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Abstract. In the situation where there are one sender and multiple receivers, a receiver selective opening (RSO)
attack for a public key encryption (PKE) scheme considers adversaries that can corrupt some of the receivers
and get their secret keys and plaintexts. Security against RSO attacks for a PKE scheme ensures confidential-
ity of ciphertexts of uncorrupted receivers. Simulation-based RSO security against chosen ciphertext attacks
(SIM-RSO-CCA) is the strongest security notion in all RSO attack scenarios. Jia, Lu, and Li (INDOCRYPT
2016) proposed the first SIM-RSO-CCA secure PKE scheme. However, their scheme used indistinguishablil-
ity obfuscation, which is not known to be constructed from any standard computational assumption. In this
paper, we give two contributions for constructing SIM-RSO-CCA secure PKE from standard computational
assumptions. Firstly, we propose a generic construction of SIM-RSO-CCA secure PKE using an IND-CPA
secure PKE scheme and a non-interactive zero-knowledge proof system satisfying one-time simulation sound-
ness. Secondly, we propose an efficient and concrete construction of SIM-RSO-CCA secure PKE based on
the decisional Diffie-Hellman (DDH) assumption. Moreover, we give a method for efficiently expanding the
plaintext space of the DDH-based construction. By applying this method to the construction, we obtain the first
DDH-based SIM-RSO-CCA secure PKE scheme supporting a super-polynomially large plaintext space with
compact ciphertexts.
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1 Introduction

1.1 Background and Motivation

In the context of public key encryption (PKE), the generally accepted security notions are IND-CPA
and IND-CCA security [10, 12]. However, Bellare, Hofheinz, and Yilek [4] pointed out that IND-CPA
and IND-CCA security might not be strong enough when considering Selective Opening (SO) attacks
in a multi-user scenario. Intuitively, SO attacks consider the corruptions of some fraction of users and
the extortions of their secret information. Motivated by the above problem, they firstly introduced SO
security for PKE. Even if an adversary can mount SO attacks, SO security can guarantee confidentiality
of ciphertexts of uncorrupted users. In practice, considering secret communication among many users,
we should take account of information leakage from some users. Therefore, SO security is an important
security notion for PKE in practice. To date, two settings have been considered for SO security: Sender
Selective Opening (SSO) security [4,5] and Receiver Selective Opening (RSO) security [3,17]. The main
focus in this paper is on RSO security. In the situation where one sender and multiple receivers exist,
RSO security guarantees confidentiality of uncorrupted ciphertexts even if an adversary can corrupt some
fraction of receivers and get their plaintexts and secret keys. SO security is defined in both the chosen
plaintext attack (CPA) and the chosen ciphertext attack (CCA) settings. In general, we should take active
adversaries into account, and thus the CCA security is more desirable than the CPA security.

Furthermore, there are two types of definitions for SO security: indistinguishability-based SO secu-
rity and simulation-based SO security. The definition of indistinguishability-based SO security usually
has a restriction on a plaintext distribution that an adversary can choose. More specifically, the definition
of indistinguishability-based SO security usually requires the plaintext distribution to satisfy a notion
called efficient resamplability [4]. Intuitively, efficient resamplability requires a plaintext distribution to
be such that even if some plaintexts are fixed, the other plaintexts can be efficiently sampled. This re-
quirement is somewhat artificial and limits application scenarios since plaintext distributions appearing
in practice do not necessarily satisfy this requirement.

On the other hand, simulation-based SO security does not have such a restriction on the plaintext dis-
tribution. This security requires that the output of any adversary that is given the public keys, ciphertexts,
and plaintexts and secret information of corrupted users, can be simulated by a simulator which only
takes the corrupted plaintexts as its input. The secret information corresponds to randomnesses (used in
encryptions) of the senders in the SSO setting and secret keys of the receivers in the RSO setting, respec-
tively. Compared to indistinguishability-based SO security, simulation-based SO security can guarantee
security even if an adversary chooses an arbitrary plaintext distribution. Since there is no restriction on the
plaintext distributions, we can say that simulation-based SO security is preferable to indistinguishability-
based SO security considering the utilization of PKE. Also, the previous works [3, 17] showed that
simulation-based SO security is stronger than indistinguishability-based SO security in the CPA setting.
It seems that this implication also holds in the CCA setting.

From the above arguments, we aim to achieve simulation-based RSO security against chosen cipher-
text attacks which we call SIM-RSO-CCA security for PKE. So far, the only construction of SIM-RSO-
CCA secure PKE is of Jia, Lu, and Li [19], but their construction is based on a very strong cryptographic
primitive, indistinguishability obfuscation (iO) [2, 11].1 This primitive is not known to be constructed
from standard computational assumptions. Hence, in this paper, we tackle the following question: Is it
possible to construct a SIM-RSO-CCA secure PKE scheme from standard computational assumptions?

1.2 Our Contributions

Based on the above motivation, we give affirmative answers to the question. More specifically, our tech-
nical results consist of the following three parts.

1 Very recently, in a concurrent and independent work, Huang et al. [18] gave several constructions of SIM-RSO-CCA secure
PKE. We compare the results between theirs and ours in Section 1.4.
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SIM-RSO-CCA security derived from RNC-CCA security. As our first technical result, we introduce a
new security notion that we call RNC-CCA security for receiver non-committing encryption (RNCE) [6,
Section 4], which is a variant of PKE with a special non-committing property. Then, we show that
RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE. When considering SIM-RSO-CCA se-
curity for PKE, we must take into account information of multiple users, a simulator, and an adver-
sary. Thus, if we try to prove SIM-RSO-CCA security directly from standard computational assump-
tions, security proofs could become very complex. On the other hand, the merit of considering RNCE
with our new security notion is that the definition of RNC-CCA security involves only a single user,
a single adversary, and no simulator. Hence, we can potentially avoid a complex security proof when
proving RNC-CCA security from standard computational assumptions. We believe that this result gives
us a guideline for constructing a new SIM-RSO-CCA secure PKE scheme, and in fact, our proposed
SIM-RSO-CCA secure PKE schemes are obtained via this result, as explained below.

A generic construction of RNC-CCA secure RNCE. As our second technical result, we show a generic
construction of RNC-CCA secure RNCE using an IND-CPA secure PKE scheme and a non-interactive
zero-knowledge (NIZK) proof system satisfying one-time simulation soundness. (In the following, we
call this primitive an OTSS-NIZK for simplicity.) This primitive is slightly stronger than an ordinary
NIZK proof system. However, the constructions of this primitive based on various standard assumptions
are known [13, 14, 22]. Therefore, our second technical result shows that we can construct RNC-CCA
secure RNCE schemes from various standard assumptions through our generic construction.

An efficient and concrete construction of RNC-CCA secure RNCE. Although our generic construction of
RNC-CCA secure RNCE can be instantiated based on standard computational assumptions, we require
an NIZK proof system as a building block. In general, NIZK proof systems are not very efficient, and
thus the above construction does not necessarily lead to an efficient construction. Thus, as our third tech-
nical result, we show an efficient and concrete construction of RNC-CCA secure RNCE based on the
decisional Diffie-Hellman (DDH) assumption. This scheme is a variant of the Cramer-Shoup encryption
scheme [7], and thus we do not need general NIZK proof systems. Moreover, we give a method for effi-
ciently expanding the plaintext space of the above construction. By applying this method to the construc-
tion, we obtain the first DDH-based RNC-CCA secure RNCE scheme supporting a super-polynomially
large plaintext space with compact ciphertexts.

In summary, combining our first and second technical results, we obtain the first generic construc-
tion of SIM-RSO-CCA secure PKE from an IND-CPA secure PKE scheme and an OTSS-NIZK. This
result enables us to construct SIM-RSO-CCA secure PKE from various standard computational assump-
tions. Moreover, combining our first and third technical results, we obtain the first efficient and concrete
construction of SIM-RSO-CCA secure PKE from the DDH assumption.

The difference between this paper and the conference version [16]. In the conference version of this
paper [16], we gave a SIM-RSO-CCA secure PKE scheme the size of whose plaintext space is poly-
nomial in a security parameter based on the DDH assumption. However, when we expand the size of
its plaintext space to super-polynomial, the ciphertext overhead (the difference between the ciphertext
length and the plaintext length) of the construction increases linearly as the length of a plaintext in-
creases. In the following, we call this construction our “basic” construction. In this paper, based on our
basic construction, we give the first DDH-based concrete construction with compact ciphertexts which
supports a super-polynomially large plaintext space. Here, “compact” means that the ciphertext overhead
of our construction is independent of the length of a plaintext increases. In the following, we call this
construction our “main” construction. In addition to the contribution, this paper gives the full proofs of
Theorems 1, 2, and 3 omitted in the conference version [16].

1.3 Technical Overview

As mentioned earlier, Jia et al. [19] proposed the first SIM-RSO-CCA secure PKE scheme using iO. They
pointed out that there exist common features between an IND-CCA security proof and a SIM-RSO se-
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curity proof. To date, there are three major techniques for constructing IND-CCA secure PKE schemes:
the double encryption technique [29], the hash proof system (HPS) technique [8], and the all-but-one
(ABO) technique [27,28]. Sahai and Waters [30] pointed out that the “punctured programming” paradigm
is compatible with iO when constructing various cryptographic primitives, and they in particular con-
structed an IND-CCA secure PKE scheme based on iO. In fact, Jia et al.’s SIM-RSO-CCA secure PKE
scheme is obtained from the Sahai-Waters PKE scheme. Since the ABO technique has some similarity
to the punctured programming paradigm, in retrospect, Jia et al.’s PKE scheme can be viewed as one
constructed via the ABO technique.

In contrast to the Jia et al.’s strategy using the ABO technique, we take two different path of con-
structing two different SIM-RSO-CCA secure PKE schemes, that is, the double encryption technique
and the HPS technique, respectively. Somewhat surprisingly, our SIM-RSO-CCA secure PKE schemes
only require underlying cryptographic primitives that were required to construct IND-CCA secure PKE
schemes. In particular, our constructions do not need any other strong cryptographic primitive, such as
iO, for achieving SIM-RSO-CCA security.

For making the above two approaches work well, we focus on the work of Hazay, Patra, and Warin-
schi [17], who pointed out that RNCE [6, Section 4] is an appropriate cryptographic primitive for achiev-
ing RSO security. Concretely, they showed that CPA secure RNCE implies SIM-RSO-CPA secure PKE.
Inspired by their idea, we formalize a new security notion for RNCE which we call RNC-CCA secu-
rity, and show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE. Then, we propose a
generic construction and an efficient and concrete construction of RNC-CCA secure RNCE based on the
double encryption technique and the HPS technique, respectively.

The features of RNCE. Here, we explain the features of RNCE. Informally, RNCE is special PKE having
the following two algorithms, Fake and Open.2 Fake is the fake encryption algorithm that takes a public
key and trapdoor information (generated at the key generation) as input, and outputs a fake ciphertext
which has no information about a plaintext. Open is the opening algorithm that takes a public key,
trapdoor information, the fake ciphertext, and a certain plaintext as input, and outputs a fake secret key
which decrypts the fake ciphertext to the plaintext.

RNCE requires the following two security properties. The first one is that an adversary cannot distin-
guish a real ciphertext generated by the ordinary encryption algorithm and a fake ciphertext generated by
Fake. The second one is that an adversary cannot distinguish a real secret key generated by the ordinary
key generation algorithm and a fake secret key generated by Open. Canetti, Halevi, and Katz [6, Section
4.1] firstly introduced RNCE and a security notion for it considering only non-adaptive chosen cipher-
text attacks (CCA1). We extend their security notion to RNC-CCA security considering adaptive chosen
ciphertext attacks.

Sufficient condition for SIM-RSO-CCA secure PKE. We briefly review the security definition of RNCE.
Informally, if considering only CPA, the security of RNCE is defined using an experiment that proceeds
as follows.

1. An adversary is given a public key and chooses an arbitrary plaintext from the plaintext space.
2. The adversary is given either a real ciphertext or a fake ciphertext depending on the challenge bit

chosen uniformly at random.
3. The adversary is given either a real secret key or a fake secret key depending on the above challenge

bit.
4. The adversary guesses whether the given ciphertext and secret key are real or fake.

When defining RNC-CCA security for RNCE, it is natural to consider a definition in which an adver-
sary is allowed to make a decryption query at any time in the above security experiment. If we define such
a security experiment, an adversary can make a decryption query after he gets a secret key. If we adopt

2 In fact, our syntax of RNCE has additional algorithms FKG and FDec. These algorithms are needed for defining RNC-CCA
security. See Section 3 for the details.
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this security definition, it is clear that the adversary of RNC-CCA security can simulate the decryption
oracle for an adversary of SIM-RSO-CCA security.

However, there is one technical problem if we adopt the above definition. The problem is that we
cannot obtain an efficient and concrete construction of RNCE from the HPS technique. More specifically,
it seems hard to construct an RNCE scheme based on the Cramer-Shoup encryption scheme [7]. The
critical problem is that when proving the CCA security of a Cramer-Shoup encryption scheme, we use
the fact that the entropy of the secret key is sufficiently large. In the security experiment of RNCE, an
adversary gets the secret key used in the experiment, and thus the entropy of the secret key is completely
lost and the security proof fails if we adopt the above definition.

In order to circumvent the above problem, we define the security experiment for RNC-CCA security
of an RNCE scheme so that an adversary is not allowed to make decryption queries after he gets the
secret key. Adopting this security definition, we do not have to simulate the decryption oracle for the
adversary after he gets the secret key, and we can complete the security proof of our RNCE scheme. See
Section 5 for the details.

Here, one might have the following question: Can we show that RNC-CCA security implies SIM-
RSO-CCA security when adopting the above modified definition for RNC-CCA security? We show an
affirmative answer to this question. In a nutshell, we do not have to simulate the decryption queries which
are relative to the secret keys of corrupted users in the definition of SIM-RSO-CCA security, and thus
we can still show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE. See Section 3 for
the details.

How to derive RNC-CCA secure RNCE from the double encryption technique. Here, we give an overview
of our generic construction of RNC-CCA secure RNCE derived from the classical double encryption
technique [26, 29]. One can see that our generic construction is an extension of a CPA secure RNCE
scheme observed by Canetti et al. [6, Section 4.1]. Their RNCE scheme is inspired by the double en-
cryption technique without considering CCA security. The trick for the non-committing property of their
construction is that the secret key used in the decryption algorithm is chosen at random from the two
underlying secret keys, and thus their scheme is very simple. In order to upgrade the CPA security of this
RNCE scheme to CCA security, we focus on the work by Lindell [22] who constructed an IND-CCA
secure PKE scheme based on an IND-CPA secure PKE scheme and an OTSS-NIZK using the double
encryption technique. Applying a similar method to the above RNCE scheme, we obtain our generic
construction of RNC-CCA secure RNCE. See Section 4 for the details.

We note that the technique for achieving the non-committing property, i.e., generating multiple secret
keys and using only one of them for decryption, has been adopted in a number of works, e.g., in the
construction of an adaptively and forward secure key-evolving encryption scheme [6, Section 3], and
more recently in the construction of a tightly secure key encapsulation mechanism in the multi-user
setting with corruption [1]. Furthermore, our construction shares an idea of binding two ciphertexts
with an NIZK proof system with [6, Section 3] to resist against active behaviors of an adversary (e.g.,
decryption queries). However, one difference is that we require one-time simulation-soundness for the
underlying NIZK proof system, while they require unbounded simulation-soundness.

How to derive RNC-CCA secure RNCE from the HPS technique. Here, we explain an overview of our
concrete construction of RNC-CCA secure RNCE derived from the HPS technique [7, 8]. Our concrete
construction is an extension of the CCA1 secure RNCE scheme proposed by Canetti et al. [6, Section
4.2]. Their RNCE scheme is a variant of the Cramer-Shoup-“lite” encryption scheme [7], which is an
IND-CCA1 secure PKE scheme based on the DDH assumption. The only difference is that they encode
a plaintext m by the group element gm, where g is a generator of the underlying group. This encoding
is essential for the opening algorithm Open of their proposed scheme, and the plaintext space of their
scheme is of polynomial-size since they have to compute the discrete logarithm of gm in the decryption
procedure.

As our basic construction, we extend their scheme to a RNC-CCA secure RNCE scheme based
on the “full”-Cramer-Shoup encryption scheme [7]. In our construction, we achieve the non-committing
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property using a technique similar to Canetti et al., and handle an adversary’s decryption queries similarly
to the CCA security proof of the “full”-Cramer-Shoup encryption scheme. See Sections 5.1 and 5.2 for
the details. We note that the size of the plaintext space of this construction is restricted to a polynomial
in a security parameter.

How to expand a polynomial-sized plaintext space and its drawback. In general, it is natural to ask
whether we can expand a plaintext space of an encryption scheme. In fact, we can expand the polynomial-
sized plaintext space of our basic construction to a super-polynomially large one by using the scheme
in a parallel way. More specifically, in our basic construction, a ciphertext (resp., secret key) consists of
four elements (u1, u2, e = kr · gm1 , v) of G (resp., six elements (x1, x2, y1, y2, z1, z2) of Zp), where G is
a multiplicative cyclic group of prime order p, k is a group element in a public key, g1 is a generator of
G, m is a plaintext that belongs to a polynomial-sized plaintext space (and hence its length is logarith-
mic), and r is a randomness used in the encryption procedure. Similarly to the original Cramer-Shoup
encryption scheme, a secret key (x1, x2, y1, y2, z1, z2) of our construction is divided into two parts hav-
ing different roles. The component (x1, x2) is used for masking a plaintext and the remaining component
(y1, y2, z1, z2) is used for checking the validity of a ciphertext. Based on the above basic construction, we
can expand the plaintext space as follows. Let d be a logarithmic function in a security parameter and ℓ
be a polynomial in a security parameter. If we want to encrypt a plaintext m = m1∥ · · · ∥mℓ ∈ {0, 1}d·ℓ,
we can encrypt this plaintext m by generating ℓ independent components (xi1, xi2)i∈[ℓ] then hiding each
block mi with each component (xi1, xi2). Note that we do not need to increase the number of the com-
ponent (y1, y2, z1, z2) for checking the validity of a ciphertext. However, there is a drawback about the
ciphertext overhead of the construction obtained in this way. Specifically, in this extended construction,
a ciphertext consists of ℓ + 3 elements (u1, u2, (ei)i∈[ℓ], v) of G, where ei := kri · g

mi
1 and each ki is a

group element in a public key for each i ∈ [ℓ]. If we let the bit length of one group element be q, the
ciphertext overhead is q(ℓ+3)− dℓ. Thus, as the length of a plaintext increases, the ciphertext overhead
of this construction increases linearly.

