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Abstract. Decision trees and random forests are widely used classifiers in machine learning. Service
providers often host classification models in a cloud service and provide an interface for clients to use
the model remotely. While the model is sensitive information of the server, the input query and pre-
diction results are sensitive information of the client. This motivates the need for private decision tree
evaluation, where the service provider does not learn the client’s input and the client does not learn
the model except for its size and the result.
In this work, we identify the three phases of private decision tree evaluation protocols: feature selection,
comparison, and path evaluation. We systematize protocols for each of these phases to identify the best
available instantiations using the two main paradigms for secure computation: garbling techniques and
homomorphic encryption. There is a natural tradeoff between runtime and communication considering
these two paradigms: garbling techniques use fast symmetric-key operations but require a large amount
of communication, while homomorphic encryption is computationally heavy but requires little commu-
nication.
Our contributions are as follows: Firstly, we systematically review and analyse state-of-the-art proto-
cols for the three phases of private decision tree evaluation. Our methodology allows us to identify
novel combinations of these protocols that provide better tradeoffs than existing protocols. Thereafter,
we empirically evaluate all combinations of these protocols by providing communication and runtime
measures, and provide recommendations based on the identified concrete tradeoffs.

Keywords: Privacy-preserving protocols, secure computation, homomorphic encryption, decision tree evaluation,

machine learning

1 Introduction

Machine learning is pervasively being applied in various real-world scenarios. All major IT companies, includ-
ing Amazon, Apple, Google, Facebook and Microsoft, are working on and use machine learning technologies.
First a training phase takes place where a model is trained on a large dataset so that later it can make predic-
tions on an input, which happens in the evaluation phase. One of the most commonly used predictive models
are decision trees, whose extension to random forests – sets of smaller decision trees trained on different
random subsets of features – is considered to be among the most accurate classification models [DCBA14].

In many scenarios, predictive models such as decision trees and neural networks are trained or queried on
sensitive data and should be handled in a private manner [WGC18]. Solutions for private training of decision
trees exist that have been heavily optimized [LP00,LP02,VC05,VCKP08,BS09,FW12].

In this work, we focus on the private evaluation of decision trees with security against passive adversaries.
In this scenario, the server holds a decision tree and offers its evaluation as a service to its client with sensitive
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Sub-protocol PathH PathG

SelH + CompG HGH §4.1 HGG [BFK+09]
SelG + CompG GGH §4.1 GGG [BFK+09]
SelH + CompH HHH [TMZC17] HHG §4.1
SelG + CompH × ×

Table 1: Combinations of sub-protocols for private decision tree evaluation ABC = SelA + CompB + PathC.
SelH/SelG denotes oblivious feature selection, CompH/CompG oblivious comparison, and PathH/PathG

oblivious path evaluation with homomorphic encryption (H) and garbling techniques (G).

input to the decision tree. Moreover, the model may leak information about the sensitive training data used
for its generation, which is a valuable asset of the server. The server’s goal is to offer a service without
compromising the client’s input, or the client learning anything about the decision tree (beyond its size and
the result).

Note that recent work [TZJ+16,PMG+17,SSSS17,JSD+18] has shown that it is possible for an attacker
who has only blackbox oracle access to prediction APIs of machine learning models to succeed in learning
model parameters by repeated adaptive queries to the API. Defending against such attacks is an active area
of research and several proposals have already appeared, e.g., [TZJ+16,KMAM17,JSD+18]. We deem dealing
with blackbox attacks out of scope for this paper.

1.1 Applications

Cloud-hosted evaluation of machine learning models is a widely used service that companies such as Amazon,
Google or IBM provide to their customers. While doing so [Bar15], Amazon Web Services (AWS) recognizes
that their clients care about the privacy of their data [Ser18]. These services can be enhanced by using private
evaluation of machine learning models to allow for providing a service without violating neither the privacy
of the resulting model nor the privacy of the customers’ input features. Most machine learning APIs such
as MLJAR [MLJ17], BigML [Big18], Wise.io [Wis18], or Azure Machine Learning Studio [Mic18] support
decision tree or random forest classifiers. Decision tree evaluation has a tremendous amount of applications,
and is being used by companies such as Facebook [IK17] and Microsoft [RG16].

Private decision tree evaluation can provide a solution for private medical diagnosis [TASF09], such as
electrocardiogram classification [BFK+09,BFL+11], where the medical history and genomic data of the pa-
tient are sensitive information. Decision trees and random forests can be applied for malware [AM18], and
text classification [RMD18]. Moreover, decision trees and random forests have been successfully used for
detecting insider threat [MAAG15] and multimedia protocol tunneling [BSR18], as well as spam campaign-
ers [GKG+18], and predicting the interruptability intensity of mobile users [YGL17], data hotspots in cellular
networks [NIZ+16], and even private interactions in underground forums [OTGT18]. Private evaluation of
decision trees and random forests can enhance the privacy that these techniques provide, while protecting
the sensitive business information of the service provider. Recently, secure evaluation of branching programs,
an extension of decision trees, has also been utilized in a protocol for private set intersection [CO18].

1.2 Outline and Our Contributions

There exist two main paradigms for secure computation: homomorphic encryption, which often has little com-
munication but high computation complexity, and garbling techniques, which require more communication,
but utilize efficient symmetric-key primitives. In this work, we systematically analyze the state-of-the-art
protocols for private decision tree evaluation that make use of these paradigms. We explore the tradeoffs and
combinations of the identified sub-protocols, compare the performance of all combinations and identify the
most efficient private decision tree evaluation protocols to date.

In more details, our contributions are as follows:
Systematization and analysis of existing techniques (§3). Private decision tree evaluation consists

of three sub-protocols: The first is private selection of features that are to be compared with in each of the
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S Server (holds decision tree)
C Client (holds input features)
T Decision tree
n Dimension of feature vector
t Size of a feature
m Number of decision nodes
m′ Number of depth-padded decision nodes
m Number of possibly depth-padded decision nodes, i.e., m or m′.
d Depth of decision tree

x = {x1, . . . , xn} Client’s feature vector
y = {y1, . . . , ym} Server’s thresholds for each decision node

κ Symmetric security parameter
s Statistical security parameter

τsym Size of symmetric ciphertext
τElGamal Size of ciphertext in lifted ElGamal
τPaillier Size of ciphertext in Paillier
τDGK Size of ciphertext in DGK encryption

Table 2: Notations used throughout the paper.

decision nodes, the second is private comparison, and the third is private evaluation of the path corresponding
to the given input in the decision tree. We analyze the state-of-the-art techniques for these sub-protocols
that use additively homomorphic encryption (H) as well as those using garbling techniques (G). We de-
note the different approaches for oblivious selection, comparison, and path evaluation by SelH/SelG (§3.1),
CompH/CompG (§3.2), and PathH/PathG (§3.3), respectively, and describe their efficient instantiations.

Protocols for private decision tree evaluation (§4). We show that different sub-protocols can be
combined efficiently, resulting in the six protocols shown in Tab. 1. We adapt all resulting protocols to an
offline-online setting, where all operations independent of the input features are precomputed in an offline
phase, which results in a more efficient online phase (§4.1). Thereafter, we present protocol extensions for
some of our protocols (§4.2).

Empirical evaluation (§5). We evaluate the performance of the resulting private decision tree evalua-
tion protocols and study the tradeoff between runtime and communication on example real-world datasets.
We show the competitive performance of general-purpose secure two-party computation protocols for sub-
protocols of private decision tree evaluation that has been claimed to be inefficient in [WFNL16,TMZC17].

Improvements and recommendations (§6). We show that our identified hybrid protocols that com-
bine homomorphic encryption with garbling techniques achieve an order of magnitude runtime improvement
over state-of-the-art protocols. We provide recommendations for different settings based on our findings.

Future work and open questions. The protocol based solely on garbling techniques can easily be
extended to security against malicious clients (cf. §4.1). Tai et al. [TMZC17] propose the same (more costly)
extension using zero-knowledge proofs for the protocol based solely on homomorphic encryption. As interest-
ing direction for future work, one could study and extend the security of hybrid protocols against malicious
clients.

2 Preliminaries

In this section, we detail the necessary preliminaries to our work. The notations we use are summarized
in Tab. 2.

