
Exact maximum expected differential and linear
probability for 2-round Kuznyechik

(Extended Abstract)

Vitaly Kiryukhin

JSC «InfoTeCS», Moscow, Russia
Vitaly.Kiryukhin@infotecs.ru

Abstract

This paper presents the complete description of the best differentials and lin-
ear hulls in 2-round Kuznyechik. We proved that 2-round MEDP = 2−86.66...,
MELP = 2−76.739.... A comparison is made with similar results for the AES cipher.

Keywords: Kuznyechik, LSX, MDS codes, differential cryptanalysis, linear cryptanalysis,
MEDP, MELP.

1 Introduction

This paper presents the results of the development of low-complexity
algorithms, that will allow to find the complete description of the best differ-
ential trails, differentials, linear characteristics, linear hulls and exact values
of maximum expected differential and linear probability (MEDP, MELP) for
2-round Kuznyechik.

We proved that 2-round MEDP = 2−86.66..., MELP = 2−76.739....
A comparison is made with similar cryptanalysis results for the AES

cipher [1].
The main focus will be on the differential method. The results of the

search for linear characteristics will be obtained in a similar way, due to the
existence well-known duality between differential cryptanalysis and linear
cryptanalysis [2].

1

2 Basic information

Kuznyechik block cipher [3] consists of a sequence of 9 rounds and a
post-whitening key addition. Each round contains three operations:

X – modulo 2 addition of an input block with an iterative key;
S – parallel application of a fixed bijective substitution to each byte of

the block;
L – linear transformation which is defined as a LFSR over GF (28). It can

be represented as multiplication by the matrix L over GF (28).
The block size is 128 bits (n = 16 bytes).
A 2-round differential trail can be represented as the following scheme:

Figure 1: 2-round differential trail

∆x = (x1, ..., xn) – the difference of input blocks in byte representation,
∆1 = (α1, ..., αn) – the difference of blocks after the nonlinear transfor-

mation on the first round,
∆2 = (β1, ..., βn) = (α1, ..., αn)L – the difference of blocks after the linear

transformation (matrix multiplication in row-by-row representation),
∆y = (y1, ..., yn) – the difference of blocks after the nonlinear transfor-

mation on the second round.
Note that due to «linearity» and «invertibility» the linear transformation

on the second round can be omitted without loss of generality.
The nonlinear transformation of each S-box is characterized by a matrix

of transition probabilities (Differential Distribution Table). DDT is the set
of local difference characteristics:

P (α→ β) = Pr(S(χ⊕ α)⊕ S(χ) = β), α, β, χ ∈ {0, 1}8, (1)

where χ is a uniformly distributed random variable. S-box with nonzero input
difference α 6= 0 is called active.

2-round differential trail ∆x → ∆1 → ∆2 → ∆y is a random variable,

2

that has a probability (EDCP [1])

P (∆x→ ∆1 → ∆2 → ∆y) =

(
n∏
i=1

P (xi → αi)

)(
n∏
i=1

P (βi → yi)

)
. (2)

The best differential trail has probability

P trail
best = Pbest(∆x→ ∆1 → ∆2 → ∆y) =

= max
(∆x,∆1,∆2,∆y)\(0,0,0,0)

P (∆x→ ∆1 → ∆2 → ∆y).

Differential is the set of all differential trails that have the same ∆x and
∆y.

Differential is characterized by the probability (EDP [1])

P (∆x→ ∆y) =
T∑
i=1

((
n∏
j=1

P (xj → α
(i)
j)

)(
n∏
j=1

P (β
(i)
j → yj)

))
, (3)

where T is the number of the differential trails in the differential.
The best differential has probability (MEDP [1]):

P diff
best = Pbest(∆x→ ∆y) = max

(∆x,∆y)\(0,0)
P (∆x→ ∆y)

Our first goal is to find the most probable differential trail – the best
differential trail.

Matrix L is part of the matrix G = E|L. G is the generator matrix of
the MDS-code (32, 16, 17) over GF (28). Thus, the minimum possible total
weight of vectors ∆1 and ∆2 is equal to the minimum code distance d = 17.
We will start searching for the most probable differential trail by finding all
minimum byte weight codewords in G.

3 Algorithm for finding codewords with the smallest
byte weight

Let (t, r) such, that t+r = n+1, t > 0, r > 0. Fix k1, . . . , kt, m1, . . . ,mr

– locations of non-zero elements in the vectors ∆1 = (α1, ..., αn) and ∆2 =
(β1, ..., βn) accordingly. Let’s present the transformation ∆1L = ∆2 as a
system of equations. Select the subsystem Sn−r,t in the system ∆1L = ∆2:
(αk1, . . . , αkt) · Sn−r,t = (0, . . . , 0︸ ︷︷ ︸

n−r

). Solve the subsystem Sn−r,t . The set of

3

solutions is (α
(i)
k1
, . . . , α

(i)
kt

), i = 1, 255. Hence we have the set of ∆
(i)
1 and the

set of ∆
(i)
2 = ∆

(i)
1 L , i = 1, 255.

Let’s denote these sets of solutions

M (n+1)(k1, . . . , kt,m1, . . . ,mr) = (α
(i)
k1
, . . . , α

(i)
kt
, β(i)

m1
, . . . , β(i)

mr
), i = 1, 255.

(4)
The union of such sets is the set

M (n+1) =
⋃

(k1,...,kt,m1,...,mr)

M (n+1)(k1, . . . , kt,m1, . . . ,mr)

of all code vectors of minimum weight n + 1. The cardinality of the set
M (n+1) is equal to 255 ·

∑
(t,r):t+r=n+1

(
n
t

)(
n
r

)
= 255 ·

(
2n
n+1

)
. Note, that the

same expression for the number of codewords of minimal weight is obtained
in [5].

Pseudocode of the algorithm is presented in Appendix E.

4 Algorithm for finding the best differential trail

In general, we consider differential trails for 2 rounds

∆x→ ∆1 → ∆2 → ∆y.

We start with differential trails containing the minimum number of active
S-boxes (minimal weight of ∆1 and ∆2).

To simplify the notation we denote (∆1,∆2) =
(αk1, . . . , αkt, βm1

, . . . , βmr
), t + r ≥ d = 17. Coordinates equal to

zero are omitted in notation.

Pmax(∆1,∆2) =

(
t∏

j=1

max
x
P (x→ αkj)

)(
r∏
j=1

max
y
P (βmj

→ y)

)

is the maximum probability of differential trail with a fixed vector (∆1,∆2).
Then the most probable differential trail ∆x → ∆1 → ∆2 → ∆y has the
probability:

P trail
best = max

(∆1,∆2)\(0,0)
Pmax(∆1,∆2).

Let the vector (∆1,∆2) has a weight n+ 1:

P trail
best ≥ max

(∆1,∆2)∈M (n+1)
Pmax(∆1,∆2).

4

Two sets of differential trails were found in M (n+1). Each trail in both
sets has a maximum probability:

max
(∆1,∆2)∈M (n+1)

Pmax(∆1,∆2) =

(
8

256

)13(
6

256

)4

= 2−86.66....