How to expand a plaintext space more efficiently. It is more desirable to efficiently expand a plaintext
space of an encryption scheme. Thus, for reducing the ciphertext overhead, we provide a method for effi-
ciently expanding the polynomial-sized plaintext space of our basic construction to a super-polynomially
large one. Our technique for achieving compact ciphertexts is inspired by Hofheinz et al. [15]. Compared
to our basic construction, when computing a ciphertext (u1, u2, (ei)i∈[ℓ], v), we change how to com-
pute (ei)i∈[ℓ] which are components of masked plaintexts. More specifically, before masking a plaintext
m = m1∥ · · · ∥mℓ ∈ {0, 1}d·ℓ, we firstly use a universal hash function H : G → {0, 1}d to compress
each group element kri used for masking each block mi to a d-bit string for all i ∈ [ℓ]. Then, we compute
ei := H(kri ) ⊕mi for all i ∈ [ℓ]. By taking this approach, the number of group elements in a ciphertext
(u1, u2, (ei)i∈[ℓ], v) decreases from ℓ+3 to 3. Similarly to the above, if we let the bit length of one group
element be q, the ciphertext overhead is (3q + dℓ) − dℓ = 3q. That is, even if the length of a plaintext
increases, the ciphertext overhead of this modified scheme is always constant 3q. Remarkably, this over-
head is exactly the same as that in the original Cramer-Shoup encryption scheme. See Sections 5.3 and
5.4 for the details.

1.4 Related work

To date, SSO secure PKE schemes have been extensively studied, and several constructions of SIM-SSO-
CCA secure PKE have been shown based on various standard computational assumptions [21, 23–25].
On the other hand, RSO secure PKE schemes have been much less studied.

At the moment the conference version of this paper was submitted, the only existing construction of
SIM-RSO-CCA secure PKE is the construction using iO proposed by Jia et al. [19]. Jia, Lu, and Li [20]
proposed indistinguishability-based RSO-CCA (IND-RSO-CCA) secure PKE schemes based on stan-
dard computational assumptions. Concretely, they showed two generic constructions of IND-RSO-CCA
secure PKE schemes. First, they gave a generic construction based on an IND-RSO-CPA secure PKE
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scheme, an IND-CCA secure PKE scheme, an NIZK proof system, and a strong one-time signature
scheme. Second, they gave a generic construction based on a universal HPS. It is not obvious whether
their schemes (can be extended to) satisfy SIM-RSO-CCA security.

Very recently, as a concurrent and independent work, Huang et al. [18] showed three constructions
of SIM-RSO-CCA secure PKE. Their first (resp., second) constructions are based on the DDH (resp.,
decisional composite residuosity (DCR)) assumption the size of whose plaintext space is polynomial
(resp., super-polynomial) in a security parameter. Besides, as their third construction, they introduced
the new notion of master-key selective opening security for identity-based encryption (IBE) and then
showed that SIM-RSO-CCA secure PKE can be constructed from IBE with this security notion. They
also showed a construction of IBE with this security notion in the ideal cipher model.

Compared to their work, our results have an overlap on the DDH-based construction. More pre-
cisely, their DDH-based construction is essentially the same as our basic construction described in the
conference version [16]. However, their work does not treat an analogue of RNC-CCA secure RNCE
proposed in this paper. Furthermore, their work does not include our generic construction based on an
IND-CPA secure PKE scheme and an OTSS-NIZK, and the DDH-based construction supporting a super-
polynomially large plaintext space with compact ciphertexts.

1.5 Organization

The rest of the paper is organized as follows: In Section 2, we review the notations, assumptions, and
definitions of cryptographic primitives. In Section 3, we introduce RNC-CCA security for RNCE and
show its implication to SIM-RSO-CCA security for PKE. In Section 4, we show a generic construc-
tion of RNC-CCA secure RNCE with a binary plaintext space, which is constructed from an IND-CPA
secure PKE scheme and an OTSS-NIZK. (In Appendix A, we give a multi-bit version of the geniric
construction.) In Section 5, we show a DDH-based constructions of RNC-CCA secure RNCE.

2 Preliminaries

In this section, we define notations, assumptions, and cryptographic primitives.

2.1 Notations

In this paper, x ← X denotes sampling an element x from a finite set X uniformly at random. y ←
A(x; r) denotes that a probabilistic algorithm A outputs y for an input x using a randomness r, and we
simply denote y ← A(x) when we need not write an internal randomness explicitly. For strings x and
y, x∥y denotes the concatenation of x and y. Also, x := y denotes that x is defined by y. λ denotes a
security parameter. A function f(λ) is a negligible function in λ, if f(λ) tends to 0 faster than 1

λc for
every constant c > 0. negl(λ) denotes an unspecified negligible function. PPT stands for probabilistic
polynomial time. If n is a natural number, [n] denotes the set of integers {1, · · · , n}. Also, if a and b
are integers such that a ≤ b, [a, b] denotes the set of integers {a, · · · , b}. If m = (m1, · · · ,mn) is an
n-dimensional vector, mJ denotes the subset {mj}j∈J where J ⊆ [n]. IfO is a function or an algorithm
and A is an algorithm, AO denotes that A has oracle access to O. If M is a square matrix, det(M )
denotes the determinant of M .

2.2 Public Key Encryption

A public key encryption (PKE) scheme with a plaintext space M consists of a tuple of the following
three PPT algorithms Π = (KG,Enc,Dec).

KG: The key generation algorithm, given a security parameter 1λ, outputs a public key pk and a secret
key sk .

Enc: The encryption algorithm, given a public key pk and a plaintext m ∈M, outputs a ciphertext c.
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Dec: The (deterministic) decryption algorithm, given a public key pk , a secret key sk , and a ciphertext
c, outputs a plaintext m ∈ {⊥} ∪M.

As the correctness for Π , we require that Dec(pk , sk ,Enc(pk ,m)) = m holds for all λ ∈ N, m ∈ M,
and (pk , sk)← KG(1λ).

Next, we define IND-CPA security and SIM-RSO-CCA security for a PKE scheme.

Definition 1 (IND-CPA security). We say that Π = (KG,Enc,Dec) is IND-CPA secure if for any PPT
adversary A = (A1,A2),

Advind-cpa
Π,A (λ) := 2 ·

∣∣∣Pr[b← {0, 1}; (pk, sk)← KG(1λ); (m∗0,m
∗
1, st1)← A1(pk); c

∗ ← Enc(pk,m∗b);

b′ ← A2(c
∗, st1) : b = b′]− 1

2

∣∣∣∣ = negl(λ),

where it is required that |m∗0| = |m∗1|.

Definition 2 (SIM-RSO-CCA security). Let n be the number of users. For a PKE scheme Π = (KG,
Enc,Dec), an adversary A = (A1,A2,A3), and a simulator S = (S1,S2,S3), we define the following
pair of experiments.

Exprso-cca-real
n,Π,A (λ) :

(pk, sk) := (pk j , sk j)j∈[n] ← (KG(1λ))j∈[n]
(Dist, st1)← AODec(·,·)

1 (pk)
m∗ := (m∗j )j∈[n] ← Dist

c∗ := (c∗j )j∈[n] ← (Enc(pk j ,m
∗
j ))j∈[n]

(J, st2)← AODec(·,·)
2 (c∗, st1)

out← AODec(·,·)
3 (skJ ,m

∗
J , st2)

Return (m∗,Dist, J, out)

Exprso-cca-sim
n,Π,S (λ) :

(Dist, st1)← S1(1λ)
m∗ := (m∗j )j∈[n] ← Dist

(J, st2)← S2(st1)
out← S3(m∗J , st2)
Return (m∗,Dist, J, out)

In both of the experiments, we require that the distributions Dist output by A and S be efficiently sam-
plable. In Exprso-cca-real

n,Π,A (λ), a decryption query (c, j) is answered by Dec(pk j , sk j , c). A2 and A3 are
not allowed to make a decryption query (c∗j , j) for any j ∈ [n]. Furthermore, A3 is not allowed to make
a decryption query (c, j) satisfying j ∈ J . (This is without losing generality, since A3 can decrypt any
ciphertext using the given secret keys.)

We say that Π is SIM-RSO-CCA secure if for any PPT adversary A and any positive integer n =
n(λ), there exists a PPT simulator S such that for any PPT distinguisher D,

Advrso-cca
n,Π,A,S,D(λ) := |Pr[D(Exprso-cca-real

n,Π,A (λ)) = 1]− Pr[D(Exprso-cca-sim
n,Π,S (λ)) = 1]| = negl(λ).

Remark 1. For simplicity, we consider non-adaptive opening queries by an adversary in our experiments.
That is, an adversary can make an opening query J ⊆ [n] only at once. However, our constructions of
SIM-RSO-CCA secure PKE remain secure even if we consider adaptive opening queries by an adversary.

Remark 2. In this paper, as in the previous works [19, 20], we consider only the revelation of secret
keys in the definition of SIM-RSO-CCA security. Namely, we assume that an adversary cannot obtain a
random coin used for generating a secret key. Hazay, Patra, and Warinschi [17] considered the revelation
of both secret keys and random coins used in the key generation algorithm in the definition of RSO-CPA
security. If we take into account corruptions of both secret keys and random coins, it seems that we need
key simulatability [9, 17] for building blocks.

2.3 Non-interactive Zero-knowledge Proof System

Let R be an efficiently computable binary relation and L := {x|∃w s.t. (x,w) ∈ R}. A non-interactive
proof system for L consists of a tuple of the following five PPT algorithms Φ = (CRSGen,Prove,Verify,
SimCRS, SimPrv).
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CRSGen: The common reference string (CRS) generation algorithm, given a security parameter 1λ,
outputs a CRS crs .

Prove: The proving algorithm, given a CRS crs , a statement x ∈ L, and a witness w for the fact that
x ∈ L, outputs a proof π.

Verify: The verification algorithm, given a CRS crs , a statement x, and a proof π, outputs either 1
(meaning “accept”) or 0 (meaning “reject”).

SimCRS: The simulator’s CRS generation algorithm, given a security parameter 1λ, outputs a simulated
CRS crs and a trapdoor key tk .

SimPrv: The simulator’s proving algorithm, given a trapdoor key tk and a (possibly false) statement x,
outputs a simulated proof π.

As the correctness for Φ, we require that Verify(crs, x,Prove(crs, x, w)) = 1 holds for all λ ∈ N, all
crs ← CRSGen(1λ), all statements x ∈ L, and all witnesses w for the fact that x ∈ L.

Next, we define the security notions for a non-interactive proof system: One-time simulation sound-
ness (OT-SS) and zero-knowledge (ZK).

Definition 3 (One-time simulation soundness). We say that a non-interactive proof system Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies one-time simulation soundness (OT-SS) if for any
PPT adversary A = (A1,A2),

Advot-ssΦ,A (λ) := Pr[(crs, tk)← SimCRS(1λ); (x∗, st1)← A1(crs);π
∗ ← SimPrv(tk , x∗);

(x, π)← A2(π
∗, st1) : (x /∈ L) ∧ (Verify(crs, x, π) = 1) ∧ ((x, π) ̸= (x∗, π∗))] = negl(λ).

Definition 4 (Zero-knowledge). For a non-interactive proof system Φ = (CRSGen,Prove,Verify,
SimCRS, SimPrv) and an adversary A = (A1,A2), we consider the following pair of experiments.

Expzk-real
Φ,A (λ) :

crs ← CRSGen(1λ)
(x,w, st1)← A1(crs)
π ← Prove(crs, x, w)
b′ ← A2(π, st1)
Return b′

Expzk-sim
Φ,A (λ) :

(crs, tk)← SimCRS(1λ)
(x,w, st1)← A1(crs)
π ← SimPrv(tk , x)
b′ ← A2(π, st1)
Return b′

In both of the experiments, it is required that x ∈ L and w be a witness for x ∈ L. We say that Φ is
zero-knowledge (ZK) if for any PPT adversary A,

AdvzkΦ,A(λ) := |Pr[Expzk-real
Φ,A (λ) = 1]− Pr[Expzk-sim

Φ,A (λ) = 1]| = negl(λ).

In this paper, we call a non-interactive proof system satisfying both OT-SS and ZK properties an
OTSS-NIZK.

2.4 “+1”-Decisional Diffie-Hellman (DDH) Assumption

In this section, we define the “+1”-DDH assumption. Although it is straightforward to see this assumption
is implied by the standard DDH assumption, we provide its formal proof in Appendix B for completeness.
This assumption is used to simplify the security proof of our concrete construction in Section 5.

Definition 5 (“+1”-DDH assumption). Let p = Ω(2λ) be a prime number, G be a multiplicative cyclic
group of order p, and Zp be the set of integers modulo p. We say that the “+1”-DDH assumption holds
in G if for any PPT adversary A,

Adv+1-ddh
G,A (λ) := |Pr[g ← G; a← Z∗p; b← Zp : A(g, ga, gb, gab) = 1]

− Pr[g ← G; a← Z∗p; b← Zp : A(g, ga, gb, gab+1) = 1]| = negl(λ).
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2.5 Universal Hash Family and Leftover Hash Lemma

In this section, we firstly recall the definitions of the statistical distance and a universal hash family.

Definition 6 (Statistical distance). Let X and X ′ be distributions over the same set X . The statistical
distance between X and X ′, denoted by SD(X ,X ′), is defined by

SD(X ,X ′) := max
f :X→{0,1}

|Pr[f(X ) = 1]− Pr[f(X ′) = 1]|.

Definition 7 (Universal hash family). Let X and Y be sets. Let H := {H : X → Y } be a family of
functions. We say thatH is a universal hash family if for any x1, x2 ∈ X (x1 ̸= x2),

Pr[H(x1) = H(x2)] ≤
1

|Y |
holds, where H← H.

Next, we recall the leftover hash lemma.

Lemma 1 (Leftover hash lemma). Let H := {H : X → Y } be a universal hash family. Then, it holds
that

SD((H,H(x)), (H, y)) ≤

√
|Y |

4 · |X|
,

where H← H, x← X , and y ← Y .

2.6 Collision-resistant Hash Function

In this section, we recall the definition of a collision-resistant hash function. A hash function consists
of a pair of PPT algorithms Λ = (HKG,Hash). HKG is the hash key generation algorithm that, given a
security parameter 1λ, outputs a hash key hk . Hash is the (deterministic) hashing algorithm that, given a
hash key hk and a string x ∈ {0, 1}∗, outputs a hash value h.

Definition 8 (Collision-resistance). We say that Λ = (HKG,Hash) is a collision-resistant hash function
if for any PPT adversary A,

AdvcrΛ,A(λ) := Pr[hk ← HKG(1λ); (x, x∗)← A(hk) :
(Hash(hk , x) = Hash(hk , x∗)) ∧ (x ̸= x∗)] = negl(λ).

3 CCA Security for Receiver Non-commiting Encryption

In this section, we introduce a new security notion that we call RNC-CCA security for receiver non-
commiting encryption (RNCE). Next, we show that RNC-CCA secure RNCE implies SIM-RSO-CCA
secure PKE.

3.1 Receiver Non-commiting Encryption

Here, we give definitions of RNCE and RNC-CCA security for this primitive. Informally, RNCE is PKE
having the property that it can generate a fake ciphertext which can be later opened to any plaintext (by
showing an appropriate secret key). Canetti, Halevi, and Katz [6, Section 4.1] gave a definition of RNCE
considering security against non-adaptive chosen ciphertext attacks (CCA1). We extend their definition
to one considering security against adaptive CCA.

Informally, an RNCE scheme Π consists of the seven PPT algorithms (KG,Enc,Dec,FKG,Fake,
Open,FDec). (KG,Enc,Dec) are the same algorithms as those of a PKE scheme. The remaining four
algorithms (FKG,Fake,Open,FDec) are used for defining the security notion of this primitive. There-
fore, these algorithms are not used when using this scheme in practice. We note that the definition of
RNCE in [6, Section 4.1] does not contain FKG and FDec, but they are necessary for our formalization
of RNC-CCA security. The formal definition is as follows.
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Definition 9 (Receiver non-commiting encryption). An RNCE scheme Π with a plaintext space M
consists of the following seven PPT algorithms (KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec)
are the same algorithms as those of a PKE scheme. (FKG,Fake,Open,FDec) are defined as follows.

FKG: The fake key generation algorithm, given a security parameter 1λ, outputs a public key pk and a
trapdoor td.

Fake: The fake encryption algorithm, given a public key pk and a trapdoor td, outputs a fake ciphertext
c̃.

Open: The opening algorithm, given a public key pk , a trapdoor td, a fake ciphertext c̃, and a plaintext
m, outputs a fake secret key s̃k .

FDec: The fake decryption algorithm, given a public key pk , a trapdoor td, and a ciphertext c, outputs
m ∈ {⊥} ∪M.

Next, we define RNC-CCA security for RNCE as follows.

Definition 10 (RNC-CCA security). For an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,Open,
FDec) and an adversary A = (A1,A2,A3), we consider the following pair of experiments.

Exprnc-real
Π,A (λ) :

(pk, sk)← KG(1λ)

(m∗, st1)← AODec(·)
1 (pk)

c∗ ← Enc(pk,m∗)

st2 ← AODec(·)
2 (c∗, st1)

sk∗ := sk
Return b′ ← A3(sk

∗, st2)

Exprnc-sim
Π,A (λ) :

(pk, td)← FKG(1λ)

(m∗, st1)← AODec(·)
1 (pk)

c∗ ← Fake(pk, td)

st2 ← AODec(·)
2 (c∗, st1)

sk∗ ← Open(pk, td, c∗,m∗)
Return b′ ← A3(sk

∗, st2)

In Exprnc-real
Π,A (λ), a decryption query c is answered by Dec(pk , sk , c). On the other hand, in Exprnc-sim

Π,A (λ),
a decryption query c is answered by FDec(pk , td , c). In both of the experiments, A2 is not allowed to
make a decryption query c = c∗ and A3 is not allowed to make any decryption query.

We say that Π is RNC-CCA secure if for any PPT adversary A,

Advrnc-cca
Π,A (λ) := |Pr[Exprnc-real

Π,A (λ) = 1]− Pr[Exprnc-sim
Π,A (λ) = 1]| = negl(λ).

3.2 RNC-CCA Secure RNCE Implies SIM-RSO-CCA Secure PKE

In this section, we show that an RNC-CCA secure RNCE scheme implies a SIM-RSO-CCA secure PKE
scheme. Specifically, we show the following theorem.

Theorem 1. If an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,Open,FDec) is RNC-CCA secure,
then Πrso := (KG,Enc,Dec) is a SIM-RSO-CCA secure PKE scheme.