2.1 Decision Trees

A decision tree is a binary tree T with m internal nodes called decision nodes, as shown in the ex-
ample in Fig. 1a. Every leaf node is called a classification node and is associated with a classification
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Fig. 1: Decision trees with depth d = 2.

value v1, . . . , vm+1. A decision tree has a threshold vector y = {y1, . . . , ym} and receives an n-dimensional
feature vector x = {x1, . . . , xn} as input. At the jth decision node (j ∈ {1, . . . ,m}), a comparison between
an xi and yj takes place (i ∈ {1, . . . , n}). Decision tree evaluation T (x) means evaluating the comparisons
at each decision node of a path, the result of which defines which branch is taken next. When a leaf node is
reached on the path, the classification value stored in the leaf is outputted. The depth d of the decision tree
is the length of the longest path between the root and any leaf.

Additionally, we define depth-padding, where dummy decision nodes are introduced at every leaf until
depth d is reached in order for each path to have the same depth. A dummy node has one outgoing edge,
i.e., independently from the comparison result it leads to the same node as shown in Fig. 1b. The number of
these dummy nodes, which depends on the structure of the tree, is at most md, i.e., the number of decision
nodes in the depth-padded tree is m ≤ m′ ≤ m(1 + d).

Real-world datasets. In this paper, we use the real-world datasets summarized in Tab. 3 for which we
trained decision trees using scikit-learn [sld17]. These datasets are taken mostly from the UCI machine
learning repository [Lic18]: the classical iris dataset for pattern recognition of the iris flower, the wine and
(breast) cancer datasets for classification based on the chemical analysis of wines and the characteristics
of a diagnostic image, respectively, as well as the boston dataset that includes house prices in Boston, the
digits dataset that contains images of hand-written digits, which has been used by NIST [GBC+97], and
the diabetes dataset that includes automatic and paper records of diabetes patient glucose measurements
for classification. The linnerud dataset has been used in [Ten98] for regression and includes physiological
measurements. The decision trees are of varying sizes and depths which allows us to study the behaviour of
all our identified protocol combinations. Moreover, these datasets are an order of magnitude larger than any
real-world dataset used by previous work on private decision tree evaluation [WFNL16,TMZC17]. In Tab. 3,
we show the values of n (number of input features), d (depth), m (number of decision nodes), and m′ (number
of depth-padded decision nodes).

2.2 Cryptographic Techniques

Private decision tree evaluation protocols can be constructed based on both paradigms for secure computa-
tion: homomorphic encryption and garbling techniques. We detail the techniques used in this work.

Oblivious transfer. 1-out-of-2 oblivious transfer (OT) allows a sender to obliviously send one of two
messagesm0,m1 to a receiver according to the receiver’s selection bit b, without the receiver learning anything
about m1−b or the sender learning b. Oblivious transfer generally requires expensive public-key operations.
However, a small (symmetric security parameter κ) number of base OTs can be extended to any polynomial
number of OTs efficiently using only symmetric-key operations [IKNP03]. Improvements have been presented
on OT extension protocols with security against passive [ALSZ13] and active adversaries [ALSZ15,KOS15].
OTs can be efficiently precomputed [Bea95], which is suited for an offline-online scenario, where the parties
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Dataset n d m m′ Source

iris 3 5 8 19 UCI
wine 7 5 11 26 UCI
linnerud 3 6 19 47 [Ten98]
(breast) cancer 12 7 21 66 UCI
digits 47 15 168 1161 UCI
diabetes 10 28 393 6432 UCI
boston 13 30 425 6768 UCI

Table 3: Decision trees of varying sizes (i.e., input features n, decision nodesm and padded decision nodesm′),
and depths d for real-world datasets, trained using scikit-learn [sld17] which contains a library with these
example datasets.

can compute parts of the protocol before providing their actual inputs to the computation. During precom-
putation in the offline phase, it is possible to run random OTs on random inputs, which are then used to
mask the actual messages and choice bits. To retrieve the output of the actual OT in the online phase, the
parties blind their messages using inexpensive XOR operations, and require |m0|+ |m1|+ 1 bits of commu-
nication, whereas all cryptographic operations are shifted to the offline phase, which requires τsym bits of
communication per OT.

Yao’s garbled circuit protocol. Secure two-party computation allows two parties to compute a func-
tionality on their private inputs without learning anything about the other party’s input (beyond the output).
Yao’s garbled circuit (GC) protocol [Yao82, Yao86] is one of the most widely used solutions for secure two-
party computation. Yao’s protocol is asymmetric: one of the parties acts as the garbler, who garbles the
circuit, i.e., assigns two random keys corresponding to 0 and 1 to each of its wires and encrypts the gates us-
ing these keys. The garbler forwards this garbled circuit GC to the other party, the evaluator, who evaluates
it after having received the keys corresponding to its input bits from the garbler obliviously through OTs.
The protocol therefore relies on OTs linear in the input length of the evaluator and symmetric-key operations
linear in the size of the Boolean circuit describing the function. Various optimizations exist including point-
and-permute [BMR90], free-XOR [KS08a], fixed-key AES garbling [BHKR13], and half-gates [ZRE15], while
at the implementation level Single Instructions Multiple Data (SIMD) operations can be used [BJL12]. All
these state-of-the-art optimizations are implemented in the ABY framework [DSZ15], which we use in our
implementation. With these optimizations, each AND gate of the circuit needs 2τsym bits of communication.

Additionally, we use the point-and-permute technique in our protocols [BMR90]. In the classic garbling
scheme, each wire i has two labels (k0i for 0 and k1i for 1) associated with it. In order to hide the truth values
of these wires with minimal overhead, a color bit can be appended to each label (opposite color bits for 0
and 1). The relation of the color bits and the truth values are known only to the garbler, while the evaluator
holds one label from each wire, the color bit of which it can use to proceed with evaluation. In the end of the
protocol, the evaluator possesses the wire labels for the output value, which have the color bits appended to
them.

We use the following notations for the garbling scheme: (GC; out0, out1)← Garble(C, in0, in1) denotes
the garbler’s garbling method that returns the garbled circuit GC, including the output wire keys (out0,
out1) for both the 0 and 1 values, respectively. It gets as input circuit C and input wire key pairs (in0,
in1) for the evaluator’s input wires. (GC; color)← Garble’(C, in0, in1) denotes the same garbling method
but returns the color bits along with GC. out← Eval(GC, in) denotes the garbled circuit evaluation where
the evaluator inputs the wire keys in corresponding to its inputs (received via OTs from the garbler), and
receives the output wire keys out corresponding to its output bits. The actual output remains oblivious
to the evaluator, since he does not learn which values his wire keys correspond to. out′ ← Eval′(GC, in)
denotes a similar method, where the evaluator receives blinded output bits out’, i.e., the color bits of the
outputs.

Homomorphic encryption. Homomorphic encryption allows anyone holding the public key pk to
calculate [x1 + x2] = [x1] + [x2], given two ciphertexts [x1] := Encpk(x1) and [x2] := Encpk(x2). Performing
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Ideal functionality FPDTE.

1. Private input of S: decision tree T .
2. Private input of C: inputs x = {x1, . . . , xn}.
3. Compute: evaluate T (x).
4. Output of C: classification result v = T (x).

Fig. 2: FPDTE – Ideal functionality for private decision tree evaluation (PDTE). A decision tree T is defined
by its topology, selection σ : m→ n, thresholds y = {y1, . . . , ym} and classification values v1, . . . , vm+1.

c · [x] with constant c is supported since this is equal to adding [x] with itself c times, which can be efficiently
computed using the double-and-add method.

We use semantically secure additively homomorphic encryption schemes. More specifically, we use Paillier
encryption with packing [Pai99,DJ01], DGK encryption [DGK08], and Lifted ElGamal encryption [ElG85].
With a plaintext space of ZN , the ciphertext space of Paillier and DGK encryption are Z∗N2 and Z∗N , re-
spectively, where N is an RSA modulus. Paillier encryption allows for packing of plaintexts and ciphertexts
when the encrypted values are smaller than the plaintext space. We use ciphertext packing since the cipher-
text [x] in our case is much larger than the plaintext x. Thus, we can pack multiple ciphertexts [x1], ..., [xn]
into a single one: [X] = [x1 + 2|x1|x2 + ... + 2|xn−1|xn], and reduce the communication from n · τPaillier to
n · τPaillier/|xi|.