The trails in the set have the same inner part (∆1,∆2). There are no other
trails that would have a maximum probability.

The found differential trails are presented in Appendix A.

Lemma 1. Let ∆x → ∆1 → ∆2 → ∆y be the differential trail in 2-round
Kuznyechik. Let P (∆x → ∆1 → ∆2 → ∆y) be maximal among all trails.
Then the weight (∆1,∆2) is equal to n+ 1 = 17.

Proof. One can see that the estimate

P (∆x→ ∆1 → ∆2 → ∆y) ≤
(

max
(α,β)\(0,0)

P (α→ β)

)w
. (5)

is true for any differential trail ∆x→ ∆1 → ∆2 → ∆y, ‖∆1‖+‖∆2‖ = w =
t+ r.

In the case of Kuznyechik, max
(α,β)\(0,0)

P (α → β) =
(

8
256

)
. Then for any

w ≥ 18 it holds that:

P (∆x→ ∆1 → ∆2 → ∆y) ≤
(

8

256

)w
≤

≤
(

8

256

)18

< max
(∆1,∆2)∈M (n+1)

Pmax(∆1,∆2) = 2−86.66....

Hence P trail
best = 2−86.66.... Lemma 1 is proved.

5 Algorithm for finding the best differential

Suppose that the best differential will also be achieved on a configuration
containing the minimum number w = n+ 1 = 17 of active S-boxes.

Each subsetM (n+1)(k1, . . . , kt,m1, . . . ,mr) contains exactly 255 code vec-
tors. The sets k1, . . . , kt and m1, . . . ,mr specify the positions of active S-
boxes. Hence the differential ∆x→ ∆y contains trails from only one subset
M (n+1)(k1, . . . , kt,m1, . . . ,mr). Consequently, in expression (3) T = 255.

Consider an algorithm that allows you to get rid of the exhaustive search.
It is based on the «pruning» of the branches of the search tree by using the
constructed upper bounds.

5

In the previous paragraph, the exact value of the best differential trail
is given P trail

best = 2−86.66.... This probability is the lower bound for the
probability of the best differential. It is always possible to construct a differ-
ential, consisting of one best trail P diff

best ≥ P trail
best . We will use the probability

P diff
est = P trail

best as a threshold value.

5.1 Algorithm for calculating the upper bound of the differential

Let a subset of codewords (4) is given. Calculate the upper bound of the
differential.

Fix u ≤ t, v ≤ r. Select t − u coordinates α and r − v coordinates β in
the equation (4):

part(i) = (α
(i)
k1
, . . . , α

(i)
kt−u

, β(i)
m1
, . . . , β(i)

mr−v
), i = 1, 255.

For all i = 1, 255 we obtain an easily computable upper bound for the
«part» of the differential trail

P (∆x→ part(i) → ∆y) ≤

≤

(
t−u∏
j=1

max
x
P (x→ α

(i)
kj

)

)(
r−v∏
j=1

max
y
P (β(i)

mj
→ y)

)
.

Let’s order these estimates in descending order.
We will construct for each x (and y) the sequence of transition probabil-

ities. Let’s use the S-box transition probability matrix (DDT):

P (x→ α(1,x)) ≥ P (x→ α(2,x)) ≥ . . . ≥ P (x→ α(255,x)), x = 1, 255, (6)

P (β(1,y) → y) ≥ P (β(2,y) → y) ≥ . . . ≥ P (β(255,y) → y), y = 1, 255. (7)

X(q) = max
x
P (x→ α(q,x)), Y (q) = max

y
P (β(q,y) → y). (8)

Consider the differential (3). Let the summands be ordered in descending
order. Then

P (∆x→ ∆y) ≤ min
u,v

(
255∑
q=1

(
X(q)

)u (
Y (q)

)v (
P (∆x→ part(q) → ∆y)

))
.

(9)
If the resulting upper bound (9) is less than the threshold P diff

est , then the
subset is no longer considered.

In practice, the values u and v are selected experimentally depending

6

on the cipher substitution. For Kuznyechik u = v = 2 are close to optimal
parameters. For such values, approximately 9

10 subsets are excluded from
being considered.

5.2 Algorithm for constructing the differential

Suppose that for some subsetM (n+1)(k1, . . . , kt,m1, . . . ,mr) the estimate
is greater than the threshold value P diff

est . Then the following estimate also
holds

P (∆x→ ∆y) ≤
255∑
i=1

(
t∏

j=1

max
x
P (x→ α

(i)
kj

)
r∏
j=1

max
y
P (β(i)

mj
→ y)

)
. (10)

We will sequentially search through possible non-zero values xk1, . . . , xkt
and ym1

, . . . , ymr
. The maximum values max

x
P (x→ α

(i)
kj

) (and max
y
P (β

(i)
mj →

y)) will be replaced by the immediate values P (xkj → α
(i)
kj

) (P (β
(i)
mj → ymj

)
accordingly). We will also use the pruning of the branches of the search tree.

Denote

P (a1, a2, . . . as) = P (xk1 = a1, xk2 = a2, . . . , xks = as, xks+1
, . . . , xkt → ∆y),

P (a1, a2, . . . as) ≤

≤
255∑
i=1

(
s∏
j=1

P (aj → α
(i)
kj

)
t∏

j=s+1

max
x
P (x→ α

(i)
kj

)
r∏
j=1

max
y
P (β(i)

mj
→ y)

)
.

In the estimate (10), we fix the first factor with the number k1(the place
of the first nonzero element). Let xk1 = 1. Then we replace max

x
P (x →

α
(i)
k1

) by P (1 → α
(i)
k1

). After that we have the estimate P (a1 = 1). If the
estimate P (a1 = 1) is less than the threshold value P diff

est , then we perform a
search among the elements xk1 = 2, 3, ...255. We will search until the element
xk1 = a1, P (a1) ≥ P diff

est is found. If such xk1 is not found, then the subset
M (n+1)(k1, . . . , kt,m1, . . . ,mr) is excluded from being considered.

Let such xk1 = a1 is found. We perform similarly search of the second
factor. Consider the bytes xk2 = 1, 2, . . . , a2, . . . , 255. Substituting P (a2 →
α

(i)
k2

) instead of max
x
P (x → α

(i)
k2

) into the estimate P (a1). Do this until a2 :

P (a1, a2) ≥ P diff
est is found. If such an element is not found then return to the

previous step and try to accomplish this algorithm for the remaining bytes
xk1 > a1.

We continue the recursive search. We replace the «s+1»-th factor in

7

P (a1, a2, . . . as) with the value P (a → α
(i)
ks+1

), a = 1, 2, . . . , 255. Multipli-
ers max

y
P (β

(i)
mj → y) are replaced by values P (β

(i)
mj → b), b = 1, 2, . . . , 255.

