363)
65 s

(363)
102 s

(363)
103 s

(363)
124 s

(363)
133 s

(363)
136 s

(363)
137 s

(363)
145 s

(363)
147 s

(363)
148 s

(363)
154 s

(363)
155

is a tight term of fu, where u = s
(418)
121 s

(418)
122 s

(418)
157 s

(418)
158 s

(418)
193 s

(418)
194 s

(418)
203 s

(418)
204 s

(418)
211 . There

are totally

94× 99× 52× 42× 755× 34× 676× 542 = 191155823581282560 ≈ 257

combinations in u′ (two adjacent bits are treated as a whole). It is not easy for a PC to run
over all the 257 combinations. Fortunately, benefited from the two strategies introduced
in Subsection 3.4, we can figure out all the valid combinations in u′ in seconds with our
PC. Then, we recover the superpoly vectors for each valid combination. Finally, we obtain
the superpoly pI within about ten minutes, see Table 3 for details.

Among the found useful cubes, we choose some cubes with relatively few tight terms to
recover their exact superpolies for the 819-round Trivium. Furthermore, by sliding some
useful cubes of the 819-round Trivium, we get useful cubes for the 818-round Trivium,
and then recover the corresponding superpolies. We list a part of our results in Table 3.

Table 3: Useful cubes and corresponding superpolies of the 818- and 819-round Trivium

#Rounds Indices of cube variables Superpoly

818 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40,
42,44,46,49,53,55,57,59,61,64,66,68,70,72,74,76,79 h65g5g14g18g24g29g31g38g40g44g48g51

818 1,3,6,8,10,12,14,16,18,21,25,27,29,31,33,36,38,40,
42,46,48,51,53,55,57,59,61,63,66,68,70,72,74,76,78 h65g5g18g27g29g33g38g42(g50 ⊕ 1)(f22 ⊕ 1)

818 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40,
42,44,49,51,53,55,57,59,61,64,66,68,70,72,74,76,79 h57h65g5g16g23g27g29g31g38g40g42g46g48(f22 ⊕ 1)

818 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40,
42,44,49,51,53,55,57,59,62,64,66,68,70,72,74,77,79 h57h64g5g16g27g29g31g38g40g42g46g48(f22 ⊕ 1)

819 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40,
42,44,49,51,53,55,57,59,62,64,66,68,70,72,74,77,79

h57h65h68g4g21g25g27g38g40g46g48f20
⊕h57h65g6g21g25g27g38g40g46g48f20
⊕h38h57h65g6g25g27g38g40g48(g29 ⊕ g38)f20

fi = kiki+1 ⊕ ki+2 ⊕ ki+44 ⊕ ki+53 for 1 ≤ i ≤ 12
fi = kiki+1 ⊕ ki+2 ⊕ ki+44 for 13 ≤ i ≤ 24
gi = ki ⊕ ki+25ki+26 ⊕ ki+27 for 0 ≤ i ≤ 52
g53 = k53 ⊕ k78k79
hi = ki for 0 ≤ i ≤ 79

18

Table 4: Cubes of the 837- and 838-round Trivium

#Rounds Indices of cube variables #Superpoly vectors

837 1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78 3395

838 0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79, 1596

4.2.3 Results for the 837-round and 838-round Trivium

For the 837- and 838-round Trivium, we do the similar experiments. As a result, we find
several useful cubes, we list a part of them in Table 7 in the Appendix 3. In this case, we
choose the cubes with fewest tight terms to recover their superpolies and list the number
of superpoly vectors for these cubes in Table 4. For the detailed ANF, please refer to our
account on GitHub1.

For the sake of convenience, we denote the cubes of the 837- and 838-round Trivium
by CI1 and CI2 respectively. Interestingly, we find that these two superpolies are heavily
zero-biased. However, based on the recovered ANF, we find some keys under which
the values of these two superpolies are 1’s. We list them in Table 5, where key[i] =
0xk8i+7k8i+6 . . . k8i (0 ≤ i ≤ 9).

Table 5: The found secret keys

Cubes key[0] key[1] key[2] key[3] key[4] key[5] key[6] key[7] key[8] key[9]

CI1

0x4f 0xe7 0xaf 0x8e 0x2e 0x5e 0x72 0x7b 0x31 0xf9
0x4f 0xe7 0xaf 0x8e 0x2e 0x5e 0x72 0x7b 0x31 0xf9
0x4f 0xe7 0xaf 0x8e 0x2e 0x5e 0x73 0x7b 0x31 0xf1
0x4e 0xe7 0xaf 0x86 0x2e 0x5e 0x72 0x7b 0x31 0xf9
0x4e 0xe7 0xaf 0x86 0x2e 0x5e 0x73 0x7b 0x31 0xf1

