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Abstract

We introduce a new form of encryption that we name matchmaking encryption (ME).
Using ME, sender S and receiver R (each with its own attributes) can both specify policies
the other party must satisfy in order for the message to be revealed. The main security
guarantee is that of privacy-preserving policy matching: During decryption nothing is leaked
beyond the fact that a match occurred/did not occur.

ME opens up new ways of secretly communicating, and enables several new applications
where both participants can specify fine-grained access policies to encrypted data. For
instance, in social matchmaking, S can encrypt a file containing his/her personal details
and specify a policy so that the file can be decrypted only by his/her ideal partner. On the
other end, a receiver R will be able to decrypt the file only if S corresponds to his/her ideal
partner defined through a policy.

On the theoretical side, we define security for ME, as well as provide generic frameworks
for constructing ME from functional encryption.
These constructions need to face the technical challenge of simultaneously checking the
policies chosen by S and R, to avoid any leakage.

On the practical side, we construct an efficient scheme for the identity-based setting,
with provable security in the random oracle model under the standard BDH assumption. We
implement and evaluate our scheme and provide experimental evidence that our construction
is practical. We also apply identity-based ME to a concrete use case, in particular for creating
an anonymous bulletin board over a Tor network.
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1 Introduction

Intelligence operations often require secret agents to communicate with other agents from differ-
ent organizations. When two spies meet to exchange secrets, they use a type of secret handshake
to ensure that the parties participating in the exchange are the ones intended. For example,
an FBI agent may want to communicate only with CIA agents, and if this is not the case, the
communication should drop without revealing membership information and why the communi-
cation failed. This form of live drop communication,1 when parties are online and interact, has
been implemented in cryptography and it is referred to as secret handshake (SH) protocol [9].
In SH, two parties agree on the same secret key only if they are both from the same group.
Privacy is preserved in the sense that, if the handshake fails, nobody learns anything relevant
other than the participants are not in the same group. In SH with dynamic matching [5], groups
and roles can even be determined just before the protocol execution.

SH can be thought of as an evolution of traditional key exchange protocols, where protect-
ing privacy of the participants assumes an essential role. As any other key agreement protocol,
SH is inherently interactive and its purpose is for the parties to converge on a secret key. A
natural question is whether there exists a non-interactive version of SH, in a similar way as
ElGamal public-key encryption can be interpreted as a non-interactive version of the classical
Diffie-Hellman key exchange. This new cryptographic primitive would allow senders to en-
crypt messages offline given only the public key of the receiver, thus getting rid of real-time
interactions, while at the same time providing strong privacy guarantees for time-delayed com-
munications such as email. Non-interactivity mitigates or prevents traffic analysis which affects
all SH protocols when deployed within a network environment (see, e.g., [5]). In particular,
increased traffic between nodes may signal to an adversary that the SH protocol was successful,
even though the nodes’ group affiliations and roles remain private.

Non-interactive SH is even more relevant if we consider that the most common method
of espionage tradecraft is the dead drop one,1 which maintains operational security by using a
secret location for the exchange of information, thus relieving the agents from meeting in person.
Unfortunately, dead-drop communication cannot be captured by any existing cryptographic
primitive, since it requires a form of expressiveness that is not currently provided by encryption
and its more advanced forms.

Matchmaking encryption. In this paper, we are revamping the encryption primitive and
introducing a new concept termed “Matchmaking Encryption”, or ME. In ME, a trusted author-
ity generates encryption and decryption keys associated, respectively, to attributes of the sender
and the receiver. The authority also generates an additional decryption key for the receiver,
associated to an arbitrary policy of its choice. The sender of the message can specify on the
fly an arbitrary policy the receiver must satisfy in order for the message to be revealed. The
guarantee is now that the receiver will obtain the message if and only if a match occurs (i.e., the
sender’s attributes match the receiver’s policy and vice-versa). Nothing beyond that is leaked;
furthermore, the sender’s attributes are certified by the authority, so that no malicious sender
can forge a valid ciphertext which embeds fake attributes.

For instance, the sender, during encryption, can specify that the message is intended for an
FBI agent that lives in NYC. The receiver, during decryption, can also specify that he wants to
read messages only if they come from CIA agents. If any of these two policies is not satisfied,
the message remains secret, but nobody learns which policy failed. In this vein, ME can be
seen as a non-interactive version of SH, but with much more enhanced functionality. Indeed, an
SH works only for groups and roles, while attribute-based key agreements [24] do not consider

1See https://en.wikipedia.org/wiki/Dead_drop.
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privacy. We refer the reader to §1.3 for a comparison between ME and other primitives in the
realm of attribute-based cryptography.

Other killer applications of ME are those where the receiver must be sheltered from the
actual content of messages to avoid liability, inconvenience or inappropriateness. ME naturally
tackles social matchmaking confidentiality, where potential partners open files intended for them
but only if they contain the traits of the desired person; if decryption fails, nobody learns why,
so that privacy is preserved. Encrypting bids (or votes) under ME provides an exciting twist
to well-studied problems. Bidders send private bids to a collector and specify the conditions
under which the encryption should be opened. The collector opens only the bids that match
specific requirements. If decryption fails, the collector does not learn why, and the actual bid
(or vote) remain sealed. ME avoids exposing information connected to unlooked-for bids which
could influence the receiver and adversely affect the bidding process outcome.

ME also supports marginalized and dissident communities in authoritarian countries. It
can act as an enabler for journalists, political activists and minorities in free-speech technical
applications such as SecurePost ([39]) that provides verified group anonymity. Indeed, in their
thorough study [39], the authors reveal that, in authoritarian countries, anonymous communi-
cation may not be credible and cannot be trusted since sources are unknown.2 ME provides a
comprehensive technical solution for censorship-resistant communication while providing source
authenticity and strong privacy guarantees that cannot be obtained with existing tools. For
instance, the ability to check ciphertexts against a policy before decryption allows journalists or
activists to vet messages and avoid exposure to unwanted information that would make them
liable. To this end, in Section §6, we introduce and implement a privacy-preserving bulletin
board that combines Tor hidden services with ME to allow parties to collect information from
anonymous but authentic sources.

1.1 Our Contributions

We initiate a systematic study of ME, both in terms of definitions and constructions. Our main
contributions are summarized below.

Syntax of ME. In ME, a trusted authority publishes a master public key mpk, associated
to a master secret key msk. The master secret key msk is used by the authority to generate
three types of keys: (i) An encryption key ekσ, associated with attributes σ for the sender
(created using an algorithm SKGen); (ii) A decryption key dkρ, associated with attributes ρ for
the receiver (created using an algorithm RKGen); (iii) A decryption key dkS, associated to a
policy S that the sender’s attributes should satisfy, but that is chosen by the receiver (created
using an algorithm PolGen).

A sender with attributes σ, and corresponding encryption key ekσ obtained from the au-
thority, can encrypt a plaintext m by additionally specifying a policy R (chosen on the fly),
thus yielding a ciphertext c that is associated with both σ and R. Finally, the receiver can
attempt to decrypt c using keys dkρ and dkS: In case of a match (i.e., the attributes of both
parties satisfy the counterparty’s policy), the receiver obtains the plaintext, and otherwise an
error occurs.

Security of ME. We consider two properties termed privacy, and authenticity. On rough
terms, privacy looks at the secrecy of the sender w.r.t. the plaintext m, the chosen policy R, and
its attributes σ, whenever a malicious receiver, possessing decryption keys for several attributes
ρ and policies S:

2See https://www.news.ucsb.edu/2019/019308/anonymous-yet-trustworthy
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• Can’t decrypt the ciphertext (“mismatch condition”), i.e., either the sender’s attributes
do not satisfy the policies held by the receiver (S(σ) = 0), or the receiver’s attributes do
not satisfy the policy specified by the sender (R(ρ) = 0).

• Can decrypt the ciphertext (“match condition”), i.e., both the sender’s and the receiver’s
attributes satisfy the corresponding policy specified by the counterpart (R(ρ) = 1 and
S(σ) = 1). Of course, in such a case the receiver is allowed to learn the plaintext.

On the other hand, authenticity says that an attacker not possessing attributes σ should
not be able to create a valid ciphertext (i.e., a ciphertext not decrypting to ⊥) w.r.t. any access
policy that is satisfied by σ.

Black-box constructions. It turned out that building matchmaking encryption is quite
difficult. While a compiler turning key agreement into public-key encryption exists (e.g., Diffie-
Hellman key exchange into ElGamal public-key encryption), there is no obvious way of building
ME from SH, even by extending the model of SH to include attributes and policies in order
to achieve something akin to attribute-based key agreement protocols. The main technical
challenge is to ensure that the policies established by the sender and receiver are simultaneously
checked to avoid any leakage. This simultaneity requirement is so elusive that even constructions
combining attribute-based encryption (ABE) with authentication mechanisms fail to achieve it
(more on this later).

Our first technical contribution is a construction of an ME for arbitrary policies based on
three tools: (i) an FE scheme for randomized functionalities [1] (rFE), (ii) digital signatures,
and (iii) non-interactive zero-knowledge (NIZK) proofs. When using the rFE scheme from [1],
we can instantiate our scheme assuming the existence of either semantically secure public-key
encryption schemes and low-depth pseudorandom generators, or concrete assumptions on multi-
linear maps, or polynomially-secure indistinguishability obfuscation (iO).

This construction satisfies only security against bounded collusions, where there is an a-
priori upper bound on the number of queries a malicious receiver can make to oracles RKGen
and PolGen. We additionally give a simpler construction of ME for arbitrary policies that
even achieves full security (i.e., security against unbounded collusions), albeit under stronger
assumptions. In particular, we replace rFE with 2-input functional encryption (2FE) [23]. When
using the 2FE scheme by Goldwasser et al. [23], we can instantiate this construction based on
sub-exponentially secure iO.

Being based on strong assumptions, the above constructions should be mainly understood
as feasibility results showing the possibility of constructing ME for arbitrary policies. It is
nevertheless worth pointing out a recent construction of iO based on LWE, bilinear maps, and
weak pseudorandomness [4], which avoids multi-linear maps. Additionally, Fisch et al. [20] show
how to implement efficiently FE and 2FE using Intel’s Software Guard Extensions (SGX), a
set of processors allowing for the creation of isolated execution environments called enclaves.
At a high level, in their practical implementation, a functional decryption key skf consists of a
signature on the function f , while messages are encrypted using standard PKE. In order to run
the decryption algorithm, a client sends skf together with ciphertext c to a decryption enclave,
which first checks if the signature is valid (i.e., the function evaluation has been authorized by
the authority), and if so it decrypts c by using the corresponding secret key, and outputs the
function f evaluated on the plaintext. Lastly, the enclave erases its memory. This approach
can be applied directly to FE, 2FE, and even rFE for arbitrary functionalities, which, thanks
to our results, makes ME for arbitrary policies practical in the trusted hardware setting.
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The identity-based setting. Next, we turn to the natural question of obtaining efficient ME
in restricted settings. In particular, we focus on the identity-based setting where access policies
are simply bit-strings representing identities (as for standard identity-based encryption). This
yields identity-based ME (IB-ME). For this setting, we provide an efficient construction that we
prove secure in the random oracle model (ROM), based on the standard bilinear Diffie-Hellman
assumption (BDH) over bilinear groups.

Recall that in ME the receiver needs to obtain from the authority a different key for each
access policy S. While this requirement is perfectly reasonable in the general case, where the
policy might consist of the conjunction of several attributes, in the identity-based setting a
receiver that wants to receive messages from several sources must obtain one key for each
source. As this would not scale well in practice, we change the syntax of IB-ME and remove
the PolGen algorithm. In particular, the receiver can now specify on the fly an identity string
snd (playing the role of the access policy S) that is directly input to the decryption algorithm
(together with the secret key associated to the receiver’s identity).

While the above modification yields much more efficient IB-ME schemes, it comes with the
drawback that an adversary in the privacy game can try to unlock a given ciphertext using
different target identities snd chosen on the fly. The latter yields simple attacks that required
us to tweak the definition of privacy in the identity-based setting slightly. We refer the reader
to §5 for more details.

Concrete use case and implementation. We give evidence of the practical viability of our
IB-ME construction by providing a prototype implementation in Python. Our experimental
evaluation can be found in §6. There, we also detail a concrete use case where IB-ME is used
in order to realize a prototype of a new privacy-preserving bulletin board that is run on the
Tor network [47]. Our system allows parties to communicate privately, or entities such as
newspapers or organizations to collect information from anonymous sources.

A public bulletin board is essentially a broadcast channel with memory. Messages can be
encrypted under ME so that their content is revealed only in case of a policy match. The
privacy-preserving feature of ME ensures that, if decryption fails, nobody learns which policies
were not satisfied. This effectively creates secure and private virtual rooms or sub-channels.

Arranged ME. We also consider an alternative flavor of ME, called arranged matchmaking
encryption (A-ME), where there is a single decryption key dkρ,S that describes simultaneously
the receiver’s attributes ρ and the policy S chosen by the receiver. Thus, an A-ME scheme
does not come with a PolGen algorithm. This feature makes sense in applications where a
receiver could have multiple attributes, but with restricted access rights. A-ME is simpler to
construct, in fact we show how to obtain A-ME for arbitrary policies from FE for deterministic
functionalities, digital signatures, and NIZK proofs.

See Tab. 1 for a summary of our constructions in terms of assumptions and for different
flavors of ME.

1.2 Technical Approach

Below, we describe the main ideas behind our constructions of ME. We start by presenting two
unsuccessful attempts, naturally leading to our secure constructions. Both attempts are based
on FE. Recall that FE allows us to generate decryption keys dkf associated to a functionality
f , in such a way that decrypting a ciphertext c, with underlying plaintext x, under dkf , yields
f(x) (and nothing more). Note that FE implies both ciphertext-policy ABE [13] (CP-ABE)
and key-policy ABE [27] (KP-ABE).
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Type Privacy Authenticity Assumptions

§4 ME X‡ X‡ rFE + Signatures + NIZK

§5 IB-ME X† X† BDH (RO model)

§4.2 ME X X 2FE + Signatures + NIZK

§3.2 A-ME X X FE + Signatures + NIZK

Table 1: Results achieved in this work. † Security only holds in the identity-based setting. ‡
Security only holds in case of bounded collusions.

First attempt. A first natural approach would be to construct an ME scheme by combining
two distinct FE schemes. The idea is to apply sequentially two functionalities f1 and f2, where
the first functionality checks whether the sender’s policy R is satisfied, whereas the second
functionality checks whether the receiver’s policy S is satisfied. More in details, let f1 and f2

be the following functions:

f1
ρ (R, c) =

{
c, if R(ρ) = 1
⊥, otherwise

f2
S (σ,m) =

{
m, if S(σ) = 1
⊥, otherwise

where R(ρ) = 1 (resp. S(σ) = 1) means that receiver’s attributes ρ (resp. sender’s attributes
σ) satisfy the sender’s policy R (resp. receiver’s policy S). A sender now encrypts a message m
under attributes σ by first encrypting (σ,m) under the second FE scheme, and thus it encrypts
the corresponding ciphertext concatenated with the policy R under the first FE scheme. The
receiver first decrypts a ciphertext using secret key dkρ associated with function f1

ρ , and then
it decrypts the obtained value using secret key dkS associated with function f2

S .
While “semantic security” of the underlying FE schemes computationally hides the plaintext

of the resulting ME scheme, privacy is not guaranteed completely: In fact, when the first
encrypted layer decrypts correctly (resp. does not decrypt correctly), a receiver infers that the
sender’s attributes σ match (resp. do not match) the policy S.