If the algorithm substituted all the elements a1, . . . , at, b1, . . . , br and
did not reject the subset of codewords, then we obtained an exact estimate
P (a1, . . . , at → b1, . . . , br) and the differential

P (∆x→ ∆y) =
255∑
i=1

(
t∏

j=1

P (aj → α
(i)
j)

)(
r∏
j=1

P (β
(i)
j → bj)

)
≥ P diff

est .

(11)
In this case, the value P diff

est is updated. We return to the pre-
vious step of the algorithm and continue the search in the subset
M (n+1)(k1, . . . , kt,m1, . . . ,mr).

The last step of the algorithm: P diff
best = P diff

est .
It was shown that if the number of active substitutions is n + 1 = 17,

then each best differential contains only one differential trail.
The best differential trails are presented in Appendix A. Pseudocodes of

algorithms are presented in Appendix E.

Lemma 2. Let ∆x → ∆y is the differential in 2-round Kuznyechik. Let
P (∆x→ ∆y) be maximal among all differentials. Then the number of active
S-boxes in ∆x→ ∆y is equal to n+ 1 = 17.

The main idea of the proof is to construct an upper bound for the differ-
ential ∆x → ∆y containing n + 2 = d + 1 = 18 active S-boxes. The upper
estimate is built by using: two majorants (8); the MDS code property (byte
weight of the sum of codewords is not less than n + 1); the rearrangement
inequality [6]. The proof of the Lemma is presented in Appendix D.

6 The comparison with AES

The comparison of the results given in this paper for Kuznyechik with
the results of the AES cipher analysis is of particular interest [1].

Note the following differences between 2-round versions of the ciphers
[3, 4].

Kuznyechik – one MDS-matrix 16× 16; pseudorandom, non-analytical
S-box; DDT and LAT do not have obvious patterns.

AES – byte permutation layer and four MDS-matrix 4× 4; all nontrivial
rows and columns in DDT (and LAT) have the same distribution of values.

8

Differences in linear and non-linear transformations lead to different ap-
proaches for calculating differential and linear characteristics.

In the case of AES the actual work is reduced to a single MDS-matrix
4×4. This allows you to construct the entire set of codewords. In the case of
Kuznyechik, due to the use of the algorithm (3), only low-weight codewords
are iterated over. After that, it is analytically shown that the differential on
codewords of greater weight will be worse than the constructed one.

The best differential in AES consists of 75 differential trails. The estimate
(6) is used in the construction of the differential. The estimate (10) will be
the same for any subset of code words and is therefore not used. MEDP =
2−28.272..., MELP = 2−27.287....

The best differential in Kuznyechik consists of a single differential trail,
but the best linear hull consists of 37 linear characteristics. Due to the algo-
rithm 5.1 it is shown that for the majority of considered subsets of codewords
the best differential on them is not achieved. For the remaining subsets, an
attempt is made to construct the best differential (algorithm 5.2). This is
due to a sequence of transitions from the estimate (10) to the exact value
(11). We got: MEDP = 2−86.66..., MELP = 2−76.739....

7 Conclusion

The article presented: the algorithm for finding codewords with the small
byte weight; algorithms for finding the complete description of the best dif-
ferential trails (linear characteristics), differentials (linear hulls) in 2-round
Kuznyechik.

The best differentials (linear hulls) and their probabilities were found.
It was shown that the best differential contains one differential trail; the
best linear hull contains 37 linear characteristics (Appendix A and B). We
proved that 2-round MEDP = 2−86.66..., MELP = 2−76.739.... The estimate
(5) for a differential trail (linear characteristic) is not achieved for 2-round
Kuznyechik.

For any LSX cipher, the N -round MEDP (MELP) is the upper bound for
(N + 1)-round MEDP (MELP). Therefore, the 2-round MEDP (MELP) of
Kuznyechik is the upper bound for any larger number of rounds. Obtaining
a more precise upper bounds is the subject of further research.

9

Acknowledgments

The author is very grateful to Igor Arbekov and Anton Naumenko for
valuable comments and suggestions on the text of the article.

References

[1] Keliher, L., Sui, J.: Exact maximum expected differential and linear prob-
ability for two-round advanced encryption standard. IET Information Se-
curity 1(2), 53–57 (2007), https://doi.org/10.1049/iet-ifs:20060161

[2] E. Biham, On Matsui’s linear cryptanalysis, Advances in Cryptology –
EUROCRYPT’94, in: Lecture Notes in Comput. Sci., Vol. 950, Springer,
Berlin, 1995, pp. 341-355

[3] GOST R 34.12-2015 - National standard of the Russian Federation –
Information technology – Cryptographic data security – Block ciphers,
2015

[4] National Institute of Standards and Technology. Advanced Encryption
Standard (AES) (FIPS PUB 197), 2001

[5] F.J.MacWilliams, N.J.A.Sloane. The Theory of Error-Correcting Codes.
North Holland, Amsterdam, 1977

[6] Hardy G.H., Littlewood J.E., Pólya G. Inequalities, Cambridge Mathe-
matical Library (2. ed.), Cambridge: Cambridge University Press, 1952

10

Appendix

A The best differentials

0 8 0 0 0 0 8 0 8 8 8 0 6 0 0 8 P (∆x→ ∆1) · 256
0019000000002d00b8b8950072000028 ∆1

2a00000d2337f74d0082a80000009d1b ∆2

8 0 0 8 8 8 8 6 0 8 6 0 0 0 6 8 P (∆2 → ∆y) · 256

Table 1: First optimal internal part(∆1 → ∆2). It generates 2 best differentials.

0 8 8 6 0 8 8 8 0 8 8 0 0 8 0 8 P (∆x→ ∆1) · 256
00a5def70085853700ec0300009c005a ∆1

0068ea0d00f700dd006d000000000090 ∆2

0 6 6 8 0 8 0 6 0 8 0 0 0 0 0 8 P (∆2 → ∆y) · 256

Table 2: Second optimal internal part(∆1 → ∆2). It generates 24 best differentials.

B Application to Linear Cryptanalysis

There is a certain duality between differential and linear cryptanalysis
[2]. It allows us to apply the algorithms described above to calculate linear
characteristics.

We make the appropriate substitutions.
Differential probability (1), are replaced by linear probability. DDT is

replaced by Linear Approximation Table (LAT). Input/output differences α
and β are replaced by input/output masks α′ and β′ correspondingly.

P (α′ → β′) = (2Pr(α′ • χ = β′ • S(χ))− 1)2, α′, β′, χ ∈ {0, 1}8,

where • is the inner product over {0, 1}.
By analogy with the differential trail a linear characteristic for 2 rounds

is introduced:
a→ µ1 → µ2 → b.

Its probability (by analogy with (2)) is equal to

P (a→ µ1 → µ2 → b) =

(
n∏
j=1

P (a[j]→ µ1[j])

)(
n∏
j=1

P (µ2[j]→ b[j])

)
,

11

where [j] is j-th coordinate of the corresponding vector.
The linear hull (similar to differential) is the set of all linear characteristics

having input mask a and output mask b.

(a→ b) = {a→ µ
(i)
1 → µ

(i)
2 → b, i = 1, T}.