Before providing the formal proof, we describe an intuition of the proof. Let n be the number of key
pairs andA be an adversary against the SIM-RSO-CCA security of Πrso. In the proof, we firstly construct
a PPT simulator S in Exprso-cca-sim

n,Πrso,S (λ). Specifically, S computes fake ciphertexts (c̃j)j∈[n] using Fake and
fake secret keys (s̃k j)j∈J using Open, where J is the set of corrupted indices. Here, S can simulate the
decryption oracle for A by FDec using the trapdoors (td j)j∈[n] generated by S .

Next, in order to move from the real experiment Exprso-cca-real
n,Πrso,A (λ) to the simulated experiment

Exprso-cca-sim
n,Πrso,S (λ), we change, step by step, n real challenge ciphertexts (c∗j )j∈[n] to n fake ciphertexts

(c̃j)j∈[n] and n real secret keys (sk j)j∈[n] to n fake secret keys (s̃k j)j∈[n] which are given to A, respec-
tively. We can show this by the RNC-CCA security of Π using a hybrid argument. Here, we have to
deal with some technically subtle point when simulating the decryption oracle for A. Namely, we have
to program the behavior of an adversary B against the RNC-CCA security of Π depending on whether
the index i is contained in the corrupted set J output by A2, where i is the position that B embeds his
own challenge instance into the challenge instances of A. The formal proof is as follows.
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Proof of Theorem 1. Let n = n(λ) > 0 be an arbitrary polynomial that denotes the number of key pairs.
Let A = (A1,A2,A3) be any PPT adversary that attacks the SIM-RSO-CCA security of Πrso. First, we
construct the following PPT simulator S = (S1,S2,S3) for A.

S1(1λ) : First, S1 computes (pkj , tdj) ← FKG(1λ) for all j ∈ [n]. Next, it sets pk := (pk j)j∈[n] and
runs A1(pk). When A1 makes a decryption query (c, j), S1 returns m ← FDec(pk j , tdj , c) to A1.
After A1 outputs a pair (Dist, st1) of the plaintext distribution and state information and terminates,
S1 sets st′1 as all the information known to S1, returns (Dist, st′1) to Exprso-cca-sim

n,Πrso,S (λ), and terminates.
S2(st′1) : First, S2 computes c∗j ← Fake(pk j , tdj) for all j ∈ [n], sets c∗ := (c∗j )j∈[n], and runs
A2(c

∗, st1). When A2 makes a decryption query (c, j) (such that (c, j) ̸= (c∗j , j)), S2 returns
m ← FDec(pk j , tdj , c) to A2. After A2 outputs a set of indices J ⊆ [n] and state information st2
and terminates, S2 sets st′2 as all the information known to S2, returns (J, st′2) to Exprso-cca-sim

n,Πrso,S (λ),
and terminates.

S3(m∗J , st′2) : First, S3 computes sk∗j ← Open(pk j , tdj , c
∗
j ,m

∗
j ) for all j ∈ J , sets sk∗J := (sk∗j )j∈J ,

and runsA3(sk
∗
J ,m

∗
J , st2). WhenA3 makes a decryption query (c, j) (such that (c, j) ̸= (c∗j , j) and

j /∈ J), S3 returns m ← FDec(pk j , td j , c) to A3. (Note that j /∈ J holds now due to the rule of the
SIM-RSO-CCA experiment.) AfterA3 outputs out and terminates, S3 returns out to Exprso-cca-sim

n,Πrso,S (λ)
and terminates.

We let D be any PPT distinguisher for the adversary A and the above simulator S. We let preal be
the probability that D outputs 1 given the output by Exprso-cca-real

n,Πrso,A (λ) and psim be the probability that
D outputs 1 given the output by Exprso-cca-sim

n,Πrso,S (λ). Note that Advrso-cca
n,Πrso,A,S,D(λ) = |preal − psim|. In the

following, we show that there exists a PPT adversary B = (B1,B2,B3) that attacks the RNC-CCA
security of Π so that |preal − psim| = n · Advrnc-cca

Π,B (λ).

Lemma 2. There exists a PPT adversary B = (B1,B2,B3) such that |preal − psim| = n · Advrnc-cca
Π,B (λ).

Proof of Lemma 2. We construct a PPT adversary B = (B1,B2,B3) that attacks the RNC-CCA security
of Π so that |preal−psim| = n·Advrnc-cca

Π,B (λ), using the adversaryA = (A1,A2,A3) and the distinguisher
D as follows.

B1(pk) : First, B1 chooses i from [n] uniformly at random and sets pk i := pk . Next, it computes
(pk j , tdj) ← FKG(1λ) for all j ∈ [i − 1] and (pk j , sk j) ← KG(1λ) for all j ∈ [i + 1, n]. Then, it
sets pk := (pk j)j∈[n] and runs A1(pk). When A1 makes a decryption query (c, j), B1 answers as
follows.

– If j ∈ [i− 1], then B1 computes m← FDec(pk j , tdj , c) and returns m to A1

– If j = i, then B1 makes a decryption query c. When it receives m from its decryption oracle, it
returns m to A1.

– If j ∈ [i+ 1, n], then B1 computes m← Dec(pk j , sk j , c) and returns m to A1.
After A1 outputs a distribution Dist and state information st1, B1 samples m := (m∗j )j∈[n] ← Dist.
Finally, B1 sets st′1 as all the information known to B1, returns (m∗i , st

′
1) to the experiment, and

terminates.
B2(c∗, st′1) : First, B2 sets c∗i := c∗ and computes the challenge ciphertexts c∗j for all j ∈ [n]\{i} as

follows.
– If j ∈ [i− 1], then B2 computes c∗j ← Fake(pk j , tdj).
– If j ∈ [i+ 1, n], then B2 computes c∗j ← Enc(pk j ,m

∗
j ).

Next, B2 sets c∗ := (c∗j )j∈[n] and runs A2(c
∗, st1). When A2 makes a decryption query (c, j), B2

answers in the same way as B1 does. (Note that since A2 is not allowed to make a decryption query
(c∗j , j) for all j ∈ [n], B2 can perfectly simulate the decryption oracle for A2.) After A2 outputs a
set of indices J and state information st2 and terminates, depending on whether i ∈ J holds, B2
proceeds as follows.

– If i /∈ J holds, then B2 computes sk∗j for all j ∈ J as follows.
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• If j ∈ [i− 1], then B2 computes sk∗j ← Open(pk j , tdj , c
∗
j ,m

∗
j ).

• If j ∈ [i+ 1, n], then B2 computes sk∗j := sk j .
Next, B2 sets sk∗J := (sk∗j )j∈J and runs A3(sk

∗
J ,m

∗
J , st2). When A3 makes a decryption query

(c, j), B2 answers in the same way as B1 does. (Note that since A3 is not allowed to make a
decryption query (c, j) (such that ((c, j) = (c∗j , j)) ∨ (j ∈ J)), B2 can perfectly simulate the
decryption oracle for A3.) After A3 outputs out and terminates, B2 runs D(m∗,Dist, J, out).
Then, B2 sets d as the output of D and st′2 as the concatenation of all the information known to
B2 and the bit d, returns st′2 to the experiment, and terminates.

– If i ∈ J holds, then B2 just sets st′2 as all the information known to B2, returns st′2 to the
experiment, and terminates.

B3(sk∗, st′2) : If i /∈ J , then st′2 must contain the bit d, and B3 outputs it to the experiment and termi-
nates.
Otherwise, (that is, if i ∈ J holds,) B3 runs as follows. First, B3 computes sk∗j for all j ∈ [n] as
follows.

– If j ∈ [i− 1], then B3 computes sk∗j ← Open(pk j , tdj , c
∗
j ,m

∗
j ).

– If j = i, then B3 sets sk∗i := sk∗.
– If j ∈ [i+ 1, n], then B3 sets sk∗j := sk j .

Next, B3 sets sk∗J := (sk∗j )j∈J and runs A3(sk
∗
J ,m

∗
J , st2). When A3 makes a decryption query

(c, j) (such that (c, j) ̸= (c∗j , j) and j /∈ J), B3 answers in the same way as B1 does. (Note that
since i ∈ J holds now due to the rule of the SIM-RSO-CCA experiment, A3 is not allowed to make
a decryption query of the form (c, i). Thus, B3 can perfectly simulate the decryption oracle for A3

although B3 is not allowed to access his own decryption oracle.) AfterA3 outputs out and terminates,
B3 runs D(m∗,Dist, J, out). Finally, B3 returns the output of D to the experiment and terminates.

Note that B does not make a forbidden query c∗ to its decryption oracle because A does not make a
decryption query (c∗j , j) for any j ∈ [n]. Note also that B3 does not make any decryption query. We can
estimate Advrnc-cca

Π,B (λ) by

Advrnc-cca
Π,B (λ)

= |Pr[Exprnc-real
Π,B (λ) = 1]− Pr[Exprnc-sim

Π,B (λ) = 1]|

=
∣∣∣∑
t∈[n]

Pr[(Exprnc-real
Π,B (λ) = 1) ∧ (i = t)]−

∑
t∈[n]

Pr[(Exprnc-sim
Π,B (λ) = 1) ∧ (i = t)]

∣∣∣
=
∣∣∣∑
t∈[n]

Pr[i = t] · Pr[Exprnc-real
Π,B (λ) = 1|i = t]−

∑
t∈[n]

Pr[i = t] · Pr[Exprnc-sim
Π,B (λ) = 1|i = t]

∣∣∣.
In the following, for each t ∈ [n], we let qrealt := Pr[Exprnc-real

Π,B (λ) = 1|i = t] and qsimt := Pr[Exprnc-sim
Π,B (λ)

= 1|i = t].
Since i is chosen from [n] uniformly at random, Pr[i = t] = 1

n holds for all i ∈ [n]. Thus,
Advrnc-cca

Π,B (λ) = 1
n · |

∑
t∈[n] q

real
t −

∑
t∈[n] q

sim
t | holds. Next, for all t ∈ [n − 1], when B interacts

with Exprnc-real
Π,B (λ) and i = t + 1 holds, the information given to A and D is exactly the same as that

when B interacts with Exprnc-sim
Π,B (λ) and i = t holds. That is, for all t ∈ [n − 1], we have qrealt+1 = qsimt .

Thus, we have |
∑

t∈[n] q
real
t −

∑
t∈[n] q

sim
t | = |qreal1 − qsimn |.

Finally, B perfectly simulates Exprso-cca-real
n,Πrso,A (λ) forA andD when B samples i = 1 and interacts with

Exprnc-real
Π,B (λ). On the other hand, B perfectly simulates the information for A and D that is given by S

in Exprso-cca-sim
n,Πrso,S (λ) when B samples i = n and interacts with Exprnc-sim

Π,B (λ). Therefore, qreal1 = preal and
qsimn = psim hold, that is, we have |qreal1 − qsimn | = |preal − psim|.

From the above arguments, it holds that Advrnc-cca
Π,B (λ) = |Pr[Exprnc-real

Π,B (λ) = 1]−Pr[Exprnc-sim
Π,B (λ) =

1]| = 1
n · |preal − psim|. That is, |preal − psim| = n · Advrnc-cca

Π,B (λ) holds. ⊓⊔ (Lemma 2)

At the beginning of this proof, A, n, and D are chosen arbitrarily. Hence, for any polynomial n and
PPT adversaryA, there exists a PPT simulator S such that for any PPT distinguisherD, there exists a PPT
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KG′(1λ) :
α← {0, 1}
(pk0, sk0)← KG(1λ)
(pk1, sk1)← KG(1λ)
crs ← CRSGen(1λ)
pk := (pk0, pk1, crs)
sk := (α, skα)
Return (pk , sk)

Enc′(pk ,m) :
(r0, r1)←R2

Π

c0 ← Enc(pk0,m; r0)
c1 ← Enc(pk1,m; r1)
x := (pk0, pk1, c0, c1)
w := (m, r0, r1)
π ← Prove(crs, x, w)
Return c := (c0, c1, π)

Dec′(pk , sk , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1 then
m← Dec(pkα, skα, cα)
Return m

else Return ⊥

FKG′(1λ) :
α← {0, 1}
(pk0, sk0)← KG(1λ)
(pk1, sk1)← KG(1λ)
(crs, tk)← SimCRS(1λ)
pk := (pk0, pk1, crs)
td := (α, sk0, sk1, tk)
Return (pk , td)

Fake′(pk , td) :
cα ← Enc(pkα, 0)
c1⊕α ← Enc(pk1⊕α, 1)
x := (pk0, pk1, c0, c1)
π ← SimPrv(tk , x)
Return c̃ := (c0, c1, π)

Open′(pk , td , c̃,m) :

s̃k := (α⊕m, skα⊕m)

Return s̃k

FDec′(pk , td , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1 then
m← Dec(pk0, sk0, c0)
Return m

else Return ⊥

Fig. 1. Generic construction of RNC-CCA secure RNCE Π ′.

adversary B such that Advrso-cca
n,Πrso,A,S,D(λ) = |Pr[D(Exp

rso-cca-real
n,Πrso,A (λ)) = 1]−Pr[D(Exprso-cca-sim

n,Πrso,S (λ)) =
1]| = |preal − psim| = n · Advrnc-cca

Π,B (λ) holds. Therefore, we have Advrso-cca
n,Πrso,A,S,D(λ) = negl(λ) by the

assumption that Π satisfies RNC-CCA security. ⊓⊔ (Theorem 1)

4 Generic Construction of RNC-CCA Secure RNCE

In this section, we show our generic construction of RNC-CCA secure RNCE with the plaintext space
{0, 1}. First, in Section 4.1, we describe our generic construction. Then, in Section 4.2, we give the proof
of RNC-CCA security for our generic construction.

4.1 Description

In this section, we formally describe our generic construction of RNC-CCA secure RNCE with the plain-
text space {0, 1}. Let Π = (KG,Enc,Dec) be a PKE scheme with the plaintext space {0, 1} andRΠ be a
randomness space for the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify, SimCRS,SimPrv)
be a non-interactive proof system for Leq, where

Leq :=
{
(pk0, pk1, c0, c1)

∣∣∣ ∃(m, r0, r1) s.t. (c0 = Enc(pk0,m; r0)) ∧ (c1 = Enc(pk1,m; r1))
}
.

Then, we construct an RNCE scheme Π ′ = (KG′,Enc′,Dec′,FKG′,Fake′,Open′,FDec′) with the plain-
text space {0, 1} as described in Fig. 1. We note that, considering a real ciphertext c and a real secret key
sk , the correctness of the decryption of Π ′ is straightforward due to the correctness of Π and Φ.

Correctness of decryption using a fake secret key. Although it is not necessary for a security proof,
we believe that it is instructive to check the correctness of the decryption procedure using a fake secret
key. Hence, we confirm that a fake secret key can decrypt a fake ciphertext and a real ciphertext by the
decryption algorithm Dec′.

Let (pk , td) be a public key/trapdoor pair generated by FKG′(1λ), m ∈ {0, 1} be an arbitrary plain-
text, c̃ = (c0, c1, π) be a fake ciphertext generated by Fake′(pk , td), and s̃k = (α⊕m, skα⊕m) be a fake
secret key generated by Open′(pk , td , c̃,m). First, we confirm that the fake secret key s̃k can decrypt the
fake ciphertext c̃ to the plaintext m. For example, we consider the case α = 0. In this case, c0 is a ci-
phertext of 0, c1 is a ciphertext of 1, π is generated by SimPrv(tk , (pk0, pk1, c0, c1)), and the fake secret
key is (m, skm). Clearly, the fake ciphertext passes the verification in Dec′. Then, Dec′ computes and
outputs Dec(pkm, skm, cm), which results in m. Therefore, the fake secret key s̃k can correctly decrypt
the fake ciphertext c̃ to the plaintext m. The case of α = 1 can be confirmed similarly.
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Furthermore, for any plaintext m′ ∈ {0, 1} (not necessarily m), the fake secret key (α⊕m, skα⊕m)
can decrypt a real ciphertext c = (c0, c1, π) generated by Enc′(pk ,m′) to the plaintext m′ because c0
and c1 encrypt the same plaintext m′.

How to expand the plaintext space of our generic construction. In the above, we only give the construc-
tion whose plaintext space is {0, 1}. However, we can expand the plaintext space by using our single-bit
construction in a parallel way except for the generation of a proof of an OTSS-NIZK. More concretely, if
we encrypt an ℓ-bit plaintext m = m1∥ · · · ∥mℓ, the procedure is as follows. Firstly, we generate a public
key pk = ((pk ij)i∈[ℓ],j∈{0,1}, crs) and a secret key sk = (αi, sk

i
αi
)i∈[ℓ], where α1, · · · , αℓ ← {0, 1},

(pk ij , sk
i
j) ← KG(1λ) for all (i, j) ∈ [ℓ] × {0, 1}, and crs denotes a CRS of an OTSS-NIZK. Next, we

compute a ciphertext c = ((cij)i∈[ℓ],j∈{0,1}, π), where cij ← Enc(pk ij ,mi) for all (i, j) ∈ [ℓ] × {0, 1}
and π is a proof proving that, for each i ∈ [ℓ], the ciphertexts ci0 and ci1 encrypt the same plaintext
mi ∈ {0, 1}. Similarly, for the other procedures, we execute the corresponding one-bit version algo-
rithms in a parallel way for all i ∈ [ℓ] except for the procedure of the OTSS-NIZK. See Appendix A for
the details.

4.2 Security Proof

In this section, we show the following theorem.

Theorem 2. If Π is an IND-CPA secure PKE scheme and Φ is an OTSS-NIZK, then Π ′ is RNC-CCA
secure.

Before describing the formal proof, we highlight the flow of the proof. We change Exprnc-real
Π′,A (λ) to

Exprnc-sim
Π′,A (λ) step by step, where A is an adversary that attacks the RNC-CCA security of Π ′. Although

the main part of our proof is similar to that of the original double encryption paradigm [26, 29], we have
the following three remarkable changes.

First, toward transforming the challenge ciphertext to a fake ciphertext, we make the challenge ci-
phertext component c∗1⊕α encrypt 1 ⊕ m∗. Second, in order to eliminate the information of the bit α
from the decryption oracle, when answering a decryption query c = (c0, c1, π) made by A, we use the
component (pk0, sk0, c0) corresponding to the position 0 instead of the component (pkα, skα, cα) corre-
sponding to the position α. Third, we use α⊕m∗ instead of α in order to make the challenge ciphertext
c∗ be independent of the challenge plaintext m∗. Due to these changes, the challenge ciphertext c∗ and
the real secret key sk are respectively switched to the fake ciphertext c̃ and the fake secret key s̃k . The
formal proof is as follows.

