
Breaking the confidentiality of OCB2

Bertram Poettering
Royal Holloway, University of London

bertram poettering @ rhul ac uk

2018-Nov-08

Abstract. OCB2 is a widely standardized mode of operation of a blockcipher that aims at pro-
viding authenticated encryption. A recent report by Inoue and Minematsu (IACR EPRINT report
2018/1040) indicates that OCB2 does not meet this goal. Concretely, by describing simple forging
attacks the authors evidence that the (sub)goal of authenticity is not reached. The report does not
question the confidentiality offered by OCB2.

In this note we show how the attacks of Inoue and Minematsu can be extended to also break the
confidentiality of OCB2. We do this by constructing an IND-CCA adversary that requires minimal
resources and achieves an overwhelming distinguishing advantage.

1 Introduction

In symmetric-key cryptography, a primitive providing authenticated encryption (AE) is one that allows
for encrypting messages into ciphertexts, and decrypting ciphertexts into messages, such that both the
confidentiality and the integrity of the messages are protected. A classic approach towards achieving this
is through the hybrid encrypt-then-mac construction [1], but a line of research that started about two
decades ago [3] and is now more active than ever [8] put forward several integrated AE modes that jointly
achieve the two security goals in a more efficient way. As of today, authenticated encryption (possibly
enriched with the option to take into account an associated-data string when performing the encryption
and decryption operations; this variant is commonly referred to as AEAD) is a core component of many
real-world cryptographic constructions.

While AES-GCM [4] has likely been the most widely used AE scheme for the last decade, a family of
independent constructions is known by the name of OCB [5]. The three members of this family (OCB1,
OCB2, OCB3) are blockcipher-based designs and effectively get along with a single blockcipher invocation
per message block (‘rate-1’). While OCB1 is a plain AE mode, OCB2 and OCB3 are AEAD modes, and
all three modes are among the most efficient (generic blockcipher based) designs that the market has to
offer.1

In their recent report [2], Inoue and Minematsu (IM) showed that the OCB2 authenticated encryption
scheme does not achieve the promised goal of authenticity. More precisely, the authors give four different
attacks on OCB2 that allow for forging ciphertexts that validly decrypt to unauthentic messages without
flagging an error. All four attacks succeed with overwhelming probability, they require minimal time and
memory resources, and some of them allow for a specific level of control over the message to which a
forged ciphertext will decrypt. The only realistic conclusion that one can draw from this seems to be
that the authenticity of OCB2 is fully broken.2

Contribution. In this light it seems natural to ask whether the IM attacks on authenticity also have
implications on the confidentiality of OCB2. In the abstract of their report, IM indicate that their
attacks “do not break the privacy of OCB2” [2]. In the current article we thus provide a fresh IM-
inspired assessment of the confidentiality of OCB2, and our main result is that the findings of IM indeed
can be leveraged to yield effective message distinguishing attacks (in the IND-CCA sense). We show
1 All versions of OCB were, and some still are, covered by intellectual property claims. This likely contributes
to the clear real-world dominance of (the royalty-free) AES-GCM. The performance of AES-GCM could catch
up with that of OCB only when CPU manufacturers started incorporating hardware support for certain GCM
operations into their products (e.g., the PCLMULQDQ instruction in Westmere).

2 As IM point out, it seems that fixing OCB2 is not too complicated. However, as ciphertexts of the original
and the fixed version are not compatible with each other, implementers likely will, instead of applying the fix,
take the opportunity to switch to AES-GCM in the first place.

this by giving concrete attacks that, just like the ones of IM, consume minimal resources and have
an overwhelming success rate. Our conclusion is that the confidentiality of OCB2 is as broken as its
authenticity.

2 Preliminaries

2.1 Notation

Symbols. If A is a set we write a←$ A for the operation of picking an element of A uniformly at random
and assigning it to the variable a. If B,B′ are sets we write B ∪← B′ shorthand for B ← B ∪ B′. For
fixed-length strings C1, C2 ∈ {0, 1}n we write C ← C1 q C2 for their concatenation to a single (2n-long)
string C. Such a string C can again be split up into its components C1, C2 with the n← operator. For
example C ← C1 q C2 q C3 followed by C ′1 q C ′2 q C ′3

n← C yields C ′1 = C1, C ′2 = C2, C ′3 = C3. As
further detailed in Section 2.3, we write + for the xor operation. In program code we might use the
if-then-else ternary operator ? : known from programming languages like C and Java: If C is a
Boolean condition, the expression C ? a : b evaluates to a if C is true; otherwise, it evaluates to b.