CI2

0xff 0xff 0xdf 0xff 0x0f 0x7f 0xf5 0x3f 0xf8 0xff
0xff 0xff 0xdf 0xff 0x0f 0x7f 0xc5 0x3f 0xf8 0xff
0xfb 0xcb 0xd7 0xdf 0xd4 0xbf 0xbd 0xbd 0x5c 0xfc
0xfb 0xcb 0xd7 0xdf 0xd4 0xbf 0xbd 0xbd 0x3c 0xfc
0xfb 0xcb 0xd7 0x5f 0xd5 0xaf 0xbd 0xbd 0x7c 0xfc

It worth noting that CI2 is the same as the cube proposed by Liu in [12]. Recall that
Liu tested 100 random keys for the superpoly of this cube, the values are always 0. Our
experiments show that its superpoly is not zero-constant, which means that the output of
the 838-round Trivium achieves the maximum degree 37 over this subset of IV bits, and
so the degree given by Liu for this cube is tight. This also implies that 100 random keys
are not enough for zero-constant function testing.

4.3 Discussions
4.3.1 How to Recover the Information of Secret Key.

Since fi’s and gi’s in Table 3 are very simple expressions on key variables, we can recover
the information of key variables easily from them. Hence, when recovering the information
of key variables with the superpolies found by us, we would treat fi’s, gi’s as a whole. For
the sake of convenience, we call u =

∏
a∈A fa

∏
b∈B gb

∏
c∈C hc a big term. According to

the number of big terms, we can apply different strategies to use our superpolies.
If a superpoly has few big terms, then we can generate a nonlinear equation on fi’s,

1https://github.com/yechendong/Deterministic-Cube-Attacks

Chen-Dong Ye and Tian Tian 19

Table 6: Some bases of the superpoly of CI2

Group Basis
G1 {k55}
G2 {k6 ⊕ k31k32 ⊕ k33}
G3 {k21 ⊕ k46k47 ⊕ k48}
G4 {k18k19 ⊕ k20 ⊕ k62, k20k21 ⊕ k22 ⊕ k64, k24k25 ⊕ k26 ⊕ k68}
G5 {k4 ⊕ k29k30 ⊕ k31, k27 ⊕ k52k53 ⊕ k54, k29 ⊕ k54k55 ⊕ k56, k24k25 ⊕ k26 ⊕ k68}

gi’s and hi’s. For example, with the first cube in Table 3, we have the following equation

h65g5g14g18g24g29g31g38g40g44g48g51 = q,

where q is value of the this superpoly under the real key.
If a superpoly has many big terms, then we can use the correlation cube attacks

proposed by Liu in [7] to recover some information of key variables. In this case, there
would be some benefits brought by knowing the exact ANF of the superpoly. First, we
can find several different groups of basis for the same superpoly. For instance, we list
some evident groups of basis the superpoly of CI2 in the following table. Second, we can
calculate the correlation relationship between the basis and the superpoly according to
the exact ANF of the superpoly. Note that, in correlation cube attacks, the correlation
relationship between the basis and the superpoly is estimated by summing all the output
bits over the chosen cube under some randomly chosen keys. Consequently, we can reduce
the complexity in the preprocessing phase of correlation cube attacks dramatically.

4.3.2 Extra Benefits of Our New Attacks.

In our experiments, we find several cubes whose superpolies become 0, i.e., zero-sum
distinguishers, because all the terms are vanished by the xor operations. Such zero-sum
distinguishers could not be detected by Liu’s degree evaluation method and Todo’s division
property method since their methods did not take xor-vanished terms into consideration
at all. Hence, this shows that xor-vanished terms could be dealt with in our method
to some degree, and so our method could potentially improve degree evaluation method.
This will be a future subject of our work.

4.3.3 A More Generalized Criterion

In the above, we introduce a new criterion of useful cubes under which the superplolies
can be calculated with a low complexity. Actually, this criterion could be loosen. Assume
that u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
satisfies

∑l
j=1 degI(s(t)

ij
) = |I| + 1 for a set of cube variables I.