Second attempt. One could think to savage the above construction as follows. Each function
f i returns a random key ri in case the corresponding policy (i.e., the policy checked by function
f i) is satisfied, and otherwise it returns a random value generated by running a secure PRF F .
Both partial keys r1, r2 are then needed to unmask the string r1 ⊕ r2 ⊕m, which is included in
the ciphertext.

More precisely, consider functions f1
ρ (R, r1, k1) and f2

S (σ, r2, k2), such that f1
ρ (R, r1, k1) (resp.

f2
S (σ, r2, k2)) returns r1 (resp. r2) if ρ satisfies R (resp. σ satisfies S); otherwise, it returns Fk1(ρ)

(resp. Fk2(S)), where k1 (resp. k2) is a key for the PRF F . An encryption of message m w.r.t.
attributes σ and policy R would now consist of three values (c1, c2, c3), where c1 is an encryption
of (R, r1, k1) under the first FE scheme, c2 is an encryption of (σ, r2, k2) under the second FE
scheme, and finally c3 = r1⊕ r2⊕m. A receiver (with keys dkρ and dkS associated to functions
f1
ρ and f2

S as before) would decrypt c1 and c2 using dkρ and dkS, and finally xor the outputs
between them and with c3.

As before, “semantic security” still follows from the security of the two FE schemes. Fur-
thermore, it might seem that privacy is also satisfied because, by security of the PRF, it is hard
to distinguish whether the decryption of each ci yields the random string ri (i.e., there was a
match) or an output of Fki (i.e., there was no match). However, a malicious receiver possessing
distinct attributes ρ and ρ′, such that both satisfy the policy R, is able to figure out whether
the sender’s policy is matched by simply decrypting c1 twice (using attributes ρ and ρ′) and
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comparing if the decryption returns twice the same value (i.e., r1). A similar attack can be
carried out using two different keys for distinct policies S and S′, such that both policies are
satisfied by the attributes σ.

ME from 2FE. Intuitively, in order to avoid the above attacks, we need to check simul-
taneously that S(σ) = 1 and R(ρ) = 1. 2FE comes handy to solve this problem, at least if
one is willing to give up on authenticity. Recall that in a 2FE scheme we can associate secret
keys with 2-ary functionalities, in such a way that decrypting ciphertexts c0, c1 computed using
independent keys ek0, ek1, and corresponding to plaintexts x0, x1, yields f(x0, x1) (and nothing
more).

Wlog., we reserve the 1st slot to the sender, while the 2nd slot is reserved to the receiver;
the administrator gives the key ek0 to the sender. The sender now encrypts a message m
under attributes σ and policy R by computing Enc(ek0, (σ,R,m)), which yields a ciphertext
c0 for the first input of the function f . The receiver, as usual, has a pair of decryption keys
dkρ, dkS obtained from the administrator; here, dkS = Enc(ek1, S) = c1 is an encryption of S
under key ek1. Hence, the receiver runs Dec(dkρ, c0, c1), where dkρ is associated to the function
fρ((m,σ,R),S) that returns m if and only if both R(ρ) = 1 and S(σ) = 1 (i.e., a match occurs).

On rough terms, privacy follows by the security of the underlying 2FE scheme, which guaran-
tees that the receiver learns nothing more than the output of f . Unfortunately, this construction
does not immediately satisfy authenticity. To overcome this limitation, we tweak it as follows.
First, we let the sender obtain from the authority a signature s on its own attributes σ; the
signature is computed w.r.t. a verification key that is included in the public parameters of the
scheme. Second, during encryption, the sender computes the ciphertext c0 as above, but now
additionally proves in zero knowledge that it knows a valid signature for the attributes that are
hidden in the ciphertext. As we show, this modification allows us to prove authenticity, while
at the same time preserving privacy. We refer the reader to §4.2 for the formal proof.

ME from rFE. In §4, we give an alternative solution that combines rFE and FE (and thus
can be instantiated from weaker assumptions). Recall that rFE is a generalization of FE that
supports randomized functionalities. In what follows, we write f1 for the randomized func-
tionality supported by the rFE scheme, and f2 for the deterministic functionality supported
by the plain FE scheme. The main idea is to let the sender encrypt (m,σ,R) under the rFE
scheme. We then consider the randomized function f1

ρ that checks if ρ satisfies R: In case a
match occurs (resp. does not occur), it returns an encryption of (m,σ) (resp. of (⊥,⊥), where ⊥
denotes garbage) for the second function f2

S that simply checks whether the policy S is satisfied
or not. The receiver decryption keys are the keys dkρ, dkS associated to the functions f1

ρ and
f2
S .

Roughly speaking, since the randomized function f1 passes encrypted data to f2, a malicious
receiver infers nothing about the satisfiability of policy R. On the other hand, the satisfiability
of S remains hidden, as long as the FE scheme for the function f2 is secure. However, the actual
security proof is much more subtle.

While the above construction does not directly satisfy authenticity, we can show that the
same trick explained above for the 2FE-based scheme works here as well.

A-ME from FE. Recall that the difference between ME and A-ME lies in the number of
decryption keys: While in ME there are two distinct keys (one for the policy S, and one for the
attributes ρ), in A-ME there is a single decryption key dkρ,S that represents both the receiver’s
attributes ρ and the policy S.
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As a result, looking at our construction of ME from 2FE, we can now hard-code the policy S
(together with the attributes ρ) into the function, which allows us to replace 2FE with plain FE.
This way, each A-ME decryption key dkρ,S is the secret key corresponding to the function fρ,S
for the FE scheme. The security proof, which appears in §4.3, only requires FE with game-based
security [13], which in turn can be instantiated under much weaker assumptions.

IB-ME. Above, we mentioned that the natural construction of ME where a ciphertext masks
the plaintext m with two distinct pads r1, r2—where r1, r2 are re-computable by the receiver as
long as a match occurs—is insecure. This is because the expressiveness of ME allows us to have
two distinct attributes ρ and ρ′ (resp. two distinct policies S and S′) such that both satisfy the
sender’s policy R (resp. both are satisfied by the sender’s attributes σ).

The main idea behind our construction of IB-ME (cf. §5) under the BDH assumption is
that the above attack does not work in the identity-based setting, where each receiver’s policy
S (resp. receiver’s policy R) is satisfied only by the attribute σ = S (resp. ρ = R). This means
that an encryption m ⊕ r1 ⊕ r2 yields an efficient IB-ME as long as the random pad r2 (resp.
r1) can be re-computed by the receiver if and only if its policy S is satisfied (resp. its attributes
ρ satisfy the sender’s policy). On the other hand, if S is not satisfied (resp. ρ does not satisfy
the sender’s policy), the receiver obtains a pad r′2 (resp. r′1) that is completely unrelated to the
real r2 (resp. r1). In our scheme, we achieve the latter by following a similar strategy as in the
Boneh-Franklin IBE construction [12].

1.3 Related Work

Secret handshakes. Introduced by Balfanz et al. [9], an SH allows two members of the same
group to secretly authenticate to each other and agree on a symmetric key. During the protocol,
a party can additionally specify the precise group identity (e.g., role) that the other party should
have.

SH preserves the privacy of the participants, meaning that when the handshake is successful
they only learn that they both belong to the same group (yet, their identities remain secret),
whereas they learn nothing if the handshake fails. Subsequent work in the area [30, 46, 5, 14,
50, 53, 33, 51, 32, 31, 45] focused on improving on various aspects of SH, including members’
privacy and expressiveness of the matching policies (i.e., attribute-based SH).

In this vein, ME can be thought of as a non-interactive SH. Indeed, ME gives privacy
guarantees similar to that of SH, but it provides a more efficient way to communicate (being
non-interactive) and, at the same time, it is more flexible since a party is not constrained to a
group.

Attribute-based encryption. The concept of ABE was first proposed by Sahai and Wa-
ters [44] in the setting of fuzzy identity-based encryption, where users are identified by a single
attribute (or identity string), and policies consist of a single threshold gate. Afterwards, Bethen-
court et al. [11] generalized this idea to the case where users are described by multiple attributes.
Their ABE scheme is a CP-ABE, i.e., a policy is embedded into the ciphertext, whereas the
attributes are embedded into the receiver’s decryption keys. The first CP-ABE with non-
monotonic access structures was proposed by Ostrovsky et al. [41]. Goyal et al. [27], instead,
introduced KP-ABE, where ciphertexts contain the attributes, whereas the policy is embedded
in the decryption keys. Several other CP-ABE and KP-ABE schemes have been proposed in the
litterature, see, among others, [17, 26, 52, 38, 29, 37, 57, 15, 16, 55, 34, 7, 42, 28, 54, 56, 40, 8].

In ABE, only one party can specify a policy, and thus only one entity has the power to
select the source (or the destination) of an encrypted message. Motivated by this limitation,
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Attrapadung and Imai [6] introduced dual-policy ABE. Here, the sender encrypts a message by
choosing both a policy and a set of attributes. The receiver can decrypt the ciphertext using a
single decryption key that describes both the receiver’s policy and attributes. Similarly to ME,
if both policies are satisfied by the respective counterpart, the message is revealed.

Dual-policy ABE and ME differ in several aspects. First, on the syntactical level, in ME
there are two distinct decryption keys: One for the attributes and one for the policy specified
by the receiver. This yields improved flexibility, as receivers are allowed to choose attributes
and policies independently. (Indeed, the syntax of dual-policy ABE is more similar to that
of A-ME.) Second, on the security level, both ME and A-ME provide much stronger privacy
guarantees than dual-policy ABE. In fact, the security definition for dual-policy ABE only
protects the secrecy of the plaintext. Additionally, the actual constructions in [6, 8] are easily
seen not to preserve privacy w.r.t. the sender’s attributes/policy whenever a match does not
occur. Intuitively, this is because the procedure that checks, during decryption, whether a
match occurred or not, is not an atomic operation. Also note that dual-policy ABE does not
directly provide authenticity, which instead is a crucial property for ME and A-ME (those being
a type of non-interactive SH).

Attribute-based key exchange. Gorantla et al. [24] introduced attribute-based authenti-
cated key exchange (AB-AKE). This is essentially an interactive protocol which allows sharing
a secret key between parties whose attributes satisfy a fixed access policy. Note that the policy
must be the same for all the parties, and thus it must, e.g., be negotiated before running the
protocol.

In a different work, Kolesnikov et al. [36] built a different AB-KE without bilateral authen-
tication. In their setting, a client with some attributes (certificated by an authority) wants to
authenticate himself to a server according to a fixed policy. The server will share a secret key
with the client if and only if the client’s attributes satisfy the server’s policy.

Note that in ME both senders and receivers can choose their own policies, a feature not
present in attribute-based key exchange protocols.

Access control encryption. Access control encryption (ACE) [19, 35, 21, 48] is a novel
type of encryption that allows fine-grained control over information flow. The actors are a
set of senders, a set of receivers, and a sanitizer. The goal is to enforce no-read and no-write
rules (described by a policy) over the communication, according to the sender’s and receiver’s
identities.

The flow enforcement is done by the sanitizer, that applies a randomized algorithm to the
incoming ciphertexts. The result is that only receivers allowed to communicate with the source
will be able to decrypt the sanitized ciphertext correctly, obtaining the original message (no-
read rule). On the other hand, if the source has not the rights to communicate with a target
receiver (e.g., the sender is malicious), then the latter will receive a sanitized ciphertext that
looks like an encryption of a random message (no-write rule).

ACE and ME accomplish orthogonal needs: The former enables cryptographic control over
information flow within a system, whereas the latter enables both the sender and the receiver
to specify fine-grained access rights on encrypted data. Furthermore, ACE inherently requires
the presence of a trusted sanitizer, whereas ME involves no additional actor (besides the sender
and the receiver).
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2 Preliminaries

2.1 Notation

We use the notation [n]
def
= {1, . . . , n}. Capital boldface letters (such as X) are used to denote

random variables, small letters (such as x) to denote concrete values, calligraphic letters (such
as X ) to denote sets, and serif letters (such as A) to denote algorithms. All of our algorithms
are modeled as (possibly interactive) Turing machines; if algorithm A has oracle access to some
oracle O, we often implicitly write QO for the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents the cardinality
of X . When x is chosen randomly in X , we write x←$ X . If A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, y is a random
variable and A(x; r) denotes a run of A on input x and (uniform) randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the input size).

Negligible functions. Throughout the paper, we denote by λ ∈ N the security parameter
and we implicitly assume that every algorithm takes as input the security parameter. A function
ν : N→ [0, 1] is called negligible in the security parameter λ if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes
write negl(λ) (resp., poly(λ)) to denote an unspecified negligible function (resp., polynomial
function) in the security parameter.

2.2 Signature Schemes

A signature scheme is made of the following polynomial-time algorithms.

KGen(1λ): The randomized key generation algorithm takes the security parameter and outputs
a secret and a public key (sk, pk).

Sign(sk,m): The randomized signing algorithm takes as input the secret key sk and a message
m ∈M, and produces a signature s.

Ver(pk,m, s): The deterministic verification algorithm takes as input the public key pk, a mes-
sage m, and a signature s, and it returns a decision bit.

A signature scheme should satisfy two properties. The first property says that honestly
generated signatures always verify correctly. The second property, called unforgeability, says
that it should be hard to forge a signature on a fresh message, even after seeing signatures on
polynomially many messages.

Definition 1 (Correctness of signatures). A signature scheme Π = (KGen, Sign,Ver) with mes-
sage space M is correct if ∀λ ∈ N, ∀(sk, pk) output by KGen(1λ), and ∀m ∈ M, the following
holds:

P [Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 2 (Unforgeability of signatures). A signature scheme Π = (KGen,Sign,Ver) is ex-
istentially unforgeable under chosen-message attacks (EUF-CMA) if for all PPT adversaries
A:

P
[
Geuf

Π,A(λ) = 1
]
≤ negl(λ) ,

where Geuf
Π,A(λ) is the following experiment:
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1. (sk, pk)←$ KGen(1λ).

2. (m, s)←$ ASign(sk,·)(1λ, pk)

3. If m 6∈ QSign, and Ver(pk,m, s) = 1, output 1, else output 0.

2.3 Functional Encryption

2.3.1 Functional Encryption for Randomized Functionalities

A functional encryption scheme for randomized functionalities [25] (rFE) f : K × X ×R → Y
consists of the following polynomial-time algorithms.3

Setup(1λ): Upon input the security parameter, the randomized setup algorithm outputs a mas-
ter public key mpk and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the master secret key
msk and an index k ∈ K, and outputs a secret key skk for fk.

Enc(mpk, x): The randomized encryption algorithm takes as input the master public key mpk,
an input x ∈ X , and returns a ciphertext cx.

Dec(skk, cx): The deterministic decryption algorithm takes as input a secret key skk and a
ciphertext cx, and returns a value y ∈ Y.

Correctness of rFE intuitively says that decrypting an encryption of x ∈ X using a secret key
skk for function fk yields fk(x; r), where r←$R. Since fk(x) is a random variable, the actual
definition requires that whenever the decryption algorithm is invoked on a fresh encryption of
a message x under a fresh key for fk, the resulting output is computationally indistinguishable
to fk(x).