Games. We define security notions via games played between a challenger and the adversary. Such games
are formalized with pseudo-code. The execution of a game stops when it runs into a ‘Stop’ instruction.
If the latter has an argument (e.g., ‘Stop with x’), then the argument is considered the output of the
game. For a game G we write Pr[G ⇒ 1] for the probability (over all random coins drawn by the game
and the adversary) that the game terminates by running into a ‘Stop with x’ instruction with x = 1.
We further use the instruction ‘Require C’, where C is a Boolean condition, as a shortcut for ‘If ¬C:
Stop with 0’. (This is usually used to penalize the adversary for posing ‘illegal queries’; note that all our
security definitions are such that such a penalty does not increase the formal attack advantage.)

2.2 Nonce-based AEAD

Syntax. We formalize a syntactical framework for authenticated encryption with associated data (AEAD).
A corresponding scheme specifies a key space K, a nonce space N , an associated-data space AD, a mes-
sage space M, a ciphertext space C, and the (deterministic) algorithms enc and dec. The encryption
algorithm enc takes a key K ∈ K, a nonce N ∈ N , an associated-data string AD ∈ AD, and a message
M ∈ M, and outputs a ciphertext C ∈ C. The decryption algorithm dec takes a key K ∈ K, a nonce
N ∈ N , an associated-data string AD ∈ AD, and a ciphertext C ∈ C, and outputs either a message
M ∈ M or the special symbol ⊥ /∈ M. If dec outputs a message, i.e., an element ofM, then we say it
accepts (the ciphertext C); otherwise, if it outputs ⊥, we say it rejects. For correctness we require that
if keys, nonces, and associated data are provided consistently to enc and dec, then messages encrypted
with enc are recovered by dec. Precisely, we require that for all K ∈ K, N ∈ N ,AD ∈ AD,M ∈ M we
have enc(K,N,AD,M) = C ⇒ dec(K,N,AD, C) = M .

Security. We consider two security notions for AEAD: one for authenticity and one for confidentiality.
While articles that aim at establishing the security of an AEAD candidate tend to do so using rather
strong notions (e.g., in the IND$ or SUF spirit), in this article we aim at analyzing the insecurity of an
AEAD scheme and thus deliberately focus on rather weak notions. This only strengthens our results: If
a scheme does not meet a weak notion, in particular it also does not meet any stronger notion. Note
that the security goals that we formalize below assume nonce-respecting adversaries (that use for each
encryption query a fresh nonce).

Our authenticity notion is formalized using the INT game from Figure 1 (left); the focus is on the
integrity protection of associated-data strings and messages. (In contrast to [2] our definition disregards
attacks that merely consist of manipulating nonces or ciphertexts.) We define the authenticity advantage
of an adversary A as per Advint(A) := Pr[INT(A)⇒ 1]. Intuitively, an AEAD scheme offers authenticity
if Advint(A) is negligible for all realistic adversaries A.

Our confidentiality notion is formalized using the INDb games from Figure 1 (right); note that this
is a classic left-or-right IND-CCA definition and thus captures a notion of confidentiality against active
adversaries. (In contrast to [2] our definition does not require that ciphertexts look like random bit-
strings.) We define the confidentiality advantage of an adversary B as per Advind(B) := |Pr[IND1(B)⇒

2

1] − Pr[IND0(B) ⇒ 1]|. Intuitively, an AEAD scheme offers confidentiality (against active attacks) if
Advind(B) is negligible for all realistic adversaries B.

Game INT(A)
00 NS← ∅; ADM← ∅
01 K ←$ K
02 AE(·,·,·),D(·,·,·)

03 Stop with 0

Oracle E(N,AD,M)
04 Require N /∈ NS
05 C ← enc(K,N,AD,M)
06 NS ∪← {N}
07 ADM ∪← {(AD,M)}
08 Return C

Oracle D(N,AD, C)
09 M ← dec(K,N,AD, C)
10 If M = ⊥: Return ⊥
11 If (AD,M) /∈ ADM:
12 Stop with 1
13 Return M

Game INDb(B)
14 NS← ∅; NADC← ∅
15 K ←$ K
16 b′ ← BE(·,·,·,·),D(·,·,·)

17 Stop with b′

Oracle E(N,AD,M0,M1)
18 Require N /∈ NS
19 Require |M0| = |M1|
20 C ← enc(K,N,AD,Mb)
21 NS ∪← {N}
22 NADC ∪← {(N,AD, C)}
23 Return C

Oracle D(N,AD, C)
24 Require (N,AD, C) /∈ NADC
25 M ← dec(K,N,AD, C)
26 If M = ⊥: Return ⊥
27 Return M

Fig. 1. Games INT, IND0, IND1 for modeling integrity (of messages) and indistinguishability (of messages, under
chosen-ciphertext attacks). Note how lines 04,06,18,21 enforce that the adversary be nonce-respecting.

