
Cryptanalysis of the Wave Signature Scheme

Paulo S. L. M. Barreto1 and Edoardo Persichetti2

1 School of Engineering and Technology, University of Washington Tacoma
pbarreto@uw.edu

2 Department of Mathematical Sciences, Florida Atlantic University
epersichetti@fau.edu

Abstract. In this paper, we cryptanalyze the signature scheme Wave,
which has recently appeared as a preprint. First, we show that there
is a severe information leakage occurring from honestly-generated sig-
natures. Then, we illustrate how to exploit this leakage to retrieve an
alternative private key, which enables efficiently forging signatures for
arbitrary messages. Our attack on the proposed 128-bit secure Wave
parameters runs in about 13 minutes, most of which are actually spent
collecting genuine signatures. We also explain how our attack applies to
generalized versions of the scheme which could potentially be achieved
using generalized admissible (U,U +V) codes and larger field character-
istics. Finally, as a target for further cryptanalysis, we describe a variant
of Wave that we call Tsunami, which appears to thwart our attacks
while keeping the positive aspects of that scheme.

1 Introduction

Digital signatures schemes are, without a doubt, one of the most important
cryptographic protocols in use today, addressing the issue of authentication of
data. Digital signatures share many similarities with confidentiality operations
like encryption, key agreement, and key encapsulation; in some cases (e.g. RSA),
this means that it is possible to design a signature scheme very naturally.

However, this is not always true for all families of cryptosystems, with one of
the best examples being code-based cryptography. Despite code-based schemes
constituting one of the leading families of proposed quantum-resistant (aka post-
quantum) cryptosystems, designing efficient code-based signature schemes is in
fact a major challenge and, to date, still an open problem. The reason for this
is that the traditional hash-and-sign approach used for instance by RSA and
other signatures is severely hindered by the fact that the subset of decodable
syndromes of a linear code is typically only an exceedingly minute part of the
total vector space, and so picking a vector at random (via hashing) most likely
will not produce a decodable syndrome. This forces the signing algorithm to be
repeated a prohibitively large number of times, creating an obviously impractical
process. The authors of CFS [1], the first proposed signature scheme following
this approach, propose particular choices of parameters to alleviate this issue,
but the number of attempts required on average is still quite high (e.g. around 9!

for an estimated security level of 280) and the resulting signing times are several
orders of magnitude slower than schemes based on other primitives. Moreover,
“CFS-friendly” codes have a very high rate, and this can lead to potential addi-
tional issues such as distinguishers [4].

Alternatively, one could think of obtaining a signature scheme using the Fiat-
Shamir transform and an identification scheme: this approach works very well
for lattices, for instance [5]. However, the Hamming metric that comes with lin-
ear codes (instead of the Euclidean metric used for lattices) has proved to be
too weak to provide security [6], and therefore the only plausible method to
obtain code-based zero-knowledge is to use multiple commitments, as in Stern’s
scheme [7]. The problem with this type of schemes, though, is that multiple com-
mitments allow the attacker to cheat and be successful with non-trivial proba-
bility (2/3 in Stern’s original proposal), and therefore the identification scheme
needs to be repeated multiple times to guarantee acceptance. This results in a
very large signature size. Despite attempts to reduce this cheating probability [8],
it seems implausible to obtain a truly efficient scheme in this way.

The recent Wave scheme [3] would be a nice development in this scenario.
The scheme features an arguably elegant design and comes with a formal proof of
security in the sense of existential unforgeability under chosen-message attacks
(EUF-CMA). If that scheme withstood cryptanalysis, it would constitute a real
and most welcome breakthrough.

Our Contribution: In this work, we show that, unfortunately, the Wave scheme
leaks a considerable amount of private information in genuinely generated sig-
natures. The leaked information is enough to recover an equivalent private key
from the public key and a number of collected valid signatures, enabling an
attacker to forge signatures for arbitrary messages without knowing the actual
private key. The number of legitimate signatures the attacker needs to gather is
fairly small (a few thousands) and the equivalent key recovery runs very fast in
practice. The most time-consuming stage by far is the generation of the collected
legitimate signatures.

For signature schemes equipped with EUF-CMA proofs, this is unusual, but
not unprecedented. The Courtois-Finiasz-Sendrier (CFS) scheme [1] was simi-
larly proven existentially unforgeable by Dallot [2] under the assumption that
the underlying code adopted for the scheme is indistinguishable from a uniformly
random linear error-correcting code. As it turned out, the only codes known to
be suitable for CFS are very high-rate Goppa codes, which have since been shown
to be distinguishable from random [4]. In other words, there is nothing wrong
with the proof per se; rather, the hardness assumptions themselves fail to hold.