Lifted ElGamal encryption is similar to the classical ElGamal scheme, with the exception that the plain-
text message is in the exponent, i.e., m is replaced by gm, where g is the group generator. This allows for
additive homomorphism but makes decryption more difficult due to the discrete logarithm that needs to be
solved. Lifted ElGamal can be instantiated using elliptic curve (EC) cryptography, where the ciphertext is
represented by two EC points. This scheme is thus very efficient but can only be used when the plaintext
values are of a known small subset of the plaintext space.

3 Protocol Building Blocks

Private decision tree evaluation is run between two parties: a server S holding a – potentially depth-padded
– classification tree T (with threshold vector y, input selection σ and classification values) and a client C
providing its input feature vector x. After the protocol evaluation, C obtains the classification result, without
learning any information about the tree beyond its size and the output, and S learns nothing about C’s input
features. The corresponding ideal functionality FPDTE is depicted in Fig. 2.

In this section, we recapitulate the state-of-the-art sub-protocols for private decision tree evaluation with
security against semi-honest adversaries. We describe each protocol and refer to the original publications
for specific details on each construction. In §3.1, we detail two protocols for privately selecting m features
from n input features that are assigned to a decision node to be compared at (selection phase). In §3.2, we
recapitulate two sub-protocols for private comparison (comparison phase): one based on garbled circuits and
another based on additively homomorphic encryption. Thereafter in §3.3, we provide protocols for obliviously
evaluating the path to the classification leaf based on the results of the previous phase (path evaluation phase).

In all sub-protocols presented in this section, the number of decision nodes in decision tree T is either
the original number of decision nodes, i.e. m, or the number of depth-padded decision nodes m′ (cf. §2.1).
This is according to the approach chosen for path evaluation (§3.3). Therefore, we use m decision nodes in
our description, where possibly m = m or m = m′.

For completeness, we give in §A the communication of all sub-protocols in Tab. 5 and their asymptotic
computation complexities in Tab. 6.
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Ideal functionality FSel, given a secret sharing scheme S1.

1. Private input of S: selection σ : m→ n.
2. Private input of C: inputs x = {x1, . . . , xn}.
3. Compute: z = {xσ(1) . . . , xσ(m)}, i.e., select m values from the n inputs with selection σ.
4. Output of S, C: a secret share of z using S1.

Fig. 3: FSel – Ideal functionality for selecting m elements from n ≤ m elements obliviously.

Ideal functionality FComp, given two secret sharing schemes S1, S2.

1. Private inputs of S, C: secret shares of the selection xσ(1) . . . , xσ(m) according to S1.
2. Private input of S: y = {y1, . . . , ym}.
3. Compute: comparison of inputs, i.e., for i ∈ {1, . . . ,m}: ci = 1 if xσ(i) > yi, ci = 0 otherwise.
4. Output of S, C: share of c1, . . . , cm with S2.

Fig. 4: FComp – Ideal functionality for obliviously comparing m pairs of elements.

Ideal functionality FPath, given secret sharing scheme S2.

1. Private inputs of S, C: secret shares of the comparison results {c1, . . . , cm} with S2.
2. Private input of S: decision tree T .
3. Compute: evaluation of the decision tree path using the comparison results.
4. Output of S: classification result v.

Fig. 5: FPath – Ideal functionality for oblivious decision tree path evaluation.

3.1 Selection Phase

The selection phase obliviously selects from the n features of the client C a value for the m decision nodes
(where they are to be compared to thresholds) according to the selection σ : m → n of the server S. The
ideal functionality FSel that describes this selection is shown in Fig. 3. We identify two ways to instantiate
it, one based on additively homomorphic encryption (SelH), and an other based on the secure evaluation of
a Boolean selection network using garbled circuits (SelG). In both protocols, the outputs of S, C are secret
shares of the result: none of the parties learns any information about the output, but they are able to recover
it together.

Selection using additively homomorphic encryption (SelH, Fig. 6). Additively homomorphic
encryption has been used to perform oblivious selection in [BPSW07,BFK+09]. The client C encrypts all its
inputs, and sends the ciphertexts over to the server S along with its public key. S then selects the values
according to selection σ and homomorphically blinds these with statistical blinding using fresh randomness
(pads are longer than the plaintext value by s bits, where s is the statistical security parameter). S then
sends these to C, who decrypts them, retrieving a blinded selection of its inputs. In this sub-protocol, we
use either Paillier encryption with ciphertext packing for the m ciphertexts to reduce the communication to
(n+m/(t+ s)) · τPaillier bits (cf. §2.2), or DGK encryption with smaller ciphertexts and (n+m) · τDGK bits
of communication.

Selection using a garbled selection network (SelG, Fig. 7). An alternative for selecting the features
is evaluating a selection network [KS08b, BFK+09] obliviously, which is based on Waksman’s permutation
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Server S Client C
Input: m, selection σ Input: x = (x1, . . . , xn)
Output: r1, . . . , rm random Output: z1, . . . , zm blinded values

Offline
Generate r1, . . . , rm (t+ s)-bit random Generate HE public key pk, symmetric key sk

Online
For l ∈ {1, . . . , n}

[x1], . . . , [xn] [xl]← Encpk(xl)
For i ∈ {1, . . . ,m} ←−−−−−−−−−−−

[zi]← [xσ(i) + ri] [z1], . . . , [zm] For i ∈ {1, . . . ,m}
−−−−−−−−−−−→ zi ← Decsk([zi])

Return r1, . . . , rm Return z1, . . . , zm

Fig. 6: SelH – Oblivious selection using additively homomorphic encryption.

Server S Client C
Input: m, selection σ Input: x = (x1, . . . , xn)
Output:K0 = (K0

1,1, . . . ,K
0
m,t),K

1 = (K1
1,1, . . . ,K

1
m,t) Output: K = (K1, . . . ,Km,t) keys

Offline
Generate C of selection network realizing σ Precompute nt OTs
(GC; (K0

1,1, . . . ,K
0
m,t), (K

1
1,1, . . . ,K

1
m,t))← GC

Garble(C, (s01,1, . . . , s
0
n,t), (s

1
1,1, . . . , s

1
n,t)) −−−−−−−−−−−→

Online
For i ∈ {1, . . . , n} For i ∈ {1, . . . , n}

For j ∈ {1, . . . , t} For j ∈ {1, . . . , t}
s0i,j , s

1
i,j xi,j

−−−−−−−−→ ←−−−−−−−−
OT s

xi,j
i,j

−−−−−−−−→
Return K0 = (K0

1,1, . . . ,K
0
m,t), Return (K1,1, . . . ,Km,t)←

K1 = (K1
1,1, . . . ,K

1
m,t) Eval(GC, (s

x1,1
1,1 , . . . , s

xn,t
n,t ))

Fig. 7: SelG – Oblivious selection using a garbled selection network.

network [Wak68]. Firstly, the server sends the GC corresponding to the selection network to the client.
They then perform nt OTs for each bit of the client’s input. In most cases, n ≤ m, since features are
used more than once. The size of a selection network that maps n ≤ m t-bit elements to m elements is
t ·Snm≥n = t · (0.5(n+m) log(n) +m log(m)−n+ 1) [KS16, Appendix C]. The communication of this variant
is (Snm≥n + n) · 2t · τsym.

3.2 Comparison Phase

This section details two oblivious comparison protocols, the ideal functionality FComp of which is given
in Fig. 4. The outputs of S, C are secret shares of the result. The first uses homomorphic encryption (instan-
tiating both SelH and CompH), the second uses Yao’s GC (CompG).