2.3 Blockciphers that operate on finite fields

Blockciphers. For a key space K and a block length n, a blockcipher is a pair of functions E,D : K×
{0, 1}n → {0, 1}n such that for all K ∈ K and X,Y ∈ {0, 1}n we have D(K,E(K,X)) = X or,
equivalently, E(K,D(K,Y)) = Y .

Finite Fields. The domain {0, 1}n of a blockcipher can be identified with the set of elements of
the finite field GF(2n). More precisely, after fixing an irreducible degree-n polynomial P ∈ GF(2)[x]
(such a polynomial exists for all n), the elements of the field GF(2n) := GF(2)[x]/(P) have a canonic
representation as bitstrings of length n. We write + and · for the field operations (where + coincides
with the xor operation). In the context of OCB2, the reduction polynomial P is chosen such that the
field element x (the degree-1 monomial) is primitive in GF(2n), that is, the sequence x1, x2, x3, . . . ranges
over 2n − 1 different values.

2.4 Specification of OCB2

We reproduce details of the OCB2 nonce-based AEAD scheme from [6,7]. The scheme is based on a
blockcipher (typically AES) and parameterized by a tag length τ (which kind of serves as a security
parameter). In the following we actually do not give the full specification of OCB2; rather, in order to
simplify the exposition, we remove some of its functionality (see upcoming paragraph). Note that any
attack that is successful against the restricted scheme also applies to the full scheme. This holds in par-
ticular for the Inoue–Minematsu authenticity attacks from [2] as well as for the attack on confidentiality
presented in the current article.

Assume a blockcipher (E,D) with key spaceK and block length n, and understand the cipher’s domain
{0, 1}n as representing the elements of a finite field as suggested in Section 2.3. Then the algorithms of
OCB2 are specified in Figure 2. The scheme has key space K, nonce space {0, 1}n, and uses {0, 1}∗
as associated-data space, message space, and ciphertext space. As announced above, our specification
of OCB2 only covers a specific sub-case, namely the one where (a) the tag length coincides with the
cipher’s block length (this allows for disregarding the tag truncation step), (b) the associated-data input

3

is always the empty string (this allows for removing the description of the auxiliary PMAC component),
and (c) the length of considered messages and ciphertexts is always a multiple of the cipher’s block length
(this allows for neglecting padding operations). Note that the specifications of the enc and dec algorithms
assume a length-encoding function len : {0, 1}≤n → {0, 1}n.3

Algorithm encτ (K,N,AD,M)
00 Require τ = n ∧AD = ε ∧ n | |M |
01 L← E(N)
02 M [1] q . . . qM [m] n←M
03 For i← 1 to m− 1:
04 C[i]← xiL+ E(xiL+M [i])
05 C[m]←M [m] + E(xmL+ len(0n))
06 Σ ←M [1] + . . .+M [m]
07 T ← E(xm(x + 1)L+Σ)
08 C ← C[1] q . . . q C[m] q T
09 Return C

Algorithm decτ (K,N,AD, C)
10 Require τ = n ∧AD = ε ∧ n | |C|
11 L← E(N)
12 C[1] q . . . q C[m] q T n← C
13 For i← 1 to m− 1:
14 M [i]← xiL+D(xiL+ C[i])
15 M [m]← C[m] + E(xmL+ len(0n))
16 Σ ←M [1] + . . .+M [m]
17 T ∗ ← E(xm(x + 1)L+Σ)
18 M ←M [1] q . . . qM [m]
19 Return (T = T ∗) ? M : ⊥

Fig. 2. Specification of OCB2 (for the sub-case enforced by lines 00,10). For compactness we abbreviate E(K, ·)
with E(·) and D(K, ·) with D(·).

3 Attacks on OCB2

We first recall a recent authenticity attack on OCB2 by Inoue and Minematsu (IM); then we derive from
it an attack on the confidentiality of OCB2.

