
Insecurity of a provably secure and lightweight certificateless
signature scheme for IIoT environments

Lunzhi Denga

aSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China.

Abstract

Recently, Karati et al. presented a lightweight certificateless signature scheme for industrial
Internet of Things (IIoT) environments, and claimed the scheme was provably secure in the
standard model. In this paper, it is indicated that the scheme is not secure by showing two
concrete attacks.

Keywords: Certificateless cryptography, Signature, Bilinear pairing, Standard model, Internet
of Things

1. Introduction

In this paper, we first review Karati et al’s scheme [1], then give some comments on it.
Through presenting two concrete attacks, it is demonstrated that the scheme [1] cannot provide
unforgeability.

2. Review Karati et al.’s scheme

Karati et al.’s scheme [1] is specified by the following algorithms:

• Setup: KGC generates two groups G1 and G2 with prime order p, a bilinear pairing e : G1×
G1 → G2. then picks a generators g1 of G1, and a secure hash functions H1 : {0, 1}∗ → Z∗p,
and a value y ∈ Z∗p as master private key. Next, KGC computes g2 = e(g1, g1)y and
YKGC = gy

1. KGC publish the public parameters: params = {G1,G2, p, e, g1, g2,YKGC ,H}
and keeps msk = {y} safety.

• Set-Partial-Private-Key: For a user with identity IDi, KGC picks at random ri ∈ Z∗p, com-

putes Ri = gri
1 , hi = H(IDi) and yi = g

yhi
hi+ri+y

1 , then sends Di = (yi,Ri) to the user.

• Set-Secret-Value: The user IDi randomly chooses xi, ci ∈ Z∗p and sets secret value S Ki =

(ci, xi,Ri).

• Sets-Public-Key: The user IDi set the public key Yi = (Yi1 = y
1
xi
i ,Yi2 = gci

2).

• CLS-Sign: Given a message mi ∈ Z∗p, the user IDs performs the following steps:

1. Chooses at random ti ∈ Z∗q , computes hs = H(IDs), σ1 = gt
2, σ2 = (ghs

1 · Rs ·
YKGC)(cs

m −t)xs .
Preprint submitted to Journal November 14, 2018

2. Outputs σ = (σ1, σ2) as the signature.

• Verify: To verify a signature (params, IDs,Ys,m, σ = (σ1, σ2)), the verifier performs the
following steps:

1. Computes hs = H1(IDs).

2. Checks whether
(

Y
1
m

s2
σ1

)hs

= e(Ys1, σ2). If the equation holds, outputs VALID. Other-

wise, outputs INVALID.

3. Forgery attack

Karati et al. claimed that their scheme is unforgeable. However, we show two concrete
attacks to refute their claim in this section.

Case 1. A Type adversary A1 can forge a new signature σ′ on the same message£ after he
obtains a valid signature σ for the message m.

• Setup. C sets the msk and params = {G1,G2, p, e, g1, g2,YKGC ,H}, then sends the params
to A1 and keeps the msk secret.

• Query. A1 issues three queries as follows.

1. A1 issues a public key query for a user IDs, and gets the value Ys = (Ys1 = y
1
xs
s ,Ys2 =

gcs
2).

2. A1 issues a signature query for the tuple (m, IDs, Ys), and gets a signature σ =
(σ1, σ2), where σ1 = gt

2, σ2 = (ghs
1 · Rs · YKGC)(cs

m −t)xs .

3. A1 picks a value u ∈ Z∗p, computes Y ′s1 = Y
1
u
s1, sets Y ′s2 = Ys2, then issues a public key

replacement request for IDs with a new value Y ′s = (Y ′s1,Y
′
s2),

• Forge. A1 sets σ′1 = σ1, computes σ′2 = σ
u
2, and outputs a forged signature σ′ = (σ′1, σ

′
2)

on a tuple (IDs,Y ′s,m).

The tuple (params, IDs,Y ′s, σ
′ = (σ′1, σ

′
2),m) is a valid signature due to the verification e-

quation is satisfied.

e(Y ′s1, σ
′
2) = e

(
g

yhs
(hs+rs+y)uxs
1 , (ghs

1 · Rs · YKGC)(cs
m −t)uxs

)
= e

(
g

yhs
(hs+rs+y)uxs
1 , g(hs+rs+y)

1

)(cs
m −t)uxs

= e(g1, g1)y(cs
m −t)hs

=

g
cs
m

2

gt
2

hs

=

Y
′ 1

m
s2

σ′1

hs

2

In this attack, it is required for A1 to replace the public key of the user IDs. However, A1
does not know the new secret value of the user IDs. A1 uses the difference between the new
public key and the old public key to forge a signature.

Case 2. An ordinary adversary A can give a forged signature on a new message m′ even if
he has no knowledge for the partial private key and secret value of any user.

• Setup. C sets the msk and params = {G1,G2, p, e, g1, g2,YKGC ,H}, then sends the params
to A and keeps the msk secret.

• Query. A issues two queries as follows.

1. A issues a public key query for a user IDs, and gets the value Ys = (Ys1 = y
1
xs
s ,Ys2 =

gcs
2).

2. A issues a signature query for the tuple (m, IDs, Ys), and gets a signature σ =
(σ1, σ2), where σ1 = gt

2, σ2 = (ghs
1 · Rs · YKGC)(cs

m −t)xs .

• Forge. A chooses at random a message m′ ∈ Z∗p, computes σ′1 = σ
m
m′
1 , σ′2 = σ

m
m′
2 , and

outputs a forged signature σ′ = (σ′1, σ
′
2) on a tuple (IDs,Ys,m′).

The tuple (params, IDs,Ys, σ
′ = (σ′1, σ

′
2),m′) is a valid signature due to the verification

equation is satisfied.

e(Y ′s1, σ
′
2) = e

(
g

yhs
(hs+rs+y)xs
1 , (ghs

1 · Rs · YKGC)(cs
m −t)· mxs

m′

)
= e

(
g

yhs
(hs+rs+y)xs
1 , g(hs+rs+y)

1

)(cs
m′ −

mt
m′)xs

= e(g1, g1)y(cs
m′ −

mt
m′)hs

=

g
cs
m′
2

g
mt
m′
2

hs

=

Y
′ 1

m
s2

σ′1

hs

In this attack, an ordinary adversary A needs to get a signature σ on a message m under a
tuple (IDs,Ys). A then can generate a forged signature σ′ on a new message m′.

4. Problems analysis

In this section, it is analyzed for why Karati et al.’s scheme cannot withstand the above two

attacks. In the first attack, the adversary A1 changes σ2 to σu
2 and turns Ys1 into Y

1
u
s1 for any

u ∈ Z∗p, he then can obtain a new signature for the message m. In the second attack, the adversary

A1 changes σ1 to σ
m
m′
1 and turns σ2 to σ

m
m′
2 , he then can obtain a signature for a new message m′.

References
[1] A. Karati, SK. Islam, and M. Karuppiah, “Provably secure and lightweight certificateless signature scheme for IIoT

environments,” IEEE T Ind Inform., vol.14, no.8, pp.3701-3711, 2018.

3

