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Abstract. Whereas it is widely deemed an impossible task to scale One-Time 

Pad (OTP) without sacrificing information theoretic security or network traffic, 

this paper presents a paradigm of Scalable One-Time Pad (S-OTP) ciphers 

based on information conservational computing/cryptography (ICC). 

Applicability of the new paradigm is analysed. It is shown that ICC enables 

data compression with quantum-fuzzy collective precision to reduce or scale a 

key length to a minimum that used to be deemed impossible. Based on ICC, it 

is shown that, with a local IEEE binary64 standard computer associated with 

quantum key distribution (QKD), S-OTP enables secure transmission of long 

messages or large data sets with significant traffic reduction for post-quantum 

cryptography. Quantum crypto machinery is proposed. Some open topics are 

identified for further investigation. 
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1   Introduction 

Cryptography is essential for the security of digital communication. However, 

many commonly used cryptosystems will be completely broken by 

a quantum algorithm for integer factorization [1] once large quantum computers are 

commercially applicable. Post-quantum cryptography is to counter such quantum 

attacks and to keep digital communication secure [2]. A key for success is to 

identify mathematical operations for which quantum algorithms offer little 

advantage in speed, and then to build cryptographic systems around them. 

Although progress has been made most proposed methods incur serious costs, 

especially in network traffic. A major challenge is to reduce encryption key length 

without increasing data length.  

One-Time Pad (OTP) [3] [4] is often regarded the only cipher with proven 

information theoretic security [5] [6]. It can now be used together with quantum key 

distribution (QKD)—a well-developed application of quantum cryptography. QKD 

uses quantum communication to establish a shared key between two parties— sender 

Alice and receiver Bob. The key is then shared. If a third party Eve tries to eavesdrop 
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on the communication between Alice and Bob, the quantum communication will fail 

for security protection [8]. Once the key is established, it is typically used as a 

symmetric key for digital communication such as using OTP. Since OTP is quantum 

proof to quantum factorization, it is a good candidate for post-quantum cryptography 

[2]. Unfortunately, the key  requirement of equal or greater length than the original 

message hinders the general application of OTP even though QKD is a well-

developed partner technology. As a result, OTP is generally limited at present time to 

transmitting relatively short messages with high security requirement. 

In his classical paper [5], Shannon identified three general approaches to 

cryptography:  (1) concealment systems, (2) privacy systems, (3) “true” secrecy 

systems where the meaning of the message is concealed by cipher, code, etc. Shannon 

deemed concealment systems primarily a psychological problem, and privacy systems 

a technological one. OTP considers only the third type of “true” secrecy systems. 

History shows that, when Shannon invented OTP in 1946 [6], the first computer was 

not out yet. Since then, computing technology advanced beyond anyone’s 

imagination. Although it is proven [7] that any cipher with the perfect secrecy 

property must use keys with effectively the same requirements as OTP keys, these 

proofs, however, did not take later data reduction technological development into 

consideration that can conceal the meaning of a message. One such development is 

IEEE binary64 double-precision floating-point format. Another is information 

conservational computing/cryptography (ICC) [9,10] with quantum-fuzzy collective 

precision. With the new technological advances, information conservational data 

compression can be incorporated into OTP as an extension to information theoretic 

security. Thus, scalable one-time pad (S-OTP) does not attempt to falsify Shannon's 

theorem, it bypasses the assumptions of the theorem by reducing the message length 

with information conservational data compression. Now we have the question: Can S-

OTP achieve what is deemed impossible?   
This paper presents S-OTP for efficient use of QKD on a local computer. It makes OTP 

practically applicable with much shorter keys for transmitting compressed long messages or 

large data sets without increasing network traffic for quantum-proof digital communication. 

Different versions of S-OTP ciphers are analyzed and compared. Information conservational 

security conditions are established. Collective precision is proposed. Quantum machinery 

development of S-OTP is briefly discussed.  

This paper is organized in five sections. Section II presents the theoretical basis 

with illustrations on ICC. Section III examines the applicability and optimization of 

the S-OTP paradigm. Section IV presents an architectural design of S-OTP quantum 

dream machinery. Section V draws a few conclusions. 

2   Basic Concepts 

2.1   Information Conservational Security 

It is shown [3] [4] that an OTP cipher is information theoretically secure and 

unbreakable [5] [6] provided that the message to be ciphered is unknown to attackers, 

and a cipher key meets the four conditions of OTP: (a) truly random; (b) never reused; 
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(c) kept secret from all possible attackers; (d) of equal or greater length than the 

message.  

While most ciphers can be broken, no efficient method can be found to break the 

OTP cipher. Thus, the OTP cipher remains the only theoretically unbreakable one. 

Based on the four security conditions, we consider the scalability of OTP. 

Definition 1(a). Information conservational transformation (ICT) is referred to as 

a set of set-theoretic or information theoretic mathematical functions that forms an 

transformation T to transform the bit pattern of a long message in form F1 to a shorter 

pattern in form F2 systematically such that there exists a reverse transformation T’ 

that recovers F1 from F2. Formally we have: T(F1): F1F2 such that T’ and T’(F2): 

F2F1. 

Definition 1(b). Scalability is referred to as using ICT once or multiple times 

systematically to transform a long message or large data set into one or a series of 

short forms such that cipher keys are reduced to practical lengths or to a minimum for 

enciphering the short forms as OTP pads for secure transmission. In this case, An 

OTP pad is called a scalable OTP (S-OTP) pad. In S-OTP, a key is assumed reusable 

if the reuse can be concealed in another unbreakable S-OTP pad. 