Definition 3 (Correctness of rFE). A rFE scheme Π = (Setup,KGen,Enc,Dec) for a random-
ized functionality f : K×X ×R → Y is correct if the following distributions are computationally
indistinguishable:

{Dec(skkj , ci)}kj∈K,xi∈X {fkj (xi; ri,j)}kj∈K,xi∈X

where (mpk,msk)←$ Setup(1λ), skkj ←$ KGen(msk, kj) for kj ∈ K, ci←$ Enc(mpk, xi) for xi ∈
X , and ri,j ←$R.

As for security, the setting of rFE tackles malicious encryptors. However, for our purpose, it
will be sufficient to consider a weaker security guarantee that only holds for honest encryptors.
In this spirit, the definition below is adapted from [1, Definition 3.3] for the special case of
honest encryptors.

Definition 4 ((q1, qc, q2)-NA-SIM-security of rFE). A rFE scheme Π = (Setup,KGen,Enc,Dec)
for a randomized functionality f : K×X×R → Y is (q1, qc, q2)-NA-SIM-secure if there exists an
efficient (stateful) simulator S = (S1, S2,S3, S4) such that for all PPT adversaries A = (A1,A2)
where A1 makes at most q1 key generation queries and A2 makes at most q2 key generation
query, the output of the following two experiments are computationally indistinguishable:

3Often, and equivalently, FE schemes are parameterized by a function ensemble F = {fk : X ×R → Y}k∈K.
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REALΠ,A(λ)

(mpk,msk)←$ Setup(1λ)

(x∗, α)←$ A
O1(msk,·)
1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

ci←$ Enc(mpk, xi) for i ∈ [qc]

out←$ A
O2(msk,·)
2 (1λ, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(λ)

(mpk, α′)←$ S1(1λ)

(x∗, α)←$ A
O′
1(α′,·)

1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′
1

For i ∈ [qc], j ∈ [q1]

yi,j = fkj (xi; ri,j), where ri,j ←$R
({ci}, α′)←$ S3(α′, {yi,j})

out←$ A
O′
2(α′,·)

2 (1λ, {ci}, α)

return (x, {k′}, out)

where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·). The ordered set
{k} is composed of the queries made to oracles O1 and O2.

O′1(st′, ·) and O′2(st′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·). The simulator
S4 is given oracle access to KeyIdeal(x∗, ·), which, on input k, outputs fk(xi; r), where
r←$R for every xi ∈ x∗. The ordered set {k′} is composed of the queries made to oracles
O′1 and the queries made by S4 to KeyIdeal.

2.3.2 Functional Encryption for Deterministic Functionalities

Functional encryption (FE) for deterministic functionalities f : K × X → Y can be cast as a
special case of rFE. Since f is a deterministic functionality, correctness now simply says that
whenever the decryption algorithm is invoked on a fresh encryption of a message x under a
fresh key for f , the resulting output equals fk(x).

Definition 5 (Correctness of FE). A functional encryption scheme Π = (Setup,KGen,Enc,Dec)
for a functionality f : K ×X → ρ is correct if ∀x ∈ X , ∀k ∈ K, the following holds:

P

 (mpk,msk)←$ Setup(1λ),
skk←$ KGen(msk, k),
Dec(skk,Enc(mpk, x)) = fk(x)

 = 1

Definition 6 ((q1, qc, q2)-SIM-security of FE). A functional encryption scheme Π = (Setup,
KGen,Enc,Dec) for a functionality f : K × X → ρ is (q1, qc, q2)-SIM-secure if there exists an
efficient simulator S = (S1, S2, S3,S4) such that for all probabilistic polynomial time adversary
A = (A1,A2), where A1 makes at most q1 key generation queries and A2 makes at most q2 key
generation queries, the output of the following two experiments are computationally indistin-
guishable:

REALΠ,A(1λ)

(mpk,msk)←$ Setup(1λ)

(x∗, α)←$ A
O1(msk,·)
1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

ci←$ Enc(mpk, xi) for i ∈ [qc]

out←$ A
O2(msk,·)
2 (1λ, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(1λ)

(mpk, α′)←$ S1(1λ)

(x∗, α)←$ A
O′
1(α′,·)

1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′
1

For i ∈ [qc], j ∈ [q1]

yi,j = fkj (xi)

({ci}, α′)←$ S3(α′, {yi,j})

out←$ A
O′
2(α′,·)

2 (1λ, {ci}, α)

return (x, {k′}, out)
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where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·). The ordered set
{k} is composed of the queries made to oracles O1 and O2.

O′1(st′, ·) and O′2(st′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·). The simulator
S4 is given oracle access to KeyIdeal(x∗, ·), which on input k, outputs fk(xi) for every
xi ∈ x∗. The ordered set {k′} is composed of the queries made to oracles O′1 and the
queries made by S4 to KeyIdeal.

Definition 7 (Game-based security of FE). A functional encryption scheme Π = (Setup,KGen,
Enc,Dec) for a functionality f : K×X → Y is secure if for all valid PPT adversary A = (A1,A2),
we have: ∣∣∣∣P[Gfe

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

where Gfe
Π,A(λ) is the following experiment:

1. (msk,mpk)←$ Setup(1λ)

2. (m0,m1, α)←$ A
KGen(msk,·)
1 (1λ,mpk).

3. c←$ Enc(mpk,mb) where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·)
2 (1λ, c, α).

5. If b = b′ then output 1, and otherwise output 0.

Adversary A = (A1,A2) is called valid if ∀k ∈ QKGen we have fk(m0) = fk(m1), where QKGen

contains all the queries submitted by A1 and A2 to oracle KGen.

2.3.3 Two-Input Functional Encryption

A 2-input FE (2FE) scheme for a 2-arity functionality f : K × X0 × X1 → Y consists of the
following efficient algorithms.

Setup(1λ): Upon input the security parameter, the randomized setup algorithm outputs 2 en-
cryption keys ek0, ek1, and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the master secret key
msk, and an index k ∈ K, and outputs a secret key skk for fk.

Enc(eki, xi): For i ∈ {0, 1}, the randomized encryption algorithm takes as input the encryption
key eki, a value xi ∈ Xi, and returns a ciphertext cxi .

Dec(skk, cx0 , cx1): The deterministic decryption algorithm takes as input a secret key skk for fk,
and two ciphertexts cx0 , cx1 , and returns a value y ∈ Y.

Correctness of a 2FE means that decrypting (cx0 , cx1), where cxi is an encryption of xi,
using a secret key skk for function fk yields fk(x0, x1).

Definition 8 (Correctness of 2FE). A 2FE scheme Π = (Setup,KGen,Enc,Dec) for a function-
ality f : K ×X0 ×X1 → Y is correct if ∀(x0, x1) ∈ X0 ×X1,∀k ∈ K:

P


(ek0, ek1,msk)←$ Setup(1λ),
skk←$ KGen(msk, k),
c0←$ Enc(ek0, x0), c1←$ Enc(ek1, x1)
Dec(skk, c0, c1) = fk(x0, x1)

 ≥ 1− negl(λ) .
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Security changes significantly depending on which keys among (ek0, ek1) are public. The
flavor we require has one public and one private key, with the adversary given oracle access to
the encryption algorithm for the private key. The formal definition follows below.

Definition 9 (IND-security of 2FE, {0, 1}-semi-private setting). For i ∈ {0, 1}, a 2FE scheme
Π = (Setup,KGen,Enc,Dec) for a functionality f : K ×X0 ×X1 → ρ is indistinguishably secure
in the i-semi-private setting if for all valid PPT adversaries A = (A1,A2):∣∣∣∣P[Gspriv

Π,A (λ, i) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where Gspriv
Π,A (λ, i) is the following experiment:

1. (msk, ek0, ek1)←$ Setup(1λ)

2. ((m0
0,m

0
1), (m1

0,m
1
1), α)←$ A

KGen(msk,·),Enc(eki,·)
1 (1λ, ek1−i).

3. c0←$ Enc(ek0,m
b
0), c1←$ Enc(ek1,m

b
1), where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·),Enc(eki,·)
2 (1λ, (c0, c1), α).

5. If b = b′ then output 1, and otherwise output 0.

Adversary A = (A1,A2) is called valid if ∀k ∈ QKGen, ∀x ∈ X1−i, ∀x′ ∈ QEnc, we have:

fk(m
0
0,m

0
1) = fk(m

1
0,m

1
1)

and

fk(m
0
0, x) = fk(m

1
0, x) and fk(x

′,m0
1) = fk(x

′,m1
1), if i = 0

fk(x,m
0
1) = fk(x,m

1
1) and fk(m

0
0, x
′) = fk(m

1
0, x
′), if i = 1.

The above definition is a generalization of [23, Def. 4] with parameters (n, t, q) = (2, 1, 1),
where the adversary is additionally given oracle access to Enc(eki, ·); this notion is easily seen
to be implied by [23, Def. 4] with parameters (n, t, q) = (2, 2, 1) as the latter means that both
keys (ek0, ek1) can be made public. In turn, IND-secure 2FE for arbitrary functionalities in
the public setting exists assuming sub-exponentially hard indistinguishability obfuscation for
all functions [23].

2.4 Bilinear Diffie-Hellman Assumption

Our practical implementation of IB-ME is provably secure under the BDH assumption, which
we recall below.

Definition 10 (BDH assumption). Let G and GT be two groups of prime order q. Let e :
G×G→ GT be an admissible bilinear map, and let P be a generator of G. The BDH problem
is hard in (G,GT , e) if for every PPT adversary A:

P
[
A(q,G,GT , e, P, P

a, P b, P c) = e(P, P )abc
]
≤ negl(λ) ,

where P ←$ G∗, and a, b, c←$ Z∗q.
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2.5 Non-Interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-knowledge
(NIZK) proof system for R is a tuple of polynomial-time algorithms Π = (I,P,V) specified as
follows. (i) The randomized algorithm I takes as input the security parameter and outputs
a common reference string ω; (ii) The randomized algorithm P(ω, (y, x)), given (y, x) ∈ R
outputs a proof π; (iii) The deterministic algorithm V(ω, (y, π)), given an instance y and a
proof π outputs either 0 (for “reject”) or 1 (for “accept”). We say that a NIZK for relation
R is correct if for all λ ∈ N, every ω output by I(1λ), and any (y, x) ∈ R, we have that
V(ω, (y,P(ω, (y, x)))) = 1.

We define two properties of a NIZK proof system. The first property, called adaptive multi-
theorem zero knowledge, says that honest proofs do not reveal anything beyond the fact that
y ∈ L. The second property, called knowledge soundness, requires that every adversary creating
a valid proof for some statement, must know the corresponding witness.

Definition 11 (Adaptive multi-theorem zero-knowledge). A NIZK Π for a relation R satisfies
adaptive multi-theorem zero-knowledge if there exists a PPT simulator Z := (Z0,Z1) such that
the following holds:

• Algorithm Z0 outputs ω and a simulation trapdoor ζ.

• For all PPT distinguishers D, we have that

∣∣∣P[DP(ω,(·,·))(ω) = 1 : ω←$ I(1λ)
]

− P
[
DO(ζ,(·,·))(ω) = 1 : (ω, ζ)←$ Z0(1λ)

] ∣∣∣ ≤ negl(λ) ,

where the oracle O(ζ, ·, ·) takes as input a pair (y, x) and returns Z1(ζ, y) if (y, x) ∈ R
(and otherwise ⊥).

Definition 12 (Knowledge soundness). A NIZK Π for a relation R satisfies knowledge sound-
ness if there exists a PPT extractor K = (K0,K1) such that the following holds:

• Algorithm K0 outputs ω and an extraction trapdoor ξ, such that the distribution of ω is
computationally indistinguishable to that of I(1λ).

• For all PPT adversaries A, we have that

P

 V(ω, y, π) = 1∧
(y, x) 6∈ R :

(ω, ξ)←$ K0(1λ)
(y, π)←$ A(ω)
x←$ K1(ξ, y, π)

 ≤ negl(λ) .

3 Matchmaking Encryption

As explained in the introduction, an ME allows both the sender and the receiver, characterized
by their attributes, to choose fined-grained access policies that together describe the access rights
both parties must satisfy in order for the decryption of a given ciphertext to be successful.

We present two flavors of ME. In the first, which is the standard one, the receiver’s attributes
and policy are independent of each other (i.e., a receiver with some given attributes can choose
different policies). In the second flavor, dubbed A-ME, the receiver’s attributes and policy are
tighten together. We present the security model for ME and A-ME in §3.1 and §3.2.

14



3.1 Security Model

Formally, an ME is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs, the
master policy key kpol, and the master secret key msk. We implicitly assume that all
other algorithms take mpk as input.

SKGen(msk, σ): The randomized sender-key generator takes as input the master secret key
msk, and attributes σ ∈ {0, 1}∗. The algorithm outputs a secret encryption key ekσ for
attributes σ.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the master secret key
msk, and attributes ρ ∈ {0, 1}∗. The algorithm outputs a secret decryption key dkρ for
attributes ρ.

PolGen(kpol,S): The randomized receiver policy generator takes as input the master policy key
kpol, and a policy S : {0, 1}∗ → {0, 1} represented as a circuit. The algorithm outputs a
secret decryption key dkS for the circuit S.

Enc(ekσ,R,m): The randomized encryption algorithm takes as input a secret encryption key
ekσ for attributes σ ∈ {0, 1}∗, a policy R : {0, 1}∗ → {0, 1} represented as a circuit, and a
message m ∈M. The algorithm produces a ciphertext c linked to both σ and R.

Dec(dkρ, dkS, c): The deterministic decryption algorithm takes as input a secret decryption key
dkρ for attributes ρ ∈ {0, 1}∗, a secret decryption key dkS for a circuit S : {0, 1}∗ → {0, 1},
and a ciphertext c. The algorithm outputs either a message m or ⊥ (denoting an error).

Note that the decryption keys dkρ and dkS are independent, thus allowing a receiver with
attributes ρ to obtain decryption keys for different policies S. We also remark that the master
policy key kpol could be considered as part of the master secret key msk, but we preferred to
use distinct keys for clarity.

Correctness. The intuition for correctness is that the output of the decryption algorithm
using decryption keys for receiver’s attributes ρ and access policy S, when decrypting an honestly
generated ciphertext which encrypts a message m using sender’s attributes σ and policy R,
should equal m if and only if the receiver’s attributes ρ match the policy R specified by the
sender, and at the same time the sender’s attributes σ match the policy S specified by the
receiver. On the other hand, in case of mismatch, the decryption algorithm returns ⊥. More
formally:

Definition 13 (Correctness of ME). An ME with message space M is correct if ∀λ ∈ N,
∀(mpk, kpol,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ ∈ {0, 1}∗, ∀R,S : {0, 1}∗ → {0, 1}:

P[Dec(dkρ, dkS,Enc(ekσ,R,m)) = m] ≥ 1− negl(λ) ,

whenever S(σ) = 1 and R(ρ) = 1, and otherwise

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ), dkS←$ PolGen(kpol,S).
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Gpriv
Π,A(λ)

(mpk, kpol,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ AO1,O2,O3
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb ,Rb,mb)
b′←$ AO1,O2,O3

2 (1λ, c, α)

If (b′ = b) return 1

Else return 0

Gauth
Π,A(λ)

(mpk, kpol,msk)←$ Setup(1λ)

(c, ρ, S)←$ AO1,O2,O3 (1λ,mpk)

dkρ←$ RKGen(msk, ρ)

dkS←$ PolGen(kpol, S)

m = Dec(dkρ, dkS, c)

If ∀σ ∈ QO1
: (S(σ) = 0) ∧ (m 6= ⊥)

return 1

Else return 0

Figure 1: Games defining privacy and authenticity of ME. Oracles O1, O2, O3 are implemented
by SKGen(msk, ·), RKGen(msk, ·), PolGen(kpol, ·).