The probability of the linear hull (a→ b) is equal to:

P (a→ b) =
T∑
i=1

((
n∏
j=1

P (a[j]→ µ
(i)
1 [j])

)(
n∏
j=1

P (µ
(i)
2 [j]→ b[j])

))
,

where T is the number of linear characteristics.
You need to replace all formulas in the sections 4 and 5 according to the

above analogies.
The maximum probability of the local linear characteristic of Kuznyechik

is

Pmax(α
′ → β′) = max

(α′,β′)\(0,0)
P (α′ → β′) =

=

(
2

(
128 + 28

256

)
− 1

)2

=

(
56

256

)2

.

The trivial estimate of the two-round linear characteristic is

max
(a,µ1,µ2,b)\(0,0,0,0)

P (a→ µ1 → µ2 → b) ≤
(

56

256

)2·17

= 2−74.549....

The following results are obtained by executing the algorithms.
The best linear characteristic has a probability equal to

max
(a,µ1,µ2,b)\(0,0,0,0)

P (a→ µ1 → µ2 → b) =

=

(
56

256

)2·10(
52

256

)2·4(
48

256

)2·3
= 2−76.739....

The linear hull (a→ b) has a nontrivial form and (unlike the differential
method) contains 37 linear characteristics a → µ

(i)
1 → µ

(i)
2 → b, i = 1, 37.

The exact probability of the linear hull is

max
(a,b)\(0,0)

P (a→ b) = 2−76.739... ·
(
1 + 2−61.407

)
.

12

00 28 00 28 28 00 00 26 00 28 00 00 00 24 00 00 256 ·
√
P (a→µ1)

2

00 6a 00 97 55 00 00 06 00 2f 00 00 00 9a 00 00 µ1

9f 23 45 ba 5a b8 00 00 00 00 41 00 4c 87 87 0d µ2

24 24 26 26 28 28 00 00 00 00 28 00 28 28 28 26 256 ·
√
P (µ2→b)

2

Table 3: Optimal internal part(µ1 → µ2).

The optimal inner part (µ1 → µ2) generates the best linear hull.

00 41 00 de 48 00 00 c6 00 5a 00 00 00 9f 00 00 a
9a 38 e8 a2 2f 69 00 00 00 00 6a 00 a7 ab ab 4b b

Table 4: The best linear hull (a,b)

The best linear hull (a,b) consist of 37 linear characteristics a→ µ
(i)
1 →

µ
(i)
2 → b, which are listed below (Table 5 and 6).

i µ
(i)
1 µ

(i)
2 log2 P (a→ µ

(i)
1 →

µ
(i)
2 → b)

1 000800153d0000ef00e2000000020000 7e3ceaad70f7000000005f0048c2c217 -160.980...

2 00200056f40000bc008b000000080000 f9f3abb6c1dd000000007c002209095e -150.676...

3 003f009b580000d7000d0000000f0000 aea232db819600000000a8003cf1f194 -157.973...

4 0046005e0200002200b7000000110000 27f2f1f753e900000000cd0082adad4f -158.150...

5 006900ee2000002b007f0000001a0000 75291677329100000000db002fd8d8f4 -155.551...

6 007100d06700001a00580000001c0000 f76c2981a288000000003a00f69e9ecc -139.633...

7 008d00bd04000045006f000000230000 4ee5e2eea6d2000000009b00055b5b9e -148.300...

8 00a2000d2600004c00a7000000280000 1c3e056ec7aa000000008d00a82e2e25 -154.032...

9 00bd00c08a00002700210000002f0000 4b6f9c0387e1000000005900b6d6d6ef -141.656...

10 00cb00e30600006700d8000000320000 69171319f53b00000000560087f6f6d1 -152.336...

11 000a005072000054001a000000420000 61b31086ac4a0000000088009a323212 -160.721...

12 004b00fd9b00002c000c000000520000 935547ea2ff1000000007000df2121af -148.862...

13 005b00d6e10000f200c9000000560000 6f2c92b1cf1f00000000ce004ea5a580 -156.558...

14 006300be5200007f0065000000580000 149a06f19edb000000005300b5eaeae6 -140.159...

15 007b00801500004e00420000005e0000 96df39070ec200000000b2006cacacde -146.218...

16 00b0006313000029009a0000006c0000 ffc82a1efbf900000000e400eb5a5a0f -155.166...

17 00b70090f8000073003b0000006d0000 2adc8c852bab00000000d1002ce4e4fd -150.862...

18 00e600166b0000d500e8000000790000 24430eb248fe000000009700f873736f -147.574...

19 001400a1e40000a90034000000850000 c367200d589500000000110035656524 -152.616...

20 005200ffe600008b0083000000940000 e495d1fa0b7c00000000dc00b7c8c86b -151.329...

21 006a009755000006002f0000009a0000 9f2345ba5ab80000000041004c87870d -76.7396...

22 007d004fc4000082004b0000009f0000 b64e367a6a0400000000ca001abdbdd0 -143.772...

23 00a60087b800003b0056000000a90000 2320f0387fd10000000022000ccfcf2e -154.113...

24 00c8009a7300004a0088000000b20000 831d40d49d1200000000cc00e4a9a928 -164.757...

Table 5: Linear characteristics included in the best linear hull. i = 1, 24

13

i µ
(i)
1 µ

(i)
2 log2 P (a→ µ

(i)
1 →

µ
(i)
2 → b)

25 00d800b109000094004d000000b60000 7f64958f7dfc000000007200752d2d07 -156.587...

26 00f700012b00009d0085000000bd0000 2dbf720f1c84000000006400d85858bc -161.616...

27 00ff0014160000720067000000bf0000 538398a26c73000000003b00909a9aab -158.417...

28 003600b25f0000ae0047000000cd0000 251b719045f500000000ba00c59c9c7f -148.417...

29 003900548900001b0004000000ce0000 8e333da6e55000000000d0004ae0e09a -141.692...

30 003e00a76200004100a5000000cf0000 5b279b3d350200000000e5008d5e5e68 -143.470...

31 004f00770500005b00fd000000d30000 ac4bb2bc978a00000000df007bc0c0a4 -149.774...

32 005f005c7f0000850038000000d70000 503267e77764000000006100ea44448b -154.862...

33 00670034cc0000080094000000d90000 2b84f3a726a000000000fc00110b0bed -150.264...

34 006f0021f10000e70076000000db0000 55b8190a565700000000a30059c9c9fa -140.721...

35 007000ec5d00008c00f0000000dc0000 02e98067161c00000000770047313130 -162.535...

36 00ac00d7ca00006f004c000000eb0000 4293e0bed39b00000000aa0096fdfd3c -156.627...

37 00fa00a2b2000093003e000000fe0000 9918c412609c00000000d90085d4d45c -174.676...

Table 6: Linear characteristics included in the best linear hull. i = 25, 37

C Codewords with minimum binary weight

Let G = E|L is a linear binary code, codeword length – 256 bits, infoword
length – 128 bits.