Based on Definitions 1a and 1b, we extend information theoretic security (ITS) of 

OTP to information conservational security (ICS) of S-OTP.  

Definition 2a. An S-OTP cipher is said having information conservational 

security (ICS) provided that: (a) The key length required is significantly shorter than 

the original message due to ICT; (b) The shorter key does not weaken the ITS of 

OTP; (c) It must reduce network traffic.  

Definition 2b. Given 0<i<N, a minimum length form is a message form Fx = (X, 

{xi/X}) that cannot be further reduced in binary length through ICT in theory. An 

absolute minimum length form is the minimum form when N = 2. 

It could be argued that S-OTP is just OTP plus data compression, and there is 

nothing new. The author wishes it is a valid argument. However, the reality is that: (1) 

Information conservation or preservation has been a long sought goal in physics and 

information theory [11,12], and it is essentially information theoretic in nature; (2) 

The key length problem has been a well-known long standing impasse; (3) ICS is a 

systematic extension to ITS to scale down the length of a message to be enciphered 

[9,10]. 

The inception of ICS accounts for the new development in computing technology. 

Double precision floating-point numbers of IEEE binary64 is used as a technological 

basis. 

Theorem 1a (Possibility Theorem). ICT for ICS is possible based upon OTP and 

IEEE binary64. Formally, let {x} be the data set of a long integer L representing a 

sufficiently long message divided into sections, some set {xi}, 0<i<N, exists such that 

(X, {xi/X}) is significantly shorter than the long integer L, where X =  is a math 

summation (not XOR), and {xi/X} a percentage distribution. 
Proof. To show possibility, let L=16K bits divided into 32 of 512-bit sections {xi}. That leads to one 

64-bit double precision floating point summation X=  and 32 of 64-bit percentage distributions {xi/X} 

0<i<32, total 2K+64 bits vs. 16K, a nearly 8-fold reduction of key length and network traffic. This could be 
further hierarchically scaled (reduced) to a minimum or until the pair (X, {xi/X}) is short enough to be 

randomized and enciphered with a significantly shorter key. Thus, ICS of S-OTP can be equivalent to ITS 

in terms of un-breakability, provided computational precision is satisfied. (Note: As a possibility theorem, 
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not an optimality theorem, a generic example is sufficient for its proof. However, the possibility opened the 

door to the scalability of OTP.)  

Theorem 1b (Minimum Length Theorem). For any message in an intermediate 

ICT tranformation, given the number of data divisions N, a minimum length form Fx = 

(X, {xi/X}) exists in theory where length(X) = length(xi/X), 0<i<N. An absolute 

minimum length also exists in theory, where length(X) = length(three double precision 

floating point numbers), that would be 192 bits for IEEE binay64, assuming double 

precision floating point format.   
Proof. Given any ICT  T, we must have a form in length Fx = (X, {xi/X}), 0<i<N, such that at certain 

point we must have T(Fx):FxFy and length(Fy) = length(Fx) because (1) given 0<i<N, length({xi/X}) is 

irreducible; (2) if length(X)   length(one double precision floating point number) it becomes irreducible 

either.  Then we must have an absolute minimum length for N, where one double precision floating point 

number is for the summation, two are for the distribution double precision floating point format, that is 64 

bits each and 192 bits for three of them assuming IEEE binary64 standard.    

Theorem 1c (Reachability of Minimum). Given the number of data divisions 

N2, a minimum or absolute minimum length form can be reached through a 

recursive ICT transformation  
Proof. It follows from the proof of Theorem 1b.   

2.2 Method1: Add, Divide, and Conquer 

The rationale of S-OTP is that, given an unsigned big integer L representing the 

long message or large data item D to be transmitted, L can be divided into a set of 

shorter long integers {xi} = x1, x2, .., xi, .. xn representing sectors or sections of D to be 

transmitted. The summation X = x1 + x2 +  ...+ xi+...+xn can be obtained which could 

be represented as a long integer or a floating-point decimal much shorter than L to 

transmit. The percentage distribution {xi/X} is a type of most primitive information 

conservational key that can be encrypted and transmitted together with X in ciphertext 

for recovering {xi} to L and then D in the receiver side. This leads to S-OTP-

Method1—a one key cipher. 

S-OTP1-Method1 
Assume sender Alice and receiver Bob share a private key K distributed through QKD. 

Part I. Encryption 

Step 1. Let math summation X =  (not XOR). 

Step 2. Calculate percentage distribution {xi/X}; 

Step 3. Encrypt the text U = {X, {xi/X}} with one key K to ciphertext E=K U where  is XOR (not math 

summation). 

Step 4. Alice Transmits E to Bob. 

Part II. Decryption   
Step 1. Use K to decipher E to obtain X and {xi/X}; 

Step 2. Use {xi/X} to decrypt the summation X and recover {xi}; 

Step 3. Recover transmitted message from {xi} with concatenation. 

2.3 Illustration of S-OTP1-Mehrod1 

Assuming the plaintext data D to be transmitted is represented by the big integer L = 

1048549998213983988, we divide L into the three sections 1048549, 998213, and 

983988. Assume sender Alice and receiver Bob share a private key K distributed through QKD. 

Part I - Encryption 

(1) Let x1 = 1048549,  x2 = 998213, x3 = 983988, and  

(2) X = x1 + x2 +  x3 = 3030750; 

(3) Calculate percentage distribution {xi/X}={34.5970%, 32.9362%, 32.4668%}; 
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(4) Encrypt the plaintext U={3030750, {34.5970%, 32.9362%, 32.4668%}} to result 

in ciphertext E=K U; 

(5) Transmit E to Bob; 
Part II - Decryption: 

(1) Use K to recover U={3030750, {34.5970%, 32.9362%, 32.4668%}}; 

(2) Use U to recover x1=1048549,  x2=998213, and x3=983988; 

(3) L = concatenate(x1, x2, x3) = 1048549998213983988; 

(4) Recover D from L. 