Security. We now turn to defining security of an ME via two properties, that we dub privacy
and authenticity. Intuitively, privacy aims at capturing secrecy of the sender’s inputs (i.e., the
attributes σ, the policy for the receiver R, and the plaintext m), in two different conditions: In
case of a match between the sender’s and receiver’s attributes/policy, and in case of mismatch.
This is formalized by requiring that the distributions Enc(ekσ0 ,R0,m0) and Enc(ekσ1 ,R1,m1) be
computationally indistinguishable to the eyes of an attacker with oracle access to SKGen,RKGen,
PolGen, where the values (m0,m1,R0,R1, σ0, σ1) are all chosen by the adversary. The actual
definition requires some care, as the adversary could, e.g., obtain a decryption key for attributes
ρ and policy S such that R0(ρ) = 0∨ S(σ0) = 0 but R1(ρ) = 1∧ S(σ1) = 1, which clearly allows
him to distinguish by evaluating the decryption algorithm. In order to exclude such “trivial
attacks”, we quantify privacy over all valid adversaries, as explained below:

• In case of a mismatch, i.e., when the adversary cannot decrypt the challenge ciphertext,
it must be the case that for each attribute ρ and policy S for which the adversary knows
a valid decryption key: (i) Either ρ does not satisfy policies R0 and R1; (ii) or σ0 and σ1

do not satisfy policy S; (iii) or ρ does not satisfy R0 and σ1 does not satisfy S; (iv) or ρ
does not satisfy R1 and σ0 does not satisfy S.

• In case of match, i.e., when the adversary can decrypt the challenge ciphertext, it must be
the case that m0 = m1, and additionally, for each attribute ρ and policy S for which the
adversary knows a valid decryption key, it holds that both: (i) ρ does not satisfy policies
R0 and R1; and (ii) σ0 and σ1 do not satisfy policy S.

Definition 14 (Privacy of ME). We say that an ME Π satisfies privacy if for all valid PPT
adversaries A: ∣∣∣∣P[Gpriv

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Gpriv
Π,A(λ) is depicted in Fig.1. Adversary A is called valid if ∀ρ ∈ QO2 ,∀S ∈ QO3 it

satisfies the following invariant:

• (Mismatch condition). Either

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)

∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0); (1)

• (Match condition). Or (if ∃ρ̂ ∈ QO2 , Ŝ ∈ QO3 s.t. Eq. (1) does not hold)

(m0 = m1) ∧ (R0(ρ) = R1(ρ)) ∧ (S(σ0) = S(σ1)).
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Note that in the above definition the challenge ciphertext is honestly computed. This is
because privacy captures security against malicious receivers. Authenticity, on the other hand,
demands that the only way to produce a valid ciphertext under attributes σ is to obtain an
encryption key ekσ from the authority, thus guaranteeing that if a ciphertext decrypts correctly,
then it has been created by a sender with the proper encryption key. This captures security
against malicious senders.

The latter is modeled by a game in which the attacker has oracle access to SKGen, RKGen,
and PolGen. The attacker’s goal is to output a tuple (ρ, S, c) such that Dec(dkρ, dkS, c) 6= ⊥, and
none of the encryption keys ekσ for attributes σ (obtained by the adversary via oracle queries)
satisfies the policy S. Observe that the adversary is not given access to an encryption oracle.
The reason for this is that we only consider security in the presence of chosen-plaintext attacks,
and thus ciphertexts might be malleable, which makes it possible to forge in the authenticity
game.

Definition 15 (Authenticity of ME). We say that an ME Π satisfies authenticity if for all
PPT adversaries A:

P
[
Gauth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Gauth
Π,A (λ) is depicted in Fig.1.

Finally, a secure ME is an ME satisfying all the properties.

Definition 16 (Secure ME). We say that an ME Π is secure, if Π satisfies privacy (Def. 14)
and authenticity (Def. 15).

Sometimes, we will also consider a weaker definition where there is an a priori upper bound
on the number of queries an attacker can make to oracles RKGen and PolGen. We refer to this
variant as security against bounded collusions. In particular, we say that an ME is (q1, q

′
1, q2, q

′
2)-

secure if it has (q1, q
′
1, q2, q

′
2)-privacy and authenticity, where q1, q

′
1 (resp. q2, q

′
2) denote the

number of queries to RKGen and PolGen allowed by A1 (resp. A2) in the privacy game.

Relation to ABE. An ME for arbitrary policies can be used as a CP-ABE with the same
expressiveness. The idea is to ignore the attributes of the sender and the policy of the receiver.
It is sufficient to set the ABE master public key to (mpk, ekσ) and an ABE receiver’s decryption
key to (dkρ, dkφ), where ekσ is the encryption key generated for attributes σ = 0λ, dkφ is the
policy key for a tautology φ (i.e., a circuit whose output is always 1 regardless of the input),
and dkρ is the decryption key for attributes ρ. The encryption of a message m under a policy
R works by running the ME encryption algorithm Enc(ekσ,R,m). The receiver will decrypt the
ciphertext by using the keys (dkρ, dkφ). Since φ is a tautology, it does not matter under which
attributes the message has been encrypted. Thus, the scheme will work as a normal CP-ABE.

Following a similar reasoning, ME implies KP-ABE. This is achieved by setting ekσ = σ,
and by using the same approach described above (i.e., set the sender’s policy circuit R to a
tautology φ which ignores the receiver’s attributes). Note that for this implication authenticity
is not required, which is reminiscent of the fact that in ABE the attributes are not explicitly
certified by an authority.

3.2 Arranged Matchmaking Encryption

The syntax of an A-ME is similar to that of an ME, except that decryption keys are associated
with both attributes and policies. In particular, the following efficient algorithms make an
A-ME:
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Garr-priv
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ AO1,O2
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(mpk,msk, σb)

c←$ Enc(mpk, ekσb ,Rb,mb)
b′←$ AO1,O2

2 (1λ, c, α)

If (b′ = b) return 1

Else return 0

Garr-auth
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(c, ρ, S)←$ AO1,O2 (1λ,mpk)

dkρ,S←$ RKGen(mpk,msk, ρ, S)

m = Dec(mpk, dkρ,S, c)

If ∀σ ∈ QO1
: (S(σ) = 0) ∧ (m 6= ⊥)

return 1

Else return 0

Figure 2: Games defining privacy and authenticity of A-ME. Oracles O1, O2 are implemented
by SKGen(msk, ·) and RKGen(msk, ·).

SKGen,Enc: Identical to the ones in an ME (cf. §3.1).

Setup: Upon input the security parameter 1λ, the randomized setup algorithm outputs the
master public key mpk and the master secret key msk.

RKGen(msk, ρ,S): The randomized receiver key generator takes as input the master public key
mpk, the master secret key msk, attributes ρ ∈ {0, 1}∗, and a policy S : {0, 1}∗ → {0, 1}
represented as a circuit. The algorithm outputs a secret decryption key dkρ,S.

Dec(dkρ,S, c) The deterministic decryption algorithm takes a decryption key dkρ,S, and a cipher-
text c. The algorithm outputs either a message m or ⊥ (denoting an error).

The definitions below capture the very same correctness and security requirements of an
ME, but translated to the arranged case.

Definition 17 (Correctness of A-ME). An A-ME with message space M is correct if ∀λ ∈ N,
(mpk,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ ∈ {0, 1}∗, ∀R, S : {0, 1}∗ → {0, 1}:

P [Dec(dkρ,S,Enc(mpk, ekσ,R,m)) = m ] ≥ 1− negl(λ) ,

whenever σ ∈ S and ρ ∈ R, and otherwise

P [Dec(dkρ,S,Enc(mpk, ekσ,R,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ and dkρ,S are generated by SKGen(mpk,msk, σ) and RKGen(mpk,msk, ρ,S).

Definition 18 (Privacy of A-ME). An A-ME Π satisfies privacy if for all valid PPT adversaries
A: ∣∣∣∣P[Garr-priv

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Garr-priv
Π,A (λ) is depicted in Fig. 2. Adversary A is called valid if ∀(ρ,S) ∈ QO2 it

satisfies the following invariant:

• (Mismatch condition). Either

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)

∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0); (2)
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• (Match condition). Or (if ∃(ρ̂, Ŝ) ∈ QO2 s.t. Eq. (2) does not hold)

(m0 = m1) ∧ (R0(ρ) = R1(ρ)) ∧ (S(σ0) = S(σ1)).

Definition 19 (Authenticity of A-ME). We say that an A-ME Π satisfies authenticity if for
all PPT adversaries A:

P
[
Garr-auth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Garr-auth
Π,A (λ) is depicted in Fig. 2.

Definition 20 (Secure A-ME). An A-ME Π is secure if it satisfies privacy (Def. 18), and
authenticity (Def. 19).

Relation to ABE. As for ME, A-ME for arbitrary policies implies CP-ABE and KP-ABE
with the same expressiveness. The constructions are similar to the ones discussed in §3.1 for
the case of ME. It is also easy to show that A-ME implies dual-policy ABE, which is achieved
by setting ekσ = σ. Note that for all these implications, authenticity is not required.

Relation between ME and A-ME. We stress that ME and A-ME are incomparable. On
the one hand, it is not clear how to use an A-ME to define an ME. This is because A-ME
decryption key dkρ,S describes both receiver’s attributes and policy, and thus it is unclear how
to implement the PolGen algorithm of an ME.

On the other hand, it is unclear how to define an A-ME starting with an ME. The natural
construction which sets dkρ,S = (dkρ, dkS) does not work. In a nutshell, this is because a mali-
cious receiver can detach the two keys, thus breaking the privacy of the A-ME. For concreteness,
let R0, R1, σ0 = σ1 = σ be the policies and the attributes contained in the challenge chosen
by the adversary during the privacy game. The attacker can request a first decryption key
dkρ,S = (dkρ, dkS) such that ρ satisfies both R0 and R1, but S(σ) = 0. Next, it can request a
second decryption key dkρ′,S′ = (dkρ′ , dkS′) for which the symmetric condition holds: R0(ρ′) = 0
and R1(ρ′) = 0, but S′(σ) = 1. Finally, it can interleave the keys creating a new decryption
key dkρ,S′ = (dkρ, dkS′), which makes it possible to decrypt the challenge ciphertext and win
the game. Observe that both decryption keys are legal queries in the privacy game. Hence, the
attacker is valid.

4 Black-Box Constructions

We explore black-box constructions of ME and A-ME from several types of FE schemes. In
particular, in §4.1 we give a construction of ME based on rFE and FE. As discussed in the
introduction, such a construction allows us to obtain ME from weaker assumptions, at the price
of achieving only security against bounded collusions. In §4.2, we give a construction of ME
that is secure against unbounded collusions, based on 2FE (and thus on stronger assumptions).
Finally, in §4.3, we show a construction of A-ME based on FE. All schemes additionally rely on
digital signatures and on NIZK proofs.

4.1 ME from rFE

Our construction is based on the following two functionalities fFE and f rFE:

fFES (σ,m) =

{
m, if σ 6= ⊥ ∧ S(σ) = 1
⊥, otherwise
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and

f rFE(ρ,mpkFE)(R, σ,m; r) =

{
Enc(mpkFE, (σ,m); r), if R(ρ) = 1
Enc(mpkFE, (⊥,⊥); r), otherwise.

Construction 1 (ME for arbitrary policies). Let FE, rFE, SS, NIZK be respectively an FE
scheme for the deterministic functionality fFE, a rFE scheme for the randomized functionality
f rFE, a signature scheme, and a NIZK proof system for the NP relation:

R1
def
=

((c, pk,mpkrFE), (σ, s)) :
∃r,m,R s.t.

c = EncrFE(mpkrFE, (R, σ,m); r)∧
Ver(pk, s, σ) = 1

 .

We construct an ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm computes (mpkFE,mskFE)
←$ SetupFE(1λ), (sk, pk)←$ KGenSS(1λ), (mpkrFE,mskrFE)←$ SetuprFE(1λ), and ω←$ I(1λ).
Finally, it outputs the master secret key msk = (mskrFE, sk), the master policy key kpol =
mskFE, and the master public key mpk = (pk, ω,mpkFE,mpkrFE). Recall that all other
algorithms are implicitly given mpk as input.

SKGen(msk, σ): On input the master secret key msk = (mskrFE, sk), and attributes σ ∈ {0, 1}∗,
the algorithm returns the encryption key ekσ = (σ, s) where s←$ Sign(sk, σ) (i.e., s is a
signature on attributes σ ∈ {0, 1}∗).

RKGen(msk, ρ): On input the master secret key msk = (mskrFE, sk), and attributes ρ ∈ {0, 1}∗,
the algorithm computes the decryption key sk(ρ,mpkFE)←$ KGenrFE(mskrFE, (ρ,mpkFE)). Then,
it outputs the decryption key dkρ = sk(ρ,mpkFE).

PolGen(kpol,S): On input the master policy key kpol = mskFE, and policy S represented as a
circuit, the algorithm computes the function key skS by running KGenFE(mskFE,S). Then,
it outputs the decryption key dkS = skS.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R represented as a circuit, and
a message m, the algorithm encrypt the message by computing c←$ EncrFE(mpkrFE, (R, σ,
m)). Finally, it returns the ciphertext ĉ = (c, π) where π←$ P(ω, (pk, c,mpkrFE), (σ, s)).

Dec(dkρ, dkS, c): On input two keys dkρ = sk(ρ,mpkFE), dkS = skS, and a ciphertext ĉ = (c, π),
the algorithm first checks whether V(ω, (pk, c,mpkrFE), π) = 1. If that is not the case, it
returns ⊥, and else it returns DecFE(skS,DecrFE(sk(ρ,mpkFE), c)).

Correctness of the scheme follows directly by the correctness of the underlying primitives.
As for security, we establish the following result, whose proof appears in §A.1 of the appendix.

Theorem 1. Let rFE, FE, SS, NIZK be as above. If rFE is (q1, 1, q2)-NA-SIM-secure (Def.4), FE
is (q′1, q1, q

′
2)-SIM-secure, SS is EUF-CMA (Def.2), and NIZK satisfied adaptive multi-theorem

zero knowledge (Def.11) and knowledge soundness (Def.12), then the ME scheme Π from Con-
struction 1 is (q1, q

′
1, q2, q

′
2)-secure.

4.2 ME from 2-Input FE

In this section we explain how to construct an ME combining a signature scheme SS, a non-
interactive zero-knowledge proof NIZK, an 2FE scheme. In order to build ME from 2FE, we
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use a 2-ary functionality f that checks if a match occurs. More formally, consider the following
functionality f : K ×X0 ×X1 → {0, 1}∗ ∪ {⊥}:

fρ((R, σ,m), S) =

{
m, S(σ) = 1 ∧ R(ρ) = 1
⊥, otherwise.

Construction 2 (ME for arbitrary policies). Let 2FE, SS, and NIZK be respectively a 2FE for
the functionality f above, a signature scheme, and a NIZK proof system for the NP relation:

R2
def
=

{
((pk, c, ek0), (σ, s)) :

∃r,m,R s.t.
c = Enc2FE(ek0, (R, σ,m); r) ∧ Ver(pk, s, σ) = 1

}
.