The same unfortunate circumstance is found here, with a crucial difference:
an attacker can actually forge Wave signatures for arbitrary messages, rather
than merely a single signature for some valid but contrived, meaningless message,
while CFS signatures are, to the best of our knowledge, still empirically secure (it
is just that the security proof does not hold for the chosen codes). This behavior
is not only predicted theoretically by our attack, it is supported by empirical

evidence in the form of a Magma implementation that shows the attack to be
entirely practical.

Given the nature of the property we exploit to mount our attack, we com-
plete our contribution by proposing a variant of Wave that we call the Tsunami
scheme, which appears to prevent information leakage and hence to thwart the
attacks. We do not claim Tsunami to be impervious to attacks, even though
it seems to withstand all our present attempts: rather, it is meant to offer a
refined target for further cryptanalysis efforts, and hence to stimulate contin-
ued investigation on the possibilities (or lack thereof) of attaining code-based
signatures.

The remainder of this paper is organized as follows. We start by recapitulat-
ing theoretical notions in Section 2. We summarize the Wave digital signature
scheme in Section 3. In Section 4 we show how the structure of Wave parity-
check matrices unavoidably leaks structural information about the private key
in each generated signature. In Section 5 we turn the leaked information into a
full-fledged attack that recovers an equivalent private key and enables forging
signatures. In Section 6 we present the results obtained via a simple Magma
script. Section 7 discussed generalizations of our attack to other potential fam-
ilies of underlying codes mentioned in the Wave specification. We propose the
Tsunami variant in Section 8. We conclude in Section 9.
For the sake of completeness, we have included our Magma script, in Appendix A,
to better illustrate our attack against the proposed 128-bit security parameters.
That script also illustrates the Tsunami variant, conditioned to a suitably named
Boolean switch.

*** Update #1: Since the first version of this report was ready, the authors
of Wave have contacted us to point out that, in our description of Wave and
in the script we include in the Appendix, we omit the rejection sampling they
adopt to make sure the distribution of coefficients in the signatures is weakly
uniform (that is, that signatures are statistically close to uniform).

In response, we point out that our attack does not depend on, and in fact is
not related at all, to that distribution. As we describe in Section 4, our distin-
guisher is not based on biases on the overall distribution of signature coefficient.
Rather, it can be viewed as a differential distinguisher: it keeps track of in-
dividual differences between certain components, not their distributions. This
differential bias is not removed when some candidate signatures are rejected
during signing: it cannot be removed, since doing so would necessarily mean
violating the Hamming weight constraint on the signatures.

Indeed, the script in the Appendix can be readily adapted to simply use
signatures generated elsewhere. Only the final forgery would have to be updated
accordingly, namely, a few candidate signatures would have to be computed from
the recovered equivalent and tested for whatever rejection sampling criterion
is adopted. The same expected amount of rejections are expected for forged
signatures as they are for genuine ones (between 25% and 33% according to the
authors of Wave).

*** Update #2: The authors of Wave have also kindly provided us with explicit
formulas for the rejection sampling mechanism involved in the DV decoder. That
mechanism is now taken into account in our attack script.

Summarizing: out attack still works against Wave implemented in as fully
detailed a fashion as the available specification makes possible; it is not thwarted
by the the rejection sampling in the DV decoder (in fact, it appears to benefit
from it; see Section 8.1).

2 Preliminaries

Notation: We denote with 0 the all-zero matrix and with I the identity matrix.
Let p be a prime number and let n an k be positive integers with k < n. The

Hamming weight of a vector x ∈ Fnp is defined as the number wt(x) of its nonzero
components. An (n, r)-linear code C of length n, dimension k and co-dimension
r = n − k is a k-dimensional vector subspace of Fnp . The code is called ternary
in the case p = 3 (and p-ary in general).