It can be argued that S-OTP1-Mehrod1 does not reduce the key length. The 

counter argument is that, as a simple example the illustration is already in a minimum 

form. It does not really need S-OTP because a single OTP is sufficient. As proven in 

Theorem 1, S-OTP does reduce key length the same way with sufficiently long dada 

sections. The question is: could there be a precision problem? 

2.4 Method2—ICC with Collective Precision 

Percentage distribution has its own limitation due to sequential computation. When 

the math summation gets huge that is usually the case, the precision of a single 

percentage will be a problem. The computation of such a percentage can be avoided 

with the massive parallel collective precision property of ICC [9,10]. In ICC a big 

total can be divided into many subtotals or integers representing data sections. If each 

subtotal is further divided into bipolar import-export values, each value can be 

normalized by its corresponding column subtotal. A information conservational 

matrix can then be derived through column-major normalization for massive 

parallelism and collective precision without using the grand total. 

ICC is made achievable with bipolar fuzzy sets [13-17]. Bipolar fuzzy set theory 

forms an equilibrium-based mathematical abstraction—a set theoretic or information 

theoretic extension to fuzzy set theory [18]. It is a generalization of truth-based 

computing which can still be used freely as long as equilibrium conditions are not 

violated. Bipolar fuzzy set theory was once rescued by Zadeh [19]. 

In this subsection, we show an ICC example. We then examine and explain the 

properties of the example in next two subsections. A key concept in ICC is an 

information conservational bipolar matrix M. With M an energy or information total 

or summation can be decrypted through equilibrium-based rebalancing to result in all 

the subtotals in parallel with percentage distribution in collective precision built into 

M. This makes it possible to develop digital or quantum machinery with massive 

parallelism that is not achievable with linearly normalized percentage distribution.  

M consists of bipolar elements. The energy and/or information of a bipolar 

(import-export) element or variable x = (a, b) is defined as the length of a bipolar 

interval where a is negative and b positive.  

Energy of x:  |x| = |(a, b)| = b – a = |a| + |b|.    (1) 

For instance, |(-2.5, 3.5)|=3.5-2.5=2.5+3.5=6. 

A 3-partner US-China-EU trade example is used to illustrate the basic idea of ICC 

with collective precision. First, the 3-parners’ bipolar import-export data for 2014 are 

shown in Fig. 1a as a cognitive map (CM) in million Euros. The total 

energy/information in the trade scenario is characterized by the total import/export  

|(-3030750, +0)| = |(-0, +3030750)| = 3030750.  
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Using collective bipolar interaction in ICC, accurate calculation can be carried out 

with the bipolar quantum cellular automaton (BQCA) E(t+1) = M  E(t) based on a 

column-major normalized bipolar cognitive map matrix M that does not need the 

calculation of percentage distribution. (Note: The illustrations in this paper are in fix-

point format for readability vs. floating-point format.)  

In this ICC example E(1) is the transpose of the initial bipolar column vector with 

certain total energy/information. A cognitive map (CM) C is referred to as a bipolar or 

unipolar conceptual graph or an import/export network. M is obtained based on 

column-major normalization of an i/o-consistent interactive CM in which all elements 

are directly or indirectly interrelated. In this example, 

C(t) = . 

M = normalize(CT(t)) = . 

Equilibrium-based rebalancing is illustrated in Fig. 1b and curved in Fig. 1c. Fig. 

1d verifies equilibrium-based rebalancing with sequential computing. Fig. 1e shows 

200% is balanced to a perfect percentage distribution built in M. Thus, matrix M can 

be deemed the encryption of a percentage distribution. With M any total information 

such as |(-3030750, 0)| = 3030750 or |(-100, +100)| = 200 can be rebalanced.  

  
(a)                                               (b) 

    
(c)                                               (d)                                        

   

(e) 

Figure 1. (a) Bipolar CM of 2014 US-China-EU trade (in Million Euros); (b) Rebalancing of total 

import/export to an equilibrium state; (c) Curves of the rebalancing; (d) Digital computing; (e) 

Quantum-fuzzy rebalancing of 200% 
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While sequential computing does not support parallel processing, equilibrium-

based rebalancing can balance any total information to a perfectly equilibrium state 

with percentage distribution coded in M in a single iterative and massively parallel 

process without the need for the calculation of individual percentages. Although a 

perfect equilibrium-state is neither practical nor desirable, equilibrium-based 

rebalancing provides an information conservational approach to post-quantum 

cryptography described as S-OTP1-Method2. Most importantly, it finds a way for 

collective precision. 

S-OTP1-Method2 
Assume key K1 is shared by sender Alice and receiver Bob through QKD. 