Proof of Theorem 2. Let A = (A1,A2,A3) be any PPT adversary that attacks the RNC-CCA security
of Π ′. We introduce the following experiments {Expi}5i=0.

Exp0 : Exp0 is exactly the same as Exprnc-real
Π′,A (λ). The detailed description is as follows.

1. First, Exp0 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ), (pk1, sk1) ← KG(1λ),
and crs ← CRSGen(1λ). Next, Exp0 sets pk := (pk0, pk1, crs) and sk := (α, skα) and runs
A1(pk). When A1 makes a decryption query c = (c0, c1, π), Exp0 checks whether Verify(crs,
(pk0, pk1, c0, c1), π) = 1 holds. If this holds, Exp0 computes m ← Dec(pkα, skα, cα), and
returns m to A1. Otherwise, Exp0 returns ⊥ to A1.

2. WhenA1 outputs (m∗, st1) and terminates, Exp0 computes the challenge ciphertext c∗ as follows.
First, Exp0 samples (r∗0, r

∗
1)←R2

Π and computes c∗0 ← Enc(pk0,m
∗; r∗0), c

∗
1 ← Enc(pk1,m

∗; r∗1),
and π∗ ← Prove(crs, (pk0, pk1, c

∗
0, c
∗
1), (m

∗, r∗0, r
∗
1)). Next, Exp0 sets c∗ = (c∗0, c

∗
1, π
∗) and runs

A2(c
∗, st1). When A2 makes a decryption query c, Exp0 answers in the same way as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk , st2). When A3 outputs
a bit b′ and terminates, Exp0 outputs b′.
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Exp1 : Exp1 is identical to Exp0 except for the following change. The common reference string crs
is generated by executing (crs, tk) ← SimCRS(1λ) and Exp1 generates a simulated proof π∗ ←
SimPrv(tk , (pk0, pk1, c

∗
0, c
∗
1)) when computing the challenge ciphertext c∗.

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge ciphertext c∗, Exp2 computes
c∗1⊕α ← Enc(pk1⊕α, 1⊕m∗) instead of c∗1⊕α ← Enc(pk1⊕α,m

∗).
Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption query c = (c0, c1, π), Exp3

answers m← Dec(pk0, sk0, c0) instead of m← Dec(pkα, skα, cα) if Verify(crs, (pk0, pk1, c0, c1),
π) = 1 holds. Note that the decryption procedure in Exp3 is exactly the same as FDec′.

Exp4 : Exp4 is identical to Exp3 except that α ⊕m∗ is used instead of α. That is, when computing the
challenge ciphertext c∗, Exp4 computes c∗0 and c∗1 by c∗α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and c∗α⊕(1⊕m∗) ←
Enc(pkα⊕(1⊕m∗), 1 ⊕ m∗). Moreover, Exp4 gives the secret key sk = (α ⊕ m∗, skα⊕m∗) to A3

instead of sk = (α, skα).
Exp5 : Exp5 is exactly the same as Exprnc-sim

Π′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 5]. Then, we have

Advrnc-cca
Π′,A (λ) = |Pr[Exprnc-real

Π′,A (λ) = 1]− Pr[Exprnc-sim
Π′,A (λ) = 1]| = |p0 − p5| ≤

4∑
i=0

|pi − pi+1|.

It remains to show how each |pi−pi+1| is upper-bounded. To this end, in the following, we show that there
exist an adversary E = (E1, E2) against the ZK property of Φ such that |p0 − p1| = AdvzkΦ,E(λ) (Lemma
3), an adversary F = (F1,F2) against the IND-CPA security of Π such that |p1 − p2| = Advind-cpa

Π,F (λ)

(Lemma 4), and an adversary G = (G1,G2) against the OT-SS of Φ such that |p2 − p3| ≤ Advot-ssΦ,G (λ)
(Lemma 5). Then, we show that |p3 − p4| = 0 holds (Lemma 6). The main reason why this is true,
is because α is chosen uniformly at random, and thus α ⊕m∗ is also distributed uniformly at random.
Finally, we show that |p4 − p5| = 0 holds (Lemma 7) by showing that Exp4 and Exp5 are identical.

Lemma 3. There exists a PPT adversary E = (E1, E2) such that |p0 − p1| = AdvzkΦ,E(λ).

Proof of Lemma 3. We construct a PPT adversary E = (E1, E2) that attacks the ZK property of Φ so that
|p0 − p1| = AdvzkΦ,E(λ), using the adversary A = (A1,A2,A3) as follows.

E1(crs) : First, E1 samples α← {0, 1} and computes (pk0, sk0)← KG(1λ) and (pk1, sk1)← KG(1λ).
Next, it sets pk := (pk0, pk1, crs) and sk := (α, skα), and runs A1(pk). When A1 makes a de-
cryption query c, E1 returns m ← Dec′(pk , sk , c) to A1. When A1 outputs the challenge plain-
text m∗ and state information st1 and then terminates, E1 samples (r∗0, r

∗
1) ← R2

Π and computes
c∗0 ← Enc(pk0,m

∗; r∗0) and c∗1 ← Enc(pk1,m
∗; r∗1). Finally, E1 sets x∗ := (pk0, pk1, c

∗
0, c
∗
1),

w∗ := (m∗, r∗0, r
∗
1), and st′1 as all the information known to E1, returns (x∗, w∗, st′1), and terminates.

E2(π, st′1) : First, E2 sets π∗ := π and c∗ := (c∗0, c
∗
1, π
∗), and then runs A2(c

∗, st1). When A2 makes a
decryption query c, E2 returns m ← Dec′(pk , sk , c) to A2. When A2 outputs state information st2
and terminates, E2 sets sk∗ := sk = (α, skα) and runs A3(sk

∗, st2). When A3 outputs a bit b′, E2
returns b′ to its experiment and terminates.

We can see that E perfectly simulates Exp0 for A if it receives real components from Expzk-real
Φ,E (λ).

This ensures that the probability that E outputs 1 given real components is exactly the same as the
probability that A outputs 1 in Exp0. That is, Pr[Expzk-real

Φ,E (λ) = 1] = p0 holds. On the other hand, E
perfectly simulates Exp1 for A if it receives simulated components from Expzk-sim

Φ,E (λ). This ensures that
the probability that E outputs 1 given simulated components is exactly the same as the probability that
A outputs 1 in Exp1. That is, Pr[Expzk-sim

Φ,E (λ) = 1] = p1 holds. Therefore, it holds that AdvzkΦ,E(λ) =

|Pr[Expzk-real
Φ,E (λ) = 1]− Pr[Expzk-sim

Φ,E (λ) = 1]| = |p0 − p1|. ⊓⊔ (Lemma 3)

Lemma 4. There exists a PPT adversary F = (F1,F2) such that |p1 − p2| = Advind-cpa
Π,F (λ).

17



Proof of Lemma 4. We construct a PPT adversary F = (F1,F2) that attacks the IND-CPA security of
Π so that |p1 − p2| = Advind-cpa

Π,F (λ), using the adversary A = (A1,A2,A3) as follows.

F1(pk
′) : First, F1 samples α← {0, 1} and computes (pk ′′, sk ′′)← KG(1λ) and (crs, tk)←

SimCRS(1λ). Next, it sets (pkα, pk1⊕α) := (pk ′′, pk ′) and skα := sk ′′, then sets pk := (pk0, pk1,
crs) and sk := (α, skα) and runs A1(pk). When A1 makes a decryption query c, F1 computes
m ← Dec′(pk , sk , c) and returns m to A1. When A1 outputs the challenge plaintext m∗ and state
information st1 and then terminates,F1 sets st′1 as all the information known toF1, returns ((m∗, 1⊕
m∗), st′1), and terminates.

F2(c
′∗, st′1) : First,F2 sets c∗1⊕α := c′∗, then computes c∗α ← Enc(pkα,m

∗) and π∗ ← SimPrv(tk , (pk0,
pk1, c

∗
0, c
∗
1)). Then, it sets c∗ := (c∗0, c

∗
1, π
∗) and runsA2(c

∗, st1). WhenA2 makes a decryption query
c, F2 computes m ← Dec′(pk , sk , c) and returns m to A2. When A2 outputs state information st2
and terminates, F2 sets sk∗ := (α, skα) and runs A3(sk

∗, st2). When A3 outputs a bit b′, F2 returns
b′ to its experiment and terminates.

We let b be the challenge bit for F in its experiment. We can see that F perfectly simulates Exp1 for
A if it receives a ciphertext of m∗ from its experiment. This ensures that the probability that F outputs
1 when its challenge bit is b = 0 is exactly the same as the probability that A outputs 1 in Exp1. On the
other hand, F perfectly simulates Exp2 for A if it receives a ciphertext of 1 ⊕m∗ from its experiment.
This ensures that the probability that F outputs 1 when its challenge bit is b = 1 is exactly the same as
the probability that A outputs 1 in Exp2. This implies that Advind-cpa

Π,F (λ) = |p1 − p2|. ⊓⊔ (Lemma 4)

Lemma 5. There exists a PPT adversary G = (G1,G2) such that |p2 − p3| ≤ Advot-ssΦ,G (λ).

Proof of Lemma 5. For i ∈ {2, 3}, we let Badi be the event that A2 makes a decryption query c =
(c0, c1, π) satisfying (Dec(pk0, sk0, c0) ̸= Dec(pk1, sk1, c1)) ∧ (Verify(crs, (pk0, pk1, c0, c1), π) = 1)
in Expi. (We call such a decryption query a bad decryption query.) Exp2 proceeds identically to Exp3
unless Bad2 happens. Therefore, the inequality |p2 − p3| ≤ Pr[Bad2] = Pr[Bad3] holds. In the
following, we show that one can construct a PPT adversary G = (G1,G2) that attacks the OT-SS of Φ so
that Pr[Bad2] = Advot-ssΦ,G (λ), using the adversary A = (A1,A2,A3).

G1(crs) : First, G1 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ) and (pk1, sk1) ←
KG(1λ). Next, G1 sets pk := (pk0, pk1, crs) and sk := (α, skα), then runs A1(pk). When A1

makes a decryption query c = (c0, c1, π), G1 computes m ← Dec′(pk , sk , c) and returns m to A1.
When A1 outputs the challenge plaintext m∗ and state information st1 and terminates, G1 computes
c∗α ← Enc(pkα,m

∗) and c∗1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗). Finally, G1 sets st′1 as all the information
known to G1, returns ((pk0, pk1, c

∗
0, c
∗
1), st

′
1), and terminates.

G2(π∗, st′1) : First, G2 sets c∗ := (c∗0, c
∗
1, π
∗) and runsA2(c

∗, st1). WhenA2 makes a decryption query c,
G2 parses c = (c0, c1, π) and checks whether (Dec(pk0, sk0, c0) ̸= Dec(pk1, sk1, c1))∧(Verify(crs,
(pk0, pk1, c0, c1), π) = 1) holds. If this holds, G2 returns ((pk0, pk1, c0, c1), π) to its experiment, and
terminates. Otherwise, G2 computes m ← Dec′(pk , sk , c) and returns m to A2. When A2 outputs
state information st2 and terminates, G2 gives up and terminates.

From the above construction of G, it is easy to see that G perfectly simulates the experiment Exp2 for
A. Here, the success condition of G is to output a pair of a statement and a proof ((pk0, pk1, c0, c1), π)
satisfying ((x∗, π∗) ̸= (x, π)) ∧ (Verify(crs, (pk0, pk1, c0, c1), π) = 1) ∧ ((pk0, pk1, c0, c1) /∈ Leq),
where x∗ = (pk0, pk1, c

∗
0, c
∗
1) and x = (pk0, pk1, c0, c1). If A2 makes a bad decryption query c =

(c0, c1, π), then Dec(pk0, sk0, c0) ̸= Dec(pk1, sk1, c1) and Verify(crs, (pk0, pk1, c0, c1), π) = 1 hold.
Here, the correctness of Π implies that (pk0, pk1, c0, c1) /∈ Leq. Moreover, if A2 makes such a decryp-
tion query c, (c∗0, c

∗
1, π
∗) = c∗ ̸= c = (c0, c1, π) holds. Thus, when A2 makes such a decryption query

c, G achieves its success condition by returning ((pk0, pk1, c0, c1), π) to its experiment. We note that G
can detect that the event Bad2 occurs because G has both of the secret keys sk0 and sk1. From the above
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arguments, the probability that A2 makes a bad decryption query is exactly the same as the probabil-
ity that G breaks the OT-SS of Φ. Therefore, we have Pr[Bad2] = Advot-ssΦ,G (λ), which in turn implies
|p2 − p3| ≤ Advot-ssΦ,G (λ). ⊓⊔ (Lemma 5)

Lemma 6. |p3 − p4| = 0 holds.

Proof of Lemma 6. In the experiment Exp4, we use α ⊕ m∗ instead of α. This changes the chal-
lenge ciphertext components c∗0 and c∗1 so that they are computed by c∗α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and
c∗α⊕(1⊕m∗) ← Enc(pkα⊕(1⊕m∗), 1⊕m∗), and the secret key (α, skα) to (α⊕m∗, skα⊕m∗).

In the following, we let α′ be α ⊕m∗. Since α ∈ {0, 1} is chosen uniformly at random, α′ is also
uniformly distributed. Moreover,A’s view does not change between Exp3 and Exp4. Concretely, in Exp3,
the challenge ciphertext components c∗α and c∗1⊕α are respectively computed by c∗α ← Enc(pkα,m

∗)
and c∗1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗) and the secret key sk is (α, skα). Similarly, in Exp4, the challenge
ciphertext components c∗α′ and c∗1⊕α′ are respectively computed by cα′ ← Enc(pkα′ ,m∗) and c1⊕α′ ←
Enc(pk1⊕α′ , 1⊕m∗), and the secret key sk is (α′, skα′). Thus, A’s view does not change between Exp3
and Exp4. Hence, we have |p3 − p4| = 0. ⊓⊔ (Lemma 6)

Lemma 7. |p4 − p5| = 0 holds.

Proof of Lemma 7. We explain that the information that the adversaryA gets in Exp4 is exactly the same
as that in Exp5 based on the constructions of FKG′, Fake′, Open′, and FDec′.

First, the public key pk = (pk0, pk1, crs) given to A1 in Exp4 is exactly the same as one which A
gets in Exp5.

Second, we compute the challenge ciphertext components c∗0 and c∗1 in Exp4 by c∗α⊕m∗ ←
Enc(pkα⊕m∗ ,m∗) and c∗1⊕(α⊕m∗) ← Enc(pk1⊕(α⊕m∗), 1 ⊕ m∗). We can see that the above modified
challenge ciphertexts do not depend on the value of m∗ ∈ {0, 1}. That is, these are computed by c∗α ←
Enc(pkα, 0) and c∗1⊕α ← Enc(pk1⊕α, 1) regardless of the value of m∗ ∈ {0, 1}. This is exactly how
they are generated in Exp5.

Third, we can easily confirm that the decryption oracle in Exp4 behaves in exactly the same way as
in Exp5.

Finally, the secret key sk = (α ⊕ m∗, skα⊕m∗) which A gets in Exp4 is exactly the same as one
which A gets in Exp5.

From the above arguments, we can conclude |p4 − p5| = 0. ⊓⊔ (Lemma 7)

Putting everything together, we obtain

Advrnc-cca
Π′,A (λ) = |p0 − p5| ≤

4∑
i=0

|pi − pi+1| ≤ AdvzkΦ,E(λ) + Advind-cpa
Π,F (λ) + Advot-ssΦ,G (λ).

Since Π is IND-CPA secure and Φ is an OTSS-NIZK, for any PPT adversary A, Advrnc-cca
Π′,A (λ) =

negl(λ) holds. Therefore, Π ′ satisfies RNC-CCA security. ⊓⊔ (Theorem 2)

5 DDH-based Construction of RNC-CCA Secure RNCE

In this section, we show our concrete construction of RNC-CCA secure RNCE based on the DDH as-
sumption.

Firstly, in Section 5.1, we describe our basic construction (proposed in the conference version) sup-
porting only a polynomial-sized plaintext space. Then, in Section 5.2, we give the proof of RNC-CCA
security for this scheme.

Secondly, in Section 5.3, we give our main construction with compact ciphertexts supporting a super-
polynomially large plaintext space. This construction is obtained by using our method for efficiently
expanding a polynomial-sized plaintext space to a super-polynomially large one. Then, in Section 5.4,
we give the proof of RNC-CCA security for this scheme.
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KG(1λ) :
g1 ← G
w ← Z∗

p

g2 := gw1
x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy11 gy22
t := gz11 gz22
hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
sk := (x1, x2, y1, y2, z1, z2)
Return (pk , sk)

Enc(pk ,m) :
r ← Zp

u1 := gr1
u2 := gr2
e := kr · gm1
µ← Hash(hk , u1∥u2∥e)
v := srtrµ

Return c := (u1, u2, e, v)

Dec(pk , sk , c) :
Parse c = (u1, u2, e, v)
µ← Hash(hk , u1∥u2∥e)
If uy1+z1µ

1 uy2+z2µ
2 = v then

m := logg1

(
e

(ux1
1 u

x2
2 )

)
Return m

else Return ⊥

FKG(1λ) :
g1 ← G
w ← Z∗

p

g2 := gw1
x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy11 gy22
t := gz11 gz22
hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
r̃ ← Zp

td := (r̃, w, x1, x2,
y1, y2, z1, z2)

Return (pk , td)

Fake(pk , td) :

ũ1 := gr̃1
ũ2 := g1g

r̃
2

ẽ := gx2
1 kr̃

µ̃← Hash(hk , ũ1∥ũ2∥ẽ)
ṽ := gy2+z2µ̃

1 sr̃tr̃µ̃

Return c̃ := (ũ1, ũ2, ẽ, ṽ)

Open(pk , td , c̃,m) :
x′
1 := x1 +mw (mod p)

x′
2 := x2 −m (mod p)

s̃k := (x′
1, x

′
2, y1, y2, z1, z2)

Return s̃k

FDec(pk , td , c) :
Parse c = (u1, u2, e, v)
µ← Hash(hk , u1∥u2∥e)
ũ1 := gr̃1
ũ2 := g1g

r̃
2

ẽ := gx2
1 kr̃

µ̃← Hash(hk , ũ1∥ũ2∥ẽ)
If (µ ̸= µ̃) ∧ (uw

1 = u2)

∧(uy1+z1µ
1 uy2+z2µ

2 = v) then

m := logg1

(
e

(ux1
1 u

x2
2 )

)
Return m

else Return ⊥

Fig. 2. Basic construction of RNC-CCA secure RNCE Πddh based on the DDH assumption.