Every linear code is spanned by the rows of some matrix G ∈ Fk×np , called a
generator matrix of C. Since bases of vector spaces are not unique, every code
admits multiple generator matrices, each corresponding to a particular choice
of basis. Equivalently, a linear code can be described as the kernel of a matrix
H ∈ Fr×np , called parity-check matrix, i.e. C = {c | cHT = 0}. The codeword

c ∈ C corresponding to a vector m ∈ Fkq is given by c = mG. The syndrome

s ∈ Frp of a vector e ∈ Fnp is the vector s := eHT .
A (U,U +V) code is a linear code that admits a parity-check matrix of form

H :=

[
HU 0
−HV HV

]
∈ Fr×np ,

for some HU ∈ FrU×(n/2)p , HV ∈ FrV ×(n/2)p , and rU + rV = r. Defining kU :=
n/2− rU and kV := n/2− rV , the code dimension can be written k = kU + kV .

3 The Wave signature scheme

The original Wave signature scheme follows the hash-and-sign approach. This
means that signatures are obtained by decoding syndromes, which are (random-
ized) hashes of the message to be signed, into error patterns of a certain Ham-
ming weight. Traditionally in code-based cryptography, this Hamming weight is
required to be very low (well below the Gilbert-Varshamov bound), so that the
honest signer can make use of his trapdoor, i.e. the decoding algorithm associ-
ated to the code in use, while decoding is hard for an attacker. However, this is
not the only instance in which decoding is hard: as the authors of Wave point
out, the problem is easy if the weight grows beyond the bound, but it becomes
hard again when it becomes very high.

The setting that is actually proposed in Wave is the latter (see [3, “Tweaking
the Prange Decoder for Reaching Large Weights”]), where the error pattern has

very high Hamming weight. The reason is that the trapdoor enables solving dense
decoding instances which are seemingly much harder than sparse instances when
the code characteristic p is odd. The trapdoor itself consists of the particular
class of codes chosen, a generalized version of (U,U+V) codes called Generalized
Admissible (U,U + V) codes. These codes can be decoded using a small variant
of the (U,U + V) decoder, for which the range of relative weights that are easy
to decode is wider than the generic “easy” range (hence the trapdoor).

The only concrete instantiation specified by the authors of Wave is in char-
acteristic p = 3 and for plain (U,U + V) codes. We will simplify our exposition
accordingly, although we will also discuss the general case later.

3.1 Key pair

The Wave private key is a triple (S,Hsk, P), where S ∈ Fr×r3 is a nonsingular
matrix, Hsk ∈ Fr×n3 is the parity-check matrix of a linear code of even length
n, co-dimension r (and dimension k = n − r), and P ∈ Fn×n3 is a permutation
matrix (i.e. each row and each column have only a single component of unit
value, and all other components are zero), where Hsk is a generator matrix of a
(U,U + V) code, i.e. it has the shape:

Hsk :=

[
HU 0
−HV HV

]
∈ Fr×n3 ,

with HU ∈ FrU×(n/2)3 and HV ∈ FrV ×(n/2)3 . The public key associated to it is
Hpk := SHskP .

3.2 Signing and verifying

To sign a message m, the Wave scheme hashes m together with a uniform
random nonce z to a syndrome reprentative s′ ← H(m, z), then uses the private
trapdoor (see Section 3.4) to solve the equation e′HT

pk = s′ for a vector e′ of
weight wt(e′) = w. The complete signature is the pair (e′, z).

This is achieved by observing that e′HT
pk = s′ ⇔ e′(SHskP)T = s′ ⇔

e′(PTHT
skS

T) = s′ ⇔ (e′PT)HT
sk = s′(ST)−1 ⇔ eHT

sk = s where e := e′PT

with wt(e) = w and s := s′(ST)−1.
Signature verification proceeds by simply recomputing s′ ← H(m, z), then

checking that e′HT
pk = s′ and that wt(e′) = w.

3.3 Parameters

Only one set of parameters is suggested in the original description of Wave,
namely, ternary codes of length n = 5172, dimension k = 3908 and target
Hamming weight w = 4980, with k = kU + kV , kU = 2299, kV = 1609 (and
hence r = rU + rV = 1264, rU = 287, rV = 977). The Laplace distribution used
in the DV decoder sets α = 0.545 and σ = 18.81 which are claimed to be optimal
for security.

Here we see how the dense setting outperforms the more intuitive, sparse one:
in this configuration, a sparse setting could only expect to decode a syndrome
to an error pattern of weight around 747, while the dense setting decoding to
w = bn − (2/3)rUc = 4980 leaves only 192 zero columns. This clearly justifies
Wave’s adoption of the dense setting.