Part I. Encryption 

Step 1. Data Transformation. Given binary data D to be transmitted, let the unsigned integer number set 

{di} = {d1, d2, .., di, .., dn}, represent the data sections of D. Let the sum X=d1+d2+...+di ...+ dn. 
Step 2. Bipolar Cognitive Mapping. Construct an i/o-consistent BCM C based on {di} such that {di} is 

decomposed into an unbalanced relational data set {eij} = {(eij
-,eij

+)} where each bipolar link weight eij 

= (eij
-,eij

+) and |di|   (energy/information of row i) with ratio |eij
-|/|eij

+| > l, a threshold for 

non-zero bipolar elements. Thus, {eij} forms a BCM C with total information X= . (Note: C is not 

unique – an area of further research where bipolar linguistic fuzzy sets can be used for the 
optimization of l and C.) 

Step 3. Bipolar Energy/Information Normalization. Normalize CT (transpose of C) to an information 

conservational matrix M (a bipolar quantum-fuzzy logic gate (BQFLG) or a bipolar quantum-fuzzy 
cognitive map (BQFCM)) under the conditions of Eq. (3) such that the BQCA E(t+1)=M × E(t) is 

asymptotic to an equilibrium state [10,11].  

Step 4. Data Encryption. Use K1 to encipher U={X,M} to E=UK1 = {X,M}’.  
Step 5. Transmit the pair E={X,M}’. 

Part II. Decryption  
Step 1. Use K1 to decrypt E to {X,M}; use K2. 
Step 2. Use M to decipher and depolar X to recover {di}; 

Step 3. Recover D from {di} with concatenation. 

Applying S-OTP1-Method2 we have the decryption example in Fig. 1. The total 

information of the last row of Fig. 1b approximate to exactly the same result as that of 

S-OTP1-Mehrod1: 

d1=||(-731114, +317435)=1048549;  

d2=||(-276085, +722128)=998213; 

d3=||(-508176, +475812)=983988  

D=Concatenate(d1, d2, d3)=1048549998213983988. 

2.5 The Nature of Information Conservation 

Given an nn square bipolar interactive matrix M and an n1 column bipolar vector 

E(t) such that E(t+1)=M × E(t), if ∀j, the absolute energy/information subtotal 

|εcol|M∗j(t) of each column j of M (but not necessarily each row) equals 1.0, or 

|εcol|M∗j(t)1.0, M is defined as an information conservational bipolar quantum logic 

gate (BQLG) matrix or a bipolar quantum-fuzzy cognitive map (BQFCM) [9,16], and 

we must have the bipolar quantum cellular automata (BQCA): 

|ε|E(t+1) = |ε|(M × E(t)) ≡ |ε|E(t).     (2) 
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Eq. (2) leads to a general-purpose BQCA theory – an equilibrium-based 

unification of matter and antimatter for ICC. Computationally, a BQCA can be 

regulated to achieve information conservation, regeneration, degeneration and 

oscillation. BQCA is thus a type of quantum-cellular model (Fig. 2). This leads to 

Method2 and the theory of ICC. 

The transpose CT(t) is used to obtain its column-major normalized BQLG matrix 

M for ICC. The normalization follows Eq. (3). Any man-made i/o-consistent CM can 

always be designed and normalized to M for a BQCA to be asymptotic to a bipolar 

equilibrium state even though some link weights are weaker and need more iterations 

(t) to be balanced. This property provides a basis for quantum and post-quantum 

cryptography. 

M(i,j) =  (CT(i,j))/|εcol|(CT
∗j).       (3) 

 
(a)              (b)              (c) 

Figure 2. A BQCA unification of matter and antimatter atoms (adapted from [11]) 

 In Eq. (3), the denominator |εcol|(CT
∗j) denotes the absolute energy/information subtotal of 

column j in CT. But the notation |εcol|(M∗j) denotes the normalized absolute energy/information 

subtotal of column j of matrix M. 

2.6 The Digital Nature of S-OTP-Method2 

Notably, S-OTP-Method2 is based on bipolar equilibrium-based rebalancing. 

Bipolarity is a quantum feature that form the bipolar reality of negative-positive 

particles. The bipolar property, however, can be depolarized for digital cryptography.  

A unipolar CM can be revealed from a bipolar one with depolarization. Since a 

bipolar representation is a generalization of unipolar representation and subsumes 

unipolar cases, all the elements of a polarized map can simply have zero negative 

energy/information which leads to the simplified CM as in Fig. 3 coded as a unipolar 

matrix C(t)—a positive relation that does not distinguish import and export with 

symmetrical subtotals. 

Depolarization leads to a unipolar cipher named S-OTP1R1-Method2 which is 

basically the same as S-OTP1-Method2 except using a positive CM and a positive 

matrix M. Fig. 3 shows a decryption example using S-OTP1R1-Method2 where in the 

last row we have the same result as for the bipolar case. 

d1 = ||(-0, +1048549) = 1048549;       

d2 = ||(-0, +998213) = 998213; 

d3 = ||(-0, +983988) = 983988;  

D = Concatenate(d1, d2, d3) = 1048549998213983988. 
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(a)                                          (c)                                                      

  

(b) 

Figure 3. Information-conservational unipolar rebalancing: (a) depolarized CM; (b) Positive 

distribution; (c) Positive curve (scaled) 
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2.7  Two Puzzles Explained 

(A) How can matrix C(t) in symmetry (C(t)(i,j)= C(t)(j,i)) be used in 

cryptography? The answer is that, although matrix C(t) is symmetrical, a column-

major normalized M can be non-linear and asymmetrical because the normalization is 

by dividing its column subtotal of CT(t) (data section subtotal), but not by the global 

total (corresponding to the overall summation). For instance, 

C(t) = ;      M = ;  

where C is symmetrical but M is not. The non-linear asymmetrical property of M 

can be characterized with a set of linear equations. Let the three subtotals (or data 

sections) be x, y, and z, respectively, for the 33 matrix M we have m10x – m01y = 0; 

m20x – m02z = 0; and m21y – m12z = 0; and mij  mji. The set of equations have 

infinite number of solutions because all column coefficients of M correlate non-

linearly with each other due to non-linear normalization based on different local 

column subtotals. This is fundamentally different from percentage distribution where 

all percentages are normalized with a global total and linearly independent.  