We build an ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm runs (ek0, ek1,msk2FE)←$

Setup2FE(1λ), (sk, pk)←$ KGenSS(1λ), and ω←$ I(1λ). Finally, it outputs the master secret
key msk = (msk2FE, sk), the master policy key kpol = ek1, and the master public key
mpk = (pk, ω, ek0).

SKGen(msk, σ): On input the master secret key msk = (msk2FE, sk), and attributes σ ∈ {0, 1}∗,
the algorithm returns the encryption key ekσ = (σ, s) where s = Sign(sk, σ).

RKGen(msk, ρ): On input the master secret key msk = (msk2FE, sk), and attributes ρ ∈ {0, 1}∗,
the algorithm computes the key skρ←$ KGen2FE(msk2FE, ρ). Then, it outputs dkρ = skρ.

PolGen(kpol, S): On input the master policy key kpol = ek1, and a policy S : {0, 1}∗ → {0, 1}
represented as a circuit, the algorithm runs c1←$ Enc2FE(ek1, S). Then, it outputs the
decryption key dkS = c1.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R : {0, 1}∗ → {0, 1} repre-
sented as a circuit, and a message m, the algorithm encrypts the message by computing
c0←$ Enc2FE(ek0, (R, σ,m)). Finally, it returns the ciphertext c = (c0, π) where π←$ P(ω,
(pk, c0, ek0), (σ, s)).

Dec(dkρ, dkS, c): On input a decryption key dkρ = skpk, a decryption key dkS = c1, and a
ciphertext c = (c0, π), the algorithm first checks whether V(ω, (pk, c0, ek0), π) = 1. If that
is not the case, it returns ⊥, and else it returns Dec2FE(skρ, c0, c1).

Correctness of the scheme follows directly by the correctness of the underlying primitives.
As for security, we establish the following result, whose proof appears in §A.2 of the appendix.

Theorem 2. Let 2FE, SS, and NIZK be respectively a 2FE scheme, a signature scheme, and a
NIZK proof for the relation R2. If 2FE is indistinguishably secure in the 1-semiprivate setting
(Def. 9), SS is EUF-CMA (Def. 2), and NIZK satisfies adaptive multi-theorem zero knowledge
(Def. 11) and knowledge soundness (Def. 12), then the ME scheme Π from Construction 2 is
secure (Def. 16).

4.3 A-ME from FE

In this section, we show a general construction of A-ME from FE. Consider the following
functionality f : K ×X → {0, 1}∗ ∪ {⊥}:

f(ρ,S)(R, σ,m) =

{
m, S(σ) = 1 ∧ R(ρ) = 1
⊥, otherwise.
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Construction 3 (A-ME). Let FE and SS be respectively an FE scheme for the functionality f
above and a signature scheme, and a NIZK proof system for the NP relation:

R3
def
=

{
((pk, c,mpkFE), (σ, s)) :

∃r,m,R s.t.
c = EncFE(mpkFE, (R, σ,m); r) ∧ Ver(pk, s, σ) = 1

}
.

We build an A-ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm runs (mpkFE,mskFE)←$

SetupFE(1λ), (sk, pk)←$ KGenSS(1λ), and ω←$ I(1λ). Finally, it outputs the master secret
key msk = (mskFE, sk), and the master public key mpk = (pk, ω,mpkFE).

SKGen(msk, σ): On input the master secret key msk = (mskFE, sk), and σ{0, 1}∗, the algorithm
returns the encryption key ekσ = (σ, s) where s = Sign(sk, σ).

RKGen(msk, ρ,S): On input the master secret key msk = (mskFE, sk), attributes ρ ∈ {0, 1}∗,
and a policy S : {0, 1}∗ → {0, 1} represented as a circuit, the algorithm computes the
encryption key sk(ρ,S)←$ KGenFE(mskFE, (ρ,S)). Then, it outputs dkρ,S = sk(ρ,S).

Enc(ekσ,R,m): On input , an encryption key ekσ = (σ, s), a policy R : {0, 1}∗ → {0, 1} rep-
resented as a circuit, and a message m, the algorithm encrypts the message in the fol-
lowing way: c′←$ EncFE(mpkFE, (R, σ,m)). Finally, it returns the ciphertext (c′, π) where
π←$ P(ω, (pk, c′,mpkFE), (σ, s)).

Dec(dkρ,S, c): On input, a decryption key dkρ,S = sk(ρ,S), and a ciphertext c = (c′, π), the algo-
rithm first checks whether V(ω, (pk, c′,mpkFE), π) = 1. If that is not the case, it returns
⊥, and else it returns DecFE(sk(ρ,S), c

′).

The correctness of the above scheme follows directly by the correctness of the underlying
primitives. As for security, we establish the following result, whose proof appears in §A.3 of the
appendix.

Theorem 3. Let FE, SS, and NIZK be respectively an FE scheme, a signature scheme, and a
NIZK proof for the relation R3. If FE is secure (Def. 7), SS is EUF-CMA (Def. 2), and NIZK
satisfies adaptive multi-theorem zero knowledge (Def. 11) and knowledge soundness (Def. 12),
then the A-ME Π from Construction 3 is secure (Def. 20).

5 Identity-Based Matchmaking Encryption

In this section, we present a practical ME for the identity-based setting. As in ME, attributes
are encoded by bit strings, but now each attribute x ∈ {0, 1}∗ satisfies only the access policy
A = x, which means that both the sender and the receiver specify a single identity instead
of general policies (represented as a circuit). We will denote by snd and rcv, respectively, the
target identities (i.e., the access policies) specified by the receiver and by the sender.

While any ME as defined in §3 perfectly works for this restricted setting, the problem is
that in order to select the identity snd of the source, a receiver must ask to the administrator
the corresponding key dksnd such that S = snd. (Recall that the sender, instead, can already
specify the target identity R = rcv on the fly, during encryption.) In particular, if the receiver
is interested in decrypting ciphertexts from several distinct sources, it must ask for several
decryption keys dksnd, which is impractical.4

4This is not an issue for an ME that supports arbitrary policies, as in that case, a single policy encodes a large
number of attributes.
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We resolve this issue by removing algorithm PolGen from the syntax of an IB-ME, so that
the decryption algorithm takes directly as input the description of the target identity snd (i.e.,
Dec(dkρ, snd, c)). This way, the receiver can specify the target identity the source must satisfy
on the fly, without talking to the authority.

5.1 Security of IB-ME

The choice of removing the PolGen algorithm has an impact on the security properties for IB-
ME. Below, we revisit each security guarantee in the identity-based setting and explain how
(and why) the security definition has to be adapted. We refer the reader to Fig. 3 for the formal
definitions.

Privacy of IB-ME. We cannot require that the sender’s identity remains hidden in case of a
decryption failure due to a mismatch condition. In particular, a malicious receiver can always
change the sender’s target identity in order to infer under which identity a ciphertext has been
encrypted.

More formally, consider the adversary that chooses a tuple (m,m, rcv, rcv, σ0, σ1), and re-
ceives a ciphertext c such that c←$ Enc(ekσb , rcv,m), where the encryption key ekσb corresponds
to identity σb; the attacker can simply pick a target identity snd′ such that, say, σ0 = snd′

(whereas σ1 6= snd′), and thus distinguish σ0 from σ1 by decrypting c with dkρ and target
identity snd′.5 On the other hand, privacy might still hold in case of mismatch, as long as
the keys dkρ held by the receiver correspond to identities ρ that do not match the receiver’s
target identity. Thus, in the security game, an attacker is now valid if for every decryption key
dkρ obtained from the oracle, it holds that ρ 6= rcv0 and ρ 6= rcv1, where the target identities
rcv0, rcv1 are chosen by the adversary. Lastly, note that in case of a match, if a receiver has
identity ρ and specifies a policy snd, it can automatically infer that σ = snd and rcv = ρ. For
this reason, the privacy game does not consider any match condition.

Finally, we note that the above security definition does not guarantee that the message m
remains secret with respect to an honest receiver that chooses the “wrong” target identity snd.
The latter is, however, a desirable feature that our practical scheme will satisfy (cf. Remark 1).

Authenticity of IB-ME. Turning to unforgeability in the identity-based setting, the forgery
(c, ρ, snd) is considered valid if for all encryption keys ekσ obtained by the adversary it holds
that σ 6= snd, and moreover the identity ρ is not held by the adversary (i.e., the adversary
cannot “forge to itself”).

Security definitions. The definitions below capture the very same correctness and security
requirements of an ME, but translated to the identity-based case.

Definition 21 (Correctness of IB-ME). An IB-ME Π = (Setup, SKGen,RKGen,Enc,Dec) is
correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ, rcv, snd ∈ {0, 1}∗:

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m ] ≥ 1− negl(λ) ,

whenever σ = snd and ρ = rcv, and otherwise

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ, dkρ are generated by SKGen(msk, σ), and RKGen(msk, ρ).
5This attack can be generalized to show that privacy does not hold if the PolGen algorithm (and thus the

policy key kpol) is made public.
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Gib-priv
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1, rcv0, rcv1, σ0, σ1, α)←$ AO1,O2
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb , rcvb,mb)

b′←$ AO1,O2
2 (1λ, c, α)

If (b′ = b) return 1

Else return 0

Gib-auth
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(c, ρ, snd)←$ AO1,O2 (1λ,mpk)

dkρ←$ RKGen(msk, ρ)

m = Dec(dkρ, snd, c)

If ∀σ ∈ QO1
: (σ 6= snd) ∧ (ρ 6∈ QO2

)∧
(m 6= ⊥)

return 1

Else return 0

Figure 3: Games defining privacy and authenticity security of IB-ME. Oracles O1, O2 are
implemented by SKGen(msk, ·), RKGen(msk, ·).

Definition 22 (Privacy of IB-ME). We say that an IB-ME Π satisfies privacy if for all valid
PPT adversaries A: ∣∣∣∣P[Gib-priv

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Gib-priv
Π,A (λ) is depicted in Fig 3. Adversary A is called valid if ∀ρ ∈ QO2 it satisfies

the following invariant:

• (Mismatch condition). ρ 6= rcv0 ∧ ρ 6= rcv1

Definition 23 (Authenticity of IB-ME). We say that an IB-ME Π satisfies authenticity if for
all PPT adversaries A:

P
[
Gib-auth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Gib-auth
Π,A (λ) is depicted in Fig.3.

Definition 24 (Secure IB-ME). We say that an IB-ME Π is secure if it satisfies privacy
(Def. 22) and authenticity (Def. 23).

5.2 The Scheme

We are now ready to present our practical IB-ME scheme.

Construction 4 (IB-ME). The construction works as follows.

Setup(1λ): Let e : G × G → GT be a symmetric pairing, and P a generator of G, with G, and
GT of an order q that depends on λ. We also have three hash functions H : {0, 1}∗ → G,
H ′ : {0, 1}∗ → G, Ĥ : GT → {0, 1}`, modeled as random oracles, and a polynomial-time
computable padding function Φ : {0, 1}n → {0, 1}`. We require that for all m ∈ {0, 1}n
one can verify in polynomial time if m has been padded correctly, and moreover that
Φ(m) is efficiently invertible. On input the security parameter 1λ, the setup algorithm
samples two random r, s ∈ Zq, and sets P0 = P r. Finally, it outputs the master public key
mpk = (e,G,GT , q, P, P0, H,H

′, Ĥ,Φ) and the master secret key is msk = (r, s). Recall
that all other algorithms are implicitly given mpk as input.

SKGen(msk, σ): On input the master secret key msk, and identity σ, the algorithm outputs
ekσ = H ′(σ)s.

RKGen(mpk,msk, ρ): On input the master secret key msk, and identity ρ, the algorithm outputs
dkρ = (dk1

ρ, dk
2
ρ, dk

3
ρ) = (H(ρ)r, H(ρ)s, H(ρ)).
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Enc(mpk, ekσ, rcv,m): On input an encryption key ekσ, a target identity rcv = ρ, and a message
m ∈ {0, 1}n, the algorithm proceeds as follows:

1. Sample random u, t ∈ Zq.
2. Compute T = P t and U = P u.

3. Compute kR = e(H(ρ), P u0 ) and kS = e(H(ρ), T · ekσ).

4. Compute V = Φ(m)⊕ Ĥ(kR)⊕ Ĥ(kS).

5. Output ciphertext C = (T,U, V ).

Dec(mpk, dkρ, snd, c): On input the master public key mpk, a decryption key dkρ, a target identity
snd = σ, and a message m, the algorithm proceeds as follows:

1. Parse c as (T,U, V ).

2. Compute kR = e(dk1
ρ, U) and kS = e(dk2

ρ, H
′(σ)) · e(dk3

ρ, T ).

3. Compute Φ(m) = V ⊕ Ĥ(kR)⊕ Ĥ(kS)

4. If the padding is valid, return m. Otherwise, return ⊥.

Correctness. The correctness of the scheme only depends on the computation of kR and kS
as evaluated by the decryption algorithm. Here, we require that the padding function Φ satisfies
the property that a random string in {0, 1}` has only a negligible probability to form a valid
padding w.r.t. the function Φ.6 Let kR, kS be the keys computed during encryption, and k′R,
k′S the ones computed during decryption. The scheme is correct since ∀σ, ρ, rcv, snd ∈ {0, 1}∗,
ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ):

1. If σ = snd and ρ = rcv:

kR = e(H(ρ), P u0 ) = e(H(ρ)r, P u) = e(dk1
ρ, U) = k′R,

and

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) =

= e(H(ρ), T ) · e(H(ρ)s, H ′(σ)) = e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ)) = k′S

2. Otherwise, if ρ 6= rcv = ρ′ or σ 6= snd = σ

kR = e(H(ρ′), P u0 ) 6= e(H(ρ)r, P u) = e(dk1
ρ, U) = k′R,

or

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) = e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ)) 6=

= e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ′)) = k′S .

Since k′R (resp. k′S) is hashed by the random oracle Ĥ, then Ĥ(k′R) (resp. Ĥ(k′S)) is statistically

close to a random string of length `. Hence, with overwhelming probability, V ⊕Ĥ(kR)⊕Ĥ(k′S),
where either kR 6= k′R or kS 6= k′S , will produce an invalid padding, and the decryption algorithm
returns ⊥.

6This can be achieved, e.g., by setting ` = n+ λ+ 1, and by appending to each message the string 1||0λ.
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Table 2: Performance of high- and low-level cryptographic operations of IB-ME
Operation Minimum (ms) Average (ms)

Setup 2.197 2.213
RKGen 2.200 2.225
SKGen 3.400 3.429

Encryption 6.942 7.012
Decryption 4.344 4.385

Remark 1 (Plaintext secrecy w.r.t. unauthorized-but-honest receivers). We note that the plain-
text is information-theoretically hidden from the point of view of an honest receiver which spec-
ifies a target identity that does not match the sender’s identity. Moreover, the latter holds even
given the internal state of the receiver at the end of the decryption procedure. In fact, since
Ĥ(kS) is statistically close to uniform, and |Ĥ(kS)| = |Φ(m)| = `, the decryption algorithm will
compute a symmetric key kS different to the one generated during encryption.7

Security. As for security, we establish the following result, whose proof appears in §A.4 of
the appendix.