5.1 Description of the Basic Construction

Here, we give the formal description of our basic construction of RNC-CCA secure RNCE with a
polynomial-sized plaintext space. One can see that our basic scheme is a variant of the Cramer-Shoup
encryption scheme [7]. The only difference is that we encode a plaintext m by the group element gm1 ,
where g1 is a generator of the underlying group. This encoding is essential for the opening algorithm
Open of our proposed scheme. The plaintext space of our basic scheme needs to be of polynomial-size
since we need to compute the discrete logarithm of gm1 for the decryption procedure.

Formally, we let Λ = (HKG,Hash) be a hash function. Let G be a multiplicative cyclic group of
prime order p, where p = Ω(2λ). We naturally encode an element in {0, 1}λ as one in Zp. Then, we
construct our RNCE scheme Πddh = (KG,Enc,Dec,FKG,Fake,Open,FDec) as described in Fig. 2.
We note that the correctness of the decryption of Πddh is straightforward due to the correctness of the
original Cramer-Shoup encryption scheme.

Correctness of decryption using a fake secret key. Similarly to Section 4.1, we confirm that a fake secret
key can decrypt a fake ciphertext and a real ciphertext by the decryption algorithm Dec.

Let (pk , td) be a public key/trapdoor pair generated by FKG(1λ), m ∈ Zp be an arbitrary plaintext,
c̃ = (ũ1, ũ2, ẽ, ṽ) be a fake ciphertext generated by Fake(pk , td), and s̃k = (x′1, x

′
2, y1, y2, z1, z2) be a

fake secret key generated by Open(pk , td , c̃,m). First, we confirm that a fake secret key s̃k can decrypt
a fake ciphertext c̃ = (ũ1, ũ2, ẽ, ṽ) to the plaintext m as follows. We can check that the fake ciphertext c̃
satisfies the following validity condition (checked in Dec)

ũ1
y1+z1µ̃ũ2

y2+z2µ̃ = g1
r̃(y1+z1µ̃)(g1g2

r̃)y2+z2µ̃ = g1
y2+z2µ̃(g1

y1g2
y2)r̃(g1

z1g2
z2)r̃µ̃ = g1

y2+z2µ̃sr̃tr̃µ̃ = ṽ,

where µ̃ = Hash(hk , ũ1∥ũ2∥ẽ). Next, we can check that the fake ciphertext c̃ is decrypted to m using
the fake secret key s̃k as

ẽ

ũ1
x′
1 ũ2

x′
2
=

gx2
1 kr̃

g
r̃(x1+mw)
1 gx2−m

1 g
r̃(x2−m)
2

=
gr̃x1+x2
1 gr̃x2

2

gr̃x1+r̃mw+x2−m
1 gr̃x2−r̃m

2

= gm1 .
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Furthermore, let c = (u1, u2, e, v) be a real ciphertext output by Enc(pk ,m′) for any plaintext m′ ∈
Zp (which is not necessarily m). Then, the fake secret key s̃k can decrypt the real ciphertext c to m′ as

e

u1x
′
1u2x

′
2
=

kr · gm′
1

g
r(x1+mw)
1 g

r(x2−m)
2

=
grx1
1 grx2

2 · gm′
1

grx1+rmw
1 grx2−rm

2

= gm
′

1 .

5.2 Security Proof for the Basic Construction

In this section, we show the following theorem.

Theorem 3. If the “+1”-DDH assumption holds in G, and Λ = (HKG,Hash) is a collision-resistant
hash function, then Πddh is RNC-CCA secure.

Since the “+1”-DDH assumption is implied by the ordinary DDH assumption, Theorem 3 implies
that our construction Πddh is indeed RNC-CCA secure under the ordinary DDH assumption.

Before describing the formal proof, we highlight the flow of the proof. We change Exprnc-real
Πddh,A(λ) to

Exprnc-sim
Πddh,A(λ) step by step, where A is an adversary that attacks the RNC-CCA security of Πddh. Al-

though the main part of our proof is similar to that of the Cramer-Shoup encryption scheme [7, 8], we
have the following two remarkable changes in order to change the challenge ciphertext c∗ (resp., the real
secret key sk ) to a fake ciphertext c̃ (resp., the fake secret key s̃k ).

First, toward transforming the challenge ciphertext to a fake ciphertext, we change the challenge
ciphertext component u∗2 = gr

∗
2 to u∗2 = g1g

r∗
2 . Second, we change the real secret key component

(x1, x2) to the fake secret key component (x′1, x
′
2) computed by Open described in Fig. 2. Due to these

changes, the challenge ciphertext component e∗ is changed to the fake ciphertext component ẽ and the
real secret key sk is changed to the fake secret key s̃k . The proof is as follows.

Proof of Theorem 3. Let A = (A1,A2,A3) be any PPT adversary that attacks the RNC-CCA security
of Πddh and makes Qdec > 0 decryption queries. We introduce the following experiments {Expi}7i=0.

Exp0 : Exp0 is exactly the same as Exprnc-real
Πddh,A(λ). The detailed description is as follows.

1. First, Exp0 samples g1 ← G and w ← Z∗p and sets g2 := gw1 . Next, Exp0 samples x1, x2, y1, y2, z1,
z2 ← Zp and sets k := gx1

1 gx2
2 , s := gy11 gy22 , and t := gz11 gz22 . Then, it samples hk ← HKG(1λ),

sets pk := (g1, g2, k, s, t, hk) and sk := (x1, x2, y1, y2, z1, z2), and runs A1(pk). When A1

makes a decryption query c = (u1, u2, e, v), Exp0 computes µ← Hash(hk , u1∥u2∥e) and checks
whether uy1+z1µ

1 uy2+z2µ
2 = v holds. If this holds, Exp0 returns m = logg1(e · (u

x1
1 ux2

2 )−1) toA1.
Otherwise, Exp0 returns ⊥ to A1.

2. WhenA1 outputs (m∗, st1) and terminates, Exp0 computes the challenge ciphertext c∗ as follows.
First, Exp0 samples r∗ ← Zp and sets u∗1 := gr

∗
1 , u∗2 := gr

∗
2 , and e∗ := kr

∗ · gm∗
1 . Next, Exp0

computes µ∗ ← Hash(hk , u∗1∥u∗2∥e∗), sets v∗ := sr
∗
tr

∗µ∗
and c∗ := (u∗1, u

∗
2, e
∗, v∗), and runs

A2(c
∗, st1). When A2 makes a decryption query c = (u1, u2, e, v), Exp0 answers the query in

the same way as above.
3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk , st2). When A3 outputs

b′ and terminates, Exp0 outputs b′.

Exp1 : Exp1 is identical to Exp0 except for the following change. When computing the challenge ci-
phertext c∗ = (u∗1, u

∗
2, e
∗, v∗), Exp1 computes e∗ and v∗ by e∗ := (u∗1)

x1(u∗2)
x2 · gm∗

1 and v∗ :=
(u∗1)

y1(u∗2)
y2((u∗1)

z1(u∗2)
z2)µ

∗
, respectively.

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge ciphertext c∗ = (u∗1, u
∗
2, e
∗, v∗),

Exp2 computes u∗2 by u∗2 := gwr∗+1
1 .

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption query c = (u1, u2, e, v)
made by A2, Exp3 answers ⊥ if Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e) holds.

Exp4 : Exp4 is identical to Exp3 except that when responding to a decryption query c = (u1, u2, e, v)
made by A1 or A2, Exp4 answers ⊥ if uw1 ̸= u2 holds.
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Exp5 : Exp5 is identical to Exp4 except that x′1 := x1 + wm∗ (mod p) and x′2 := x2 − m∗ (mod
p) are used instead of x1 and x2, respectively. That is, when computing the challenge ciphertext
c∗ := (u∗1, u

∗
2, e
∗, v∗), Exp5 computes e∗ by e∗ := (u∗1)

x′
1(u∗2)

x′
2 · gm∗

1 instead of (u∗1)
x1(u∗2)

x2 · gm∗
1 .

Note that e∗ = (u∗1)
x′
1(u∗2)

x′
2 ·gm∗

1 = g
r∗(x1+wm∗)
1 g

(wr∗+1)(x2−m∗)
1 ·gm∗

1 = gx2
1 (gx1

1 gx2
2 )r

∗
holds, and

thus e∗ is independent of m∗. Furthermore, Exp5 gives the secret key sk ′ := (x′1, x
′
2, y1, y2, z1, z2)

to A3 instead of sk := (x1, x2, y1, y2, z1, z2).
Since u∗1, u∗2, and e∗ in Exp5 are independent of the challenge plaintext m∗, without loss of generality
we generate them before A1 is run.

Exp6 : Exp6 is identical to Exp5 except that when responding to a decryption query c = (u1, u2, e, v)
made by A1, Exp6 answers ⊥ if Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e) holds. Note that the
procedure of the decryption oracle in Exp6 is exactly the same as that of FDec(pk , td , c).

Exp7 : Exp7 is exactly the same as Exprnc-sim
Πddh,A(λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 7]. Then, we have

Advrnc-cca
Πddh,A(λ) = |Pr[Exp

rnc-real
Πddh,A(λ) = 1]− Pr[Exprnc-sim

Πddh,A(λ) = 1]| = |p0 − p7| ≤
6∑

i=0

|pi − pi+1|.

It remains to show how each |pi − pi+1| is upper-bounded. In the following, we will show that |p0 −
p1| = 0 holds (Lemma 8) since the difference between Exp0 and Exp1 is only conceptual. Then, we
will show that there exist a PPT adversary E against the “+1”-DDH assumption in G such that |p1 −
p2| = Adv+1-ddh

G,E (λ) (Lemma 9), and a PPT adversary F against the collision-resistance of Λ such that
|p2 − p3| ≤ AdvcrΛ,F (λ) (Lemma 10). Next, we will show that |p3 − p4| ≤ Qdec

p holds (Lemma 11) by
showing that the probability that each of A’s valid queries is rejected in Exp5 but not in Exp4, is at most
1
p . Then, we will show that |p4− p5| = 0 holds (Lemma 12) since (x1, x2) and (x′1, x

′
2) are information-

theoretically indistinguishable from A. Next, we will show that there exists a PPT adversary G against
the collision-resistance of Λ such that |p5− p6| ≤ AdvcrΛ,G(λ)+

Qdec
p (Lemma 13). Finally, we will show

that |p6 − p7| = 0 holds (Lemma 14) by showing that Exp6 and Exp7 are identical.

Lemma 8. |p0 − p1| = 0 holds.

Proof of Lemma 8. In Exp1, we change e∗ = kr
∗ · gm∗

1 to e∗ := (u∗1)
x1(u∗2)

x2 · gm∗
1 , and v∗ = sr

∗
tr

∗µ∗

to v∗ := (u∗1)
y1(u∗2)

y2((u∗1)
z1(u∗2)

z2)µ
∗

in the challenge ciphertext c∗. This is only a conceptual change,
and thus Exp0 is exactly the same as Exp1 from the viewpoint of the adversary A. Hence, we have
|p0 − p1| = 0. ⊓⊔ (Lemma 8)

Lemma 9. There exists a PPT adversary E such that |p1 − p2| = Adv+1-ddh
G,E (λ).

Proof of Lemma 9. We construct a PPT adversary E that attacks the “+1”-DDH assumption in G so that
|p1 − p2| = Adv+1-ddh

G,E (λ), using the adversary A = (A1,A2,A3) as follows.

E(g1, g2, g3, g4) : First, E samples x1, x2, y1, y2, z1, z2 ← Zp and sets k := gx1
1 gx2

2 , s := gy11 gy22 ,
and t := gz11 gz22 . Next, it samples hk ← HKG(1λ), sets pk := (g1, g2, k, s, t, hk) and sk :=
(x1, x2, y1, y2, z1, z2), and runs A1(pk). When A1 makes a decryption query c = (u1, u2, e, v),
E returns Dec(pk , sk , c) to A1. When A1 outputs the tuple of the challenge plaintext and state in-
formation (m∗, st1) and terminates, E sets u∗1 := g3, u∗2 := g4, and e∗ := ((u∗1)

x1(u∗2)
x2) · gm∗

1 .
Then, E computes µ∗ ← Hash(hk , u∗1∥u∗2∥e∗), sets v∗ := (u∗1)

y1(u∗2)
y2((u∗1)

z1(u∗2)
z2)µ

∗
and c∗ :=

(u∗1, u
∗
2, e
∗, v∗), and runsA2(c

∗, st1). WhenA2 makes a decryption query c, E returns Dec(pk , sk , c)
to A2. When A2 outputs state information st2 and terminates, E runs A3(sk , st2). When A3 outputs
a bit b′ and terminates, E outputs b′ to its experiment.

In the following, we call (g1, g2, g3, g4) a DH tuple if (g1, g2, g3, g4) = (g, ga, gb, gab) and a DH+1
tuple if (g1, g2, g3, g4) = (g, ga, gb, gab+1). Furthermore, we will use the following notation

pdh := Pr[E(g1, g2, g3, g4) = 1|g ← G; a← Z∗p; b← Zp; (g1, g2, g3, g4) := (g, ga, gb, gab)],
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pdh+1 := Pr[E(g1, g2, g3, g4) = 1|g ← G; a← Z∗p; b← Zp; (g1, g2, g3, g4) := (g, ga, gb, gab+1)].

Here, a and b in the “+1”-DDH assumption correspond to w and r∗, respectively. Thus, g2 = gw1 ,
g3 = gr

∗
1 , and g4 = gwr∗

1 hold if E receives a DH tuple. Therefore, we can see that E perfectly simulates
Exp1 for A if it receives a DH tuple. This ensures that the probability that E outputs 1 given a DH tuple
is exactly the same as the probability that Exp1 outputs 1. That is, we have pdh = p1. On the other hand,
g2 = gw1 , g3 = gr

∗
1 , and g4 = gwr∗+1

1 = g1g
r∗
2 hold if E receives a DH+1 tuple. Therefore, E perfectly

simulates Exp2 for A if it receives a DH+1 tuple. This ensures that the probability that E outputs 1 given
a DH+1 tuple is exactly the same as the probability that Exp2 outputs 1. That is, we have pdh+1 = p2.
This implies that Adv+1-ddh

G,E (λ) = |pdh − pdh+1| = |p1 − p2|. ⊓⊔ (Lemma 9)

Lemma 10. There exists a PPT adversary F such that |p2 − p3| ≤ AdvcrΛ,F (λ).

Proof of Lemma 10. For i ∈ {2, 3}, we let Badcr
i be the event that A2 makes a decryption query

c = (u1, u2, e, v) satisfying (Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e)) ∧ (uy1+z1µ
1 uy2+z2µ

2 = v) in
Expi. (We call such a decryption query a bad decryption query.) Exp2 proceeds identically to Exp3 unless
Badcr

2 happens. Therefore, the inequality |p2 − p3| ≤ Pr[Badcr
2 ] = Pr[Badcr

3 ] holds. In the following,
we show that one can construct a PPT adversary F that attacks the collision-resistance of Λ so that
Pr[Badcr

2 ] = AdvcrΛ,F (λ), using the adversary A = (A1,A2,A3).

F(hk) : First,F samples g1 ← G, and w ← Z∗p and sets g2 := gw1 . Next, it samples x1, x2, y1, y2, z1, z2
← Zp and sets k := gx1

1 gx2
2 , s := gy11 gy22 , and t := gz11 gz22 . Then, it sets pk := (g1, g2, k, s, t, hk)

and sk := (x1, x2, y1, y2, z1, z2), and runs A1(pk). When A1 makes a decryption query c, F returns
Dec(pk , sk , c) to A1. When A1 outputs the challenge plaintext and state information (m∗, st1) and
terminates, F samples r∗ ← Zp and sets u∗1 := gr

∗
1 , u∗2 := gwr∗+1

1 , and e∗ := (u∗1)
x1(u∗2)

x2 · gm∗
1 .

Next, it computes µ∗ ← Hash(hk , u∗1∥u∗2∥e∗), sets v∗ := (u∗1)
y1(u∗2)

y2((u∗1)
z1(u∗2)

z2)µ
∗

and c∗ :=
(u∗1, u

∗
2, e
∗, v∗), and runs A2(c

∗, st1). When A2 makes a decryption query c = (u1, u2, e, v), F
sets µ := Hash(hk , u1∥u2∥e) and checks whether (µ = µ∗) ∧ (uy1+z1µ

1 uy2+z2µ
2 = v) holds. If

this holds, F returns (u1∥u2∥e, u∗1∥u∗2∥e∗) to its experiment and terminates. Otherwise, F returns
Dec(pk , sk , c) to A2. When A2 outputs state information st2 and terminates, F gives up and termi-
nates.

From the above construction of F , it is easy to see that F perfectly simulates Exp2 for A. Here,
the success condition of F is to output a pair (u1∥u2∥e, u∗1∥u∗2∥e∗) satisfying (Hash(hk , u1∥u2∥e) =
Hash(hk , u∗1∥u∗2∥e∗)) ∧ (u1∥u2∥e ̸= u∗1∥u∗2∥e∗). If A2 makes a bad decryption query c = (u1, u2, e, v),
Hash(hk , u1∥u2∥e) = Hash(hk , u∗1∥u∗2∥e∗) and uy1+z1µ

1 uy2+z2µ
2 = v hold. In the following, we see that

u1∥u2∥e ̸= u∗1∥u∗2∥e∗ holds if uy1+z1µ
1 uy2+z2µ

2 = v holds. Assume towards a contradiction, u1∥u2∥e =
u∗1∥u∗2∥e∗ holds. Then, v ̸= v∗ holds because the decryption query c must satisfy c ̸= c∗. Also,
uy1+z1µ
1 uy2+z2µ

2 = (u∗1)
y1+z1µ∗

(u∗2)
y2+z2µ∗

holds due to u1∥u2∥e = u∗1∥u∗2∥e∗. Here, since v∗ =
(u∗1)

y1+z1µ∗
(u∗2)

y2+z2µ∗
holds, v ̸= uy1+z1µ

1 uy2+z2µ
2 must also hold. However this contradicts to

uy1+z1µ
1 uy2+z2µ

2 = v, and thus u1∥u2∥e ̸= u∗1∥u∗2∥e∗ holds. Hence, when A2 makes a bad decryption
query (u1, u2, e, v), F achieves its success condition by returning (u1∥u2∥e, u∗1∥u∗2∥e∗) to its exper-
iment. From the above arguments, the probability that F breaks the collision-resistance of Λ is ex-
actly the same as the probability that A2 makes a bad decryption query in Exp2. Therefore, we have
Pr[Badcr

2 ] = AdvcrΛ,F (λ). Thus, |p2 − p3| ≤ AdvcrΛ,F (λ) holds. ⊓⊔ (Lemma 10)

Lemma 11. |p3 − p4| ≤ Qdec
p holds.