Comparison (including selection) using additively homomorphic encryption (SelH + CompH,
Fig. 8). This comparison protocol, often referred to as the DGK comparison protocol, was proposed
in [DGK07, DGK08, DGK09] and used for private decision tree evaluation in [WFNL16, TMZC17]. Since
the comparison protocol is performed using homomorphically encrypted bits of the client’s input and known
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Server S Client C
Input: y = (y1, . . . , ym), selection σ Input: x = (x1, . . . , xn)
Output: a1, . . . , am share Output: b1, . . . , bm share

Offline
Generate a1, . . . , am random bits Generate HE public key pk, symmetric key sk

Online
For i ∈ {1, . . . , n}

For j ∈ {1, . . . , t}
[x1,1], . . . , [xn,t] [xi,j ] = Encpk(xi,j)

For k ∈ {1, . . . ,m} : sk ← 1− 2 · ak ←−−−−−−−−−−−
For i ∈ {1, . . . , t}
rk,i ← Z∗p, [ck,i] = [rk,i · fk,i(xσ, y)] [c1,1], . . . , [cm,t] For k ∈ {1, . . . ,m}

Return (a1, . . . , am) −−−−−−−−−−−→ If ∃i ∈ {1, . . . , t} : Decsk([ck,i]) = 0 then bk = 1
else bk = 0

Return (b1, . . . , bm)

Fig. 8: SelH+CompH – Oblivious selection and comparison using additively homomorphic encryption
from [WFNL16,TMZC17].

Server S Client C
Input: y = (y1, . . . , ym), K0,K1 Input: K = (K1,1, . . . ,Km,t) keys
Output: (a) a = (a1, . . . , am) share Output:(a) b = (b1, . . . , bm) share
Output: (b) k0 = (k01, . . . , k

0
m),k1 =

(k11, . . . , k
1
m)

Output: (b) k = (k1, . . . , km) keys

Generate C of m t-bit comparisons with y
(a) (GC; (a1, . . . , am))← Garble’(C,K0,K1) GC
(b) (GC; (k01, . . . , k

0
m), (k11, . . . , k

1
m))← −−−−−−−−−−−→

Garble(C,K0,K1)

Return (a) color bits a = (a1, . . . , am), Return (a) b = (b1, . . . , bm)← Eval’(GC,K)
Return (b) keys k0 = (k01, . . . , k

0
m),

k1 = (k11, . . . , k
1
m)

Return (b) k = (k1, . . . , km)← Eval(GC,K)

Fig. 9: CompG – Oblivious comparison using garbled circuits.

thresholds, the selection phase SelH can be realized within this protocol without additional overhead. Thus,
it does not need to be combined with the protocols presented in §3.1 (cf. Tab. 1). It is observed that x < y is
true if and only if ∃i ∈ {1, . . . , t} such that fi(x, y) = xi − yi + 1 + 3

∑
j<i(xj ⊕ yj) = 0 [DGK07]. C encrypts

each bit of its input with an additively homomorphic encryption scheme (cf. §2.2), and sends the ciphertexts
to S, who chooses the appropriate feature to compare with at each decision node and generates a random
bit ak for each comparison (k ∈ {1, . . . ,m}). It then performs the above comparison that outputs a blinded
ciphertext [ri · fi(x, y)] for each bit of each feature. If any of these ciphertexts decrypts to zero, then xi < yi.
The comparison bit is not revealed to the client in clear, but is secret shared between the parties (S holds
random bit ak, C holds the result blinded by ak, i.e., bk = ak ⊕ [xσ,k < yk]). The efficient lifted ElGamal
encryption scheme can be used here (cf. §2.2), since the client needs only to check if the result is g0 or not.
The communication in this variant is (n+m) · t · τElGamal bits.

Joye and Salehi presented an optimization of the DGK comparison protocol in [JS18] that improves the
communication roughly by factor two when comparing two values with each other. However, it does not
generalize the same way as the DGK comparison protocol presented in Fig. 8, since a selection step has to
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Server S Client C
Input: a = (a1, . . . , am) Input: b = (b1, . . . , bm)
Output: ⊥ Output: v classification

Online
For i ∈ {1, . . . ,m}

For i ∈ {1, . . . ,m} [bi] [bi]← Enc(bi)
[Bi]← [bi ⊕ ai], [eci,0]← [Bi], [eci,1]← [1−Bi] ←−−−−−−−−−−−

For j ∈ {1, . . . ,m+ 1}
[pcj ]← [

∑
ej,k∈P

ecj,k], rj ←R Z∗p, r′j ←R Z∗p
[pcj ]← [rj · pcj ], [vj ]← [r′j · pcj + vj ] Permuted [pcj ], [vj ] For j ∈ {1, . . . ,m+ 1}

−−−−−−−−−−−→ If Decsk([pcj ]) = 0 then
Return v ← Decsk([vj ])

Fig. 10: PathH – Oblivious path evaluation using additively homomorphic encryption from [TMZC17].

Server S Client C
Input: k0 = (k01, . . . , k

0
m′),k

1 = (k11, . . . , k
1
m′) Input: k = (k1, . . . , km′)

Output: ⊥ Output: v classification

Offline
For i ∈ {1, . . . ,m′ + 1}
DT ← DT.Depth-Pad(li, d))

GDT ← Garble(DT,k0,k1) GDT
−−−−−−−−−−−→

Online
Return v ← Eval(GDT,k)

Fig. 11: PathG – Oblivious path evaluation using a garbled decision tree.

be included separately before the comparison. This incurs an overhead when the client encrypts its elements,
i.e., it now needs to encrypt m instead of n elements. However, Joye and Salehi also proposed a private
decision tree evaluation protocol that uses their protocol such that only d comparisons between two values
are performed as in plain decision tree evaluation. We compare with this private decision tree evaluation
protocol in §4.2.

Comparison using garbled circuits (CompG, Fig. 9). All oblivious comparisons can also be per-
formed with generic secure two-party computation protocols. This method has been used for comparison
in [BPSW07, BFK+09]. Yao’s garbled circuit is particularly efficient for private comparison, and requires t
AND gates per t-bit comparisons [KSS09]. Therefore, m comparisons require 2 ·τsym ·mt bits communication.
Variant (a) of this comparison protocol outputs the Boolean shares of the output of the comparisons (the
color bits in Yao’s GC protocol (cf. §2.2). Variant (b) outputs the keys that correspond to the output wires:
the server holds key pairs for both 0 and 1, while the client holds the output wires corresponding to the
output (without knowing the values they correspond to).

3.3 Path Evaluation Phase

This section describes two path evaluation protocols, the first using homomorphic encryption (PathH) and
the second unsing a garbled decision tree (PathG). The ideal functionality FPath is given in Fig. 5.

Path evaluation using additively homomorphic encryption (PathH, Fig. 10). The path evalu-
ation protocol of [TMZC17] is highly optimized and depends only on the number of decision nodes m. The
client C encrypts his share of the comparison bit for each decision node, and sends it to the server. The

10



Protocol m Selection Interface Comparison Interface Path evaluation Online rounds Leakage
(Sel∗) (Comp∗) (Eval∗)

[BPSW07] m H G G 4 m, dpath
[WFNL16] m H (Fig. 8) H (Fig. 8) H 6 m

HGG [BFK+09] m′ H (Fig. 6) G (Fig. 13) G (Fig. 9) G (Fig. 11) 4 m′, d
GGG [BFK+09] m′ G (Fig. 7) G (Fig. 9) G (Fig. 11) 2 m′, d
HHH [TMZC17] m H (Fig. 8) H (Fig. 8) H (Fig. 10) 4 m

HHG m′ H (Fig. 8) H (Fig. 8) G (Fig. 14) G (Fig. 11) 4 m′, d
HGH m H (Fig. 6) G (Fig. 13) G (Fig. 9) H (Fig. 10) 6 m
GGH m G (Fig. 7) G (Fig. 9) H (Fig. 10) 4 m

Table 4: Concrete protocols based on the presented sub-protocols for selection, comparison and path evalu-
ation, where m denotes the number of decision nodes m or padded decision nodes m′ in the protocols. HHH
is the state-of-the-art protocol of [TMZC17]. Round complexity and leakage of different private decision tree
evaluation protocols based on homomorphic encryption H and garbling techniques G.

server S homomorphically computes the encryption of the actual comparison bit, which is the edge cost of
the edge from the decision node that corresponds to 0 (left). The other edge, corresponding to 1 (right),
gets the opposite of this bit as its edge cost. For each leaf node its path cost is computed by summing up
the edge costs along its path from the root. This means O(m) operations since intermediate values can be
reused. These and the classification labels on each leaf node are then blinded by S using fresh randomness,
and sent to the client C. If the path cost decrypts to zero, C can decrypt the classification label. This path
evaluation protocol has (3m+ 2) · τElGamal bits of communication.