3.4 Using the trapdoor for signing

The structure of the private parity-check matrix allows to decode a syndrome
s := (sU , sV) with sU ∈ FrU3 , sV ∈ FrV3 , into an error pattern e := (eU , eU + eV)

with eU , eV ∈ Fn/23 . If we initially disregard the Hamming weight of the solution,
we just need to obtain arbitrary solutions of the two linear systems eVH

T
V = sV

and eUH
T
U = sU , as one can check that e = (eU , eU +eV) is an arbitrary solution

of eHT
sk = s.

Solving those two linear systems without any further requirement is easy:
choose kU (resp. kV) components of the desired error pattern and set them to
arbitrary values, then solve the resulting square linear system for the remaining
rU (resp. rV) components. Prange’s method does essentially this, but is tailored
to look for a solution of specifically low or high Hamming weight: instead of
setting the chosen components to random values, set them all to zero (to obtain
a low-weight solution) or else set them all to random nonzero values (to obtain
a high-weight solution).

As the authors point out, one can actually do much better to obtain high-
weight solutions of the target linear system eHT

sk = s. The technique consists of
choosing eV entirely at random from a certain distribution, and then computing
eU to satisfy certain criteria. Specifically, since we want eU + eV to have as
few zero entries as possible, and given that the code has characteristic 3, it is
enough to make as many entries on eU equal to the corresponding entries on eV
if the latter are nonzero (if eV [j] = ±1, setting eU [j] ← eV [j] not only ensures
eU [j] 6= 0, but also eU [j] + eV [j] = −eU [j] 6= 0), or else a random nonzero
value if those entries on eV are zero (in which case eU [j] = ±1 at random and
eU [j] + eV [j] = eU [j] 6= 0). Consequently, all but rU entries on eU and as many
on eU + eV can be forced to be nonzero. The remaining rU entries on eU are
computed as solutions to the linear system eUH

T
U = sU and hence their values

are not coercible to nonzero values, nor are the values of the corresponding
entries on eU +eV , for the same reason. Yet, since those 2rU values are expected
to be roughly uniformly distributed, only about 1/3 of them will turn out to be
zero, and the expected weight of (eU , eU + eV) is thus about n− (2/3)rU .

Rejection sampling The actual Wave scheme does not, however, pick just
any solution to either eVH

T
V = sV or eUH

T
U = sU , but filters them through

rejection sampling at both DV and DU decoders.
For the first equation, the DV decoder (Algorithm 3 in [3]) samples a tar-

get weight t for the kV chosen components of the desired error pattern from
the Laplace distribution (with mean (1− α)kV for a certain parameter α and a

certain variance σ), and after the solution eV has been computed, applies rejec-
tion sampling mechanism designed to ensure that eV is indistinguishable from a

uniformly random element from Fn/23 conditioned to having a certain expected
Hamming weight. Interestingly, the expected Hamming weight of the computed
solutions before rejection sampling step is about (1 − α)kV + (2/3)rV ≈ 1383
for the actual Wave, but tends to be slightly (about 2%) higher after rejection
sampling since the acceptance rate is observed to peak at Hamming weight 1411
instead, while at Hamming weight 1383 the acceptance rate is only about 0.9
times as high.

For the second equation, the DU decoder (Algorithm 4 in [3]) performs a
related but more involved rejection sampling step. It samples target weights j1
and j−1 for the numbers of 1 and −1 entries on the kV chosen components of
the desired error pattern from a 2-dimensional Laplace distribution with pa-
rameters tailored for the actual numbers t1 and t−1 of 1 and −1 entries on eV
(presumably with mean µ1 := (t1/(n/2))kU and µ−1 := (t−1/(n/2))kU , match-
ing the expected amounts of 1 and −1 entries on kU uniformly randomly chosen
columns from eV , though [3] simply states that “the mean and variance of that
distribution is optimized according to the first step output weight” without fur-
ther specifications), and after the solution eU has been computed, it counts the
numbers `1 and `−1 of positions where eV is respectively 1 or −1 but eU does
not match it, and applies rejection sampling with acceptance rate conditioned
to the observed `1 and `−1.

The Wave parameters are chosen in such a way that the fraction of candidate
signatures discarded by either rejection sampling mechanism is small (11% for
DV and 19% for DU).

4 Structural leakage

We now show that, unless eU and eV are computed according to a very specific
criterion (that the Wave setting does not follow), it turns out to be possible to
accumulate statistics from observed genuine signatures and recover an equivalent
signing key.

Initially, consider the distribution of entry values on eU in a scenario where
rejection sampling is disabled for the DU decoder (the effect of enabling rejection
sampling for DU will be discussed later, in Section 8.1).