3.1 Inoue–Minematsu attack on authenticity

We reproduce the most simple attack on the authenticity of OCB2 from [2]. The attack gets along with
a single encryption query and succeeds with finding a forgery with probability 1. (The delivery of the
forgery requires, of course, an additional decryption query.) The details of a corresponding adversary A
for the INT game from Figure 1 (left) are in Figure 3 (left). We trace the values of some variables
throughout an execution of the adversary within the game:

M [1] = len(0n)
M [2] = µ

L0 = E(N0)
C[1] = x1L0 + E(x1L0 +M [1]) = x1L0 + E(x1L0 + len(0n))
C[2] = M [2] + E(x2L0 + len(0n)) = µ+ E(x2L0 + len(0n))
Σ = M [1] +M [2] = len(0n) + µ

T = E(x2(x + 1)L0 +Σ) = E(x2(x + 1)L0 + len(0n) + µ)
C ′[1] = C[1] + len(0n) = x1L0 + E(x1L0 + len(0n)) + len(0n)
T ′ = M [2] + C[2] = µ+ µ+ E(x2L0 + len(0n)) = E(x2L0 + len(0n))

M ′[1] = C ′[1] + E(x1L0 + len(0n)) = x1L0 + len(0n)
Σ′ = M ′[1] = x1L0 + len(0n)
T ∗ = E(x1(x + 1)L0 +Σ′) = E(x1(x + 1)L0 + x1L0 + len(0n)) = E(x2L0 + len(0n))
M ′ = M ′[1] = x1L0 + len(0n)

Note that by T ′ = T ∗ the decryption oracle accepts ciphertext C ′ and returns the message M ′ =
x1L0 + len(0n). As M ′ and M have different lengths we in particular have M ′ 6= M and the forgery
counts. Thus Advint(A) = 1, i.e., the adversary breaks authenticity with probability 1.
3 The details of is function are specified in the OCB2 standard, but they are not relevant for our analysis.

4

Adversary AE(·,·,·),D(·,·,·)

00 Step 1:
01 Pick any N0 ∈ {0, 1}n
02 Pick any µ ∈ {0, 1}n \ {0n}
03 M [1]← len(0n)
04 M [2]← µ
05 M ←M [1] qM [2]
06 Query C ← E(N0, ε,M)
07 C[1] q C[2] q T n← C
08 Step 2:
09 C′[1]← C[1] + len(0n)
10 T ′ ←M [2] + C[2]
11 C′ ← C′[1] q T ′
12 Query M ′ ← D(N0, ε, C

′)
13 Stop

Adversary BE(·,·,·,·),D(·,·,·)

14 Steps 1+2 as in the IM attack,
15 obtaining M ′ = x1L0 + len(0n)
16 Step 3:
17 L0 ← x−1(M ′ + len(0n))
18 Find pairs (Xi, Yi) ∈ E(K, ·)
19 Pick (N1, L1) 6= (N0, L0)
20 M0[1]← N0 + x1(x + 1)L1
21 Pick any M1[1] ∈ {0, 1}n \ {M0[1]}
22 M0 ←M0[1]; M1 ←M1[1]
23 Query C′′ ← E(N1, ε,M

0,M1)
24 C′′[1] q T ′′ n← C′′

25 b′ ← (T ′′ = L0) ? 0 : 1
26 Stop with b′

Fig. 3. Left: IM attack on authenticity from [2]. Right: Our new attack on confidentiality. See text for the
meaning of lines 18,19.

We note that IM in [2] propose a total of four different attacks on the authenticity of OCB2, and
here we reproduced just one of them. Other attacks from [2] generalize the one from Figure 3 (left) such
that the message M assembled in line 05 is not anymore restricted to a single block; rather, multi-block
messages of arbitrary length are allowed.

3.2 A novel attack on confidentiality

The IM attack from Figure 3 (left) breaks OCB2 by coming up with an unauthentic yet valid cipher-
text C ′. Perhaps surprisingly, the message M ′ corresponding to this ciphertext does not play a role in
the attack; it is just discarded (line 12). In the following we show how the release of M ′ actually allows
for conducting an attack on the confidentiality of OCB2. More precisely, after first emulating the steps
of the IM attack to come up with ciphertext C ′, our confidentiality attacker uses the corresponding
message M ′ to craft two challenge messages M0,M1 that can be distinguished within our left-or-right
style security definition. In brief, the idea is to deduce from M ′ (and other public values) a set of ‘raw’
input-output pairs of E(K, ·).4 (Normal operation of OCB2 would discard unauthentic ciphertexts with
the consequence that such pairs would remain hidden.) From these input-output pairs a fresh nonce N1
and a message M0 are derived such that at least one of the internal blockcipher invocations of operation
enc(K,N1, ε,M

0) is on one of the known input values. This turns out to be sufficient for a distinguishing
attack.