L is 128× 128 binary matrix, which defines the linear transformation of
Kuznyechik.

It is shown (algorithm of the section (3)) that in a linear binary code G
there are no codewords of binary weight 17, 18, 19, 20.

Two codewords with binary weight equal to 29 are found.

0 2 0 2 2 0 0 0 0 2 1 0 1 2 0 1 w
009000a0030000000009010001090004 x
15040009010001090000000003a00090 y = xL
3 1 0 2 1 0 1 2 0 0 0 0 2 2 0 2 w

Table 7: The codeword with a binary weight equal to 29

14

2 0 2 2 0 0 0 0 2 1 0 1 2 0 1 3 w
9000a003000000000901000109000415 x
040009010001090000000003a0009000 y = xL
1 0 2 1 0 1 2 0 0 0 0 2 2 0 2 0 w

Table 8: Another codeword with a binary weight equal to 29

D The proof of Lemma 2

Lemma 2. Let ∆x → ∆y is the differential in 2-round Kuznyechik. Let
P (∆x→ ∆y) is maximal among all differentials. Then the number of active
S-boxes in ∆x→ ∆y is equal to n+ 1 = 17.

Proof Denote P diffA
best the best differential with A active S-boxes.

It is shown that among differentials containing trails of weight n+1 = 17,
the best probability is

P diff17
best =

(
8

256

)13(
6

256

)4

= 2−86.660....

We will show that

P diff
best = P diff17

best > P diffA
best , n+ 2 ≤ A ≤ 2n.

Consider an arbitrary differential ∆x→ ∆y with 18 active S-boxes. The
differential consists of trails of the form ∆x → ∆1 → ∆2 → ∆y. The
difference ∆x and all the ∆1 differences have the same set of active S-boxes.
(k1, . . . , kt) is the set of their positions. Similarly for ∆y and ∆2, let’s
denote the positions of active S-boxes (m1, . . . ,mr), t+ r = 18.

Using the algorithm (3), you can find all pairs (∆1,∆2) corresponding to
this set of active S-boxes. All differential trails ∆x→ . . .→ ∆y can only pass
through these pairs. During the algorithm execution the system of equations
with 18 − n = 2 free variables will be solved. The number of solutions, and
accordingly the number of pairs (∆1,∆2), will not exceed 25518−n = 2552.

Let’s present the set of pairs found as a table D. Table size is
equal to 2552 × 18. Each row corresponds to a pair (∆

(i)
1 ,∆

(i)
2) =

(α
(i)
k1
, . . . , α

(i)
kt
, β

(i)
m1, . . . , β

(i)
mr), i ≤ 2552, and each column corresponds to the

active S-box.
By definition, the probability of a differential with 18 active S-boxes is:

15

P (∆x→ ∆y) =
T∑
i=1

((
t∏

j=1

P (xkj → α
(i)
kj

)

)(
r∏
j=1

P (β(i)
mj
→ ymj

)

))
,

T ≤ 2552, t+ r = 18.

Let the ∆x and ∆y are fixed. Then each element of the table can be
matched with the probability P (xkj → α

(i)
kj

) (or P (β
(i)
mj → ymj

)). Let us
denote this probability Pi,j, then the probability of the differential is:

P (∆x→ ∆y) =
T∑
i=1

r+t∏
j=1

Pi,j. (12)

We give an upper bound of the (12).
Note that there are no more than 255 identical bytes in each column of

the table D. Otherwise, there are rows with a pair of identical bytes. This
corresponds to the existence of a codeword with a weight less than n+1 = 17.
It contradicts the MDS-code definition.

Let the input xkj or output ymj
bytes are fixed. Then the same bytes in

the table column match the same probabilities.
Denote p8 = 8

256 , p6 = 6
256 , p4 = 4

256 , p2 = 2
256 .

Let’s use the majorants (8). They take the following values:

X = p8, p6, . . . , p6︸ ︷︷ ︸
5

, p4, . . . , p4︸ ︷︷ ︸
21

, p2, . . . , p2︸ ︷︷ ︸
87

, 0, . . . , 0︸ ︷︷ ︸
141

; (13)

Y = p8, p8, p6, . . . , p6︸ ︷︷ ︸
7

, p4, . . . , p4︸ ︷︷ ︸
27

, p2, . . . , p2︸ ︷︷ ︸
92

, 0, . . . , 0︸ ︷︷ ︸
127

. (14)

You can see that Y is always greater than X. To get the highest estimate
we consider the case when 2 columns of the table are estimated using X (and
16 columns – Y).

The number of nonzero elements in the majorant X is v = 114. This
allows us to refine the maximum number of differential trails in the differential
T ≤ v2 = 12996. And also refine the values of majorants:

X = p8, p6, . . . , p6︸ ︷︷ ︸
5

, p4, . . . , p4︸ ︷︷ ︸
21

, p2, . . . , p2︸ ︷︷ ︸
87︸ ︷︷ ︸

v=114

; (15)

16

Y = p8, p8, p6, . . . , p6︸ ︷︷ ︸
7

, p4, . . . , p4︸ ︷︷ ︸
27

, p2, . . . , p2︸ ︷︷ ︸
78︸ ︷︷ ︸

v=114

. (16)

We divide the columns of the table into two groups:

T∑
i=1

r+t∏
j=1

Pi,j =
T∑
i=1

(Pi,1 · Pi,2)︸ ︷︷ ︸
I

·

(
18∏
j=3

Pi,j

)
︸ ︷︷ ︸

II

. (17)

We multiply the elements of the group I in pairs:

Pi,1 · Pi,2 = P
(I)
i , ∀i = 1, T .

Arrange in each row of II all factors in non-increasing order.
Arrange the elements of each sequence P (I)

1 , . . . , P
(I)
T , P1,j, . . . , PT,j, ∀j =

3, 18 (columns in D) in a non-increasing order. Denote the elements of the
resulting sequences P̂ (I)

1 , . . . , P̂
(I)
T , P̂1,j, . . . , P̂T,j, ∀j = 3, 18.

From the rearrangement inequality [6] it follows that

T∑
i=1

(Pi,1 · Pi,2)︸ ︷︷ ︸
I

·

(
18∏
j=3

Pi,j

)
︸ ︷︷ ︸

II

≤
T∑
i=1

P̂
(I)
i︸︷︷︸
I

·

(
18∏
j=3

P̂i,j

)
︸ ︷︷ ︸

II

. (18)

Let’s estimate P̂ (I)
1 , . . . , P̂

(I)
T using X (13). Knowing that all pairs in the

first and second columns are different, we replace the elements of the sequence
by the X ×X:

p2
8, p8p6, . . . , p8p6︸ ︷︷ ︸

10 lines

, p6, . . . , p6︸ ︷︷ ︸
25 lines

, p8p4, . . . , p8p4︸ ︷︷ ︸
42 lines

, (19)

Let’s estimate the group II.
We note that the following inequality holds:

P̂i = P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ P̂i+1 = P̂

(I)
i+1 ·

(
18∏
j=3

P̂i+1,j

)
, ∀i = 1, T − 1. (20)

Assume that the coordinates of all elements p8 in II are known (Fig.2.a).