We know that kU of the eU entries have their values chosen from a certain
distribution, rather than computed as solutions of a linear system. A fraction
about γ := ((1−α)kV +(2/3)rV)/(n/2) out of those eU [j] chosen entries, namely,
those corresponding to eV [j] 6= 0, are set to be equal to eV [j], in which case
eU [j]+eV [j] = −eU [j]. The remaining fraction 1−γ, corresponding to eV [j] = 0,
are set to eU [j] = ±1 uniformly at random, in which case eU [j] + eV [j] = eU [j].

The values of the rU computed entries of eU are close to uniform, as are the
corresponding entries of eU + eV . In that case, if neither eU [j] nor eU [j] + eV [j]
is zero, which happens a fraction about 4/9 of the time, they are either equal or
opposite with equal probability, namely, 2/9 of the time each.

Overall, γ(n/2 − rU) + (2/9)rU = γn/2 − (γ − 2/9)rU entries of eU are
nonzero and opposite to their corresponding entry on eU + eV , (1 − γ)(n/2 −
rU) + (2/9)rU = (1 − γ)n/2 − (7/9 − γ)rU entries of eU are nonzero and equal
to their corresponding entry on eU + eV , and (5/9)rU entries of eU are zero or
correspond to a zero entry on eU + eV .

Now let e := (eU , eU + eV). Then, discarding the entries where either eU or
eU + eV are zero, we see that

Pr{e[j] = −e[j + n/2]} ≈ γn/2− (γ − 2/9)rU
n/2− (5/9)rU

and

Pr{e[j] = e[j + n/2]} ≈ (1− γ)n/2− (7/9− γ)rU
n/2− (5/9)rU

.

Therefore, after the column permutation is applied to e to get the signature
e′, one still expects

Pr{e′[j] = −e′[h]} ≈ γn/2− (γ − 2/9)rU
n/2− (5/9)rU

and

Pr{e′[j] = e′[h]} ≈ (1− γ)n/2− (7/9− γ)rU
n/2− (5/9)rU

whenever two columns j and h correspond to the same original pair and their
values are both nonzero. For the actual Wave parameters this yields Pr{e′[j] =
−e′[h]} ≈ 0.53313 and Pr{e′[j] = e′[h]} ≈ 0.46687. If columns j and h are
nonzero but do not correspond to one same original pair, then Pr{e′[j] = e′[h]} =
1/2 and Pr{e′[j] = −e′[h]} = 1/2, since their values are independent and essen-
tially uniform.

Thus, observing a certain amount of genuine signatures, it is possible in
principle to accumulate enough statistics to infer which pairs of columns on the
public parity-check matrix are more likely to correspond to matching pairs of
columns on the secret parity-check matrix. To that end, among those signatures
where any target columns j and h are both nonzero, count how many times
their values are equal and how many times they are opposite: if the ratio of the
counts is sufficiently close to 0.53313/0.46687 ≈ 8/7, these columns are likely a
matching pair in the unpermuted code; if the ratio is closer to 1 instead, they
are likely unrelated.

Signed permutations: One might think, at first glance, that adopting a signed
column permutation P might thwart the accumulation of statistics. However,
since the permutation is fixed for all signatures (it is a feature of the key pair),
the actual result would merely be swapping the unbalanced probabilities without
affecting the ratio of the larger to the smaller.

For instance, for the actual Wave] parameters this would mean that, if the
ratio of the above counts is sufficiently close to either ≈ 8/7 or ≈ 7/8, they likely

correspond to a matching pair in the unpermuted code, otherwise they are likely
unrelated.

For simplicity, then, we henceforth only focus on the case where P is an
unsigned permutation.

4.1 On leakage in the presence of rejection sampling

It is easy to see that the notion of weak uniform decoder does not capture all
possibilities of attack, regardless of the values of the rejection sampling vectors
adopted for DU .