Then, the superpoly of tI in u can be calculated by using the maximum degree terms
and the sub-maximum degree terms whose degrees equal to degI(s(t)

ij
) − 1. The detailed

procedure is described in the following five steps.
Step 1. Collect the set of reduced maximum degree terms for each bit in u and apply

the Reduce operation to them. Store the reduced terms in RedMaxDegTerms.
Step 2. Collect the set of reduced sub-maximum degree terms for each bit in u and

apply the Reduce operation to them. Store the reduced terms in RedSubMaxDegTerms.
Step 3. Find all the valid combinations (t1

i1
, t2

i2
, . . . , tl

il
) such that t1

i1
t2
i2
· · · tl

il
= tI ,

where tj
ij
∈ RedMaxDegTerms[j] (1 ≤ j ≤ l). Recover the contribution of all these valid

combinations to the superpoly of tI in u and denote it by λ1.
Step 4. For 1 ≤ j ≤ l, figure out all the possible combinations (t1

i1
, t2

i2
, . . . , tl

il
)

such that t1
i1

t2
i2
· · · tl

il
= tI , where tw

iw
∈ RedMaxDegTerms[w] for w ̸= j and tw

iw
∈

20

RedSubMaxDegTerms[w] if w = j. Recover the contribution of all these valid combina-
tions to the superpoly of tI in u and denote it by λ2.

Step 5. The final superpoly of tI in u is λ1 ⊕ λ2.
Therefore, if each term u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
of the gt satisfies

∑l
j=1 degI(s(t)

ij
) ≤ |I|+ 1,

it should be regarded as a useful cube.

5 Conclusion
In this paper, we propose deterministic cube attacks. First, we introduce a new criterion
of useful cubes whose superpolies can be calculated with a low complexity. Then, we
design an algorithm which could find useful cubes efficiently. Finally, a new algorithm
together with some techniques are proposed to recover the exact superpolies of useful
cubes. As illustrations, we apply our attacks to Trivium. In applications to Trivium, we
choose cubes which do not contain variables vi, vj satisfying |i− j| = 1 or |i− j| = 16. It
makes the sizes of chosen cubes are always less than 40. With such cubes, we find some
useful cubes and recover the corresponding superpolies for up to the 838-round Trivium.
However, it seems hard to increase the number of attacking rounds with such cubes. On
the other hand, we tested some larger cubes but we did not find useful cubes under our
criterion for higher rounds. How to increases the number of attacking rounds still needs
further research.

References
[1] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In

Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, pages 278–299, 2009.

[2] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and trivium. In Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February 22-
25, 2009, Revised Selected Papers, pages 1–22, 2009.

[3] Itai Dinur and Adi Shamir. Breaking grain-128 with dynamic cube attacks. In Fast
Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers, pages 167–187, 2011.

[4] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round keccak sponge function. In Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part II, pages 259–288, 2017.

[5] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-
blackbox polynomials based on division property. In Advances in Cryptology - CRYP-
TO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part III, pages 250–279, 2017.

[6] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting low de-
gree property of superpoly. Cryptology ePrint Archive, Report 2017/1063, 2017.
https://eprint.iacr.org/2017/1063.

Chen-Dong Ye and Tian Tian 21

[7] Meicheng Liu, Jingchun Yang, Wenhao Wang, and Dongdai Lin. Correlation cube
attacks: From weak-key distinguisher to key recovery. In Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II, pages 715–744, 2018.

[8] Piotr Mroczkowski and Janusz Szmidt. Corrigendum to: The cube attack on stream
cipher Trivium and quadraticity tests. IACR Cryptology ePrint Archive, 2011:32,
2011.

[9] Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of Trivium using optimized cube attacks. In Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers, pages 502–517, 2013.

[10] Chen-Dong Ye and Tian Tian. A new framework for finding nonlinear superpolies
in cube attacks against trivium-like ciphers. In Willy Susilo and Guomin Yang,
editors, Information Security and Privacy - 23rd Australasian Conference, ACISP
2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceedings, volume 10946 of
Lecture Notes in Computer Science, pages 172–187. Springer, 2018.

[11] Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier. A key-recovery attack
on 855-round trivium. IACR Cryptology ePrint Archive, 2018:198, 2018.

[12] Meicheng Liu. Degree evaluation of NFSR-Based cryptosystems. In Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, pages 227–249, 2017.

[13] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-
blackbox polynomials based on division property (full version). IACR Cryptology
ePrint Archive, 2017:306, 2017.

[14] Christophe De Cannière and Bart Preneel. Trivium. In New Stream Cipher Designs
- The eSTREAM Finalists, pages 244–266. 2008.

[15] Ximing Fu, Xiaoyun Wang, and Jiazhe Chen. Determining the nonexistent terms of
non-linear multivariate polynomials: How to break grain-128 more efficiently. IACR
Cryptology ePrint Archive, 2017:412, 2017.