17

Figure 2: Reordering elements in II.

We describe the procedure for reordering all elements p6, p4 and p2 in II.
1) Select the element in the first row P̂1,z 6= p8, z = 3, 18. Let z be the

smallest (left column). If in the first row all elements are equal to p8, we
consider the second row, etc.

2) Find the maximum of all elements in II, which have not been reordered
before:

P̂i′,j′ = max
i,j

P̂i,j, P̂i,j 6= p8, i, i
′ = 1, T , j, j′ = 3, 18.

3) We will exchange the values of the elements P̂1,z and P̂i′,j′. If i′ = 1,
then (18) does not change due to commutativity of multiplication. If i′ 6= 1,
then due to (20) then estimate (18) does not decrease. Note that after the
exchange of elements can be broken inequalities (20).

4) Arrange the elements in columns P̂ (I)
1 , . . . , P̂

(I)
T , P̂1,j, . . . , P̂T,j, ∀j =

3, 18 by non-increasing. As a consequence of rearrangement inequality, (20)
will be true. The value

∑T
i=1 P̂

(I)
i ·
(∏18

j=3 P̂i,j

)
will not decrease. The sequence

P̂
(I)
1 , . . . , P̂

(I)
T , the coordinates of the elements p8 and the value of the element

with coordinates (1, z) do not change.
The element with coordinates (1, z) has been reordered.
We choose in the first row the next element not equal to p8. We will

perform the above steps 1 – 4.
Perform steps 1 – 4 sequentially for each element of the table not equal

to p8 and which has not been reordered before.
The result of the procedure will be the table D̂. An exemplary view of

the table D̂ is shown in the figure 2.b. At each step of the procedure, the
estimate (18) does not decrease. Suppose that there is a table D̃, which gives

18

a greater estimate. If D̃ coincide with D̂ within the accuracy of permutation
of the same elements, then estimates (18) are the same, too. If D̃ does not
coincide with D̂, then apply the reorder procedure to the table D̃. Due to
the steps that do not decrease the estimate (18), the table D̂, will be built.

Thus it is proved that for a given arrangement of all elements p8, the
reordering procedure allows us to obtain the greatest estimate (18).

Let us now consider the possible arrangement of elements p8 in the group
II.

The numbers of the elements p8 in the tables D and D̂ are the same. The
number of rows containing the same number of elements p8 also coincides.

Let wi be the number of elements p8 in the i-th row of the table D̂,
wi ≥ wi+1, i = 1, T − 1. Then

T∑
i=1

wi ≤ v · 16 · 2 = 3648, (21)

16 – the number of columns in the group II, 2 – the number of elements p8

in (16). Hence, ∣∣{i : wi > 0, i = 1, T}
∣∣ ≤ v · 16 · 2 = 3648. (22)

The number of rows containing exactly 2 elements p8 can be estimated
as a

(
16
2

)
· 22 – the number of pairs multiplied by the number of variants in

the pair. Assume that the number of such pairs is greater. There are two
different rows (two different codewords) that contain the same pair of bytes.
Therefore, the sum of such codewords will give a codeword with a weight of
16 or less. It contradicts the MDS-code definition.

Let us estimate the number of rows with a greater number of elements.
The maximum number of pairs is known –

(
16
2

)
· 22. On the other hand, let

i-th row contains wi elements p8, then this row contains
(
wi

2

)
different pairs

of elements p8. Then the number of rows containing exactly w elements p8 is
limited: ∣∣{i : wi = w, i = 1, T}

∣∣ ≤ (16

2

)
· 22/

(
w

2

)
, 2 ≤ w ≤ 16. (23)

And also:∣∣{i : wi ≥ w, i = 1, T}
∣∣ ≤ (16

2

)
· 22/

(
w

2

)
, 2 ≤ w ≤ 16. (24)

In addition, there should be a limit for the total number of pairs of ele-

19

ments p8 in the table D̂:

T∑
i=1

(
wi
2

)
≤
(

16

2

)
· 22 = 480. (25)

It is possible to show that the number of rows containing exactly ω = 8
elements p8, no more than ρ ≤ 5. In each column of the table D̂, no more
than two different byte values correspond to the value of p8. Any row must
have at most one intersection (the same byte in the same column) with any
other row. Initially, the number of bytes that were not selected is equal to
ν = 2 · 16 = 32.

Choose the first row that contains exactly 8 elements p8. Subtract ω = 8
from ν.

Choose the second row that intersects the first row. Subtract ω − 1 = 7
from ν.

Select the third row that intersects the first row and the second row. The
minimum number that can be subtracted from ν is ω − 2 = 6.

And so on:

ν − (ω · ρ−
ρ−1∑
i=1

i) ≥ 0,

ν − ωρ+
ρ(ρ− 1)

2
≥ 0,

1

2
ρ2 − (ω +

1

2
) · ρ+ ν ≥ 0.

Then
1

2
ρ2 − (8 +

1

2
) · ρ+ 32 ≥ 0 (26)

Hence, ρ ∈ {0, 1, 2, 3, 4, 5}. If ρ = 6 then (26) less than zero.
Similarly, when ω = 9 that ρ ≤ 4. I.e. it is possible to show that the

number of rows containing exactly 9 elements p8, no more than 4. If ω = 10
or ω = 11 then ρ ≤ 3. If ω ∈ {12, 13, 14, 15, 16} then ρ ≤ 2.

Also, the following inequalities are true:∣∣{i : wi ≥ 8, i = 1, T}
∣∣ ≤ 5∣∣{i : wi ≥ 9, i = 1, T}
∣∣ ≤ 4 (27)∣∣{i : wi ≥ 10, i = 1, T}
∣∣ ≤ 3∣∣{i : wi ≥ 12, i = 1, T}
∣∣ ≤ 2

20

wi ≤ min (2 · 16− w1 − (w2 − 1) + 2, wi−1) , i = 3, T (28)

Let wi > 2 ·16−w1− (w2−1) + 2. Then the i-th row must have at least two
identical bytes with the first row or second row. It contradicts the MDS-code
definition.

Let’s iterate all possible sets wi, i = 1, T . We will take into account the
restrictions (21), (23), (25), (27), (28).

We choose the maximum estimate among all sets wi, i = 1, T .

T∑
i=1

P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ 2−87.469... < P diff17

best = 2−86.660.... (29)

Note that it is possible to obtain more rough estimate without any ad-
ditional search. We will not use restrictions (21), (25). Take the maximum
values of the inequalities (24) and (27). The inequality (27) shows that the
greatest w1, . . . , w5 = (16, 16, 11, 9, 8). Upper bounds in the inequality (24):
exactly 7 elements p8 – 17 rows, 6 elements – 10 rows, 5 elements – 16 rows,
4 elements – 32 rows, 3 elements – 80 rows, 2 elements – 320 rows, 1 element
– 3168 rows.