Path evaluation using a garbled decision tree (PathG, Fig. 11). The method for garbled deci-
sion tree (GDT) evaluation is analogous to Yao’s garbled circuit technique [Yao86] described in §2.2, but
Eval(GDT, in) returns the output classification in the clear. Our description is similar to that of [BPSW07]
that has been improved in [BFK+09,BFL+11]. It relies on the idea of encrypting two keys at each decision
node, one to the left and one to the right child nodes, along with their node indices, such that the evaluator C
cannot deviate from the path corresponding to the comparison results with his input vector x. We introduce
dummy decision nodes for hiding the length of the path to the classification node. Revealing this length
would reveal information about the topology of the tree, especially when multiple protocol runs with the
same model are possible. One can use full decision trees [BPSW07], the overhead of which is exponential in
the depth d. This is much higher for large trees than using depth-padding with m′ decision nodes (cf. §2.1)
as shown in Fig. 12. Moreover, we reveal only the depth-padded number of decision nodes m′, and nothing
about m since both of them would reveal information about the tree topology.

The server randomly permutes the nodes and garbles the decision tree so that each node has an index i
and an encryption key ki corresponding to it. At each node, the keys and indices of the children nodes are
stored in an encrypted manner using the key of the node and keys k0i or k1i depending on the comparison
result. This means that at node i, Encki,k0i (kl||l) and Encki,k1i (kr||r) are stored, where l is the index of the node
on the left and r is the index of the node on the right. The order of the two ciphertexts is permuted according
to the color bits of k0i and k1i . The server sends GDT to the client, who can evaluate it by decrypting one
path leading to the leaf node storing the classification label. The communication in this protocol is sending
the GDT , each node of which stores two τsym-bit values and two indices, i.e., 2m′ · (τsym + log2(m′ + 1)).

An extension of this protocol reduces the client’s online computation to O(dt) and is presented in §4.2.

4 Protocols for Private Decision Tree Evaluation

In this section, we discuss all possible combinations of the sub-protocols from §3 that result in private decision
tree evaluation protocols. We assess these in Tab. 4, which is an extended version of Tab. 1. In addition
to the sub-protocols, we recapitulate the number of online rounds and the leakage about the model. In
private decision tree evaluation, the client only learns the result and some information about the size of the
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Fig. 12: Number of decision nodes in the different protocols for the decision trees trained on real-world
datasets from Tab. 3. Note that the y-axis is in logarithmic scale.

server’s decision tree: either the number of decision nodes m or the number of padded decision nodes m′

and potentially the depth d. We adapt all resulting protocols with security against passive adversaries to an
offline-online setting.

Security guarantees. We combine sub-protocols secure against passive adversaries with secret shared
output between the two parties. The outputs of our primitives for selection (SelH and SelG) and compar-
ison (CompH and CompG) as well as the inputs for comparison and path evaluation (PathH and PathG)
are secret shared as indicated in Figs. 3-5, i.e., the parties together could reconstruct the result but do not
learn any information by themselves. The secret sharing technique is either XOR-sharing, additive blinding
or garbled inputs/outputs with the corresponding key(s). Therefore, our sequentially composed protocols
remain secure against passive adversaries [BLW08].

Selection and Comparison Strategy. For oblivious selection and comparison, the state-of-the-art proto-
cols use additively homomorphic encryption SelH (Fig. 6) [BFK+09] and CompH (Fig. 8) [TMZC17]. This
strategy is beneficial when it comes to communication and storage, but implies an increased runtime com-
pared to garbling techniques. Garbling techniques have been used for oblivious selection SelG (Fig. 7) and
comparison CompG (Fig. 9) in [BFK+09]. Thereafter, these techniques have been claimed to be inefficient
in [WFNL16, TMZC17]. However, our experiments in §5 show that they have a very efficient online phase,
and perform better with respect to total runtime.

Path Evaluation Strategy. As discussed in §3.3, the path evaluation sub-protocol of [TMZC17] using
homomorphic encryption via PathH (Fig. 10) depends only on the number of decision nodes m and is
therefore especially efficient with sparse and large decision trees. When this sub-protocol is in use, m = m
in all preceding sub-protocols. This has been a tremendous improvement over the path evaluation method
of Wu et al. [WFNL16], which depends exponentially on the depth d of the tree, due to expanding the tree
to a full decision tree.

As opposed to this, in PathG (Fig. 11) the paths need to have the same length in each path evaluation in
order to hide the tree topology. Therefore, the tree is depth-padded to m = m′ decision nodes. m′ depends
on the topology of the decision tree, i.e., the level of all leaves, but is upper bounded by m(d+ 1) (cf. §2.1).

We depict in Fig. 12 the different numbers of decision nodes that are used in state-of-the-art pro-
tocols and our depth-padded approach, i.e., the original number of decision nodes m (PathH, Fig. 10,
Tai et al. [TMZC17]), the depth-padded number of decision nodes m′ (PathG, Fig. 11), and the number
of decision nodes in a full tree 2d (Wu et al. [WFNL16]). Using a full tree is impractical with large decision
trees due to the exponential dependency on the depth d.

12



Server S Client C
Input: r1, . . . , rm Input: z1, . . . , zm blinded values
Output: K0 = (K0

1,1, . . . ,K
0
m,t),K

1 = (K1
1,1, . . . ,K

1
m,t) Output: K = (K1,1, . . . ,Km,t) keys

Offline
Generate circuit C for m t-bit subtractions PrecomputemtOTs
with input keys s01,1, s

1
1,1, . . . , s

0
m,t, s

1
m,t.

(GC; (K0
1,1, . . . ,K

0
m,t,K

1
1,1, . . . ,K

1
m,t))← Garble(C) GC

−−−−−−−−−−−→

Online
For i ∈ {1, . . . ,m} For i ∈ {1, . . . ,m}

For j ∈ {1, . . . , t} For j ∈ {1, . . . , t}

s0i,j , s
1
i,j −−−−−−−−−−−→ OT

←−−−−−−−−−−− zi,j
−−−−−−−−−−−→ s

zi,j
i,j

Return K0 = (K0
1,1, . . . ,K

0
m,t),K

1 = (K1
1,1, . . . ,K

1
m,t) Return K = (K1,1, . . . ,Km,t) =

Eval(GC, s)

Fig. 13: SelH→CompG – Interface between the instantiation for SelH (Fig. 6) and CompG (Fig. 9).

4.1 Protocol Combinations

In this section, we describe all protocols resulting from valid combinations of sub-protocols presented in §3,
and adapt them to the offline-online setting. Here, all operations dependent only of the input of the server S’s
decision tree are performed in the offline phase, whereas all operations that depend on the client C’s input
are performed in the online phase. Protocols that are efficient in the online phase are especially important in
applications where the client uses a computationally weak device. Most of the computation can be done offline,
when the device is idle, and the query itself triggers the online phase, which is performed more efficiently.
We show that protocols based on garbling techniques are especially efficient in this setting, whereas the
sub-protocols based on homomorphic encryption require the input directly at the start and therefore almost
none of the computationally intense tasks can be performed offline. ABC denotes the protocol that uses
SelA for selection, CompB for comparison and PathC for path evaluation.

HHH: SelH + CompH + PathH [TMZC17]. The state-of-the-art protocol using only homomorphic
encryption for all the three sub-protocols was presented in [TMZC17], the comparison protocol of which was
first used for private decision tree evaluation in [WFNL16]. We recapitulate it here as a combination of the
homomorphic sub-protocol SelH + CompH (Fig. 8) with PathH (Fig. 10). The advantage of this protocol is
that very few communication is necessary between the two parties and the selection happens along with
the comparison. However, all computationally expensive cryptographic operations must be computed online,
since all computations depend on the client’s input vector.

HGH: SelH + CompG + PathH. An oblivious comparison protocol that can be used to output shares
of the comparison bits is Yao’s GC protocol is shown in CompG (Fig. 9). Here, m garbled comparison
circuits can be precomputed in an offline phase. Thereafter, the client evaluates these in the online phase
(using SIMD in parallel as described in §2.2) to retrieve the comparison color bits that are shares of the
output bits. However, this comparison protocol requires a selection sub-protocol to choose m inputs to
the m comparisons out of the client’s n ≤ m inputs. In this protocol, we use SelH with Paillier or DGK
encryption (cf. Fig. 6) in order to avoid nonlinear scaling. When combining these approaches, the result of
SelH is not the same as the input of CompG, so the interface described below and depicted in Fig. 13 is
inserted to obliviously unblind the output. After the comparison, the path evaluation PathH of [TMZC17]
can be used as before (cf. Fig. 10).