Consider the InfoSetW(H, e, j1, j−1) function, which is defined as a black
box (only the pre- and post-conditions of its interface are specified). We will de-
fine a compliant function InfoSetW′(H, e, j1, j−1) that introduces a positional
bias in its output, while still ensuring the defining conditions that the returned
I is an information set of H⊥ such that the number of positions i ∈ I for which
e[i] = 1 is equal to j1 and e[i] = −1 is equal to j−1. Assume that InfoSetWR

is another compliant function that simply picks any information set at random.

function InfoSetW′(H, e, j1, j−1):
repeat

if e[n− 1] = 1:
I ′ ← InfoSetWR(H[0...r − 1, 0...n− 2], e[0...n− 2], j1 − 1, j−1)

if e[n− 1] = −1:
I ′ ← InfoSetWR(H[0...r − 1, 0...n− 2], e[0...n− 2], j1, j−1 − 1)

if e[n− 1] = 0:
I ′ ← InfoSetWR(H[0...r − 1, 0...n− 2], e[0...n− 2], j1, j−1)

I ← n− 1 ∪ I ′
until I is an information set of H⊥

return I

Notice that I ′ is an infoset of cardinality (n − r) − 1 and does not contain
column n − 1. Also, the counts of 1 and −1 entries on I ′ are such that column
n − 1 completes the required j1 and j−1 counts. Therefore, position n − 1 is in
I with overwhelming probability (failure only happens when j1 = 0, or j−1 = 0,
or the rank of H is less than r, and any of this events only occurs with negligible
probability). All other elements of I are chosen in precisely the same way they
would if column n − 1 had been chosen to be part of I by chance, so those are
unbiased.

Now consider how the vector x is sampled within the DU decoder: since
Supp(x) = I and column n− 1 is now in I, necessarily x[n− 1] 6= 0. Therefore,
eU [n − 1] is always nonzero, and matches eV [n − 1] when that element is itself
nonzero. Also, column n−1 does not influence the values of `1 and `−1, since they
are defined only in terms of columns where eV is nonzero but eU does not match
it. As a consequence, vector e = (eU , eU + eV) has a positional bias at column
n − 1. Even after applying the secret permutation to get the actual signature,
one of the columns, specifically, column e[π(n − 1)], is never zero, and this can

be detected with overwhelming probability 1 − ε by observing a collection of
ε/(logw − log n) signatures.

In conclusion, the DU rejection sampling mechanism, being oblivious to posi-
tional biases (the rU matrix of acceptance rates depends on counts of coefficient
values and counts of (un)matches between corresponding coefficient values, but
not on their positions, and the filtering is based on the values of `1 and `−1),
cannot and does not filter out signatures generated when InfoSetW′ substi-
tutes for InfoSetW. This means that DU is not weakly uniform as assumed,
and the security of Wave is therefore not guaranteed by Theorem 1.

5 Forging signatures

We now show how to exploit the structural leakage just described to forge sig-
natures. First, we gather the necessary statistics from the collected signatures.
Then, we recover the structure which allows to build an alternative private-key.
Finally, we use this alternative key to sign any message.

5.1 Gathering statistics

There is a simple and effective way to gather the required statistics to recover the
essential code structure. Let C be the matrix whose rows consist of all t collected
signatures, each being a vector from F3. Lift the entries of C to Z with zero-
centered entries (i.e. view C as a matrix of integers in range {−1, 0, 1} rather
than {0, 1, 2}). Then one can distinguish between matching and unmatching
columns by looking for the largest entry on each row of C ′ := −CTC.

This works because, when two given columns i and j do not match in the
private code, the product of the corresponding coefficients on any given signature
is either zero (in which case it does not contribute to the value of C ′ij), or else is
uniformly distributed between −1 and 1. Either way, C ′ij will be simply a sum
of up to t values uniformly chosen from {−1, 1}, with an expected value of zero
and a standard deviation of

√
t.

However, when the columns do match, C ′ij will be the difference between the
number of opposite and equal coefficients that occur at those columns among
all collected signatures. Thus the expected value of C ′ij in this case is not zero

but around (8/7− 1)t = t/7 and again a standard deviation of around
√
t, with

discrepancies due to the noise introduced when those columns are computed
rather than chosen and neither is zero.

Except for those discrepancies due to noise, this distinguisher is likely to
identify a pair of matching columns as long as the observed values between
matching and unmatching columns do not coincide. Ignoring the noise, coinci-
dence happens within β standard deviations when 0 + β

√
t = t/7 − β

√
t, that

is, when β =
√
t/14. For a desired (un)likeliness of failure (which corresponds

to the probability of an event at or outside β standard deviations), this yields
the approximate number of signatures needed to ensure success in guessing cor-
rectly one matching column pair, namely, t = (14β)2. Here we use the central

limit theorem to approximate the distribution of C ′ij with a normal distribu-
tion (which is reasonable since the signature coefficients are, to a high enough
precision, independent and identically distributed).

