
Plaintext Recovery Attack of OCB2

Tetsu Iwata

Nagoya University, Japan
tetsu.iwata@nagoya-u.jp

Abstract. Inoue and Minematsu [Cryptology ePrint Archive: Report
2018/1040] presented efficient forgery attacks against OCB2, and Poet-
tering [Cryptology ePrint Archive: Report 2018/1087] presented a dis-
tinguishing attack. In this short note, based on these results, we show
a plaintext recovery attack against OCB2 in the chosen plaintext and
ciphertext setting.

Keywords: OCB2, plaintext recovery attack, chosen plaintext and ci-
phertext setting

1 Introduction

OCB2 is an efficient authenticated encryption scheme proposed in [4]. In [1],
Inoue and Minematsu presented efficient forgery attacks against OCB2, and
Poettering presented an implication of the attack in the context of confidential-
ity [3]. Specifically, Poettering presented a distinguishing attack under the chosen
plaintext and ciphertext setting, and this breaks the privacy security notion in
the sense of IND-CCA.

In this short note, based on the results of [1,3], we show a plaintext recov-
ery attack against OCB2 in the chosen plaintext and ciphertext setting, i.e.,
Poettering showed that OCB2 allows a distinguishing attack and hence cannot
achieve the privacy notion of IND-CCA, but we show that for a given cipher-
text, the corresponding plaintext can be recovered if the adversary has access to
the encryption and decryption oracles. This attack model is usually not covered
in the provable security analysis, as the provable security notion only requires
less ambitious goal of the adversary (and this is an important point in prov-
able security results). A similar model was considered in the security analysis of
EAX-prime [2], while the attack against EAX-prime works without an encryp-
tion oracle.

To make the paper succinct, we follow exactly the same notation used in [1],
and we omit the description of OCB2.

2 Plaintext Recovery Attack Model

We consider an attack model that closely follows [2]. A challenger has a secret key
K. Let (C∗, T ∗) be the encryption of (N∗, A∗,M∗), where a nonce N∗, associated



data A∗, and a plaintext M∗ are arbitrarily chosen by the challenger. However,
we make assumptions that M∗ is long and C∗ has many blocks (for instance 3
or more blocks), and that when C∗ is broken into blocks as (C∗[1], . . . , C∗[m∗]),
there exist indices j, k ∈ {1, . . . ,m∗ − 1} such that C∗[j] 6= C∗[k].

Then (N∗, A∗, C∗, T ∗) is given to the adversary as a challenge. The adversary
has access to the encryption and decryption oracles, and the goal is to recover
M∗. The encryption oracle takes (N,A,M) as input and returns (C, T ). The
decryption oracle takes (N ′, A′, C ′, T ′) as input and returns the corresponding
plaintext M ′ or the reject symbol ⊥.

The adversary cannot use N∗ as a nonce in encryption queries (as N∗ was
already used in encryption to generate the challenge). Also, the adversary is
nonce-respecting and hence cannot repeat the same nonce in encryption queries.
To avoid a trivial win, the adversary cannot use the challenge (N∗, A∗, C∗, T ∗)
in decryption queries.

3 Plaintext Recovery Attack

Let (C∗, T ∗) be the encryption of (N∗, A∗,M∗), and (N∗, A∗, C∗, T ∗) is given
to the adversary as a challenge. The goal is to recover M∗.

We first recover L∗ = EK(N∗). For this, we first perform the attack in [1,
Sect. 4.1].

1. Fix any N,M [2] ∈ {0, 1}n such that N 6= N∗, and let M = (M [1],M [2]) =
(len(0n),M [2]).

2. Next, make an encryption query (N,A,M), where A is empty, and obtain
(C[1], C[2], T ).

3. Let C ′ = C[1]⊕ len(0n) and T ′ = M [2]⊕ C[2].
4. Make a decryption query (N ′, A′, C ′, T ′), where N ′ = N and A′ is empty,

and obtain M ′ = 2L⊕ len(0n).