Theorem 4. Let G, GT be two groups of prime order q, and let e : G×G→ GT be an admissible
bilinear map. If the BDH problem is hard in (G,GT , e) (Def. 10), then the IB-ME scheme Π
from Construction 4 is secure (Def. 24) in the random oracle model.

6 IB-ME Performance Evaluation and Application to Tor

In this section, we demonstrate that our IB-ME is practical and we use it to implement a novel
system for anonymous but authentic communication. We first show in §6.1 the performance
evaluation of our IB-ME implementation. We then describe in §6.2 an application for IB-ME
built on top of our implementation. The proposed application is a bulletin board hidden service
that allows parties to collect or exchange anonymous messages that have an expected format and
come from authentic sources. It allows users to exchange IB-ME messages over the Tor network,
specifically, using the Tor Hidden Services feature (cf. §6.2.1). Our bulletin board prototype can
be used for covert communication by journalists or activists under authoritarian governments.
It improves upon systems such as SecurePost ([39]) for verified group anonymity by providing
much stronger privacy guarantees since ciphertexts can be vetted before decryption.

6.1 Implementation and Evaluation of the IB-ME cryptosystem

We provide an experimental evaluation of the IB-ME cryptosystem. To this end, we imple-
mented a proof of concept in Python 3.6.5 using Charm 0.50 [2], a framework for prototyping
pairing-based cryptosystems (among others). Since our IB-ME is defined using symmetric pair-
ings (also called Type-I pairings), we instantiate it with a supersingular curve with a 512-bit
base field (curve SS512 in Charm), which gives approximately 80 bits of security [43]. The
execution environment is an Intel NUC7i7BNH with an Intel Core i7-7567U CPU @ 3.50GHz
and 16 GB of RAM, running Ubuntu 18.04 LTS.

Table 2 shows the cost in milliseconds associated to the main high- and low-level crypto-
graphic operations of IB-ME. We executed these experiments in 50 different runs of 10 times

7It is important to recall that a similar guarantee does not hold in the identity-based setting, when the receiver
is semi-honest (cf. §5.1).
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Table 3: Space costs of IB-ME elements.
Element Theoretical cost Size (in bits)

Encryption key |G| 512
Decryption key 3|G| 1536

Message n 1024
Ciphertext 2|G|+ ` 2129

Ciphertext expansion `
n + 2|G|

n ≈2

each and both the minimum and average timing was taken for each operation; we use the Python
module timeit for these measurements. It can be seen that the average timings for the main
high-level operations of IB-ME, namely Encryption and Decryption, are 7.012 ms and 4.385 ms,
respectively. These results show that the scheme is highly practical.

It is worth mentioning that there is room for improvement in the implementation if we use
optimizations such as pre-computation of some pairing operations when one of the arguments
is fixed (which occurs in the two pairings during decryption since one argument is a decryption
key) or is reused (the two pairings in the encryption function have H(ρ) as an argument), which
can lead to speeds-up around 30%, as reported in [18]. Another potential optimization is the
use of multipairings in the decryption operation. A promising direction would be to redefine
the scheme in a Type-III pairing setting, which allows for more performant curves [22].

Finally, Table 3 shows a summary of the space costs associated to different elements of our
IB-ME. We analyze both the theoretical cost and the actual values with the parameters of the
experiment. In addition to the use of Charm’s curve SS512 (which implies that the size of
|G| = 512 bits and |GT | = 1024), we use for the size of identity bitstrings |G|, for the size of
messages n = |GT |, and for the padding output size ` = n+ λ+ 1 = 1105.

6.2 An Anonymous Bulletin Board

Here, we describe the implementation of a bulletin board hidden service that is powered by our
IB-ME scheme (cf. §5). In a nutshell, our application allows senders to post encrypted messages
to an anonymous bulletin board, hosted by a Tor hidden service [49]. To this end, senders
specify a target identity string that acts as the receiver’s access policy, as well as the encryption
key corresponding to their own identity. Conversely, receivers can fetch encrypted messages
from the bulletin board, and try to decrypt them with their own decryption keys (associated
with their identity) and the expected identity of the sender. Only those encrypted messages
where there is a match between sender and receiver can be decrypted correctly.

Our system protects every party’s privacy in several aspects. First of all, thanks to the
nature of Tor hidden services, the IP addresses of each party and the connection between the
client and the server remain hidden. Secondly, if decryption fails nothing is revealed to the
parties.

Next, we will give a brief overview of Tor Hidden Services.

6.2.1 Tor and Hidden Services

Tor [47] is the most prominent P2P anonymous system, totaling more than 2 million users and
6, 000 relays. It allows clients to access the Internet anonymously by hiding the final destination
of their connections. It achieves this by creating random circuits between the client and the
destination (e.g., web server), where every relay is aware only of its incoming and outgoing
links.

27



C 1 C 2 C 3

RP 1 RP 2 RP 3

bjopwtc2f3umlark.onion

Tor Network

Client Level

Hidden Service

Figure 4: Example of interaction between three clients C1, C2, C3 and the anonymous bul-
lentin board (http://bjopwtc2f3umlark.onion) using Tor. The relays RP1, RP2, and RP3 are
the rendezvous points shared between the service and the respective clients. Each party com-
municates with the respective RP using a Tor circuit.

Various services can be set up so that they are accessible only within the Tor network.
These Tor Hidden Services [49], or HS, are run without revealing their IP addresses and can be
reached with no prior information. In order to deploy an HS, the owner needs to initialize the
service by choosing some relays that will act as introduction points (IPs). The service will keep
an open Tor circuit to each IP that will be used as the entry points to access the HS. The IPs’
identities are communicated to Tor by creating a service descriptor entry. This entry contains
all the information needed to access the service (e.g., description ID, list of IPs, etc.). Then, the
entry is uploaded to the hidden service directory (HSDir) which stores the description entries
of all available HSs. A node that wants to connect to an HS will (1) retrieve from HSDirs the
correct description entry, (2) establish a Tor circuit to a random relay known as the rendezvous
point, RP in short, and (3) reveal to one of the hidden service’s IP (contained in the description
entry) the address of the RP. The HS can now open a Tor circuit to the RP, so that the node
and the HS can communicate without revealing their respective IP addresses.

6.2.2 Our Anonymous Bulletin Board

Our application is composed of two parts: a web server implemented as a Tor hidden service,
and a command line client that is used to upload and download data from the server.

A user that wants to post a message to the bulletin board can use the client to encrypt it
(using their IB-ME encryption key ekσ and an identity string policy rcv for the intended re-
ceiver), and upload the ciphertext to the web server through the Tor network. These ciphertexts
are publicly available.

A receiver can now use the client to download all the ciphertexts and try to decrypt each of
them, using the receiver’s decryption key dkρ and the sender’s identity policy snd (given as input
to the client). The client will report to the user the outcome of the decryption phase, showing all
the successfully decrypted messages. The role of the web server is to store encrypted messages
and to offer a simple REST API that allows clients to post and read these messages. In our
prototype, we do not include any additional security measure, but in a real-world deployment,
specific countermeasures should be taken in order to protect against potential denial of service
attacks from clients (e.g., by requiring a proof-of-work along with the request) and/or include
some authentication mechanisms. We refer the reader to Fig. 4 for an overview of the system.

As in any identity-based cryptosystem, key management requires a key generation service
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that generates and distributes encryption and decryption keys. This service could be imple-
mented as another Tor hidden service, or even integrated with an existing HSDir, that automat-
ically converts email addresses or phone numbers into keys. Another possibility is to assume
the existence of an off-line authority so that users of the application obtain their keys through
an out-of-band channel. In our prototype, we assume the latter option for simplicity.

Finally, note that the performance cost of our Tor application is dominated by the network
latency of the Tor relays. Since the main focus of the paper is the new cryptographic primitive,
we report only the performance evaluation of our IB-ME scheme (cf. §6.1).

7 Conclusions

We have proposed a new form of encryption, dubbed matchmaking encryption (ME), where both
the sender and the receiver, described by their own attributes, can specify fine-grained access
policies to encrypted data. ME enables several applications, e.g., communication between spies,
social matchmaking, and more.

On the theoretical side, we put forward formal security definitions for ME and established the
feasibility of ME supporting arbitrary policies by leveraging FE for randomized functionalities in
conjunction with other more standard cryptographic tools. On the practical side, we constructed
and implemented practical ME for the identity-based setting, with provable security in the
random oracle model under the BDH assumption. We also showcased the utility of IB-ME to
realize an anonymous bulletin board using the Tor network.

Our work leaves open several important questions. First, it would be interesting to construct
ME from simpler assumptions. Second, it is conceivable that our black-box construction could
be instantiated based on better assumptions since we only need secure rFE w.r.t. honest encryp-
tors; unfortunately, the only definition that is specifically tailored for this setting [3] has some
circularity problems [25, 1]. Third, a natural direction is to come up with efficient ME schemes
for the identity-based setting without relying on random oracles, or to extend our scheme to the
case of fuzzy matching [5]. Further extensions include the setting of chosen-ciphertext security,
ME with multiple authorities, and creating an efficient infrastructure for key management and
revocation.
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A Supporting Proofs

A.1 Proof of Theorem 1

We use QiRKGen to denote the queries submitted by adversary Ai. We start with showing
(q1, q

′
1, q2, q

′
2)-privacy.

Lemma 1. If rFE is (q1, 1, q2)-NA-SIM-secure (Def.4), FE is (q′1, q1, q
′
2)-SIM-secure, and NIZK

is adaptive multi-theorem zero knowledge (Def.11), then the ME scheme Π from Construction 1
satisfies (q1, q

′
1, q2, q

′
2)-privacy.

Proof. We use a hybrid argument. Consider the following hybrid experiments:

Hyb0(λ): This is exactly the experiment Gpriv
Π,A(λ).

Hyb1(λ): Same as Hyb0, except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext.
Formally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus,
when A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger flips a bit b←$ {0, 1}
and runs c←$ EncrFE(mpkrFE, (Rb, σb,mb)), π←$ Z1(ζ, (c, pk,mpkrFE)). Finally, it sets the
challenge ciphertext to (c, π).

Hyb2(λ): Same as Hyb1, except that the challenger uses the simulators SrFE = (SrFE1 ,SrFE2 , SrFE3 ,SrFE4 )
to generate mpkrFE and implement the oracle RKGen. Formally, the challenger runs
(mpkrFE, α

′
rFE)←$ SrFE1 (1λ) to generate the master public key of rFE, and uses SrFE2 (α′rFE, ·)

and SrFE4 (α′rFE, ·) to answer the queries submitted to RKGen by A1 and A2. Finally, when
A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger flips a bit b←$ {0, 1} and
proceeds as follows:

• For all ρi ∈ Q1
RKGen such that Rb(ρi) = 0, compute c′i by running EncFE(mpkFE, (⊥,

⊥))

• For all ρi ∈ Q1
RKGen such that Rb(ρi) = 1, compute c′i by running EncFE(mpkFE, (σb,

mb)).

Finally, it returns (c, π) where c←$ SrFE3 (α′rFE, {c′i}i∈[q1]) and π←$ Z1(ζ, (c, pk,mpkrFE)).

Hyb3(λ): Same as Hyb2 except that the challenger uses the FE simulator SFE = (SFE1 , SFE2 ,SFE3 , SFE4 )
to generate mpkFE and implement the oracle PolGen. Formally, the challenger runs
(mpkFE, α

′
FE)←$ SFE1 (1λ) to generate the master public key of FE, and uses SFE2 (α′FE, ·) and

SFE4 (α′FE, ·) to answer the queries submitted to RKGen by A1 and A2. When A1 outputs
the challenge (m0,m1,R0,R1, σ0, σ1), the challenger flips a bit b←$ {0, 1} and proceeds
as follows:

• For all ρi ∈ Q1
RKGen,Sj ∈ Q1

PolGen such that Rb(ρi) = 0 ∨ Sj(σb) = 0, set yi,j = ⊥.

• For all ρi ∈ Q1
RKGen,Sj ∈ Q1

PolGen such that Rb(ρi) = 1 ∧ Sj(σb) = 1, set yi,j = mb.

Finally, it runs c′i←$ SFE3 (α′FE, {yi,j}j∈[q′1]) for all i ∈ [q1], c←$ SrFE3 (α′rFE, {c′i}i∈[q1]) and
π←$ Z1(ζ, (c, pk,mpkrFE)), and returns (c, π) as the challenge ciphertext.

Claim 1. {Hyb0(λ)}λ∈N ≈c {Hyb1(λ)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
reduction is standard, so we omit it here.
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Claim 2. {Hyb1(λ)}λ∈N ≈c {Hyb2(λ)}λ∈N.

Proof. Suppose there exists an adversary A that distinguishes between Hyb0(λ) and Hyb1(λ)
with non-negligible (in λ) probability. We build a distinguisher A′ for experiment REALrFE,A′(λ)
and experiment IDEALrFE,A′(λ) with the same probability.

1. At the beginning, A′ receives the master public key mpk∗. Then, it runs (mpkFE,mskFE)
←$ SetupFE(1λ), (pk, sk)←$ KGenSS(1λ), and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk =
(pk, ω,mpkFE,mpk∗) to A.

2. A′ answers oracle queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, compute s = Sign(sk, σ) and return ekσ = (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, send (ρ,mpkFE) to the key generation oracle OrFE
1

and return the output.

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, return KGenFE(mskFE,S).

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A. Set m∗0 = (m0,R0, σ0) and
m∗1 = (m1,R1, σ1). Finally, it sends to the challenger m∗b , where b←$ {0, 1}.

4. Receive c and return (c, π) where π←$ Z1(ζ, (c, pk,mpk∗)).

5. Answer the incoming queries as in step 2.

6. Finally, A′ outputs whatever A outputs.

First, note that A submits q1 and q2 queries to RKGen (because, she is playing an hybrid version
of game (q1, q

′
1, q2, q

′
2)-privacy). Hence, A′ is a valid adversary for (q1, q2)-NA-SIM security

game. Second, we claim that if A′ is playing, respectively, the experiment REALrFE,A′(λ) and
IDEALrFE,A′(λ), then the reduction perfectly simulates game Hyb1(λ) and Hyb2(λ). The latter
is because, in experiment REALrFE,A′(λ), the attacker A′ answers to the challenge (m0,m1,R0,
R1, σ0, σ1) with (c, π) where π is the NIZK proof simulated by Z(ζ, (c, pk,mpk∗)), and c is
the output of SrFE3 (α′rFE, {c′i}) where the ciphertexts {c′i} are distributed exactly as in Hyb2(λ).
Additionally, mpk∗ is generated by SrFE1 and the outputs of oracle RKGen are simulated using
SrFE2 and SrFE4 , as it happens in Hyb2(λ). On the other hand, in the experiment IDEALrFE,A′(λ),
the attacker A′ answers using the real rFE algorithms. This concludes the proof.

Claim 3. {Hyb2(λ)}λ∈N ≈c {Hyb3(λ)}λ∈N.

Proof. Suppose there exists an adversary A that distinguishes between Hyb2(λ) and Hyb3(λ)
with non-negligible (in λ) probability. Then, we build a distinguisher A′ from experiments
REALFE,A′(λ) and IDEALFE,A′(λ) with the same probability.

1. At the beginning, A′ receives the master public key mpk∗. Then, it runs (mpkrFE, α
′
rFE)←$

SrFE1 (1λ), (pk, sk)←$ KGenSS(1λ), and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω,
mpk∗,mpkrFE) to A.