For instance, β = 4 corresponds to a probability of failure of 1/15787 per
column pair, or roughly 1/6 for all pairs when n = 5172. To attain this, at least
about t = (1β)2 = 3136 signatures must be collected. In practice more signa-
tures are required to compensate for the aforementioned noise. We observe that,
without rejection sampling of any kind, an average of 6500 collected signatures
(with a standard deviation of about 500) lead to a successful break.

5.2 Recovering the essential key structure

Although the above process does not reveal the exact column permutation P ,
it allows to group the columns of the parity-check matrix in such a way that
matching pairs are exactly at a distance of n/2 apart. This grouping corresponds
to applying a partial column permutation Q that keeps the overall structure
(though not the actual coefficients) of the lower part of the private parity-check
matrix unchanged, namely:

HpkQ = S(HskPQ)

where

HskPQ =

[
A′ B′

−W ′ W ′
]

for some A′, B′ ∈ FrU×(n/2)3 and W ′ ∈ FrV ×(n/2)3 .
Moreover, doing this allows to compute a different basis for the same code

where the structure of the lower part of the parity-check matrix is publicly
visible. Namely, it becomes possible to find a matrix R such that:

RHpkQ =

[
A B
−W W

]
.

The obvious technique to achieve this is to compute the echelon form of a
matrix Z consisting of the sum of the left and right sides of HpkQ, namely:

Z := HpkQ ·
[

I
I

]
= S ·

[
A′ B′

−W ′ W ′
]
·
[

I
I

]
= S ·

[
A′ +B′

0

]
,

since the rank of Z is no more than rU . Thus, the unscrambling matrix R we
look for is one such that:

R · Z =

[
Z ′

0

]
for some Z ′. Such a matrix is effectively computed via plain Gaussian elimina-
tion, and one can check that Hbk := RHpkQ has the desired form.

It remains to show how to make use of Hbk to forge Wave signatures. We
will discuss this in the next section.

5.3 Completing the forgery

As we have seen, the permutation Q and the unscrambling matrix R, recovered
through leaks from genuine signatures, reveal part of the private parity-check
structure, yielding a parity-check matrix Hbk with the structure:

Hbk := RHpkQ =

[
A B
−W W

]
.

A crucial remark is that the permutation Q likewise restores the struc-
ture e′ = (e′U , e

′
U + e′V) of valid signatures, even though the actual coefficients

probably differ from those of the actual signature. This means that e′[j] =
±e′[j + n/2] 6= 0 for all but bn − (2/3)rUc entries of e′ when e′V [j] 6= 0, that
the ratio between equal and opposite values in such matching pairs is about 2,
and that the coefficients of e′V are essentially random (only the coefficients of e′U
have to be chosen according to the same guidelines as before).

Now consider the task of decoding a syndrome s′ := (sU , sV) into a w-dense
error pattern e′ under the parity check matrix Hbk, that is, solving e′HT

bk = s′.
We have:

e′HT
bk =

[
e′U e′U + e′V

]
·
[
AT −WT

BT WT

]
=

[
e′UA

T + (e′U + e′V)BT −e′UWT + (e′U + e′V)WT
]

=
[
e′U (A+B)T + e′VB

T e′VW
T
]

=
[
s′U s′V

]
.

This can be carried out by finding a random solution to e′VW
T = s′V , then

solving e′U (A + B)T = s′U − e′VBT . To keep the Hamming weight high, simply
follow the same strategy as for the original Wave private structure: set n/2−rU
coefficients e′U [j] = e′V [j] when e′V [j] 6= 0 or to a random nonzero value when
e′V [j] = 0, then solve for the remaining rU coefficients.

To forge signatures for any message (properly hashed to a syndrome s),
notice that any valid signature satisfies eHT

pk = s⇔ (eQ)(QTHT
pkR

T) = sRT ⇔
e′HT

bk = s′, with e′ := eQ and s′ := sRT . Thus we can forge a Wave signature e
under key Hpk for a given syndrome s by recovering Hbk as shown in the previous
section, then solving e′HT

bk = s′ for e′ of the correct weight with s′ := sRT , and
finally returning e = e′QT .