Proof of Lemma 11. For j ∈ {3, 4}, we let Badi
j be the event that A’s ith decryption query c =

(u1, u2, e, v) satisfies (uw1 ̸= u2) ∧ (uy1+z1µ
1 uy2+z2µ

2 = v) ∧ (µ ̸= µ∗) in Expj . (We call such a de-
cryption query a bad decryption query.) Furthermore, we let Badj be the event that A makes at least
one decryption query c = (u1, u2, e, v) satisfying (uw1 ̸= u2) ∧ (uy1+z1µ

1 uy2+z2µ
2 = v) ∧ (µ ̸= µ∗) in

Expj . Clearly, Pr[Badj ] ≤
∑

i∈[Qdec]
Pr[Badi

j ] holds for j ∈ {3, 4}. Exp3 proceeds identically to Exp4
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unless the event Bad3 happens. Therefore, the inequality |p3 − p4| ≤ Pr[Bad3] = Pr[Bad4] holds. In
the following, we show that Pr[Bad4] ≤ Qdec

p holds. To show it, we introduce Qdec,1 > 0 as the number
of decryption queries made by A1.

To this end, we firstly estimate the probability that Badi
4 (for i ∈ [Qdec,1]) happens based on the

information that A1 gets about y1, y2, z1, z2. Before A1 makes a decryption query, the information that
A1 gets about y1, y2, z1, z2 consists of s = gy11 gy22 and t = gz11 gz22 in the public key pk . When A1

makes a decryption query c = (u1, u2, e, v) satisfying uw1 ̸= u2, we let v′ := uy1+z1µ
1 uy2+z2µ

2 =
(gr1y11 gwr2y2

1 )(gr1z11 gwr2z2
1 )µ, where r1 = logg1 u1 ∈ Zp, r2 = logg2 u2 ∈ Zp\{r1}, and µ = Hash(hk ,

u1∥u2∥e), and consider the discrete logarithms with the base g1 for s, t, and v′ as

 logg1 s

logg1 t

logg1 v
′

 = M1


y1
y2
z1
z2

 ,where M1 =

 1 w 0 0
0 0 1 w
r1 wr2 r1µ wr2µ

 .

Since r1 ̸= r2 and w ̸= 0 hold, the rank of M1 is 3. Thus, the above equations are linearly in-
dependent and there are exactly p equally-likely possibilities for (y1, y2, z1, z2), which in turn implies
that the probability that the decryption query c satisfies the condition v′ = uy1+z1µ

1 uy2+z2µ
2 = v is ex-

actly 1
p . Here, if uw1 ̸= u2 holds, A1 always gets ⊥ regardless of the condition uy1+z1µ

1 uy2+z2µ
2 = v

in Exp4.Therefore, the probability that A1’s ith query is a bad decryption query is exactly 1
p for all

i ∈ [Qdec,1], that is, Pr[Badi
4] =

1
p holds for all i ∈ [Qdec,1].

Second, we estimate the probability that Badi
4 (for i ∈ [Qdec,1 + 1, Qdec]) happens based on

the information that A2 gets about y1, y2, z1, z2. Before A2 makes a decryption query, the informa-
tion that A2 gets about y1, y2, z1, z2 consists of s = gy11 gy22 and t = gz11 gz22 in the public key pk

and v∗ = (u∗1)
y1(u∗2)

y2((u∗1)
z1(u∗2)

z2)µ
∗
= (gr

∗y1
1 g

(1+wr∗)y2
1 )(gr

∗z1
1 g

(1+wr∗)z2
1 )µ

∗
in the challenge ci-

phertext c∗. When A2 makes a decryption query c = (u1, u2, e, v) satisfying uw1 ̸= u2, we let v′ :=
uy1+z1µ
1 uy2+z2µ

2 = (gr1y11 gwr2y2
1 )(gr1z11 gwr2z2

1 )µ, where r1 = logg1 u1 ∈ Zp, r2 = logg2 u2 ∈ Zp\{r1},
and µ = Hash(hk , u1∥u2∥e), and consider the discrete logarithms with the base g1 for s, t, v∗, and v′ as

logg1 s

logg1 t

logg1 v
∗

logg1 v
′

 = M2


y1
y2
z1
z2

 ,where M2 =


1 w 0 0
0 0 1 w
r∗ wr∗ + 1 r∗µ∗ µ∗(wr∗ + 1)
r1 wr2 r1µ wr2µ

 .

Since r1 ̸= r2, µ∗ ̸= µ, and w ̸= 0 hold, we have det(M2) = w(r1 − r2)(µ
∗ − µ) ̸= 0. Thus,

the above equations are linearly independent and there are exactly p equally-likely possibilities for
(y1, y2, z1, z2), which in turn implies that the probability that the decryption query c satisfies the con-
dition v′ = uy1+z1µ

1 uy2+z2µ
2 = v is exactly 1

p . Here, if uw1 ̸= u2 holds, A2 always gets ⊥ regardless
of the condition v′ = uy1+z1µ

1 uy2+z2µ
2 = v in Exp4. Therefore, the probability that A2’s ith query is a

bad decryption query is exactly 1
p for all i ∈ [Qdec,1 + 1, Qdec], that is, Pr[Badi

4] =
1
p holds for all

i ∈ [Qdec,1 + 1, Qdec].
From the above arguments, we have |p3 − p4| ≤ Pr[Bad4] ≤ Qdec

p . ⊓⊔ (Lemma 11)

Lemma 12. |p4 − p5| = 0 holds.

Proof of Lemma 12. In the experiment Exp5, we use x′1 := x1+wm∗ (mod p) and x′2 := x2−m∗ (mod
p) instead of x1 and x2, respectively.

Here, x1 and x2 are chosen uniformly at random from Zp and the only information thatA gets about
(x1, x2), before A gets the challenge ciphertext, consists of k = gx1

1 gx2
2 . Thus, there are p equally-likely

possibilities for (x1, x2). Therefore, x′1 := x1 + wm∗ (mod p) and x′2 := x2 − m∗ (mod p) are also
uniformly distributed in Zp conditioned on that logg1 k = x1+wx2 holds. Hence, the view ofA in Exp4
is exactly the same as that in Exp5, which in turn implies that |p4 − p5| = 0 holds. ⊓⊔ (Lemma 12)

Lemma 13. There exists a PPT adversary G such that |p5 − p6| ≤ AdvcrΛ,G(λ) +
Qdec
p .
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Proof of Lemma 13. For i ∈ {5, 6}, we let Badcr
i be the event that A1 makes a decryption query

c = (u1, u2, e, v) satisfying (Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e)) ∧ (uy1+z1µ
1 uy2+z2µ

2 = v)
in Expi. (We call such a decryption query a bad decryption query.) Exp5 proceeds identically to Exp6
unless Badcr

5 happens. Therefore, the inequality |p5−p6| ≤ Pr[Badcr
5 ] = Pr[Badcr

6 ] holds. Here, we let
Badc∗

5 be the event thatA1 makes a decryption query c = c∗ in Exp5. Then, we can estimate Pr[Badcr
5 ]

by Pr[Badcr
5 ] = Pr[Badcr

5 ∧Badc∗
5 ] + Pr[Badcr

5 ∧ ¬Badc∗
5 ].

We can see that the probability Pr[Badcr
5 ∧Badc∗

5 ] is at most Qdec
p . This is becauseA1 cannot obtain

the information about r∗ from its decryption queries.
In the following, similarly to Lemma 10, we show that one can construct a PPT adversary G that

attacks the collision-resistance of Λ so that Pr[Badcr
5 ∧ ¬Badc∗

5 ] = AdvcrΛ,G(λ), using the adversary
A = (A1,A2,A3).

G(hk) : First, G samples g1 ← G and w ← Z∗p and sets g2 := gw1 . Next, it samples x1, x2, y1, y2, z1, z2
← Zp and sets k := gx1

1 gx2
2 , s := gy11 gy22 , and t := gz11 gz22 . Then, it sets pk := (g1, g2, k, s, t, hk)

and sk := (x1, x2, y1, y2, z1, z2). Next, it samples r∗ ← Zp, sets u∗1 := gr
∗

1 , u∗2 := gwr∗+1
1 , and

e∗ := gx2
1 (gx1

1 gx2
2 )r

∗
, computes µ∗ ← Hash(hk , u∗1∥u∗2∥e∗), and runs A1(pk). When A1 makes

a decryption query c = (u1, u2, e, v), G sets µ := Hash(hk , u1∥u2∥e) and checks whether (µ =
µ∗) ∧ (uy1+z1µ

1 uy2+z2µ
2 = v) ∧ (c ̸= c∗) holds. If this holds, G returns (u1∥u2∥e, u∗1∥u∗2∥e∗) to

its experiment and terminates. Otherwise, G answers the query in the same way as the decryption
oracle in Exp5 does. When A1 outputs the challenge plaintext and state information (m∗, st1) and
terminates, G gives up and terminates.

From the above construction of G, it is easy to see that G perfectly simulates the experiment Exp5 for
A1. Moreover, with essentially the same argument as in the proof of Lemma 10, the probability that G
succeeds in breaking the collision-resistance of Λ is exactly the same as the probability that A1 makes a
bad decryption query with the condition (c ̸= c∗) in Exp5, that is, Pr[Badcr

5 ∧ ¬Badc∗
5 ] = AdvcrΛ,G(λ)

holds.
From the above arguments, we have Pr[Badcr

5 ] = Pr[Badcr
5 ∧Badc∗

5 ] + Pr[Badcr
5 ∧ ¬Badc∗

5 ] ≤
AdvcrΛ,G(λ) +

Qdec
p . Thus, |p5 − p6| ≤ AdvcrΛ,G(λ) +

Qdec
p holds. ⊓⊔ (Lemma 13)

Lemma 14. |p6 − p7| = 0 holds.

Proof of Lemma 14. From the constructions of FKG, Fake, Open, and FDec, the information that the
adversary A gets in Exp6 is exactly the same as that in Exp7. Specifically, we can confirm it as follows.

First, it is easy to see that the public key pk = (g1, g2, k, s, t, hk) given to A1 in Exp6 is exactly the
same as one given to A1 in Exp7.

Second, we recall that the challenge ciphertext c∗ = (u∗1, u
∗
2, e
∗, v∗) in Exp6 is generated as

(u∗1, u
∗
2, e
∗, v∗) =

(
gr

∗
1 , g1g

r∗
2 , gx2

1 (gx1
1 gx2

2 )r
∗
, (gr

∗y1
1 g

(1+wr∗)y2
1 )(gr

∗z1
1 g

(1+wr∗)z2
1 )µ

∗
)
,

where µ∗ := Hash(hk , u∗1∥u∗2∥e∗). We can confirm that e∗ = gx2
1 (gx1

1 gx2
2 )r

∗
= gx2

1 kr
∗

and v∗ =

(gr
∗y1

1 g
(1+wr∗)y2
1 )(gr

∗z1
1 g

(1+wr∗)z2
1 )µ

∗
= gy2+z2µ∗

1 sr
∗
tr

∗µ∗
. These e∗ and v∗ are of the same form as

those generated by Fake. Thus, the challenge ciphertext (u∗1, u
∗
2, e
∗, v∗) is exactly the same as that in

Exp7.
Third, the behavior of the decryption oracle in Exp6 is exactly the same as that in Exp7. Concretely,

when A makes a decryption query c = (u1, u2, e, v) in Exp6, Exp6 computes µ = Hash(hk , u1∥u2∥e)
and checks whether (µ = µ∗) ∨ (uw1 ̸= u2) ∨ (uy1+z1µ

1 uy2+z2µ
2 ̸= v) holds. If this condition holds, Exp6

returns ⊥ to A. Otherwise, Exp6 returns logg1(e · (u
x1
1 ux2

2 )−1) to A. This behavior is exactly the same
as that of FDec, and thus this decryption oracle’s procedure in Exp6 is exactly the same as that in Exp7.

Finally, it is easy to see that the secret key sk ′ = (x′1, x
′
2, y1, y2, z1, z2) which A3 gets in Exp6 is

exactly the same as one which A3 gets in Exp7.
From the above arguments, we can conclude |p6 − p7| = 0. ⊓⊔ (Lemma 14)
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Putting everything together, we obtain

Advrnc-cca
Πddh,A(λ) = |p0 − p7| ≤

6∑
i=0

|pi − pi+1| ≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) + AdvcrΛ,G(λ) +

2Qdec

p
.

Since the “+1”-DDH assumption holds in G, Λ is a collision-resistant hash function, Qdec is a polynomial
of λ, and p = Ω(2λ), for any PPT adversaryA, Advrnc-cca

Πddh,A(λ) = negl(λ) holds. Therefore, Πddh satisfies
RNC-CCA security. ⊓⊔ (Theorem 3)

5.3 Description of the Main Construction

As mentioned in Section 1.3, the disadvantage of our basic construction is that when we expand the size
of its plaintext space to super-polynomial, the ciphertext overhead of the construction increases linearly
as the length of a plaintext increases.

More precisely, based on the basic construction, we can expand the plaintext space as follows. Let
d = d(λ) be a logarithmic function in λ and ℓ = ℓ(λ) be a polynomial in λ. If we want to encrypt a
plaintext m = m1∥ · · · ∥mℓ ∈ {0, 1}d·ℓ (that belongs to the super-polynomially large plaintext space),
we can encrypt this plaintext m by generating ℓ independent components (xi1, xi2)i∈[ℓ] then hiding each
block mi with each component (x1i, xi2). Note that we do not need to increase the number of the compo-
nent (y1, y2, z1, z2) for checking the validity of a ciphertext. Here, there is a drawback about the size of
a ciphertext of the construction obtained in this way. Specifically, in this basic construction, a ciphertext
consists of ℓ + 3 elements (u1, u2, (ei)i∈[ℓ], v) of G. If we let the bit length of one group element be q,
the ciphertext overhead is q(ℓ+3)− dℓ = ℓ(q− d)+ 3q. Thus, as the length of a plaintext increases, the
ciphertext overhead of this construction increases linearly.

Hence, in the following, we propose our main construction with compact ciphertexts supporting
the super-polynomially large plaintext space {0, 1}d·ℓ rather than a polynomial-sized one. The main
difference from the above basic construction is that when encrypting a plaintext m = m1∥ · · · ∥mℓ ∈
{0, 1}d·ℓ, we compute ei = H(kri )⊕mi instead of ei = kri · g

mi
1 for each i ∈ [ℓ], where H is a universal

hash function, ki are group elements in a public key, r ← Zp, and g1 is a generator of the group G.
Formally, we let G be a multiplicative cyclic group of prime order p, where p = Ω(2λ). Let H :=

{H : G→ {0, 1}d} be a family of functions and Λ = (HKG,Hash) be a hash function. Let d = d(λ) =
O(log λ), ℓ = ℓ(λ) be a polynomial in λ, and Qh = Qh(λ) be a polynomial in λ satisfying Qh =
ω(2d · log λ). Then, we construct our RNCE scheme Π ′ddh = (KG,Enc,Dec,FKG,Fake,Open,FDec)
with the plaintext space M := {0, 1}d·ℓ as described in Fig. 3. We note that the correctness of the
decryption of Π ′ddh is straightforward due to the correctness of the original Cramer-Shoup encryption
scheme.

Correctness of decryption using a fake secret key. Similarly to Section 4.1, we confirm that a fake secret
key can decrypt a fake ciphertext and a real ciphertext by the decryption algorithm Dec. (In the following,
we consider the case that a fake secret key s̃k generated by Open is not ⊥.)

Let (pk , td) be a public key/trapdoor pair generated by FKG(1λ), m = m1∥ · · · ∥mℓ ∈ {0, 1}d·ℓ be
an arbitrary plaintext, c̃ = (ũ1, ũ2, (ẽi)i∈[ℓ], ṽ) be a fake ciphertext generated by Fake(pk , td), and s̃k =
((xij)i∈[ℓ],j∈[2], y1, y2, z1, z2) be a fake secret key generated by Open(pk , td , c̃,m). First, we confirm
that the fake secret key s̃k can decrypt the fake ciphertext c̃ to the plaintext m as follows. We can check
the fake ciphertext c̃ satisfies the following validity condition (checked in Dec)

ũ1
y1+z1µ̃ũ2

y2+z2µ̃ = g1
r̃(y1+z1µ̃)(g1g2

r̃)y2+z2µ̃ = g1
y2+z2µ̃(g1

y1g2
y2)r̃(g1

z1g2
z2)r̃µ̃ = g1

y2+z2µ̃sr̃tr̃µ̃ = ṽ,

where µ̃ = Hash(hk , ũ1∥ũ2∥ẽ). Next, we can check that the fake ciphertext c̃ = (ũ1, ũ2, (ẽi)i∈[ℓ], ṽ) is
decrypted to mi using the fake secret key components (x′ij)i∈[ℓ],j∈[2] as follows. For each i ∈ [ℓ], we
have

ẽi ⊕ H(ũ1
x′
i1 ũ2

x′
i2) = ẽi ⊕ H(g

r̃(αi−wγi+wr̃αi)
1 (g1g

r̃
2)

γi−r̃αi) = ẽi ⊕ H(gγi1 ) = ẽi ⊕ ẽi ⊕mi = mi.
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KG(1λ) :
g1 ← G
w ← Z∗

p

g2 := gw1
x11, · · · , xℓ1, x12, · · · , xℓ2 ← Zp

y1, y2, z1, z2 ← Zp

(ki)i∈[ℓ] := (gxi1
1 gxi2

2 )i∈[ℓ]

s := gy11 gy22
t := gz11 gz22
H← H
hk ← HKG(1λ)
pk := (g1, g2, (ki)i∈[ℓ], s, t,H, hk)
sk := ((xij)i∈[ℓ],j∈[2], y1, y2, z1, z2)
Return (pk , sk)

Enc(pk ,m) :

Parse m = m1∥ · · · ∥mℓ ∈ ({0, 1}d)ℓ
r ← Zp

u1 := gr1
u2 := gr2
(ei)i∈[ℓ] := (H(kr

i )⊕mi)i∈[ℓ]

µ← Hash(hk , u1∥u2∥(ei)i∈[ℓ])
v := srtrµ

Return c := (u1, u2, (ei)i∈[ℓ], v)

Dec(pk , sk , c) :
Parse c = (u1, u2, (ei)i∈[ℓ], v)
µ← Hash(hk , u1∥u2∥(ei)i∈[ℓ])

If uy1+z1µ
1 uy2+z2µ

2 = v then
(mi)i∈[ℓ]

:= (ei ⊕ H(uxi1
1 uxi2

2 ))i∈[ℓ],
else Return ⊥
Return m := m1∥ · · · ∥mℓ

FKG(1λ) :
g1 ← G
w ← Z∗

p

g2 := gw1
α1, · · · , αℓ ← Zp

y1, y2, z1, z2 ← Zp

(ki)i∈[ℓ] := (gαi
1 )i∈[ℓ]

s := gy11 gy22
t := gz11 gz22
H← H
hk ← HKG(1λ)
pk := (g1, g2, (ki)i∈[ℓ], s, t,H, hk)
r̃ ← Zp

td := (r̃, w, (αi)i∈[ℓ], y1, y2, z1, z2)
Return (pk , td)

Fake(pk , td) :

ũ1 := gr̃1
ũ2 := g1g

r̃
2

ẽ1, · · · , ẽℓ ← {0, 1}d
µ̃← Hash(hk , ũ1∥ũ2∥(ẽi)i∈[ℓ])

ṽ := gy2+z2µ̃
1 sr̃tr̃µ̃

Return c̃ := (ũ1, ũ2, (ẽi)i∈[ℓ], ṽ)

Open(pk , td , c̃,m) :

Parse m = m1∥ · · · ∥mℓ ∈ ({0, 1}d)ℓ
Parse c̃ := (ũ1, ũ2, (ẽi)i∈[ℓ], ṽ)
For i := 1, · · · , ℓ
(x′

ij)j∈[2] := ⊥
For v := 1, · · · , Qh

γi ← Zp

If H(gγi
1 ) = ẽi ⊕mi then

x′
i1 := αi − wγi + wr̃αi (mod p)

x′
i2 := γi − r̃αi (mod p)

Break
If ∃i s.t. x′

i1 = x′
i2 = ⊥ then

s̃k := ⊥
else s̃k := ((x′

ij)i∈[ℓ],j∈[2], y1, y2, z1, z2)

Return s̃k

FDec(pk , td , c) :
Parse c = (u1, u2, (ei)i∈[ℓ], v)
µ← Hash(hk , u1∥u2∥(ei)i∈[ℓ])

ũ1 := gr̃1
ũ2 := g1g

r̃
2

ẽ1, · · · , ẽℓ ← {0, 1}d
µ̃← Hash(hk , ũ1∥ũ2∥(ẽi)i∈[ℓ])
If (µ ̸= µ̃)∧
(uw

1 = u2)∧
(uy1+z1µ

1 uy2+z2µ
2 = v) then

(mi)i∈[ℓ] := (ei ⊕ H(uαi
1 ))i∈[ℓ],

else Return ⊥
Return m := m1∥ · · · ∥mℓ

Fig. 3. Main construction of RNC-CCA secure RNCE Π ′
ddh based on the DDH assumption.