In Figure 3 (right) we provide the details of an adversary B for the INDb games from Figure 1 (right).
Attack steps 1 and 2 are just the ones from Figure 3 (left), where of course the original E(N0, ε,M) query
(line 06) has to be replaced by the equivalent E(N0, ε,M,M) query. In particular adversary B obtains
the message M ′ = x1L0 + len(0n). This value immediately allows for deriving L0. From the identities

C[1] = x1L0 + E(x1L0 + len(0n))
C[2] = µ+ E(x2L0 + len(0n))
T = E(x2(x + 1)L0 + len(0n) + µ)

that we established in Section 3.1, combined with the fact that all coefficients appearing in these equations
are public values (with exception of the implicit blockcipher key K), we can derive three pairs (Xi, Yi) ∈
{0, 1}n×{0, 1}n such that E(K,Xi) = Yi.5 Let (N1, L1) = (Xi, Yi) be one such pair, and assume w.l.o.g.
that (N1, L1) 6= (N0, L0).6 Lines 18,19 in Figure 3 (right) implement these two steps. The remaining
4 This step is also part of IM’s ‘Almost Universal Forgery, Variant 1’ attack [2, Sec 4.3].
5 Concretely, X1 = x1L0 + len(0n), Y1 = C[1] + x1L0, X2 = x2L0 + len(0n), Y2 = C[2] + µ, X3 = x2(x + 1)L0 +

len(0n) + µ, Y3 = T .
6 To see that this step is indeed w.l.o.g., observe that if L0 6= 0n then X1 6= X2, and if L0 = 0n then X2 6= X3.
In both cases one of X1, X2, X3 will be different from N0.

5

steps of our attack identify a messageM0 such that ifM0 is encrypted under N1 then the tag-computing
blockcipher invocation (line 07 in Figure 2) will be on input N0, that is, the tag is arranged to be L0;
further, a second message M1 is identified for which this is not the case. To analyze the success rate of
our attack, observe that if B is executed in game IND0 then the internal variables Σ′′ and T ′′ of the
encryption query in line 23 evaluate to

Σ′′ = M0[1] = N0 + x1(x + 1)L1

T ′′ = E(x1(x + 1)L1 +Σ′′) = E(N0) = L0

and thus the adversary stops with output 0, while in game IND1, as E(K, ·) is a permutation, we have
T ′′ 6= L0 and the adversary stops with output 1. In any case the adversary is nonce-respecting and
outputs b′ = b, that is we have Advind(B) = 1 and the confidentiality of OCB2 is (fully) broken.

4 Conclusion

Extending the authenticity-focused findings of Inoue and Minematsu [2], we report on severe attacks
on the confidentiality of OCB2. Our adversaries require little resources and achieve high success rates.
While our attacks currently only target a formal security model (IND-CCA), it remains an open question
whether our approach can also be used to attack OCB2 implementations in real-world environments. In
any case, we believe that the results from both [2] and us allow for drawing only one conclusion: The
OCB2 scheme is crucially broken, and all corresponding implementations should be upgraded as soon as
possible (e.g., to AES-GCM [4] or a winner of the CAESAR competition [8]).

We note that IM in [2] also propose a fix for OCB2 that would rule out their attacks on authenticity.
We believe that any such fix would also resolve the confidentiality issues that we identified.

References

1. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer,
Heidelberg, Germany, Kyoto, Japan (Dec 3–7, 2000)

2. Inoue, A., Minematsu, K.: Cryptanalysis of OCB2. Cryptology ePrint Archive, Report 2018/1040 (2018),
https://eprint.iacr.org/2018/1040

3. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg, Germany, Innsbruck, Austria (May 6–10, 2001)

4. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode of operation (full version).
Cryptology ePrint Archive, Report 2004/193 (2004), http://eprint.iacr.org/2004/193

5. Rogaway, P.: OCB Mode. Personal website, http://web.cs.ucdavis.edu/~rogaway/ocb/
6. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In:

Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg, Germany, Jeju Island,
Korea (Dec 5–9, 2004)

7. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC
(2004), http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

8. Various authors: CAESAR – Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness. Website (2018), https://competitions.cr.yp.to/caesar.html

6

https://eprint.iacr.org/2018/1040
http://eprint.iacr.org/2004/193
http://web.cs.ucdavis.edu/~rogaway/ocb/
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
https://competitions.cr.yp.to/caesar.html

	Breaking the confidentiality of OCB2