13



Server S Client C
Input: a1, . . . , am′ share Input: b1, . . . , bm′ share
Output: k0 = (k01, . . . , k

0
m),k1 = (k11, , . . . , k

1
m′) Output: k = (k1, . . . , km′) keys

Offline
Precompute m′ OTs

Online
Generate k0 = (k01, . . . , k

0
m),k1 = (k11, , . . . , k

1
m′)

For i ∈ {1, . . . ,m′} For i ∈ {1, . . . ,m′}
k0⊕aii , k1⊕aii −−−−−−−−−−−→

OT
←−−−−−−−−−−− bi
−−−−−−−−−−−→ kbii

Return k0 = (k01, . . . , k
0
m),k1 = (k11, , . . . , k

1
m′) Return k = (k1, . . . , km′) keys

Fig. 14: CompH→PathG – Interface between the instantiation for CompH (Fig. 8) and PathG (Fig. 11).

Combining homomorphic selection and garbled comparison (SelH→CompG, Fig. 13). The result of SelH
in Fig. 6 is a set of blinded (t+ s)-bit values for the client C, and the blinding s-bit values for the server S. In
order to perform the comparison on t-bit values, S and C must unblind the result using a GC for subtracting
each random value obliviously [BFK+09]. The subtractions are performed on t-bit values, since the most
significant s bits of the blinded values can be dropped. The keys corresponding to the result are used in the
comparison CompG (cf. Fig. 9). Overall, the m garbled subtraction circuits require 2mt · τsym bits offline
communication, mt · τsym bits for precomputing random OTs, and 2mt · τsym bits online communication for
the OTs.

GGH: SelG + CompG + PathH. Instead of instantiating the selection with homomorphic encryption,
one can use SelG, a selection network (with O(mt logm) complexity) using garbled circuits (cf. Fig. 7). Here,
most of the selection phase can be computed offline due to precomputed OTs and the independence of the
GC from the client’s inputs. Then, CompG (Fig. 9) can be directly performed, and the path evaluation
sub-protocol PathH of [TMZC17] (Fig. 10) is used as before. The advantage of this protocol is that though
the offline communication is more than in the previous protocols due to the nonlinear selection network, it
performs well in the online phase and due to the path evaluation phase, it depends only on the number of
decision nodes m, since depth-padding is not required.

HGG: SelH + CompG + PathG [BFK+09]. Homomorphic selection SelH (Fig. 6) and garbled com-
parison CompG (Fig. 9) (with the interface from Fig. 13 between) can also be combined with the path
evaluation technique PathG (Fig. 11). This induces overhead in the number of decision nodes, since the
depth-padded decision tree has a larger number of internal nodes m′ ≥ m (cf. Fig. 12). However, this
path evaluation protocol can more efficiently be transformed to an offline-online setting, since the GCs for
comparison and the garbled decision tree can be sent offline.

GGG: SelG + CompG + PathG [BFK+09]. This protocol consists of sub-protocols that use garbling
techniques: selection SelG (Fig. 7) and comparison CompG (Fig. 9) with GCs, and garbled path evaluation
PathG (Fig. 11). It has the highest communication, though most data can be sent in the offline phase.
However, it is the most efficient online, even when large decision trees with many dummy nodes are considered.

Another advantage of this protocol is that it can be easily extended to provide security against a malicious
client. Since the only messages sent by the client are in the OTs, one can use OT extension with security
against malicious clients, e.g., [ALSZ15, KOS15, ALSZ17], which are only slightly less efficient than OT
extension with passive security. This adds little overhead, whereas securing the other solutions against
malicious clients needs more expensive conditional OTs or zero-knowledge proofs, e.g., as for HHH described
in [TMZC17].

HHG: SelH + CompH + PathG. Due to the worse computational efficiency of the homomorphic selec-
tion and comparison SelH + CompH (Fig. 8) and the high number of decision nodes m′ for the garbled path
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evaluation method PathG (Fig. 11), this protocol combination is the least efficient. Moreover, it requires an
interface of OTs described below and depicted in Fig. 14.

Combining homomorphic comparison and garbled path evaluation (CompH→PathG, Fig. 14). The result
of SelH + CompH (Fig. 8) is for both parties a share of the comparison bit ci = ai⊕ bi for all i ∈ {1, . . . ,m′},
while the input to PathG (Fig. 11) is a key for all comparison bits for the client C and two keys for both
possible bits for the server S. After S generates these keys, C and S engage in a 1-out-of-2 OT protocol for each
comparison bit (cf. §2.2). This conversion requires 2m′τsym bit online and m′τsym bit offline communication.

4.2 Protocol extensions

In this section, we describe protocol extensions, including a natural modification of the HGG and GGG
protocols, which enables the client to perform less computation and evaluate the decision tree in a similar
manner as in plain evaluation, with only O(dt) cryptographic operations. We compare this method with the
protocol of [JS18] that achieves the same asymptotic efficiency.

Path evaluation with computationally restricted client. A natural extension of HGG and GGG is
to perform only the required d comparisons during the path evaluation phase as in the case of plain evaluation,
instead of doing all m′ comparisons in advance. This improves computation, though we cannot use SIMD
operations for the comparisons anymore, since the GCs are evaluated sequentially along the evaluation path.
Similarly, the client can decrypt only d (instead of m′) homomorphically encrypted blinded values in HGG
in SelH (cf. Fig. 6) before these comparisons. However, the communication remains unchanged, since the
actual evaluation path taken needs to remain oblivious to the server.

Joye and Salehi present a similar protocol in [JS18]. In their protocol, full decision trees are utilized to
hide the topology of the tree. In this protocol, a 1-out-of-2i OT is performed at the ith level (i ∈ {1, . . . , d}).
However, the full tree can be replaced with the depth-padded tree described in §2.1, in which case 1-out-of-m′

OTs are sufficient for levels where m′ < 2i. Though the communication of this protocol is better than that
of HGG (O(n+m′t)) for small decision trees, its dependency on the depth (O(n+d(t+m′))) makes it worse
for larger examples such as our boston dataset. Moreover, it has O(d) online rounds instead of the constant
number of 4 rounds provided by HGG. Therefore, we conclude that our HGG protocol is more efficient in
most scenarios.

Other extensions. In §B.1, we describe modifications for widely used categorical variables, and in §B.2
for securely evaluating random forests to increase accuracy. Classification confidence values, i.e., the prob-
ability that a classification is correct, can also be appended to the classification labels in a straightforward
manner.

5 Performance Evaluation

In this section, we compare the performance of all resulting protocols from §4. . We show the runtime
and communication of all resulting combinations of the sub-protocols from §3. In our implementation, we
instantiate all primitives corresponding to security level κ = 128, and statistical security parameter s = 40,
and as in prior work, we set the bitlength to t = 64. τ∗ denotes the ciphertext sizes: τsym = 128 for symmetric-
key encryption, τPaillier = 4096 and τDGK = 2048 for Paillier and DGK encryptions, resp. and τElGamal = 514
for ElGamal encryption using elliptic curves and point compression.

The underlying frameworks for our implementation are the mcl library1 that includes a highly optimized
lifted ElGamal implementation, and the ABY secure computation framework [DSZ15]2. ABY implements the
state-of-the-art optimizations of Yao’s garbled circuit protocol described in §2.2. In addition, we implement
an analogues technique to that of point-and-permute in order to avoid trial decryption of garbled nodes
in oblivious path evaluation PathG. We give more details on our implementation in §C.We present the
complexities of the resulting protocols for the datasets in Tab. 3.

1 https://github.com/herumi/mcl
2 https://github.com/encryptogroup/ABY
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(b) Online communication in KBytes.
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(c) Total communication in KBytes.

Fig. 15: Communication of protocols using the example datasets from Tab. 3. Note that the y-axis is in
logarithmic scale.
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Fig. 16: Runtime of protocols using the example datasets from Tab. 3. Note that the y-axis is in logarithmic
scale.

Communication. The offline, online, and total communication of the protocols is given in Fig. 15a,
Fig. 15b, and Fig. 15c, resp. We observe that garbling techniques allow for precomputation and offline
communication, but in total require more communication. Homomorphic encryption-based methods have
less communication, however, almost all expensive computation and all communication happens in the online
phase.