Furthermore, let c = (u1, u2, (ei)i∈[ℓ], v) be a real ciphertext output by Enc(pk ,m′) for any plaintext
m′ = m′1∥ · · · ∥m′ℓ ∈ {0, 1}d·ℓ (which is not necessarily m). Then, we can see that the fake secret key s̃k
can decrypt the real ciphertext c to m′ as follows. For each i ∈ [ℓ], we have

ei ⊕ H(u
x′
i1

1 u
x′
i2

2 ) = H(kri )⊕m′i ⊕ H(uαi−wγi+wr̃αi
1 uγi−r̃αi

2 )

= H(kri )⊕m′i ⊕ H(uαi
1 ) = H(kri )⊕m′i ⊕ H(kri ) = m′i.

5.4 Security Proof for the Main Construction

In this section, we show the following theorem.

Theorem 4. If the “+1”-DDH assumption holds in G, H is a universal hash family, and Λ = (HKG,
Hash) is a collision-resistant hash function, then Π ′ddh is RNC-CCA secure.

Since the “+1”-DDH assumption is implied by the ordinary DDH assumption, Theorem 4 implies
that our construction Π ′ddh is indeed RNC-CCA secure under the ordinary DDH assumption.

Here, for simplicity, we firstly give the proof for our main construction Π ′ddh conditioned on ℓ = 1.
Then, at the end of the proof, we explain the proof for the general case ℓ > 1. Also, in the proof, we
eliminate an index i ∈ [ℓ] from the description of our main construction Π ′ddh for simplicity.
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Before describing the formal proof, we explain an important difference from the proof of Theorem 3.
Although the proof below is almost the same as the proof of Theorem 3, we need the following additional
argument when changing from a real secret key to a fake secret key. Unlike our basic construction in
Section 5.1, when computing a fake secret key x′1, x

′
2 ∈ Zp for opening a fake ciphertext component ẽ to

a plaintext m ∈ {0, 1}d, we need to sample a value γ from Zp satisfying the condition H(gγ1 ) = ẽ ⊕m
in our main construction, where e← {0, 1}d and g1 is a generator of G.

Here, we have to consider the event that we cannot sample γ from Zp satisfying such a condition. In
our proof, we show that the probability that this event happens is negligible. This is because the plaintext
spaceM is {0, 1}d and the hash function H : G→ {0, 1}d is universal, and thus when we sample γ from
Zp Qh times, where Qh is a polynomial in λ satisfying Qh = ω(2d · log λ), we can make this probability
negligible by using information-theoretic arguments and the leftover hash lemma. Therefore, we show
that we can compute a fake secret key x′1, x

′
2 for opening the fake ciphertext component ẽ to the plaintext

m with an overwhelming probability. The formal proof is as follows.

Proof of Theorem 4. LetA = (A1,A2,A3) be any PPT adversary that attacks the RNC-CCA security of
Π ′ddh and makes Qdec > 0 decryption queries. Let Qh be a polynomial in λ satisfying Qh = ω(2d ·log λ).
We introduce the following experiments {Expi}4i=0.

Exp0 : Exp0 is exactly the same as Exprnc-real
Π′

ddh,A
(λ). The detailed description is as follows.

1. First, Exp0 samples g1 ← G and w ← Z∗p and sets g2 := gw1 . Next, Exp0 samples x1, x2, y1, y2, z1,
z2 ← Zp and sets k := gx1

1 gx2
2 , s := gy11 gy22 , and t := gz11 gz22 . Then, it samples H← H and hk ←

HKG(1λ), sets pk := (g1, g2, k, s, t,H, hk) and sk := (x1, x2, y1, y2, z1, z2), and runs A1(pk).
When A1 makes a decryption query c = (u1, u2, e, v), Exp0 computes µ← Hash(hk , u1∥u2∥e)
and checks whether uy1+z1µ

1 uy2+z2µ
2 = v holds. If this holds, Exp0 returns m = e ⊕ H(ux1

1 ux2
2 )

to A1. Otherwise, Exp0 returns ⊥ to A1.
2. WhenA1 outputs (m∗, st1) and terminates, Exp0 computes the challenge ciphertext c∗ as follows.

First, Exp0 samples r∗ ← Zp and sets u∗1 := gr
∗

1 , u∗2 := gr
∗

2 , and e∗ := H(kr
∗
)⊕m∗. Next, Exp0

computes µ∗ ← Hash(hk , u∗1∥u∗2∥e∗), sets v∗ := sr
∗
tr

∗µ∗
and c∗ := (u∗1, u

∗
2, e
∗, v∗), and runs

A2(c
∗, st1). When A2 makes a decryption query c = (u1, u2, e, v), Exp0 answers the query for

A2 in the same way as above.
3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk , st2). When A3 outputs

b′ and terminates, Exp0 outputs b′.
Exp1 : Exp1 is identical to Exp0 except for the following changes.

– When computing the challenge ciphertext c∗ = (u∗1, u
∗
2, e
∗, v∗), Exp1 computes u∗2, e∗, and v∗

by u∗2 := gwr∗+1
1 , e∗ := H((u∗1)

x1(u∗2)
x2) ⊕ m∗, and v∗ := (u∗1)

y1(u∗2)
y2((u∗1)

z1(u∗2)
z2)µ

∗
,

respectively.
– When responding to a decryption query c = (u1, u2, e, v) made by A2, Exp1 answers ⊥ if
Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e) holds.

– When responding to a decryption query c = (u1, u2, e, v) made by A1 or A2, Exp1 answers ⊥ if
uw1 ̸= u2 holds.

Exp2 : Exp2 is identical to Exp1 except for the following changes.
– When computing the challenge ciphertext c∗ = (u∗1, u

∗
2, e
∗, v∗), Exp2 samples ẽ ← {0, 1}d and

computes H(kr
∗
) := ẽ⊕m∗.

– x′1 := α − wγ + wr∗α (mod p) and x′2 := γ − r∗α (mod p) are used instead of x1 and x2,
respectively. Here, γ is chosen exactly the same as the opening algorithm Open and α is the
discrete logarithm of k with the base g1. Hence, when computing the challenge ciphertext c∗ :=
(u∗1, u

∗
2, e
∗, v∗), Exp2 computes e∗ by e∗ := H((u∗1)

x′
1(u∗2)

x′
2)⊕m∗ instead of H((u∗1)

x1(u∗2)
x2)⊕

m∗. Note that e∗ = H((u∗1)
x′
1(u∗2)

x′
2) ⊕ m∗ = H(g

r∗(α−wγ+wr∗α)
1 g

(wr∗+1)(γ−r∗α)
1 ) ⊕ m∗ =

H(gγ1 )⊕m∗ = ẽ, and thus e∗ is independent of the challenge plaintext m∗.
– When responding to a decryption query c = (u1, u2, e, v) made by A1 and A2, Exp2 computes
µ← Hash(hk , u1∥u2∥e) and executes as follows.
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• For A1’s query, Exp2 checks whether (uw1 = u2) ∧ (uy1+z1µ
1 uy2+z2µ

2 = v) holds.
• ForA2’s query, Exp2 checks whether (uw1 = u2)∧ (uy1+z1µ

1 uy2+z2µ
2 = v)∧ (µ ̸= µ∗) holds.

If the first (resp., second) check is valid, Exp2 returns e⊕H(uα1 ) instead of e⊕H(ux1
1 ux2

2 ) toA1

(resp.,A2). Note that the above conditions for the decryption oracle is exactly the same as one in
Exp1 and the only difference here is the value which is returned to A1 and A2.

– Exp2 gives the secret key sk ′ := (x′1, x
′
2, y1, y2, z1, z2) to A3 instead of sk := (x1, x2, y1,

y2, z1, z2).
Since u∗1, u∗2, and e∗ in Exp2 are independent of the challenge plaintext m∗, without loss of generality
we generate them before A1 is run.

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption query c = (u1, u2, e, v)
made by A1, Exp3 answers ⊥ if Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e) holds. Note that the
procedure of the decryption oracle in Exp3 is exactly the same as that of FDec(pk , td , c).

Exp4 : Exp4 is exactly the same as Exprnc-sim
Π′

ddh,A
(λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 4]. Then, we have

Advrnc-cca
Π′

ddh,A
(λ) = |Pr[Exprnc-real

Π′
ddh,A

(λ) = 1]− Pr[Exprnc-sim
Π′

ddh,A
(λ) = 1]| = |p0 − p4| ≤

3∑
i=0

|pi − pi+1|.

It remains to show how each |pi−pi+1| is upper-bounded. We show that |p0−p1| ≤ Adv+1-ddh
G,E (λ)+

AdvcrΛ,F (λ) +
Qdec
p holds (Lemma 15), where E (resp., F) is a PPT adversary against the “+1”-DDH

assumption in G (resp., the collision-resistance of Λ). Next, we show that |p1 − p2| ≤
√

2d−2

p + 2 ·((
1
2

)Qh
2d +Qh

√
2d−2

p

)
holds (Lemma 16) by using information-theoretic arguments and the leftover

hash lemma. Then, we show that there exists a PPT adversary G against the collision-resistance of Λ
such that |p2−p3| ≤ AdvcrΛ,G(λ)+

Qdec
p (Lemma 17). Finally, we show that |p3−p4| = 0 holds (Lemma

18) by showing that Exp3 and Exp4 are identical.

Lemma 15. There exist PPT adversaries E and F such that |p0 − p1| ≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) +

Qdec
p .

Proof of Lemma 15. Firstly, we define the following sub-experiments between Exp0 and Exp1.

Exp0.0 : Exp0.0 is identical to Exp0.
Exp0.1 : Exp0.1 is identical to Exp0.0 except that when computing the challenge ciphertext c∗ = (u∗1, u

∗
2, e
∗,

v∗), Exp0.1 computes e∗ := H((u∗1)
x1(u∗2)

x2)⊕m∗ and v∗ := (u∗1)
y1(u∗2)

y2((u∗1)
z1(u∗2)

z2)µ
∗
.

Exp0.2 : Exp0.2 is identical to Exp0.1 except that when computing the challenge ciphertext c∗ = (u∗1, u
∗
2,

e∗, v∗), Exp0.2 computes u∗2 by u∗2 := gwr∗+1
1 .

Exp0.3 : Exp0.3 is identical to Exp0.2 except that when responding to a decryption query c = (u1, u2, e, v)
made by A2, Exp0.3 answers ⊥ if Hash(hk , u∗1∥u∗2∥e∗) = Hash(hk , u1∥u2∥e) holds.

Exp0.4 : Exp0.4 is identical to Exp0.3 except that when responding to a decryption query c = (u1, u2, e, v)
made by A1 or A2, Exp0.4 answers ⊥ if uw1 ̸= u2 holds. (This experiment is exactly the same as
Exp1.)

We let p0.j := Pr[Exp0.j(λ) = 1] for all j ∈ [0, 4]. Then, we can show that |p0.0 − p0.1| = 0 holds,
there exists a PPT adversary E (resp., F) such that |p0.1 − p0.2| = Adv+1-ddh

G,E (λ) (resp., |p0.2 − p0.3| ≤
AdvcrΛ,F (λ)), and |p0.3 − p0.4| ≤ Qdec

p holds. These proofs are essentially the same as those of Lemma 8,
Lemma 9, Lemma 10, and Lemma 11 in the proof of Theorem 3, respectively, and thus omitted. Putting
everything together, we obtain

|p0 − p1| ≤
3∑

i=0

∣∣p0.i − p0.(i+1)

∣∣ ≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) +

Qdec

p
.

⊓⊔ (Lemma 15)
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Lemma 16. |p1 − p2| ≤
√

2d−2

p + 2 ·
((

1
2

)Qh
2d +Qh

√
2d−2

p

)
holds.

Proof of Lemma 16. Firstly, we define the following sub-experiments between Exp1 and Exp2.

Exp1.0 : Exp1.0 is identical to Exp1. We let K∗ := kr
∗

and h∗ := H(kr
∗
).

Exp1.1 : Exp1.1 is identical to Exp1.0 except that Exp1.1 firstly samples k,K∗ ← G then computes
(x1, x2) satisfying (gx1

1 gx2
2 = k) ∧ ((u∗1)

x1(u∗2)
x2 = K∗) instead of firstly sampling x1, x2 ← Zp

then computing k = gx1
1 gx2

2 and K∗ = (u∗1)
x1(u∗2)

x2 . Note that x1 = α − wγ + wr∗α (mod p) and
x2 = γ − r∗α (mod p) holds, where α := logg1 k and γ := logg1 K

∗.
Exp1.2 : Exp1.2 is identical to Exp1.1 except that Exp1.2 computes K ′ ← G, h∗ := H(K ′), and K∗ ←

HashInv(h∗), where HashInv is an algorithm explained below, instead of sampling K∗ ← G and
then computing h∗ := H(K∗). The algorithm HashInv takes an input h∗ ∈ {0, 1}d and if the set of
preimages H−1(h∗) := {x ∈ G|H(x) = h∗} is not empty, it outputs x chosen uniformly at random
from H−1(h∗). Otherwise, it outputs ⊥.

Exp1.3 : Exp1.3 is identical to Exp1.2 except that Exp1.3 samples h∗ ← {0, 1}d instead of sampling
K ′ ← G and computing h∗ := H(K ′).

Exp1.4 : Exp1.4 is identical to Exp1.3 except that Exp1.4 samples ẽ← {0, 1}d and computes h∗ := ẽ⊕m∗
instead of sampling h∗ ← {0, 1}d.

Exp1.5 : Exp1.5 is identical to Exp1.4 except for the following two changes. Firstly, γ is chosen exactly
the same as the opening algorithm Open instead of sampling K∗(= gγ1 ) ← HashInv(h∗). That is,
if we cannot find γ ∈ Zp that satisfies H(gγ1 ) = ẽ ⊕ m∗ within Qh trials, Exp1.5 stops and gives
sk := ⊥ to A3. Otherwise, Exp1.5 gives the secret key sk ′ := (x′1, x

′
2, y1, y2, z1, z2) to A3.

Secondly, when responding to a decryption query c = (u1, u2, e, v) made by A1 and A2, Exp2
computes µ← Hash(hk , u1∥u2∥e) and executes as follows.

– For A1’s query, Exp2 checks whether (uw1 = u2) ∧ (uy1+z1µ
1 uy2+z2µ

2 = v) holds.
– For A2’s query, Exp2 checks whether (uw1 = u2) ∧ (uy1+z1µ

1 uy2+z2µ
2 = v) ∧ (µ ̸= µ∗) holds.

If the first (resp., second) check is valid, Exp2 returns e ⊕ H(uα1 ) instead of e ⊕ H(ux1
1 ux2

2 ) to A1

(resp., A2). Note that the above conditions for the decryption oracle is exactly the same as one in
Exp1 and the only difference here is the value which is returned to A1 and A2. We can see that this
experiment is exactly the same as Exp2 by renaming x1 (resp., x2) to x′1 (resp., x′2).

We note that the experiments Exp1.j for all j ∈ [4] cannot always be executed in polynomial time, but
the experiment Exp1.5 can always be executed in polynomial time. Here, we let p1.j := Pr[Exp1.j(λ) =
1] for all j ∈ [0, 5]. In the following, we show that |p1.0 − p1.1| = 0, |p1.1 − p1.2| = 0, |p1.2 − p1.3| ≤√

2d−2

p , |p1.3 − p1.4| = 0, and |p1.4 − p1.5| ≤ 2 ·
((

1
2

)Qh
2d +Qh

√
2d−2

p

)
hold.

Firstly, we see that |p1.0 − p1.1| = 0 holds. In Exp1.1, we firstly sample k,K∗ ← G then com-
putes (x1, x2) satisfying (gx1

1 gx2
2 = k) ∧ ((u∗1)

x1(u∗2)
x2 = K∗). In fact, we can find such (x1, x2) by

considering the discrete logarithms with the base g1 for k and K∗ as(
logg1 k

logg1 K
∗

)
= M

(
x1
x2

)
,where M =

(
1 w
r∗ 1 + wr∗

)
.