Appendix
1. The Optimization For Trivium

2. A Part of Experimental Results for the 837- and 838-round Trivium

22

Algorithm 5 Finding Useful Cubes for Trivium
Require: the set of cube variables I, the number of initialization rounds r, the chosen

time instance t
1: Express zr as zr = gt(s(t));
2: Calculate DEGI(s(t)

i) for i ∈ {1, 2 . . . , 288};
3: Calculate DEGI(s(t)

i s
(t)
i+1) for i ∈ {1, 2 . . . , 288} \ {93, 177, 288};

4: for each term u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt do

5: Set DEGI(u) = 0 and j = 1;
6: while j ≤ l do
7: if ij + 1 = ij+1 and j < l and ij /∈ {93, 177, 288} then
8: Set DEGI(u)=DEGI(u)+DEGI(s(t)

ij
s

(t)
ij+1

);
9: Set j=j+2;

10: else
11: Set DEGI(u) =DEGI(u)+DEGI(s(t)

ij
);

12: Set j=j+1;
13: end if
14: end while
15: if DEGI(u) > |I| then
16: return useless;
17: end if
18: end for
19: return useful;

Algorithm 6 Recover the Exact ANF of a Useful Cube for Trivium
Require: the set of cube variables I, the number of initialization rounds r, the chosen

time t to compute gt, the time instant t0 to compute the ANFs
1: Call Algorithm 2, and store the tight terms for I of gt in the set T (I);
2: Compute the ANF of s

(t0)
i on cube and key variables for i ∈ {1, 2, . . . , 288};

3: Set pI = 0;
4: for each u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (I) do

5: Set pu
I = 0;

6: Represent u as a polynomial on the internal state bits of s(t0), i.e., u = fu(s(t0));
7: for each term u′ = s

(t0)
j1

s
(t0)
j2
· · · s(t0)

jw
of fu do

8: Evaluate the degree of u′ using the similar method used in Algorithm 5;
9: if DegI(u′) = |I| then

10: Set Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} =RecoverCoefficient(u′, I);
11: Set pu

I = pu
I ⊕Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

};
12: end if
13: end for
14: Set pI = pI ⊕ pu

I ;
15: end for
16: return pI ;

Chen-Dong Ye and Tian Tian 23

Algorithm 7 Recover the Superpoly of tI in a Tight Term for Trivium
1: procedure RecoverCoefficient(u,I)
2: Assume that u = s

(t0)
j1

s
(t0)
j2
· · · s(t0)

jw
;

3: Rewrite u as u = h1h2 · · ·hL, where hi is a single internal state bit or the product
of two adjacent internal state bits;

4: for 1 ≤ i ≤ L do
5: Collect and store the maximum degree terms of hi in MaxDegTerms[i];
6: Apply the Reduce operation to MaxDegTerms[i], and store the reduced terms

in RedMaxDegTerms[i];
7: end for
8: Figure out all valid combinations;
9: Set Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

} = 0;

10: for each valid combination (t1
i1

, t2
i2

, . . . , tL
iL

) do
11: Recover the corresponding superpoly vector (λ1

i1
, λ2

i2
, . . . , λL

iL
);

12: Set Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} = Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} ⊕
∏L

j=1 λj
ij

;
13: end for
14: return Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

};
15: end procedure

Table 7: A part of useful cubes of the 837- and 838-round Trivium

#Rounds Indies of cube variables #Tight terms

837

1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78 6
2,4,6,8,10,12,14,17,19,21,23,25,27,29,32,34,36,38,40,
42,44,47,49,51,53,55,57,59,62,64,66,68,70,72,74,77,79 56
0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,75,79 91
0,2,4,6,8,10,13,15,17,19,21,23,25,28,30,32,34,36,38,40,
43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,79 83
0,2,4,6,8,10,15,17,19,21,23,25,28,30,32,34,36,38,40,43,
45,47,49,51,53,55,58,60,62,64,66,68,70,73,75,79 95
1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,76,78 88
2,4,6,8,10,12,14,17,19,21,23,25,27,29,32,34,36,38,40,
42,44,47,49,51,53,55,57,59,62,64,66,68,70,72,77,79 96

838

0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 6
1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78, 56
0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,
40,42,45,47,49,51,53,55,57,60,62,64,66,68,70,75,79, 56
1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,
41,43,46,48,50,52,54,56,58,61,63,65,67,69,71,76,78 96
0,2,4,6,8,10,13,15,17,19,21,23,25,28,30,32,34,36,38,
40,43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,79 137
0,2,4,6,8,12,15,17,19,21,23,25,27,30,32,34,36,38,
40,42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 148
0,2,4,6,8,10,15,17,19,21,23,25,28,30,32,34,36,38,
40,43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,75,79 157
1,3,5,7,9,11,14,16,18,20,22,24,26,29,31,33,35,37,39,
41,44,46,48,50,52,54,56,59,61,63,65,67,69,71,74,78 158
0,2,4,6,8,10,12,15,17,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 160
1,3,5,7,9,11,16,18,20,22,24,26,29,31,33,35,37,39, 41,
44,46,48,50,52,54,56,59,61,63,65,67,69,71,74,76,78 178