T∑
i=1

P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ 2−87.012... < P diff17

best = 2−86.660.... (30)

The best estimate for a differential with 19 active S-boxes (P diff19
best) cannot

be greater than the best estimate for a differential with 18 active S-boxes
(P diff18

best).

P diff19
best ≤

255∑
i=1

P (xk1 → α
(i)
k1

) · P diff18
best =

= P diff18
best ·

255∑
i=1

P (xk1 → α
(i)
k1

) = P diff18
best · 1, ∀k1, xk1, αk1.

Similarly for cases of 20, . . . , 32 active S-boxes.
Hence, the original lemma is proved:

P diff
best = P diff17

best .

Lemma 3. Let (a→ b) is the linear hull in 2-round Kuznyechik. Let P (a→
b) be maximal among all linear hulls. Then the number of active S-boxes in

21

(a→ b) is equal to n+ 1 = 17.

Proof The proof is analogous to the Lemma of the best differential.
p8 is replaced by p′28 =

(
2·28
256

)2.
p6, p4, p2 is replaced by p′26 =

(
2·26
256

)2, ... , p′2 =
(

2·2
256

)2.
Majorants (13) and (14) are replaced by

X ′ = p
′

28, p
′

26, p
′

24, p
′

24, p
′

22, p
′

20, p
′

20, p
′

20, p
′

18, p
′

18, p
′

18, p
′

18, . . . , p
′

2, . . . , p
′

2︸ ︷︷ ︸
40︸ ︷︷ ︸

242

, 0, . . . , 0︸ ︷︷ ︸
13

and

Y ′ = p
′

28, p
′

28, p
′

24, p
′

24, p
′

22, p
′

22, p
′

22, p
′

20, p
′

20, p
′

20, p
′

20, . . . , p
′

2, . . . , p
′

2︸ ︷︷ ︸
7︸ ︷︷ ︸

247

, 0, . . . , 0︸ ︷︷ ︸
8

correspondingly.
Estimate of P (a,b) similar to (29):

P (a,b) ≤ 2−77.310... < P lin
best = 2−76.739....

22

E Pseudocode of algorithms

Algorithm for finding codewords with the smallest byte weight

Algorithm 1 Algorithm for finding codewords with the smallest byte weight
Input: k[1 . . . t] – nonzero x coordinates, m[1 . . . r] – nonzero y coordinates,

L[1 . . . n, 1 . . . n], t+ r = n+ 1 // Matrix L in row-by-row representation
Output: M (n+1)(k1, . . . , kt,m1, . . . ,mr)
1: function find_codewords(k[1 . . . t], m[1 . . . r], L[1 . . . n, 1 . . . n])
2: m′[1...n− r] := {i : i /∈ m, 1 ≤ i ≤ n} // zero y coordinates
3: S[1 . . . n− r, 1 . . . t]
4: for i := 1 to n− r do
5: for j := 1 to t do
6: S[i][j] := L[m′[i]][k[j]]
7: end for
8: end for
9: S := identity_form(S)// Gauss method over GF (28)

10: // S =

 1 · · · 0 c1
...

...
0 · · · 1 cn−r

11: codewords := {}
12: α[1 . . . t] := [0 . . . 0]
13: for all e in GF (28)\0 do
14: α[t] := e
15: for i := 1 to t− 1 do
16: α[i] := e× S[i][t] // αi = αt × ci
17: end for
18: β[1 . . . r] := L(α) // zero coordinates are not specified
19: codewords.add((α, β))
20: end for
21: return codewords

The above algorithm could be easily generalized to finding small weight
w > n+ 1 codewords. In this case, the number of free variables in each sub-
system Sn−r,t increases. Accordingly, the number of codewords generated by
a single subsystem increases to 255w−n. These codewords can include words
that weigh less than w. This requires additional verification and increases
the complexity of the algorithm.

The algorithm can be applied to an arbitrary MDS-code (2n, n, n + 1)
over any finite field F.

We estimate the time complexity of the algorithm: Gaussian algorithm –
O(t3); substitution of values – O(ord(F)w−n); linear transformation – O(n2).
The total complexity of the algorithm is O(t3 + ord(F)w−n + n2) = O(n3 +
ord(F)w−n).

23

One of the applications of this algorithm is the search in MDS-code code-
words with small binary weight. The results are presented in Appendix B.

Algorithm for finding the best differential trail

Algorithm 2 Algorithm for finding the best differential trail
Input: L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255]

// DDT[αi, βj] = P (αi → βj), i, j = 1, 255, αi, βj ∈ {0, 1}8\0
Output: best_diff_trails, P trail

best

1: function find_best_diff_trails(L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255])
2: best_diff_trails := {}
3: P trail

best := 0
4: for t := 1 to n do
5: r := n+ 1− t
6: for all k[1 . . . t] in combinations(n, t) do
7: for all m[1 . . . r] in combinations(n, r) do
8: codewords := find_codewords(k[1 . . . t], m[1 . . . r], L)
9: // codewords[i] =(∆

(i)
1 ,∆

(i)
2)= (α

(i)
k1
. . . α

(i)
kt
,β(i)
m1 . . . β

(i)
mr), i = 1, 255

10: for all α[1 . . . t], β[1 . . . r] in codewords do
11: Pmax(∆1,∆2) := get_P_max (α[1 . . . t], β[1 . . . r], DDT)
12: if Pmax(∆1,∆2) = P trail

best then
13: best_diff_trails.add((α[1 . . . t], β[1 . . . r]))
14: end if
15: if Pmax(∆1,∆2) > P trail

best then
16: P trail

best := Pmax(∆1,∆2)
17: best_diff_trails := {(α[1 . . . t], β[1 . . . r])}
18: end if
19: end for
20: end for
21: end for
22: end for
23: return best_diff_trails, P trail

best

Time complexity of the algorithm 2 is

O

n∑
t=1

(
n

t

)(
n

n+ 1− t

)
︸ ︷︷ ︸

all combinations

(
n3 + ord(F)

)︸ ︷︷ ︸
find_codewords

· (n+ 1)︸ ︷︷ ︸
get_P_max

 =

= O

((
2n

n+ 1

)
· n4

)
= O

(
22n

√
n
n4

)

24

Algorithm 3 Algorithm for calculating Pmax(∆1,∆2)

1: function get_P_max (α[1 . . . t], β[1 . . . r], DDT[1 . . . 255, 1 . . . 255])
2: // (∆1,∆2)= (αk1 . . . αkt ,βm1 . . . βmr)
3: Pmax(∆1,∆2) := 1
4: for i := 1 to t do
5: Pmax(∆1,∆2) := Pmax(∆1,∆2)×max

x
(DDT[x][α[i]])

6: end for
7: for j := 1 to r do
8: Pmax(∆1,∆2) := Pmax(∆1,∆2)×max

y
(DDT[β[j]][y])

9: end for
10: // the values max

x
(DDT[x][y]), max

y
(DDT[x][y]) can easily be cached

11: return Pmax(∆1,∆2)