2. A′ answers oracle queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, compute s = Sign(sk, σ) and return ekσ = (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, answer with SrFE2 (α′rFE, (ρ,mpk∗)).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, send S to the key generation oracle OFE
1

and return the output.
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3. Receive the challenge (m0,m1,R0,R1, σ0, σ1). A′ flips a bit b←$ {0, 1} and proceeds as
follows: ∀ρi ∈ Q1

RKGen, Rb(ρi) = 0, set m∗i = (⊥,⊥). Otherwise, set m∗i = (σb,mb). Send
(m∗i )i∈[q1] to the challenger.

4. Receive {c∗i }i∈[q1] and return (c, π) where c←$ SrFE3 (α′rFE, {c∗i }i∈[q1]), and π←$ Z1(ζ, (c, pk,
mpk∗)).

5. Answer the incoming queries as in step 2.

6. Finally, A′ outputs whatever A outputs.

Note that A submits q′1 + q′2 queries to PolGen (q′1 before seeing the challenge ciphertext and
q′2 afterwards). Hence, A′ is a valid adversary for the (q′1, q1, q

′
2)-SIM security game. Thus, a

similar analysis as in the proof of Claim 2 allows us to conclude that Hyb2(λ) and Hyb3(λ) are
computationally indistinguishable.

Let Hyb3(λ, b) be the hybrid game Hyb3(λ) conditioned on the challenge bit being equal to b.
We claim that Hyb3(λ, 0) ≡ Hyb3(λ, 1). To see this, first note that since A is valid (cf. Def. 14),
it must be the case that for all ρi ∈ Q1

RKGen, Sj ∈ Q1
PolGen

(R0(ρi) = 0 ∨ Sj(σ0) = 0) = (R1(ρi) = 0 ∨ Sj(σ1) = 0), and (3)

(R0(ρi) = 1 ∧ Sj(σ0) = 1) = (R1(ρi) = 1 ∧ Sj(σ1) = 1). (4)

In fact, from the definition of valid adversary, either for all ρi ∈ Q1
RKGen, Sj ∈ Q1

PolGen, Eq. (1)
is satisfied—in which case also Eq. (3) and Eq. (4) hold true— or if at least one match occurs
(i.e., if there exists ρ̂i ∈ Q1

RKGen, Ŝj ∈ Q1
PolGen such that Eq. (1) does not hold), we know that

m0 = m1, R0(ρi) = R1(ρi) and Sj(σ0) = Sj(σ1), which again implies Eq. (3) and Eq. (4).
Finally, note that the only dependency on the bit b in hybrid Hyb3(λ, b) comes from the

definitions of the values yi,j . However, by Eq. (3) and Eq. (4), we observe that:

• Whenever Rb(ρi) = 0 ∨ Sj(σb) = 0 it also holds that R1−b(ρi) = 0 ∨ Sj(σ1−b) = 0, so that
both hybrids set yi,j = ⊥;

• Whenever Rb(ρi) = 1 ∧ Sj(σb) = 1 it also holds that R1−b(ρi) = 1 ∧ Sj(σ1−b) = 1 and
m0 = m1, so that both hybrids set yi,j = m0 = m1.

Hence, Hyb3(λ, 0) and Hyb3(λ, 1) are identically distributed.
Combining Claims 1–3, we conclude that Construction 1 satisfies (q1, q

′
1, q2, q

′
2)-privacy.

Lemma 2. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the ME scheme Π from Construction 1 satisfies authenticity (Def. 15).

Proof. By contradiction, assume Construction 1 does not satisfies authenticity, i.e., there exists
an attacker A that has a non negligible advantage in experiment Gauth

Π,A (λ). We build an attacker
A′ that breaks unforgeability of SS. A proceeds as follows:

1. Receive pk∗ from the challenger.

2. Run (mpkrFE,mskrFE)←$ SetuprFE(1λ), (mpkFE,mskFE)←$ SetupFE(1λ), (ω, ξ)←$ K0(1λ),
and send mpk = (pk∗, ω,mpkFE,mpkrFE) to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).
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• Upon input ρ ∈ {0, 1}∗ for RKGen, compute and return the decryption key dkρ←$

KGenrFE(mskrFE, (ρ,mpkFE)).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, compute and return the policy key
dkS←$ EncFE(mskFE,S).

4. Upon the forgery ((c∗, π∗), ρ∗,S∗) from A, compute dkρ∗ and dkS∗ by running KGenrFE(mskrFE,
(ρ∗,mpkFE)) and KGenFE(mskFE,S∗). If either V(ω, (c∗, pk∗,mpkrFE), π∗) = 0, or DecrFE(dkS∗ ,
DecrFE(dkρ∗ , c

∗)) = ⊥, it abort. Else, run and return (σ∗, s∗)←$ K1(ξ, (c∗, pk∗,mpkrFE), π∗)
as forgery to the challenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗,mpkrFE,mskrFE,mpkFE,mskFE, ω), then ∀σ, ρ ∈ {0, 1}∗,∀S :
{0, 1}∗ → {0, 1} the oracle queries of A are perfectly simulated by A′, and the only difference is
that the CRS ω is computed via K0 in the reduction, but this distribution is computationally
close to that of an honestly generated CRS. This means that with non-negligible probability
the ciphertext (c∗, π∗) returned by A is valid, which implies that the proof π∗ verifies correctly,
and moreover DecrFE(dkS∗ ,DecrFE(dkρ∗ , c

∗)) 6= ⊥ (so c∗ is also a valid ciphertext).
Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must

have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗, pk∗,mpkrFE), (σ∗, s∗))
∈ R2, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Gauth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.

Finally, combining Lemmas 1–2, we conclude that Construction 1 is (q1, q
′
1, q2, q

′
2)-secure.

A.2 Proof of Theorem 2

Proof. We prove privacy and authenticity separately.

Lemma 3. If 2FE is indistinguishably secure in the 1-semiprivate setting (Def. 9), and NIZK is
adaptive multi-theorem zero knowledge (Def. 11), then the ME scheme Π from Construction 2
satisfies privacy (Def. 14).

Proof. We use a hybrid argument. Consider the following hybrid experiments:

Hyb0(λ): This is exactly the experiment Gpriv
Π,A(λ).

Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext. For-
mally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus, when
A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger computes c0←$ Enc2FE(ek0,
(Rb, σb,mb)), π←$ Z1(ζ, (c0, pk, ek0)), and sets the challenge ciphertext to (c0, π).

Claim 4. {Hyb0(λ)}λ∈N ≈c {Hyb1(λ)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
reduction is standard, so we omit it here.

Claim 5. If 2FE is indistinguishably secure in the 1-semi-private model (Def. 9), then for all
PPT valid adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤ negl(λ).

Proof. Suppose that there exists a valid adversary A that has non-negligible advantage in
Hyb1(λ). We build an attacker A′ that breaks security of experiment Gspriv

2FE,A′(λ, 1). A′ pro-
ceeds as follows:
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1. At the beginning, receive ek∗0 sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω, ek∗0) to A.

2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s←$ Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ for RKGen, send ρ to oracle KGen2FE and return the corre-
sponding output.

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, send S to oracle Enc2FE and return the
corresponding output.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A. Select any policy S∗ ∈ QPolGen,
i.e., any policy submitted by A to oracle PolGen. Set m0

0 = (R0, σ0,m0), m1
0 = (R1, σ1,

m1) and m0
1 = m1

1 = S∗. Send the challenge (m0
0,m

0
1), (m1

0,m
1
1) to the challenger.

4. After receiving the ciphertexts (c∗0, c
∗
1) from the challenger, A computes π←$ Z1(ζ, (c∗0, pk,

ek0)). Finally, send (c∗0, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.

We now show that the simulation is perfect. Conditioned on msk∗, ek∗0, ek∗1 sampled by the
challenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ) = KGen2FE(msk∗, ρ)

PolGen(mpk, kpol, S) = Enc2FE(ek∗1, S)

where mpk = (pk, ω, ek∗0), kpol = ek∗1, msk = (msk∗, sk). This suffices to conclude that the
queries’ answers have the same distribution of what A expects to receive. Moreover, A is a valid
adversary (cf. Def. 14) in Hyb1(λ). This allows us to conclude that ∀S′ ∈ QEnc2FE ∪ {m0

1} (recall
m0

1 = m1
1 = S∗ ∈ QPolGen), and ∀ρ ∈ QKGen2FE , the following invariant is maintained:

• (Mismatch condition) Either fρ(m
0
0,S′) = fρ(m

1
0, S′) = ⊥;

• (Match condition) Or fρ(m
0
0,S′) = fρ(m

1
0, S′) ∈ {⊥,m0} (recall m0 = m1 in this case).

Finally, it is clear that there does not exist any 1-st position input such that fρ(·,m0
1) 6= fρ(·,m1

1)

(since m0
1 = m1

1 = S∗). Thus, A′ is a valid adversary for Gspriv
2FE,A′(λ, 1) and has the same

advantage of A.

Combining Claims 4–5, we obtain that Construction 2 satisfies privacy.

Lemma 4. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the ME scheme Π from Construction 2 satisfies authenticity (Def. 15).

Proof. By contradiction, assume Construction 2 does not satisfies authenticity, i.e., there exists
an attacker A that has a non negligible advantage in experiment Gauth

Π,A (λ). We build an attacker
A′ that breaks unforgeability of SS. A proceeds as follows:

1. Receive pk∗ from the challenger.
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2. Execute (msk2FE, ek0, ek1)←$ Setup2FE(1λ), (ω, ξ)←$ K0(1λ), and send mpk = (pk∗, ω, ek0)
to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, compute and return the decryption key dkρ←$

KGen2FE(msk2FE, ρ).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, compute and return the policy key
dkS←$ Enc2FE(ek1,S).

4. Receive the forgery ((c∗0, π
∗), ρ∗,S∗) from A and proceed as follows:

• Compute dkρ∗ ←$ KGen2FE(msk2FE, ρ
∗) and c∗1←$ Enc2FE(ek1, S∗).

• If either V(ω, (c∗0, pk
∗, ek0), π∗) = 0, or Dec2FE(dkρ∗ , c

∗
0, c
∗
1) = ⊥, abort.

• Else, run (σ∗, s∗)←$ K1(ξ, (c∗0, pk
∗, ek0), π∗) and return (σ∗, s∗) as forgery to the chal-

lenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗) chosen by the challenger, and (ek0, ek1,msk2FE, ω) generated
by A′, the following holds ∀σ, ρ ∈ {0, 1}∗:

SKGen(mpk,msk, σ) = (σ, Sign(sk∗, σ))

RKGen(mpk,msk, ρ) = KGen2FE(msk2FE, ρ)

PolGen(mpk, kpol, S) = Enc2FE(ek1, S).

Hence, the oracle queries of A are perfectly simulated by A′, and the only difference is that
the CRS ω is computed via K0 in the reduction, but this distribution is computationally close
to that of an honestly generated CRS. This means that with non-negligible probability the
ciphertext (c∗0, π

∗) returned by A is valid, which implies that the proof π∗ verifies correctly, and
moreover Dec2FE(dkρ∗ , c

∗
0, c
∗
1) 6= ⊥ (so c∗0 is also a valid ciphertext).

Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must
have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗0, pk

∗, ek0), (σ∗, s∗)) ∈
R2, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Gauth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.

By combining Lemmas 3–4 we obtain that Construction 2 is secure.

A.3 Proof of Theorem 3

Proof. As usual, we prove privacy and authenticity separately.

Lemma 5. If FE is secure (Def. 7), and NIZK is adaptive multi-theorem zero knowledge
(Def. 11), then the A-ME scheme Π from Construction 3 satisfies privacy (Def. 18).

Proof. We use a hybrid argument. Consider the following hybrid experiments:

Hyb0(λ): This is exactly the experiment Garr-priv
Π,A (λ).
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Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext.
Formally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus,
when A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger sets the challenge
ciphertext to (c, π) where c←$ EncFE(mpkFE, (Rb, σb,mb)), and π←$ Z1(ζ, (c, pk,mpkFE)).

Claim 6. {Hyb0(λ)}λ∈N ≈c {Hyb1(λ)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
reduction is standard, so we omit it here.

Claim 7. If FE is secure (Def. 7), then for all PPT adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤
negl(λ).

Proof. Suppose that there exists an adversary A that has non-negligible advantage in Hyb1(λ).
We build an attacker A′ that breaks security of experiment Gfe

FE,A′(λ). A′ proceeds as follows:

1. At the beginning, receive mpk∗ sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω,mpk∗) to A.

2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s = Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ and S : {0, 1}∗ → {0, 1} for RKGen, send (ρ, S) to oracle
KGenFE and return the corresponding output.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A Set m∗0 = (R0, σ0,m0), m∗0 =
(R1, σ1,m1). Send the challenge (m∗0,m

∗
1) to the challenger.

4. After receiving the ciphertext c∗ from the challenger, A computes π←$ Z1(ζ, (c∗, pk,mpk)).
Finally, send (c∗, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.

We now show that the simulation is perfect. Conditioned on msk∗, msk∗0 sampled by the chal-
lenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ,S) = KGenFE(msk∗, (ρ,S))

where mpk = (pk, ω,mpk∗), msk = (msk∗, sk). This suffices to conclude that the queries’ answers
have the same distribution of what A expects to receive. Moreover, A is a valid adversary (cf.
Def. 18) in Hyb1(λ). This allows us to conclude that ∀(ρ, S) ∈ QKGenFE , the following invariant
is maintained:

• (Mismatch condition) Either f(ρ,S)(m
∗
0) = f(ρ,S)(m

∗
1) = ⊥;

• (Match condition) Or f(ρ,S)(m
∗
0) = f(ρ,S)(m

∗
1) ∈ {⊥,m0} (recall m0 = m1 in this case).

Thus, A′ has the same advantage of A and is a valid adversary for Gfe
FE,A′(λ).

Combining Claim 6– 7, we obtain that Construction 3 satisfies privacy.
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Lemma 6. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the A-ME scheme Π from Construction 3 satisfies authenticity (Def. 19).

Proof. By contradiction, assume that Construction 3 does not satisfies authenticity, i.e. there
exists an attacker A that has a non-negligible advantage in experiment Garr-auth

Π,A (λ). We build
an attacker A′ that breaks unforgeability of SS as follows:

1. Receive pk∗ from the challenger.

2. Execute (mskFE,mpkFE)←$ SetupFE(1λ), (ω, ξ)←$ K0(1λ), and send mpk = (pk∗, ω,mpkFE)
to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).

• Upon input ρ ∈ {0, 1}∗ and S : {0, 1}∗ → {0, 1} for RKGen, compute and return the
decryption key dk(ρ,S)←$ KGenFE(mskFE, (ρ, S)).

4. Receive the forgery ((c∗, π∗), ρ∗,S∗) from A and proceed as follows:

• Compute dkρ∗,S∗ ←$ KGenFE(mskFE, (ρ
∗, S∗)).

• If either V(ω, (c∗, pk∗,mpkFE), π∗) = 0, or DecFE(dkρ∗,S∗ , c
∗) = ⊥, abort.