(B) If a unipolar positive matrix is sufficient why do we need a bipolar 

equilibrium-based matrix in cryptography? There are two top answers to this 

question: (1) The universe consists of negative-positive particles. Without bipolarity 

there would be no bipolar information conservation and bipolar quantum. Thus, 

bipolarity leads to a quantum model compatible to digital computing (further 

discussed later). (2) A bipolar matrix avoids large denominators, doubles the number 

of elements, in a unipolar matrix and doubles the parallel computing power for 

collective precision with equilibrium-based rebalancing (further discussed later). 

2.8  Security of Method1 and Method2 

Method1 is based on percentage distribution. It provides a basis for both theoretical 

analysis and practical development. The goal is to search for secure information 

conservational S-OTP ciphers by analyzing different approaches which may or may 

not be secure. 

Theorem 2a. Under the conditions of Definition 2, S-OTP1-Method1 is 

information conservationally not secure. 

Proof. It follows from that the transmitted message consists of numerical meta 

data with fixed format. Such knowledge could potentially weaken the ITS of OTP.  

The above problem can be solved by adding random bits to the metadata as 

paddings before being enciphered that can be removed when being decrypted by 

receiver. 

Theorem 2b. Under the conditions of Definition 2, S-OTP1-Method1 would be 

information conservationally secure provided that a sufficient number of random bits 

are added as paddings to the metadata to be enciphered that can be removed when 

being decrypted by receiver. 

Proof. With the provision, the conditions of S-OTP as defined in Definition 2 

remain intact.  
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The one key version (S-OTP1) suggests that, two different keys (S-OTP2) might be 

considered for an information conservational solution.  

S-OTP2-Method1 and Its Revised Versions  

(1) S-OTP2-Mehrod1: Use key K1 to encipher the summation X =  to X’; Use key 

K2 to encipher the text of { /X} to { /X}’; Transmit the packaged pair {X’, 

{ /X}’} without key reuse; 

(2) S-OTP2-2-Mehrod1: First, use a random number of bits specified in key K1 as 

random paddings for altering the numerical format of {X, { /X}} to {X, { /X}}’ 

(e.g. 080203 stands for “Insert 2 random bits for every 8 bits after bit position 3.);  

Then, use K2 as a key to encipher {X, { /X}}’ to {X, { /X}}’’;  Transmit {X, 

{ /X}}’’; 

Theorem 3a. Under the conditions of Definition 2, S-OTP2-Mehrod1 is 

information conservationally not secure. 

Proof. It follows the proof of S-OTP1-Mehrod1.  

Theorem 3b. Under the conditions of Definition 2, S-OTP2-2-Mehrod1 is 

information conservationally secure.   
Proof. With sufficient random bits as paddings specified by the first key and a regular 

second key, the message and its format are randomized and concealed in an unbreakable pad 

that does not weaken the security of OTP.  

Evidently, if a percentage distribution { /X} is replaced with an information 

conservational matrix M we will have different 1-key or 2-key versions of S-OTP-

Mehrod2 with similar security conditions as that of S-OTP-Mehrod1. 

3  Optimization 

3.1 Minimal BQCA Theorem  

Theorem 4. Mehtod1 is the minimal case of Method2.   

Proof. Mehtod2 entails an N  square matrix multiplied by a column vector in an 

information conservational BQCA. When N  is reduced to N 1, the matrix becomes a 

column vector of percentage distributions  = { /X} summing up to 1.0, the single number 

must be the summation X of N sections, such that the column vector multiplied by a single 

element matrix results in a column vector energy/information distribution { }.  The Matrix 

multiplication can be deemed the minimal BQCA which requires a final equilibrium state be 

reached in a single step with high precision such as   

Theorem 4 proves that Method1 is suitable for reducing network traffic, and 

Method2 can be used for computational precision. Theorems 1-4 provide a basis for 

applicability and efficiency analysis of a new crypto paradigm using either Method1 

(percentage distribution) or Method2 (information conservational matrix) or a 

combination of the two. Based on IEEE binary64 standard, double precision floating-

point format provides us an upper limit for long messages. Major considerations are 

on the key length for enciphering both the math summation and the percentage 

distribution. According to IEEE binary64 standard, exponents range from −1022 to 

+1023 that allows the representation of numbers between 10−308 and 10308, with full 
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15–17 decimal digits precision. By compromising precision, it allows even smaller 

values up to about 5 × 10−324.  

3.2 Applicability and Efficiency of Method1  

Using S-OTP2-2-Method1, the percentage distribution {xi/X} needs to be 

enciphered, where each double precision floating-point number xi/X requires 26 = 64 

bits. While a 1M = 220 bits message needs an impractical same length OTP key, if the 

1M-bit message is divided into 512-bit sections, the division leads to N = 220/29 = 211 

data sections with a math summation less than 512+11 = 523 bits. N = 211 double 

precision floating-point numbers are needed for the percentage distribution {xi/X} 

that entails 21126 = 217=128k-bit key length. A 128k+523-bit key is a nearly 8-fold 

reduction in key length compared with the message length. The upper limit of the 

exponent is +1023 for signed integers based on IEEE binary64. At the limit, the key 

length saving approaches 16-fold. It seems to be a solved problem. However, there 

are still unsolved problems. First, 128K+523 bits data plus K1 for random paddings is 

still too long to be a practical key length. Second, when the grand total is huge, the 

percentage distribution will have a precision problem because a percentage is 

normalized by the grand total as the denominator using percentage distribution.  