As explained in [1, Sect. 4.3], the adversary can recover three input-output
pairs (X[1], Y [1]), (X[2], Y [2]), (X[3], Y [3]) of the block cipher, where Y [i] =
EK(X[i]). If X[i] = N∗ for some i, then L∗ is Y [i]. Otherwise, let (N ′′, L′′)
be one of (X[i], Y [i]) that satisfies N ′′ 6= N . We note that there is a negligible
probability that this fails. However, this can be avoided by repeating the above
Steps 1–4 with a different nonce N . We could also follow [1, Sect. 4.2] to obtain
more input-output pairs. We then proceed as follows:

1. Fix any A′′ ∈ {0, 1}∗ and M ′′[2] ∈ {0, 1}n, and let M ′′ = (M ′′[1],M ′′[2]) =
(N∗ ⊕ 2L′′,M ′′[2]).

2. Make an encryption query (N ′′, A′′,M ′′) and obtain (C ′′[1], C ′′[2], T ′′).
3. Let L∗ be C ′′[1]⊕ 2L′′.

We see that Step 3 indeed gives L∗. See Fig. 1 for the generation process of C ′′[1]
for the encryption query (N ′′, A′′,M ′′) of Step 2.

With the knowledge of L∗, following [1, Sect. 4.3], we modify C∗ to make
a decryption query. Specifically, let C∗ = (C∗[1], . . . , C∗[m∗]) be the challenge

2



C ′′[1]

2L′′

2L′′

EKEK

N ′′

L′′

M ′′[1] = N∗ ⊕ 2L′′

Fig. 1. The generation process of C′′[1] for the encryption query (N ′′, A′′,M ′′) of
Step 2. L∗ = EK(N∗) is obtained as C′′[1] ⊕ 2L′′.

ciphertext broken into blocks, and we first fix indices j, k ∈ {1, . . . ,m∗− 1} that
satisfy C∗[j] 6= C∗[k]. We then define C$ = (C$[1], . . . , C$[m∗]) as follows:

– C$[i] = C∗[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– C$[j] = C∗[k]⊕ 2kL∗ ⊕ 2jL∗

– C$[k] = C∗[j]⊕ 2kL∗ ⊕ 2jL∗

Next, the adversary makes a decryption query (N∗, A∗, C$, T ∗), i.e, this is almost
the same as the challenge, but the j-th and k-th blocks of C∗ are modified. From
the reasoning of [1, Sect. 4.3], the query will be accepted, and the adversary
obtains M$. The goal of the attack, M∗, is obtained by swapping the j-th and
k-th blocks of M$ and making necessary modifications. More precisely, from
M$ = (M$[1], . . . ,M$[m∗]), we obtain M∗ = (M∗[1], . . . ,M∗[m∗]) as follows:

– M∗[i] = M$[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– M∗[j] = M$[k]⊕ 2kL∗ ⊕ 2jL∗

– M∗[k] = M$[j]⊕ 2kL∗ ⊕ 2jL∗

See Fig. 2 for the encryption process of (N∗, A∗,M∗) and the decryption process
of (N∗, A∗, C$, T ∗).

4 Conclusions

In this short note, based on the results of [1,3], we presented a plaintext recovery
attack against OCB2 in the chosen plaintext and ciphertext setting. The distin-
guishing attack by Poettering [3] has already broken the confidentiality of OCB2
in the sense of IND-CCA. The result of this note shows that the confidentiality
can also be broken in the sense of plaintext recovery.

Acknowledgements. The author would like to thank Kazuhiko Minematsu for
useful comments.

3



EKEK

N∗

L∗

M∗[j] M∗[k]

C∗[j] C∗[k]

2jL∗ 2kL∗

2jL∗

EK

2kL∗

EK

N∗

L∗

2jL∗ 2kL∗

2jL∗ 2kL∗

C$[j] C$[k]

M$[j] M$[k]

E−1
KE−1

K

Fig. 2. The encryption process of (N∗, A∗,M∗) (left) and the decryption process of
(N∗, A∗, C$, T ∗) (right). In the right figure, we have C$[j] = C∗[k] ⊕ 2kL∗ ⊕ 2jL∗ and
C$[k] = C∗[j] ⊕ 2kL∗ ⊕ 2jL∗, and it follows that M∗[j] = M$[k] ⊕ 2kL∗ ⊕ 2jL∗ and
M∗[k] = M$[j] ⊕ 2kL∗ ⊕ 2jL∗.

References

1. A. Inoue and K. Minematsu. Cryptanalysis of OCB2. IACR Cryptology ePrint
Archive, 2018:1040, 2018.

2. K. Minematsu, S. Lucks, H. Morita, and T. Iwata. Attacks and Security Proofs of
EAX-Prime. In S. Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 327–347.
Springer, 2013.

3. B. Poettering. Breaking the confidentiality of OCB2. IACR Cryptology ePrint
Archive, 2018:1087, 2018.

4. P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of
LNCS, pages 16–31. Springer, 2004.

4


	Plaintext Recovery Attack of OCB2