Runtime. For our benchmarks we use two machines equipped with an Intel Core i7-4790 CPU @ 3.6 GHz
and 32 GB of RAM that support Intel’s AES-NI for fast AES operations. Our benchmarks are run in a LAN
setting with 1 Gbit/s and 0.5 ms latency. Runtimes are reported from an average of 10 executions. In our
experiments relying on oblivious transfers, we neglect the costs for the base OTs, since they are a one-time
expense that can be re-used over multiple protocol executions. The offline runtimes are given in Fig. 16a,
the online runtimes are given in Fig. 16b, while the total runtimes are depicted in Fig. 16c. We can see
that homomorphic encryption-based methods (SelH and CompH) perform an order of magnitude worse than
their garbling technique-based alternatives (SelG and CompG). However, we observe the advantage of the
homomorphic encryption-based path evaluation technique (PathH), where the number of decision nodes m
is unchanged, whereas in the path evaluation method using a garbled decision tree (PathG) depth-padding
increases the number of decision nodes to m ≤ m′ ≤ m(1 + d), which can be significantly larger than m
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Fig. 17: Tradeoff between communication (x-axis) and runtime (y-axis). Note that both axes are in logarith-
mic scale. The figures show the offline (unfilled squares) and online (filled squares) complexities (connected
with a line). Pareto points, i.e., protocols where one property (computation or communication) cannot be
improved without the other property becoming worse, are marked in bold.
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Fig. 18: Tradeoff between total communication (x-axis) and runtime (y-axis). Note that both axes are in
logarithmic scale. Pareto points are marked in bold.

(cf. Fig. 12 and Tab. 3). Our protocol GGH has the fastest total and online runtime of below 1 second for
our largest example.

Tradeoff. In order to show the communication (x-axis) vs. computation (y-axis) tradeoff of all resulting
protocols, we give figures for two example datasets: we choose a small example dataset wine, and our largest
example dataset boston.

The number of input features n is usually small for all datasets, whereas a growing number of decision
nodes affects the efficiency of our sub-protocols significantly. We depict in Fig. 17a and Fig. 17b the tradeoff
between offline and online runtime and communication for all protocols for the wine and boston datasets,
respectively, while Fig. 18a and Fig. 18b depict the corresponding total complexities.

The larger the dataset, the more dummy nodes are introduced during depth-padding (cf. §2.1) in PathG.
Therefore, the size of the dataset largely affects the protocols that use PathG for path evaluation. Moreover,
the selection network in SelG has non-linear size O(m logm) in m, which implies a significant overhead in
offline communication. This gap can be observed on the figures: the protocols using garbling techniques for
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path evaluation lose their performance advantage with growing number of dummy nodes, and the protocols
using GC-based selection techniques become less practical due to the largely increased amount of offline com-
munication for transmitting the selection network (which implies storage requirements as well). For instance,
the largest decision tree trained on the boston dataset requires around 1.8 MBytes of communication with
HHH, 3 MBytes with HGH, 9 MBytes with GGH, and more than 200 MBytes with GGG. The designer of
an application using private decision tree evaluation can consider these tradeoff and choose the best suited
protocol.

6 Concrete Improvements and Recommendations

We investigate the concrete tradeoffs between our identified hybrid protocols GGH and HGH from §4.1
and the state-of-the-art protocols HHH of [TMZC17] optimized for communication and GGG of [BFK+09]
optimized for online computation. We show that the state-of-the-art protocols that exclusively use one of
the two paradigms HHH with additively homomorphic encryption or GGG with garbling techniques can be
replaced by our hybrid protocols HGH and GGH that provide a more reasonable tradeoff for larger decision
trees.

In Fig. 17 and Fig. 18, we emphasize pareto points for online and total tradeoffs, respectively, i.e., we bold
the protocols where there is no way to improve one property without the other property becoming worse.

Tradeoff with HHH [TMZC17]. The improvement in total and online runtime of GGH over HHH is more
than an order of magnitude for our examples with increased total communication by 2-5x. HGH improves
over HHH in total and online runtime by 3-5x with slightly increased total communication. The online
communication is better for both GGH and HGH than for HHH.

Tradeoff with GGG [BFK+09]. GGH improves over GGG for larger datasets due to the fact that it does
not need any padding for the decision nodes. For small datasets, GGG is better than GGH in online runtime,
but gets worse for both online and total runtimes with large datasets by almost an order of magnitude. GGH
also provides an improvement in total communication by 3-20x. HGH improves even more for our datasets
over the communication of GGG by 5-73x. The total (online) runtime of HGH is larger by 3-11x (2-32x),
but this is decreasing with larger datasets due to the increasing number of decision nodes. The total runtime
gets better for our biggest examples for HGH than for GGG.

Recommendations. We identify the following aspects to take into consideration when deciding which
protocol to use for an application: the dataset size, and the boundaries on communication and computational
power (e.g., network throughput and client storage capacity). When the client has high storage capacity,
protocols GGG [BFK+09] or GGH (cf. §4.1) provide the best online performance, depending on the size
of the dataset. The former has a slightly more efficient online phase, but higher communication due to its
selection protocol (cf. §3.1). When the client is computationally bounded and has little storage capacity, our
protocols HGH and GGH from §4.1 provide the best solutions.

The state-of-the-art protocol of [TMZC17], i.e., HHH, has the lowest total communication, but uses
computationally heavy operations that depend almost entirely on the client’s input and hence do not allow
for much offline precomputation. Our protocols HGH or GGH from §4.1 that combine its path evaluation
step with garbling techniques yield more than an order of magnitude faster runtimes while only slightly
increasing communication.

7 Related Work

Private decision tree evaluation was firstly considered in [BPSW07], with application to private evalua-
tion of remote diagnostic programs. A protocol based on homomorphic encryption where the server evalu-
ates a branching program on the client’s encrypted input was proposed in [IP07]. This has been improved
in [BFK+09,BFL+11] where a protocol based on mainly symmetric-key operations was proposed. Bost et al.
use additively homomorphic encryption to evaluate the decision tree expressed as a polynomial [BPTG15].
Recently, Wu et al. [WFNL16], Tai et al. [TMZC17] and Joye and Saleji [JS18] improved the state-of-the-art
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of private decision tree evaluation protocols. These works rely on additively homomorphic encryption using
the Diffie-Hellman assumption and present protocols that achieve security against semi-honest adversaries
or malicious clients. Tai et al. [TMZC17] eliminate the exponential dependency on the depth of the tree that
was present in [WFNL16] by representing decision trees as linear functions. This implies enormous improve-
ment when large decision trees are considered which, in practice, are usually not very dense, and therefore,
we use this protocol as HHH. Wu et al.’s protocol [WFNL16] would perform better than HHH for circuits
with m ∼ 2d [TMZC17]. However, already for a very dense tree with m = 2d−2, HHH has about half the
communication compared to [WFNL16], whereas the necessary computation is around the same. Therefore,
for most real-world decision trees with reasonable sizes, HHH performs better.

The protocols of [WFNL16] and [TMZC17] use the DGK comparison protocol [DGK07]. An alternative
solution that performs well for small bitlengths t of the features and inputs have been proposed using fully
homomorphic encryption in [LZS18].

A different solution for evaluating full private decision trees using the so-called commodity-based model
was proposed in [CDH+17], where correlated randomness is distributed by a trusted authority to the com-
puting parties or pre-computed during the offline phase, which are used in the online phase.

In concurrent and independent related work Tueno et al. [TKK19] improve the state-of-the-art by rep-
resenting the decision tree as an array, and implementing oblivious array indexing. For this, they use either
garbled circuits, oblivious transfer or oblivious RAM (ORAM), the latter of which results in a protocol
with sub-linear complexity in the size of the decision tree. Their protocols require dt comparisons as that
of [JS18] and our protocol extension for GGG and HGG §4.2, but require at least O(d) rounds of communi-
cation [TKK19, Tab. 2].