3.3   Applicability and Efficiency of Method2 

While for 1M-bit long messages the key length requirement for OTP is not 

practical, it is much less a problem with percentage distribution using Method1, but 

still a problem with Method2. Evidently, a 1M-bit message divided into 2K 512-bit 

sections would need a 211×211 sparsely populated information conservational matrix 

M. Assuming each column has an average of no more than 8 non-zero elements in 64-

bit double precision floating-point format plus one index that leads to 8×64=23×26 bits 

per column. A total of 8×64×211=220 bits plus a 513-bit summation need to be 

transmitted in ciphertext—more than the original 1M bits.  

While Method2 is inefficient and impractical, its information conservational 

property is still quite attractive. In terms of digital computing, its column-major 

normalization does not use the grand total but a much smaller section subtotal as the 

denominator and a much smaller sender designated percentage of a subtotal as the 

numerator. Remarkably, it can divide-and-conquer the high precision requirement into 

lower precision requirement. On the quantum side, its equilibrium-based rebalancing 

property reflects the bipolar reality of particle-antiparticle coexistence [9-12]. 

3.4 Hierarchical Optimization 

Without entirely enciphering both a summation and its percentage distribution or 

matrix M, Method1 and Method2 cannot achieve ICS. Enciphering matrix M does not 

reduce key length. Thus, S-OTP2-2-Method1 is the best candidate for hierarchical 

scalability toward a final solution. This leads to S-OTPH as illustrated in Fig. 4. It is 

made practical with IEEE binary64. 
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Figure 4. A 3-Level Hierarchy of S-OTPH for 1M bits 

First, we assume that 1M = 1048576 bits data divided into 1048 1000-bit sections. 

We would have a maximum of 1012-bit summation X  associated with a 104864 = 

(210 + 24)  26 = 216 + (24  26) = 64K + (16+8)  26  = 64K + 1K + 512 bits 

percentage distribution D. The summation can be converted to a 64-bit double 

precision floating-point number. The pair {X, D} would consists of 64K + 1K + 576  

bits = 67136 bits.  Second, the 67136 bits can be divided into 67 of 1002-1003-bit 

sections. That leads to 67 of 64-bit double precision floating-point numbers for the 

percentage distribution plus a maximum of 1008-bit summation. Again, the 

summation can be converted to a 64-bit double precision floating-point number. The 

67+1 double precision numbers need 6864 = 212 + 256 = 4K + 256 bits. Third, 4K + 

256 bits can be further scaled to 1K-bits plus K1 as a less than1K-bit randomizer to 

result in a 2K-bit key K2. Evidently, due to the short length the two keys are no longer 

a drawback. Formally, we have S-OTPH-Method1. Similarly, 1 Gaga bits = 1K Mega 

bits that entails a larger hierarchy. 

S-OTPH-Method1  

For every 1M bits of data to be transferred, assume sender Alice and receiver Bob 

share two private keys K1 and K2 distributed through QKD. 

Part I – Encryption 

(1) L=1; if the data length is short enough for an OTP cipher key, print message 

“Please use OTP without hierarchy”; 

(2) L=L+1; determine summation X =  and derive the percentage distribution 

D={ X};  

(3) If the data is too long for an OTP cipher key and its length is reducible 

(>minimum), go to Step (2);  

(4) If the data is too long for an OTP cipher key and its length is unreducible, stop and 

restart with different number of scalable pads;  

(5) Apply S-OTP2-2-Method1 to encipher {X,D,L} to {X,D,L}’’ with key K1 for 

adding random paddings and key K2 as a cipher key; 

(6) Transmit the ciphertext {X,D,L}’’ to the receiver.   

Part II - Decryption 

(1) Decipher {X,D,L}’’ to {X,D,L} with K2 and  K1; 

(2) Use X and D to find next layer {{ }, D}, L = L-1, 

if L>1, repeat step (2) until L = 1; 

(3) Cast {xi} to string format {di};  

(4) Recover the original message or data set D by concatenating {di}. 

Theorem 5. Under the conditions of Definition 2, S-OTPH-Method1 is 

information conservationally secure. 
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Proof. It follows from the proof of Theorem 1c and the information conservational 

security of S-OTP2-2-Method1.  

3.5 Collective Precision 

While Method1 uses percentage distribution, Method2 uses information 

conservational encryption. In Method1 each data section depends on a single 

percentage resulted from linear normalization by a grand total. When the data length 

is long, Method1 will have a precision problem. In Method2, each data section 

depends on all columns of matrix M resulted from column-major normalization by 

much smaller subtotals where percentage distribution is not directly calculated using 

the grant total. If each column has an average of n > 2 non-zero numbers, the 

precision requirement is n-times smaller. The larger the number n the more 

parallelism in high precision decryption. When n equals N, Method2 reaches 

maximum parallelism with N-fold precision enforcement for a positive matrix M and 

2N-fold for a bipolar matrix M. This observation leads to the inception of information 

conservational collective precision.  

Observation 1: Asymptoticity. If M is information conservational, BQCA E(t+1) 

= M   E(t) is asymptotic to an equilibrium state determined by M [9,10].  