The complexity of the algorithm is trivial – O(t+ r) = O(n)

Algorithm for calculating the upper bound of the differential

Algorithm 4 Algorithm for calculating the upper bound of the differential
Input: M (n+1)(k1, . . . , kt,m1, . . . ,mr), DDT[1 . . . 255, 1 . . . 255]
Output: Pest ≥ P (∆x→ ∆y)
1: function get_upper_bound(codewords[1 . . . 255], DDT[1 . . . 255, 1 . . . 255])
2: P_parts[1 . . . 255] := {}
3: for i := 1 to 255 do
4: α[1 . . . t], β[1 . . . r] := codewords[i]
5: P_parts[i] := get_P_max (α[1 . . . t− u], β[1 . . . r − v], DDT)// Let u = v = 2
6: end for
7: P_parts[1 . . . 255] := non_increasing_sort(P_parts[1 . . . 255])
8: X[1 . . . 255] := get_majorant(DDT[1 . . . 255, 1 . . . 255], input)
9: Y [1 . . . 255] := get_majorant(DDT[1 . . . 255, 1 . . . 255], output)
10: Pest := 0
11: for i := 1 to 255 do
12: Pest := Pest +X[i]u × Y [i]v × P_parts[i]
13: end for
14: return Pest

The values returned by the function get_majorant can be cached. There-
fore, the complexity of the algorithm 4 is equal to O(ord(F) · n).

25

Algorithm 5 Algorithm for calculating X and Y
Input: DDT[1 . . . 255, 1 . . . 255], input (X) or output (Y)
Output: X[1 . . . 255] or Y [1 . . . 255], 8
1: function get_majorant(DDT[1 . . . 255, 1 . . . 255], input/output)
2: if output then
3: DDT := transpose(DDT)
4: end if
5: for i := 1 to 255 do
6: DDT[i][1 . . . 255] := non_increasing_sort(DDT[i][1 . . . 255]) // sort rows
7: end for
8: majorant[1 . . . 255] := [0, . . . , 0]
9: for i := 1 to 255 do
10: majorant[i] := max

j
(DDT[j][i]) // select the maximum in the column

11: end for
12: // zero values can be removed
13: return majorant

Time complexity of the algorithm 5 is O(ord(F)2).

Algorithm for constructing the differential

Algorithm 6 Algorithm for constructing the differential
Input: M (n+1)(k1, . . . , kt,m1, . . . ,mr), DDT[1 . . . 255, 1 . . . 255], P diff

est

Output: best_differentials, P diff
est

1: function construct_differentials(codewords[1 . . . 255], DDT[1 . . . 255, 1 . . . 255],
P diff
est)

2: row_index := {1, . . . , 255}
3: row_est[1 . . . 255] := [0, . . . , 0]
4: for i := 1 to 255 do
5: α[1 . . . t], β[1 . . . r] := codewords[i]
6: row_est[i] := get_P_max (α[1 . . . t], β[1 . . . r], DDT)
7: end for
8: best_differentials := {}
9: external_bytes[1 . . . t+ r] := [0, . . . , 0] // ∆x and ∆y
10: recursive_search(1, row_index, row_est)
11: return best_differentials, P diff

est

The complexity of the algorithm 6 is determined by the complexity of
algorithm 7.

Denote the complexity of the algorithm for constructing the differential as
Cdiff . In general case, algorithm 7 performs an exhaustive search of all inputs
∆x and outputs ∆y. In this case Cdiff = O(ord(F)n). But in our practice, the
average number of operations performed by the algorithm for constructing

26

the differential is approximately equal to ord(F)2. A more accurate estimate
of the complexity is the subject of further research.

Algorithm 7 Recursive search of the differential
1: variables from Algorithm 6:
2: codewords[1 . . . 255] // codewords[i]=codeword[1 . . . t+ r], i = 1, 255
3: DDT[1 . . . 255, 1 . . . 255]
4: external_bytes[1 . . . t+ r]
5: P diff

est

6: best_differentials = {}
7: procedure recursive_search(column, row_index, row_est)
8: if column > t+ r then
9: ∆x := external_bytes[1 . . . t], ∆y := external_bytes[t+ 1 . . . t+ r]
10: P (∆x→ ∆y) := sum(row_est)
11: if P (∆x→ ∆y) = P diff

est then
12: best_differentials.add((∆x,∆y))
13: end if
14: if P (∆x→ ∆y) > P diff

est then
15: best_differentials = {(∆x,∆y)}
16: end if
17: return
18: end if
19: for a := 1 to 255 do
20: external_bytes[column] := a
21: new_row_index := {}, new_row_est[1 . . . 255] := [0, . . . , 0], Pest := 0
22: for all i in row_index do
23: codeword[1 . . . t+ r] := codewords[i]
24: Ptrail := row_est[i]
25: internal_byte := codeword[column]
26: if column ≤ t then
27: Ptrail := Ptrail ×DDT[a][internal_byte]/max

x
(DDT[x][internal_byte])

28: else
29: Ptrail := Ptrail ×DDT[internal_byte][a]/max

y
(DDT[internal_byte][y])

30: end if
31: if Ptrail > 0 then
32: Pest := Pest + Ptrail
33: new_row_index.add(i)
34: new_row_est[i] := Ptrail
35: end if
36: end for
37: if Pest ≥ P diff

est then
38: recursive_search(column+1, new_row_index, new_row_est)
39: end if
40: end for

27

Algorithm for finding the best differential

Algorithm 8 Algorithm for finding the best differential
Input: L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255] , P trail

best

Output: best_differentials, P diff
best

1: function find_best_differentials(L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255])
2: best_differentials := {}
3: best_diff_trails, P trail

best := find_best_diff_trails(L, DDT)
4: P diff

est := P trail
best

5: for t := 1 to n do
6: r := n+ 1− t
7: for all k[1 . . . t] in combinations(n, t) do
8: for all m[1 . . . r] in combinations(n, r) do
9: codewords := find_codewords(k[1 . . . t], m[1 . . . r], L)
10: Pest := get_upper_bound(codewords, DDT)
11: if Pest < P diff

est then
12: continue
13: end if
14: differentials, Pest := construct_differentials(codewords, DDT, P diff

est)
15: if Pest = P diff

est then
16: best_differentials := best_differentials ∪ differentials
17: end if
18: if Pest > P diff

est then
19: P diff

est := Pest
20: best_differentials := differentials
21: end if
22: end for
23: end for
24: end for
25: P diff

best := P diff
est

26: return best_differentials, P diff
best

Time complexity of the algorithm 8 is

O

n∑
t=1

(
n

t

)(
n

n+ 1− t

)
︸ ︷︷ ︸

all combinations

n3 + ord(F)︸ ︷︷ ︸
find_codewords

+ ord(F) · n︸ ︷︷ ︸
get_upper_bound

+ Cdiff︸ ︷︷ ︸
construct_differentials

 =

= O

((
2n

n+ 1

)
· Cdiff

)
= O

(
22n

√
n
· Cdiff

)

28