Since det(M ) = 1 ( ̸= 0) holds, we can have x1 = logg1 k − w logg1 K
∗ + wr∗ logg1 k (mod p) and

x2 = logg1 K
∗−r∗ logg1 k (mod p). Here, the distribution of (x1, x2) is exactly the same as one in Exp1.

Thus, we have |p1.0 − p1.1| = 0.
Next, we see that |p1.1 − p1.2| = 0 holds. In Exp1.2, we compute K ′ ← G, h∗ := H(K ′), and

K∗ ← H−1(h∗) instead of K∗ ← G and h∗ := H(K∗). Here, the distribution {K∗ ← G;h∗ ← H(K∗) :
(K∗, h∗)} and {K ′ ← G;h∗ ← H(K ′);K∗ ← H−1(h∗) : (K∗, h∗)} are exactly the same. Hence, the
view of A in Exp1.2 is exactly the same as that in Exp1.1. Thus, we have |p1.1 − p1.2| = 0.

Then, we see that |p1.2 − p1.3| ≤
√

2d−2

p holds. The only difference between Exp1.2 and Exp1.3 is

that we sample h∗ ← {0, 1}d in Exp1.3 instead of sampling K ′ ← G and computing h∗ := H(K ′).
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Thus, we have |p1.2 − p1.3| ≤ SD((H,H(K ′)), (H, h∗)). Here, applying the leftover hash lemma for

H = {H : G → {0, 1}d}, we have SD((H,H(K ′)), (H, h∗)) ≤
√

2d−2

p due to |G| = p and |{0, 1}d| =
2d, where H ← H, K ′ ← G, and h∗ ← {0, 1}d. Therefore, we can conclude that |p1.2 − p1.3| ≤
SD((H,H(K ′)), (H, h∗)) ≤

√
2d−2

p holds.
Next, we can see that |p1.3 − p1.4| = 0 holds since in Exp1.4, h∗ := ẽ ⊕ m∗ is also uniformly

distributed in {0, 1}d due to ẽ← {0, 1}d, and thus the view of A is exactly the same as that in Exp1.3.

Finally, we show that |p1.4−p1.5| ≤ 2 ·
((

1
2

)Qh
2d +Qh

√
2d−2

p

)
holds. In Exp1.5, γ is chosen exactly

the same as the opening algorithm Open instead of sampling K∗(= gγ1 ) ← HashInv(h∗). In Open, we
firstly sample γ ← Zp then check whether H(gγ1 ) = ẽ ⊕m∗ holds. In the following, we let Bad be the
event that we cannot find γ ∈ Zp that satisfies H(gγ1 ) = ẽ ⊕ m∗ within Qh trials in Open in Exp1.5.
That is, Bad is the event that when sampling γ ∈ Zp uniformly at random Qh times, there exists no γ
satisfying H(gγ1 ) = ẽ⊕m∗ in Exp1.5. Thus, the probability that the event Bad happens is estimated as

Pr[Bad] ≤ Pr
H←H

γ1,··· ,γQh
←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
.

If Bad does not happen, we can see that the distribution of γ sampled in HashInv is exactly the same as
one sampled in Open conditioned on that γ satisfying H(gγ1 ) = ẽ⊕m∗ is found. Therefore, in this case,
the distribution of γ is not changed between Exp1.4 and Exp1.5. As for responses to decryption queries
c = (u1, u2, e, v) made by A, recall that the rejection rules are exactly the same in Exp1.4 and Exp1.5.
Also, if c is not rejected,

H(uα1 ) = H((gα1 )
r) = H(kr) = H((gx1

1 gx2
2 )r) = H(ux1

1 ux2
2 )

holds, where r = logg1 u1. Therefore, the answer e⊕ H(uα1 ) in Exp1.5 is exactly the same as the answer
e⊕ H(ux1

1 ux2
2 ) in Exp1.4. Hence, the view of A in Exp1.5 is exactly the same as that in Exp1.4 if we can

find γ ∈ Zp satisfying the condition within Qh trials. Thus, p1.4 = Pr[Exp1.5(λ) = 1|¬Bad] holds.
Then, we have the following inequality

|p1.4 − p1.5| = |p1.4 − (Pr[(Exp1.5(λ) = 1) ∧ ¬Bad] + Pr[(Exp1.5(λ) = 1) ∧Bad])|
≤ |p1.4 − Pr[(Exp1.5(λ) = 1) ∧ ¬Bad]|+ Pr[(Exp1.5(λ) = 1) ∧Bad]

≤ |p1.4 − Pr[(Exp1.5(λ) = 1)|¬Bad] · Pr[¬Bad]|+ Pr[Bad]

= |p1.4 − (1− Pr[Bad]) · Pr[(Exp1.5(λ) = 1)|¬Bad]|+ Pr[Bad]

= Pr[Bad] · Pr[(Exp1.5(λ) = 1)|¬Bad] + Pr[Bad]

≤ 2 · Pr[Bad]

≤ 2 ·

 Pr
H←H

γ1,··· ,γQh
←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
≤ 2 ·

∣∣∣∣∣∣ Pr
H←H

γ1,··· ,γQh
←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
− Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

]∣∣∣∣∣∣
+ 2 ·

(
Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

])
. (1)

Here, since h1, · · · , hQh
are chosen uniformly at random from {0, 1}d, we have

Pr
h1,··· ,hQh

←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

]
=

(
1− 1

2d

)Qh

=

(
1− 1

2d

)2d·Qh
2d (∗)

<

(
1

2

)Qh
2d

,
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where in the inequality (∗) we used the fact that
(
1− 1

x

)x
< 1

2 holds for all x > 0.
Also, due to the definition of the statistical distance, we can bound the first term of Equation (1)∣∣∣∣∣∣ Pr

H←H
γ1,··· ,γQh

←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
− Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

]∣∣∣∣∣∣
≤ SD((H,H(gγ11 ), · · · ,H(gγQh

1 )), (H, h1, · · · , hQh
)),

where H← H, h1, · · · , hQh
← {0, 1}d.

By using a hybrid argument, we can see that SD((H,H(gγ11 ), · · · ,H(gγQh
1 )), (H, h1, · · · , hQh

)) ≤
Qh · SD((H,H(gγ11 )), (H, h1)) holds. Furthermore, by applying the leftover hash lemma for H = {H :

G→ {0, 1}d}, we can see that SD((H,H(gγ11 )), (H, h1)) ≤
√

2d−2

p holds due to |G| = p and |{0, 1}d| =
2d. Thus, we have∣∣∣∣∣∣ Pr

H←H
γ1,··· ,γQh

←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
− Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

]∣∣∣∣∣∣ ≤ Qh

√
2d−2

p
.

Putting everything together, we obtain

|p1.4 − p1.5| ≤ 2 ·

∣∣∣∣∣∣ Pr
H←H

γ1,··· ,γQh
←Zp

[
Qh∧
i=1

(H(gγi1 ) ̸= h∗)

]
− Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

]∣∣∣∣∣∣
+ 2 ·

(
Pr

h1,··· ,hQh
←{0,1}d

[
Qh∧
i=1

(hi ̸= h∗)

])

< 2 ·

(1

2

)Qh
2d

+Qh

√
2d−2

p

 .

From the above arguments, we conclude

|p1 − p2| ≤
4∑

i=0

∣∣p1.i − p1.(i+1)

∣∣ ≤√2d−2

p
+ 2 ·

(1

2

)Qh
2d

+Qh

√
2d−2

p

 .

⊓⊔ (Lemma 16)

Lemma 17. There exists a PPT adversary G such that |p2 − p3| ≤ AdvcrΛ,G(λ) +
Qdec
p .

The proof of this lemma is essentially the same as that of Lemma 13. Thus, we omit it here.

Lemma 18. |p3 − p4| = 0 holds.

Proof of Lemma 18. From the constructions of FKG, Fake, FDec, and Open, the information that the
adversary A gets in Exp3 is exactly the same as that in Exp4. Specifically, we can confirm it as follows.

First, it is easy to see that the public key pk = (g1, g2, k, s, t,H, hk) given to A1 in Exp3 is exactly
the same as the one given to A1 in Exp4.

Second, we recall that the challenge ciphertext c∗ = (u∗1, u
∗
2, e
∗, v∗) is generated in Exp3 as

(u∗1, u
∗
2, e
∗, v∗) = (gr

∗
1 , g1g

r∗
2 , ẽ, (gr

∗y1
1 g

(1+wr∗)y2
1 )(gr

∗z1
1 g

(1+wr∗)z2
1 )µ

∗
).

We can confirm that v∗ = (gr
∗y1

1 g
(1+wr∗)y2
1 )(gr

∗z1
1 g

(1+wr∗)z2
1 )µ

∗
= gy2+z2µ∗

1 sr
∗
tr

∗µ∗
. Therefore, the

above (u∗1, u
∗
2, e
∗, v∗) are of the same form as those generated by Fake. Thus, the challenge ciphertext

(u∗1, u
∗
2, e
∗, v∗) is exactly the same as that in Exp4.
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Third, the behavior of the decryption oracle in Exp3 is exactly the same as that in Exp4. Concretely,
when A makes a decryption query c = (u1, u2, e, v) in Exp3, Exp3 computes µ = Hash(hk , u1∥u2∥e)
and checks whether (µ = µ∗) ∨ (uw1 ̸= u2) ∨ (uy1+z1µ

1 uy2+z2µ
2 ̸= v) holds. If this condition holds, Exp3

returns ⊥ to A. Otherwise, Exp3 returns e ⊕ H(uα1 ) to A. This behavior is exactly the same as that of
FDec, and thus this decryption oracle’s procedure in Exp3 is exactly the same as that in Exp4.

Finally, it is easy to see that the secret key sk ′ = (x′1, x
′
2, y1, y2, z1, z2) which A3 gets in Exp3 is

exactly the same as the one which A3 gets in Exp4.
From the above arguments, we can conclude |p3 − p4| = 0. ⊓⊔ (Lemma 18)

Putting everything together, we obtain

Advrnc-cca
Π′

ddh,A
(λ) = |p0 − p4|

≤
3∑

i=0

|pi − pi+1|

≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) + AdvcrΛ,G(λ) +

2Qdec

p
+

(
1

2

)Qh
2d
−1

+ (2Qh + 1)

√
2d−2

p
.

Since the “+1”-DDH assumption holds in G,H is a universal hash family, Λ is a collision-resistant hash
function, Qdec is a polynomial of λ, d = O(log λ), Qh = ω(2d · log λ), and p = Ω(2λ), for any PPT
adversary A, Advrnc-cca

Π′
ddh,A

(λ) = negl(λ) holds. Therefore, Π ′ddh (in the case ℓ = 1) satisfies RNC-CCA
security.

Finally, we explain the case that the plaintext space consists of multiple blocks (ℓ > 1), where ℓ
is a polynomial in λ. In fact, a proof for this case is almost the same as the above proof. The only
difference from the above proof is that we have to change all real components (xij)i∈[ℓ],j∈[2] to fake ones
(x′ij)i∈[ℓ],j∈[2]. To this end, we apply the same argument as in the proof of Lemma 16 for each component
(xij) for all i ∈ [ℓ] and j ∈ [2]. By using a hybrid argument, we can show that the difference between the

probability p1 and p2 is bounded by ℓ · |p1 − p2| = ℓ ·
(√

2d−2

p + 2 ·
((

1
2

)Qh
2d +Qh

√
2d−2

p

))
. Thus,

due to the same arguments as in the above proof, we can actually show that Π ′ddh for any polynomial
ℓ > 1 satisfies RNC-CCA security. ⊓⊔ (Theorem 4)
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KG′′(1λ) :
α1, · · · , αℓ ← {0, 1}
(pk i

0, sk
i
0)i∈[ℓ] ← (KG(1λ))i∈[ℓ]

(pk i
1, sk

i
1)i∈[ℓ] ← (KG(1λ))i∈[ℓ]

crs ← CRSGen(1λ)
pk := ((pk i

j)i∈[ℓ],j∈{0,1}, crs)
sk := (αi, sk

i
αi
)i∈[ℓ]

Return (pk , sk)

Enc′′(pk ,m) :
Parse m = m1∥ · · · ∥mℓ

(r1j )j∈{0,1}, · · · , (rℓj)j∈{0,1} ←R2
Π

(ci0)i∈[ℓ] ← (Enc(pk i
0,mi; r

i
0))i∈[ℓ]

(ci1)i∈[ℓ] ← (Enc(pk i
1,mi; r

i
1))i∈[ℓ]

x := (pk i
j , c

i
j)i∈[ℓ],j∈{0,1}

w := (mi, r
i
j)i∈[ℓ],j∈{0,1}

π ← Prove(crs, x, w)
Return c := ((cij)i∈[ℓ],j∈{0,1}, π)

Dec′′(pk , sk , c) :
x := (pk i

j , c
i
j)i∈[ℓ],j∈{0,1}

If Verify(crs, x, π) = 1 then
(mi)i∈[ℓ]

← (Dec(pk i
αi
, sk i

αi
, ciαi

))i∈[ℓ],
else Return ⊥
If ∃i s.t.mi = ⊥ then

Return ⊥,
else Return m := m1∥ · · · ∥mℓ

FKG′′(1λ) :
α1, · · · , αℓ ← {0, 1}
(pk i

0, sk
i
0)i∈[ℓ] ← (KG(1λ))i∈[ℓ]

(pk i
1, sk

i
1)i∈[ℓ] ← (KG(1λ))i∈[ℓ]

(crs, tk)← SimCRS(1λ)
pk := ((pk i

j)i∈[ℓ],j∈{0,1}, crs)
td := ((αi, sk

i
αi
)i∈[ℓ], tk)

Return (pk , td)

Fake′′(pk , td) :
(ciαi

)i∈[ℓ] ← (Enc(pk i
αi
, 0))i∈[ℓ]

(ci1⊕αi
)i∈[ℓ] ← (Enc(pk i

1⊕αi
, 1))i∈[ℓ]

π ← SimPrv(tk , (pk i
j , c

i
j)i∈[ℓ],j∈{0,1})

Return c̃ := ((cij)i∈[ℓ],j∈{0,1}, π)

Open′′(pk , td , c̃,m) :

Return s̃k := (αi ⊕mi, skαi⊕mi)i∈[ℓ]

FDec′′(pk , td , c) :
x := (pk i

j , c
i
j)i∈[ℓ],j∈{0,1}

If Verify(crs, x, π) = 1 then
(mi)i∈[ℓ]

← (Dec(pk i
0, sk

i
0, c

i
0))i∈[ℓ],

else Return ⊥
If ∃i s.t.mi = ⊥ then

Return ⊥,
else Return m := m1∥ · · · ∥mℓ

Fig. 4. Generic construction of RNC-CCA secure RNCE Π ′′ with the plaintext space {0, 1}ℓ.

A Generic Construction of RNC-CCA Secure RNCE with a Multi-bit Plaintext Space

Here, using an IND-CPA secure PKE scheme and an OTSS-NIZK, we show our generic construction
of an RNC-CCA secure RNCE scheme with the plaintext space {0, 1}ℓ, where ℓ = ℓ(λ) > 0 is a
polynomial. Let Π = (KG,Enc,Dec) be a PKE scheme with the plaintext space {0, 1} and RΠ be the
randomness space for the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify, SimCRS,SimPrv)
be a non-interactive proof system for L′′eq, where

L′′eq :=
{
(pk ij , c

i
j)i∈[ℓ],j∈{0,1}

∣∣∣ ∃(mi, r
i
j)i∈[ℓ],j∈{0,1} s.t.

(ci0 = Enc(pk i0,mi; r
i
0)) ∧ (ci1 = Enc(pk i1,mi; r

i
1)) for all i ∈ [ℓ]

}
.

Then, we construct our scheme Π ′′ = (KG′′,Enc′′,Dec′′,FKG′′,Fake′′,FDec′′,Open′′) as described in
Fig. 4. The following theorem holds.

Theorem 5. If Π is an IND-CPA secure PKE scheme and Φ is an OTSS-NIZK, then Π ′′ is RNC-CCA
secure.

The proof of Theorem 5 is very similar to the proof of Theorem 2, and thus we omit it here.

B On the “+1”-DDH Assumption

In this section, we show that the DDH assumption implies the “+1”-DDH assumption. In the following,
we let p = Ω(2λ) be a prime number, G be a multiplicative cyclic group of order p, and Zp be the set of
integers modulo p. First of all, we recall the definition of the standard DDH assumption.

Definition 11 (DDH assumption). We say that the DDH assumption holds in G if for any PPT adversary
A,

AdvddhG,A(λ) := |Pr[g ← G; a← Z∗p; b← Zp : A(g, ga, gb, gab) = 1]

− Pr[g ← G; a← Z∗p; b, c← Zp : A(g, ga, gb, gc) = 1]| = negl(λ).

We show the following proposition.

Proposition 1. If the DDH assumption holds in G, then the “+1”-DDH assumption holds in G.
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Proof of Proposition 1. Let A be any PPT adversary of the “+1”-DDH assumption in G. We let g ← G,
a← Z∗p, and b, c← Zp. We introduce the following experiments {Expi}2i=0.

Exp0 : Exp0 is an experiment that A gets a DH tuple (g, ga, gb, gab).
Exp1 : Exp1 is an experiment that A gets a random tuple (g, ga, gb, gc).
Exp2 : Exp2 is an experiment that A gets a DH+1 tuple (g, ga, gb, gab+1).

We let pi be the probability thatA outputs 1 in Expi for all i ∈ [0, 2]. Then, we have Adv+1-ddh
G,A (λ) =

|p0 − p2| ≤ |p0 − p1| + |p1 − p2|. Note that |p0 − p1| = AdvddhG,A(λ) holds due to the definition of the
DDH assumption.

It remains to see that there exists a PPT adversary B such that |p1 − p2| = AdvddhG,B(λ), using the
adversary A. Concretely, when B receives a tuple (g1, g2, g3, g4), B computes (g1, g2, g3, g1 · g4) and
gives it to A. When A outputs a bit and terminates, B returns it to the experiment and terminates. Here,
if B receives a random tuple (g, ga, gb, gc) from its experiment, we can see that B computes a random
tuple (g, ga, gb, gc+1) and perfectly simulates Exp1 for A. (Note that c + 1 is also distributed uniformly
at random in Zp.) On the other hand, if B receives a DH tuple (g, ga, gb, gab) from its experiment, we
can see that B computes a tuple (g, ga, gb, gab+1) and perfectly simulates Exp2 forA. Therefore, it holds
that |p1 − p2| = AdvddhG,B(λ). ⊓⊔ (Proposition 1)
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