Observation 2: Information Conservational Computing and Cryptography. If 

an original message D is converted to an energy/information total E through a BQCA 

transformation, the information conservational matrix M of the BQCA can serve as a 

key to decode the total information to the original message D in the receiver side [9]. 

However, to encrypt and transmit matrix M will cost more than to encrypt and 

transmit the original message. Thus, Method1 is more efficient than Method2 for 

encryption and transmission, but only Method2 can enable collective precision and 

efficient decryption. 

Theorem 6. If M is information conservational, BQCA E(t+1) = M   E(t) can be 

used to derive the percentage distribution in an equilibrium state determined by the 

BQCA. 
Proof. Given 100 (percent), Theorem 6 follows the asymptoticity theorem [9] directly (see 

example in Fig. 1e ).  

Theorem 7. A percentage distribution of N divisions can be converted to an NN 

(unipolar or bipolar) information conservational matrix M for collective precision 

with maximum parallelism such that M is information conservational and BQCA 

E(t+1) = M   E(t) is asymptotic to an equilibrium state. 
Proof.  Notice that M is normalized and information conservational but not unique. 

Theorem 7 follows from   because  is strictly proportional to 

 That is, M can be derived from either of them  

Based on the above findings we can conclude that, on the sender side, matrix M 

can be used for determining the percentage distribution with N-2N fold reduction of 

precision requirement due to column-major normalization (Re. Eq. (3)). On the 

receiver side, M can be used to decrypt a big total to subtotals (or data sections) with 
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collective precision in a reverse way (Fig. 1b and Fig. 3b). Thus, Method1 and 

Method2 can be used in a combination. Method2 focuses on collective precision with 

ICC; Method1 focuses on secure and efficient data transmission, that lead to the block 

diagram design in Fig. 5 impact factor followed by an optimized algorithm that 

combines the advantages of Method1 and Method2 while eliminating their 

drawbacks. 

 
Figure 4. Sender and Receiver 

S-OTPH-Method1+2  

For every 1M bits of data to be transferred, assume sender Alice and receiver Bob share two private keys 
K1 and K2  distributed through QKD. 

Part I – Sender Side 

(1) L=1; if the data length is short enough for an OTP cipher key, print message “Please use OTP” 

without hierarchy; 

(2) L=L+1, compute summation X =  derive information conservational matrix M, and determine 

percentage distribution D={ X} with BQCA E(t+1) = ME(t) (see Fig. 1e);  

(3) If the data is too long for an OTP cipher key and its length is reducible (>minimum), go to Step (2);  

(4) If the data is too long for an OTP cipher key and its length is unreducible, go to Step (2) with a smaller 

N such that 0<i<N and N2;  

(5) Apply S-OTP2-2-Method1 to encipher {X,D,L} to {X,D,L}’’ with key K1 for adding random paddings 

and key K2 as a cipher key; 
(6) Transmit the ciphertext {X,D,L}’’ to the receiver.    

Part II – Receiver Side 

(1) Decipher {X,D,L}’’ to {X,D,L} with K2 and K1;  

(2) Construct information conservational matrix M from D; 

(3) Use X and M in a BQCA to find next layer {{ },M}, L=L-1; 

if L>1, repeat step (3) until L=1; 
(4) Cast {xi} to string format {di};  

(5) Recover the original message or data set D by concatenating {di}. 

Theorem 8. Under the conditions of Definition 2, S-OTPH-Method1+2 is 

information conservationally secure. 

Proof. Since Method2 is only used for collective precision on the sender side and 

parallel decryption on the receiver, the theorem follows from the proof of Theorem 1c 

and the security of S-OTPH-Method1.  

3.6 Transmitting Large Dada Sets 

With S-OTPH-Method1+2 a large data set can be serialized as a number of Mega 

bits S-OTP pads, and each Mega bits can be securely transmitted with a 2K-4K bit 
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short key that is practical with QKD while a 1M bit key with the same length as the 

message  is obviously not practical. 

3.7 A Consequence of Collective Precision 

Collective precision adds a number of new features to hierarchical S-OTP. On the 

sender side, it can be used for testing everything efficiently and precisely to guarantee 

that the receiver side will get the correct message. On the receiver side it can be used 

to decrypt a summation efficiently with collective precision and in massive 

parallelism colluding with the sender side based on public protocols on data size and 

number of divisions N. These are necessary but auxiliary functions.  

It can be observed that the percentage distribution {xi/X} is a major contributor to 

the key length requirement of S-OTP. If it does not have to be enciphered but 

transmitted in plaintext, we only need to cipher a short summation with a much 

shorter key. If 1Gaga bits divided into 1K mega divisions, each 1Mega division 

results in a 64-bit double precision summation, 1G bits with 1K such summations 

would only need 64K bits to be ciphered. Of course, the summations can be 

hierarchically scaled further. 

 Now, with collective precision, we have the challenging question: Can the 

percentage distribution {xi/X} be securely transmitted in plaintext if {xi} are double 

precision floating-point numbers due to the reuse of a double precision floating-point 

key in multiplication or division operation instead of XOR? 

Whereas this paper has assumed that a transmitted message as a long binary 

integer L is divided into smaller integers {xi}, and their summation is also an integer 

. Evidently, X can be guessed by attackers with a trial-error method to break 

S-OTP if an integer key is reused for {xi} without encrypting the percentage 

distribution {xi/X}. Now with collective precision, floating point decimals can be used 

instead of integers.  