• Else, run (σ∗, s∗)←$ K1(ξ, (c∗, pk∗,mpkFE), π∗) and return (σ∗, s∗) as forgery to the
challenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗) chosen by the challenger, and (mpkFEmskFE, ω) generated by
A′, the following holds ∀σ, ρ ∈ {0, 1}∗:

SKGen(mpk,msk, σ) = (σ, Sign(sk∗, σ))

RKGen(mpk,msk, ρ,S) = KGenFE(mskFE, (ρ, S))

Hence, the oracle queries of A are perfectly simulated by A′, and the only difference is that
the CRS ω is computed via K0 in the reduction, but this distribution is computationally close
to that of an honestly generated CRS. This means that with non-negligible probability the
ciphertext (c∗, π∗) returned by A is valid, which implies that the proof π∗ verifies correctly, and
moreover DecFE(dkρ∗,S∗ , c) 6= ⊥ (so c∗ is also a valid ciphertext).

Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must
have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗, pk∗,mpkFE), (σ∗, s∗))
∈ R3, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Garr-auth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.

By combining Lemmas 5–6 we obtain that Construction 3 is secure.
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A.4 Proof of Theorem 4

We start with showing privacy.

Lemma 7. Let A be an adversary that breaks the privacy property of Construction 4 with
advantage ε, while asking at most qR queries to the decryption key oracle RKGen and qĤ queries

to the random oracle Ĥ. Then, there is an algorithm that solves the BDH problem with advantage
8ε/e2(qR + 2)2qĤ .

There are many similarities between our scheme and the Boneh-Franklin CPA-secure IBE [12].
Their proof uses an intermediate PKE scheme called BasicPub to simplify the security analysis.
More in details, they first show that their IBE scheme is CPA-secure if BasicPub is CPA-secure
[12, Lemma 4.2], and then, they show that if the BDH assumption holds then BasicPub is
CPA-secure [12, Lemma 4.3].

We will follow a similar tactic, defining two games that in the end prove that our IB-ME
satisfies privacy under the BDH assumption. First, we define BasicPub+, a variant of BasicPub
more suitable for our needs. BasicPub+ is composed of the following algorithms:

Setup(1λ): Generate a symmetric pairing e : G×G→ GT , with G, and GT of an order q that
depends on λ. Choose a random generator P of G. Sample a random r ∈ Zq and set
P0 = P r. Choose a key derivation function Ĥ : G → {0, 1}n, for some n. The master
public key is the tuple mpk = (q,G,GT , e, n, P, P0, Ĥ). The master secret key is msk = r.

KGen(mpk,msk): Choose a random G ∈ G. The public key is pk = G. The private key is
sk = Gr.

Enc(mpk, pk,m): To encrypt a message m under public key pk = G, choose a random x ∈ Zq
and output c = (U, V ) = (P x,m⊕ Ĥ(e(G,P0)x)).

Dec(mpk, sk, c): Let c = (U, V ) be a ciphertext for public key pk, then the algorithm returns
m = V ⊕ Ĥ(e(sk, U)).

In the first game, described in Claim 8, we show that if BasicPub+ is IND-CPA+-secure,
then our scheme satisfies privacy. In order to be compatible with our definition of privacy, we
define IND-CPA+ security as a variant of traditional IND-CPA where the adversary not only
inputs a pair of messages m0 and m1, but also a pair of (honestly generated) public keys pkj0
and pkj1 . Thus, the experiment can be seen as a hybrid between the typical IND-CPA game
and the key-privacy game for PKE defined by Bellare et al. [10].

Definition 25 (IND-CPA+). A public-key encryption scheme Π = (Setup,KGen,Enc,Dec) is
IND-CPA+ secure if for all PPT adversaries A = (A1,A2), we have that∣∣∣∣P[Gcpa+

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where Gcpa+

Π,A (λ) is the following experiment:

1. (msk,mpk)←$ Setup(1λ)

2. (m0,m1, pkj,0, pkj,1, α)←$ A
KGen(msk,·),
1 (1λ,mpk).

3. c←$ Enc(mpk, pkj,b,mb) where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·)
2 (1λ, c, α).
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5. If b = b′ and pkj,0, pkj,1 ∈ QKGen then output 1, and otherwise output 0.

In the game above, the oracle KGen generates pairs (pk, sk), but only outputs the public key pk.

Claim 8. Let A be an adversary that breaks privacy of Construction 4 with advantage ε, while
asking at most qR queries to the oracle RKGen. Then, there is an algorithm A′ with advantage
4ε/e2(qR + 2)2 against IND-CPA+ security of BasicPub+.

Proof. This proof is similar to the proof of [12, Lemma 4.2]. The challenger starts the game by
running the Setup algorithm of BasicPub+ and sends the public parameters (q,G,GT , e, n, P, P0,
Ĥ) to A′. Note that the master secret key msk = r remains unknown to A′. Now, A′ interacts
with the adversary A in the following way:

Setup: A′ samples a secret value s←$ Zq and gives A the public parameters defined above,
plus two random oracles H and H ′ under its control and the padding function Φ.

H queries: A′ performs the following steps:

1. If query ρi is in a tuple (ρi, Qi, βi, di) ∈ L1, then return Qi. Otherwise, generate a
random coin di ∈ {0, 1} so that Pr[di = 0] = δ

2. If di = 0, then sample a random βi ∈ Zq, compute Qi = P βi , and add the tuple
(ρi, Qi, βi, 0) to L1. Otherwise, run the public key generation oracle of BasicPub to
obtain pki, set Qi = pki, and add the tuple (ρi, Qi,⊥, 1) to L1.

3. Return Qi.

H ′ queries: A′ maintains a list L2 that stores tuples of the form (σi, Zi) with the history of
calls to H ′. If the query σi was already done, the challenger returns the value Zi. If not,
it samples a random Zi ∈ G, adds (σi, Zi) to the list, and returns Zi.

SKGen queries: Let σi be the input to oracle SKGen. A′ obtains H ′(σi) = Zi, where (σi, Zi) is
the corresponding tuple in L2, and returns Zsi .

RKGen queries: Let ρi be the input to oracle RKGen. A′ obtains H(ρi) = Qi, where (ρi, Qi, βi,
di) is the corresponding tuple in L1. If di = 1, A′ aborts; otherwise, returns dkρi =

(P βi0 , Qsi , Qi = P βi). Note that, since P0 = P r, we have that dk1
ρi = (P βi)r = Qri .

Challenge: At this moment, A sends (m0,m1, rcv0, rcv1, σ0, σ1) to A′. Now A′ performs the
following steps:

1. Let rcv0 = ρ0 and rcv1 = ρ1. A′ queries H(ρ0) = Q0 and H(ρ1) = Q1. If both tuples
(ρ0, Q0, b0, 1) and (ρ1, Q1, b1, 1) do not belong to L1 (i.e., di = 1 in both tuples), A′

aborts. Otherwise, we know that d0 = 1 and d1 = 1, which means that Q0 = pk0

and Q1 = pk1.

2. A′ computes T = P t, for a random t ∈ Zq and queries H ′(σ0) = Z0 and H ′(σ1) = Z1.
It uses them to obtain m∗0 = Φ(m0)⊕Ĥ(e(Q0, T ·Zs0)) and m∗1 = Φ(m1)⊕Ĥ(e(Q1, T ·
Zs1)). Note that ekσi = Zsi .

3. A′ sends (m∗0,m
∗
1, Q0, Q1) to its challenger and receives C = (U, V ) as response.

4. A′ computes C ′ = (T,U, V ) and sends it to A. Note that this is a proper encryption
of mb under policy rcvb = ρb and sender’s identity σb.

Second query phase: A′ answers all the queries as in the first phase.

Guess: A outputs a guess b′ and A′ responds its challenger with the same guess.
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Assuming that the adversary makes at most qR queries to oracle RKGen, then the probability
that A′ does not abort for any of these calls is δqR . Similarly, A′ does not abort in the challenge
with probability (1− δ)2. Hence, the overall probability of A′ not aborting is δqR(1− δ)2, which
is maximized at δopt = qR/(qR + 2). If we use δopt as the probability for obtaining coins di = 0
in H queries, we have that the probability of A′ not aborting is at least 4/e2(qR + 2)2.

Claim 9. Let A be an adversary that breaks IND-CPA+-security of BasicPub+ with advantage
ε, and asks at most qĤ queries to the random oracle Ĥ. Then, there is an algorithm A′ that
solves the BDH problem with advantage 2ε/qĤ .

Proof. The proof follows the strategy of [12, Lemma 4.2]: A′ receives a BDH tuple (P, P a, P b, P c),
whose correct solution is D = e(P, P )abc. During setup, the A′ sends the master public key to
A where P0 = P a. This implies that the master secret key msk = a, although this remains
unknown to A′. Then, A′ proceeds in the following way:

KGen queries: A′ samples a random xi ∈ Zq and sets pki = (P b)xi . Note that the associated
secret key is ski = P abxi , although it remains unknown to A′.

Ĥ oracle: A′ maintains a list L̂ that stores tuples of the form (Xi, ĥi) with the history of calls
to Ĥ. If the query Xi was already done, the A′ returns the value ĥi. If not, it samples a
random hi ∈ {0, 1}n, adds (Xi, ĥi) to the list, and returns ĥi.

Challenge: A sends a tuple (m0,m1, pkj0 , pkj1). A′ samples a random string Z ∈ {0, 1}n,
defines the challenge ciphertext as c = (P c, Z), and sends c to A. Note that the decryption
of c is Z ⊕ Ĥ(e(P c, skjβ )), for some β ∈ {0, 1}, which is equal to Z ⊕ Ĥ(D

xjβ ), where xjβ
is the secret key associated to public key pkjβ .

Guess: The A′ receives the guess β′ from the A, sets z = 1/xjβ′ , takes a random tuple (Xi, Ĥi) ∈
L̂ and outputs Xz

i as the solution to the received instance of BDH.

A′ outputs the correct solution D with probability at least 2ε/qĤ . The analysis that gives
this bound is the same than the one provided in [12, Lemma 4.2]. Thus we will omit it here.

of Lemma 7. By composing the reductions in Claim 8 and Claim 9, we can conclude that if
there exists an adversary that breaks privacy with advantage ε, then there exists an algorithm
that solves the BDH problem with advantage 8ε/e2(qR + 2)2qĤ .

Lemma 8. Let A be an adversary that breaks authenticity of Construction 4 with advantage
ε, while asking at most qR, qS, qĤ queries, respectively, to oracles RKGen, SKGen, and to the

random oracle Ĥ. Then, there is an algorithm A′ that solves the BDH problem with advantage
8ε/e2(qR + qS + 2)2qĤ .

Proof. A′ receives the challenge (P, P a, P b, P c). The solution is D = e(P, P )abc. A′ decides that
the master secret key is msk = (a, b,H ′) (although a, b are unknown). Now, A′ interacts with
the adversary A in the following way:

Setup: A′ gives A the public parameters (q,G,GT , e, n, P, P
a = P0, H,H

′, Ĥ,Φ) where H, H ′,
Ĥ are three random oracles controlled by A′.

H queries: A′ performs the following steps:

1. If query ρi is in a tuple (ρi, Qi, βi, di) ∈ L1, then return Qi. Otherwise, generate a
random βi ∈ Zq, and random coin di ∈ {0, 1} so that Pr[di = 0] = δ.
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2. If di = 0, then set Qi = P βi . Otherwise, set Qi = P cβi .

3. Finally, add (ρi, Qi, βi, di) to L1 and send Qi to A.

H ′ queries: A′ performs the following steps:

1. If query σi is in a tuple (σi, Qi, βi, di) ∈ L2, then return Qi. Otherwise, generate a
random βi ∈ Zq, and random coin di ∈ {0, 1} so that Pr[di = 0] = δ.

2. If di = 0, then set Qi = P βi . Otherwise, set Qi = P aβi .

3. Finally, add (σi, Qi, βi, di) to L2 and send Qi to A.

Ĥ queries: A′ maintains a list L̂ that stores tuples of the form (Xi, ĥi) with the history of calls
to Ĥ. If the query Xi was already done, the challenger returns the value ĥi. If not, it
samples a random hi ∈ {0, 1}n, adds (Xi, ĥi) to the list, and returns ĥi.

SKGen queries: Let σi be the input to oracle SKGen. A′ obtains H ′(σi) = Qi, where (σi, Qi, βi,
di) is the corresponding tuple in L2. If di = 1, A′ aborts; otherwise, returns ekσi = P bβi .

RKGen queries: Let ρi be the input to oracle RKGen. A′ obtains H(ρi) = Qi, where (ρi, Qi, βi,
di) is the corresponding tuple in L1. If di = 1, A′ aborts; otherwise, returns dkρi =
(P aβi , P bβi , Qi = P βi).

Forgery: At this moment, A sends (c, ρ, snd) to A′. Let snd = σ. Now A′ performs the following
steps:

1. Compute H(ρ) = Q and H ′(σ) = Q′. If both the tuples (ρ,Q, β, d) ∈ L1 and
(σ,Q′, β′, d′) ∈ L2 do not have coins d, d′ equal to 1, A′ aborts. If not, we know that
dk2
ρ = P cbβ and H ′(σ) = P aβ

′
. Hence, Ĥ(kS) = Ĥ(e(dk2

ρ, H
′(σ))e(dk3

ρ, T )), where:

e(dk2
ρ, H

′(σ)) = e(P cbβ, P aβ
′
) = Dββ′ , and Q = dk3

ρ.

2. Parse c as (T,U, V ). Compute z = 1/(ββ′) and take a random tuple (Xi, ĥi). Return
D′ = (Xi · e(Q,T )−1)z.

First of all, note that the simulation is perfect since in the authenticity game we require
that the challenge (c, ρ, snd = σ) satisfies ρ 6∈ QRKGen and ∀σ′ ∈ QSKGen, σ

′ 6= σ. Assuming
that the adversary makes at most qR and qS queries to oracle RKGen and SKGen, then the
probability that A′ does not abort for any of these calls is δqR+qS . Similarly, A′ does not abort
in the forgery phase with probability (1− δ)2. Hence, the overall probability of A′ not aborting
is δqR+qS (1 − δ)2, which is maximized at δopt = (qR + qS)/(qR + qS + 2). If we use δopt as the
probability for obtaining coins di = 0 in H and H ′ queries, we have that the probability of A′

not aborting is at least 4/e2(qR + qS + 2)2.
If A′ does not abort, it outputs the correct solution D′ with probability at least 2ε/qĤ .

Hence, A′ solves the BDH problem with advantage 8ε/e2(qR + qS + 2)2qĤ .

By setting ε ≥ 1
poly(λ) , qR = poly(λ), qS = poly(λ), qĤ = poly(λ) in Lemmas 7–8, we obtain

that Construction 4 is secure.

44


	Introduction
	Our Contributions
	Technical Approach
	Related Work

	Preliminaries
	Notation
	Signature Schemes
	Functional Encryption
	Functional Encryption for Randomized Functionalities
	Functional Encryption for Deterministic Functionalities
	Two-Input Functional Encryption

	Bilinear Diffie-Hellman Assumption
	Non-Interactive Zero Knowledge

	Matchmaking Encryption
	Security Model
	Arranged Matchmaking Encryption

	Black-Box Constructions
	ME from rFE
	ME from 2-Input FE
	A-ME from FE

	Identity-Based Matchmaking Encryption
	Security of IB-ME
	The Scheme

	IB-ME Performance Evaluation and Application to Tor
	Implementation and Evaluation of the IB-ME cryptosystem
	An Anonymous Bulletin Board
	Tor and Hidden Services
	Our Anonymous Bulletin Board


	Conclusions
	Supporting Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