Alternatively, private decision tree evaluation can also be solved using generic private function evalua-
tion (PFE) protocols such as [KM11,MS13,MSS14]. However, these solutions utilize Boolean circuits as the
underlying representation of the functionality. Transforming the decision tree into a Boolean circuit would
imply additional unnecessary overhead on the size of the function (i.e., O(tm logm) gates for the selection
of inputs as in SelG in §3.1). Secure evaluation of universal circuits (UCs) is an equivalent solution for
PFE [Val76, KS08b, KS16, GKS17]. Then, UC- and OT-based PFE protocols [KS08b, MS13, KS16, GKS17]
have computation and communication complexity O((tm logm) log(tm logm)), and HE-based PFE proto-
cols [KM11, MS13, MSS14] need O(tm logm) computation and communication. These are larger than the
complexities achieved by protocols designed specifically for DTs (cf. Tabs. 5-6).

There are alternative approaches for classification based on machine learning, such as deep neural net-
works, that can be evaluated in a private manner [SS08,BFL+11,LJLA17,MZ17,RWT+18,JVC18,BFR+18,
BDK+18]. Private evaluation of machine learning models incur a natural overhead, but they can perform
classifications of real-world datasets in the order of seconds.
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A Complexities of Sub-protocols

In this section, we describe the complexities of all sub-protocols described in §3.
Communication. The communication of each sub-protocol is presented in Tab. 5. For all phases we

observe a direct tradeoff: The homomorphic encryption-based methods have lower communication, while in
case of garbling techniques, most communication can be shifted offline, so these achieve the lowest online
communication.

Computation. The asymptotic computational complexity of each sub-protocol is shown in Tab. 6. We
observe that most computationally intense tasks can be shifted offline for the protocols based on garbling
techniques, while almost all operations are performed online when using homomorphic encryption. Unfor-
tunately, even when using garbling techniques, the client needs to perform most cryptographic operations
online, since he plays the role of the evaluator (cf. 2.2). In these techniques, however, the client requires less
computational power than using homomorphic encryption.

B Extensions

In this section, we present extensions to CompG and PathG presented in §3, which directly apply to the
resulting protocols that use those as sub-protocols in §4.

B.1 Categorical Variables

Since not every member of a feature vector is a numerical variable, we discuss the useful extension of
the comparison phase in order to add support for categorical variables. In fact, a considerable portion
of real datasets are a mixture of numerical and categorical variables. We measured the ratio of datasets
containing categorical variables in the UCI machine learning repository [Lic18], and found that 33% of
datasets contain categorical variables. For instance, a feature vector for the breast cancer dataset has the
feature breast quadrant that specifies the position of the tumor in the patient’s breast, i.e. it takes one
of the following five values: left-up, right-up, left-low, right-low or central. At the end of the
protocol, the patient’s profile is classified as no-recurrence-event or recurrence-event that determines the
possibility of cancer recurrence.

Given categorical variable xj ∈ U = {u1, . . . , u|U |}, the decision criteria is a set membership test of the
form xj ∈ U ′, for some U ′ ⊂ U (j ∈ {1, . . . , n}). Wu et al. supply the SelH + CompH subprotocol with the
extension to handle categorical variables in [WFNL16]. We briefly describe a private approach to evaluate
the decision nodes that operate over categorical variables when using CompG. We notice that for testing

Sub-protocol Fig. Offline Online

SelH Paillier Fig. 6 - n+ m
t+s
· τPaillier

SelH DGK Fig. 6 - (n+m) · τDGK

SelG Fig. 7) 2t · τsym · (n+ Snm≥n) 2 · τsym · nt
SelH + CompH Fig. 8 - (n+m) · t · τElGamal

CompG Fig. 9 2mt · τsym -

PathH Fig. 10 - (3m+ 2) · τElGamal

PathG Fig. 11 2m′ · (τsym + log2(m′ + 1)) -

SelH→CompG Fig. 13 3mt · τsym 2mt · τsym
CompH→PathG Fig. 14 m′ · τsym 2m′ · τsym

Table 5: Offline and online communication of all sub-protocols, where n, t, m, m′ and m denote the number
input features, the bit length of the features and thresholds, the number of decision nodes, padded decision
nodes and either of the former two, respectively. Snm≥n denotes the size of the selection network that se-
lect m bits from n bits. τsym, τDGK, τPaillier and τElGamal denote the size of the ciphertexts in the respective
encryption schemes. Note that m ≤ m′ ≤ m+md.
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Sub-protocol Fig. Offline Server Offline Client Online Server Online Client

SelH Paillier Fig. 6 - - O(mt)νPaillier O(nt+m)νPaillier

SelH DGK Fig. 6 - - O(mt)νDGK O((n+m)t)νDGK

SelG Fig. 7) O(tm logm)νsym O(nt)νsym - O(tm logm)νsym
SelH + CompH Fig. 8 - - O(tm)νElGamal O((n+m)t)νElGamal

CompG Fig. 9 O(mt)νsym - - O(mt)νsym
PathH Fig. 10 - - O(md)νElGamal O(m)νElGamal

PathG Fig. 11 O(m′)νsym - - O(m′)νsym
SelH→CompG Fig. 13 O(mt)νsym O(mt)νsym + α - O(mt)νsym
CompH→PathG Fig. 14 O(m′)νsym O(m′)νsym - -

Table 6: The number of cryptographic operations in the offline and online phases of all sub-protocols, with
notations as in Tab. 5. νsym, νDGK, νPaillier and νElGamal denote the cost of an operation (i.e., encryption,
decryption or addition) in symmetric, DGK, Paillier and lifted ElGamal encryption, respectively.

the set inclusion, the server can create the |U |-bit masking value Mask based on U ′ such that Maski = 1
if ui ∈ U ′, and 0 otherwise. This representation was used for private set intersection (PSI) in [HEK12].
Accordingly, for xj = ui, the client inputs the transformed |U |-bit variable x′j which has only one set bit
at position i. Then the original decision criteria xj ∈ U ′ can be evaluated by the Boolean circuit which
implements x′j ∧Mask = x′j .

B.2 Random Forests

Random forests improve the accuracy of decision trees by aggregating the result of n ≥ 2 decision trees
trained on different random subsets of features. Before evaluating the n decision trees, in order to hide all
information about the subset of features, all decision tree evaluations need to look the same from the client’s
point of view. Therefore, dummy comparisons are necessary to pad the decision trees to the maximal m
or m′ value.

Additionally, the aggregation step depending on the aggregation function has to be implemented. Wu et al.
provide a method that allows for any affine functions of the individual results using additive secret shar-
ing [WFNL16], which can be generalized to the path evaluation method of [TMZC17], i.e., PathH (cf. Fig. 10).
For PathG (cf. Fig. 11) [BFK+09], instead of returning the classification results to the client, he can obtain
keys corresponding to these. These can then be used to securely evaluate the garbled circuit corresponding
to the aggregation function if the server uses these keys when generating it. The complexity of this step
depends on the aggregation function.

C Implementation Choices

We describe our implementation choices used in §5.

SelH (Fig. 6) The ABY framework includes an implementation for both Paillier and DGK encryptions (cf. §2.2).
The ciphertext lengths for 128-bit security are τPaillier = 4096 and τDGK = 2048. However, Paillier en-
cryption allows for ciphertext packing which can reduce the number of ciphertexts and decryptions. We
utilize ABY to build two versions of SelH, and conclude the advantage of the Paillier encryption both in
runtime and communication.

SelG (Fig. 7) We implement the garbled selection network introduced in [KS08a] based on the implemen-
tation of Waksman’s permutation network [Wak68] in ABY. We use fixed-key AES for symmetric-key
encryption, thus τsym = 128.

SelH + CompH (Fig. 8) We use the mcl library to implement protocols using lifted ElGamal encryption
over elliptic curve (EC) secp256k1 with 256-bit key and 128-bit security, as Tai et al. [TMZC17]. This
library has a highly optimized lifted EC-ElGamal implementation and supports point compression, i.e.,
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an elliptic curve point can be expressed in 256 + 1 bits. Since an ElGamal ciphertext consists of two EC
points, τElGamal = 514.

CompG (Fig. 9) We use comparison circuits in ABY using SIMD operations to enhance the concrete
performance of this sub-protocol.

PathH (Fig. 10) We implement the path evaluation phase using lifted EC-ElGamal encryption over the
same EC and library as for SelH + CompH.

PathG (Fig. 11) We implement garbled decision tree path evaluation in the ABY framework using two
AES encryptions with AES-NI.

26


	SoK: Modular and Efficient Private Decision Tree Evaluation