Collective precision makes it possible to use double precision floating-point 

decimals as a reusable key for non-linear multiplication, division, addition, and/or 

subtraction. Such non-linear operations lead to decimal precision that cannot be 

guessed without knowing the reusable key—a double precision floating-point 

decimal. The summation of these decimals results in another double precision 

floating-point decimal that can be encrypted as an S-OTP pad. In this case, the 

percentage distribution {xi/X} could be misleading to attackers, and the final 

summation could be unguessable with a trail-error method due to floating point 

decimal precision and non-linear operation with a decimal key.  This leads to the 

hypothesis for future research.  

Hypothesis: With double precision floating-point decimals for collective 

precision, the percentage distribution {xi/X} in S-OTP can be securely transmitted in 

plaintext provided that (a) {xi/X} is not the actual percentage distribution but a 

misleading to attackers; (b) the summation  is enciphered as an 

unbreakable summation of double precision floating point decimal numbers. 

(Remark: This hypothesis could close a loophole in the proof of Theorem 8 of ref. 

[9].) 
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4 Quantum-Dream Machinery  

Collective precision suggests that Method2 is suitable for research/development of 

bipolar quantum-digital machinery. While unipolar values are preferred by digital 

machines, the bipolar nature of S-OTP-Mehtod2 makes it suitable for developing 

quantum machinery with equilibrium-based bipolar quantum rebalancing and 

information conservation (Fig. 6). Encryption would be unnecessary for quantum 

computing and communication [8].  The quantum machine in Fig. 6(a) can be used, 

theoretically, in encryption and decryption for digital communication. Each column of 

an NN matrix M may have a maximum of N non-zero elements for maximum 

parallelism. If N=1K or 2K, a math distribution among N sectors can be determined in 

one procedure on the sender side; or an information total can be quantum rebalanced 

to N subtotals in parallel without using percentage distribution. 

While the bipolar quantum dream seems to be “far-fetched” in terms of quantum-

digital compatibility, a newly reported discovery of a class of subatomic particles 

(fermions) named Angel Particles [20-22] injected new life into this line of research. 

The new discovery is a family of particle-antiparticle pairs expected to make quantum 

computing more practical and powerful. It strengthens the ontological basis of 

equilibrium-based bipolar quantum rebalancing. Fig. 6(a) shows the draft of a bipolar 

quantum-digital crypto machine. Fig. 6(b) shows bipolar quantum teleportation. Fig. 

6(c) shows a bipolar qubit register. The dream machinery forms a quantum 

intelligence paradigm or S-OTPQ for further research. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Bipolar quantum-digital (BQD) computing; (b) Bipolar quantum teleportation (BQT); 

(c) Bipolar qubit register (adapted from [15,23]) 
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5   Conclusions 

S-OTP—scalable one-time pad has been presented based on ICC. Security conditions have 

been established. Collective precision has been proposed. It has been shown that 

(1) S-OTP reduces key and data length significantly, and makes it possible for 

transmitting large data sets with ICS.  

(2) Math summation without using big primes makes S-OTP quantum proof to 

quantum factorization (cf. [1, 9, 24-29]). 

(3) ICC can be massively parallel, accurate, efficient, and suitable for developing 

quantum machinery with collective precision. 

Whereas OTP is prevented from being widely used by its key length requirement, 

S-OTP gets around the problem through ICC without compromising OTP security and 

network traffic. Thus, the S-OTP paradigm qualifies itself as a unique extension from 

ITS to ICS for post-quantum cryptography (Fig. 7). 

 
Figure 7. The road to information conservational security 

Floor-roof mysteries. According to the floor-roof theory of science [17], ITS of 

OTP is developed based on information theory rooted in probability and statistics—a 

floor of modern science; ICS of S-OTP is a set-theoretic development rooted in 

bipolar fuzzy sets and dynamic equilibrium—a roof of modern science. Thus, this 

work has opened some major challenges. Among them are the following floor-roof 

mysteries for future research:  

(1) Is information conservation an information theoretic extension? 

(2) If S-OTP is just OTP plus data compression, and there is nothing new, is S-OTP 

information theoretically secure? If not, how can OTP be secure? 

(3) Shannon famously concluded on the impossibility for perfect secrecy beyond OTP 

with key length greater than or equal to the message to be ciphered [7]. Although 

this paper does not attempt to falsify Shannon’s theorem, however, if S-OTP is 

secure, could Shannon's theorem be wrong? 

(4) The data compression achieved in S-OTP is deemed by some researcher as an 

impossible task in violation of the most fundamental basics of Kolmogorov 

complexity [30,31]. But if it is really impossible, how can IEEE binary64 be a 

standard?  

(5) Could modern science have been a well-founded building with a floor of 

observable truth but with a missing roof for equilibrium and information 

conservation [9,10,16,17]? 

Floor-roof assertions. While the above mysteries are left for future research 

effort, we have the following floor-roof assertions: 
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(1) Can the floor perform some functions not performed by the roof? The answer is 

definitely YES. 

(2) Can the roof perform some functions not performed by the floor? The answer is 

definitely YES. 

(3) Can information conservational security on the roof solve some unsolved problems 

by information theoretic security on the floor? The answer should be logically 

YES. 

The significance of this work is manefest in the above mysteries and assertions. 

The findings prove that S-OTP can bypass the assumptions of Shannon's theorem on 

OTP key length limitation [7] without falsifying it. The key is information conservation 

with double-precision floating-point format and quantum-fuzzy collective precision. 
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