6 Measurements and results

We have implemented our attack via a simple Magma script, which we have
included in the Appendix, and we tested it on Wave parameters. The machine
used is an iMac, with processor Intel Core i5 at 3.2 GHz and 16Gb of RAM. The
most expensive steps consists in collecting the required number of signatures
(set to an average of 6500), which, in our measurements, is about 800 seconds
(approximately 13 minutes). After that, the time spent to recover the matrix

structure corresponding to the alternative private key, and to produce a forgery,
is negligible.

Note that, in the script, we actually allow for the Hamming weight of genuine
signatures to be within 5% of the target weight. This is by no means a restriction
of the attack: it is merely a way to speedup the generation of legitimate Wave
signatures, a process which could otherwise be unnecessarily slow: while it is not
hard to get signatures whose weight is ever so slightly off the target w = 4980,
a legitimate user would have to spend quite some time to obtain a signature of
weight exactly w, perhaps tenfold or even longer.

7 Generalizing the attack

As we have mentioned, the Wave scheme is formally defined on top of general-
ized admissible (U,U + V) codes over some finite field Fp. The authors choose
to restrict the scheme description to plain (U,U + V) codes of characteristic 3,
justifying their choice for the sake of simplicity, but pointing out that their con-
struction and analysis can be generalized. Although they refrain from providing
explicit details on the use of these codes, we briefly show that they would still
be vulnerable to simple variants of our attack, while also pointing out the lim-
itations of our technique. We first consider the adoption of ternary generalized
admissible (U,U + V) codes, then we discuss larger characteristics.

7.1 Attacking generalized admissible (U,U + V) codes

The detailed structure of the private parity-check matrix for a generalized ad-
missible (U,U + V) code is the following:[

HUD4M −HUD2M
HVD3M −HVD1M

]
,

where D1 through D4 and M are diagonal matrices, with D1, D3 and M invert-
ible, and M := (D1D4 − D3D2)−1. In this description, plain (U,U + V) codes
correspond to the particular choice of matrices D1 = D3 = D4 = I and D2 = 0.

Since M and D1 through D4 are diagonal, they commute. Moreover, given
the condition that D1 and D3 are both invertible, we can define E := D3 ·D−11

and rewrite the above matrix in the following form as:[
(HUD4M) · (D3D

−1
1)−1 · (D3D

−1
1) (−HUD2M)

−(−HVD1M) · (D3D
−1
1) (−HVD1M)

]
or, equivalently, [

AE B
−WE W

]
=

[
A B
−W W

] [
E 0
0 I

]
where A := (HUD4M) · (D3D

−1
1)−1, B := −HUD2M and W := −HVD1M .

This form is very closely related to the recovered matrix in the attack against
plain (U,U + V) codes, the difference consisting only of the diagonal matrix:

F :=

[
E 0
0 I

]
on the right. The effect of multiplying an error pattern (without the private
column permutation) by F is just to consistently flip the sign of certain paired
columns. Indeed, this is the result of applying a specific signed permutation,
which does not thwart the attack as seen in Section 4: for matching columns h
and j, the ratio between the counts of occurrences with e′[h] = −e′[j] 6= 0 and
those with e′[h] = e′[j] 6= 0 is either ≈ 8/7 (when the diagonal element on F is
1) or ≈ 7/8 (when that element is −1), while for unrelated columns the ratio is
close to 1/2. This enables finding matching columns and also the corresponding
signal.

In conclusion, an attacker can still recover an equivalent private key for gen-
eralized admissible (U,U + V) codes with only a small modification to the basic
attack strategy for plain (U,U + V) codes. The recovered equivalent trapdoor
is even simpler than the structure of generalized admissible (U,U + V) codes,
since it does not require that complicated decomposition.

7.2 Larger characteristics

Assume now that the codes are defined over Fp for p ≥ 3. The distinguisher we
employ for ternary codes to pair up matching columns on legitimate signatures
works by matching pairs (h, j) of columns that are not selected to be the solutions
of linear systems. It is based on the observation that e′[j] = e′[h] only when
eV [j] = 0, while if the columns do not match, equality happens by chance among
all nonzero values. Thus, we count the number of times the values of two columns
match, and infer they match when the count is suitably different from 1/2.

For p = 3 the distinguisher works with a comfortable margin (a fraction
0.46687 of equalities for matching columns against 1/2 for unmatching ones).
For larger characteristics all we need to make is a small modification to the way
we count equalities/inequalities.

Assume for simplicity that eV is sampled with as few zero entries as possible
(a similar reasoning with more complicated formulas holds for unbalanced dis-
tributions). The generalized distinguisher for any p ≥ 3 is designed to lead to
an expected zero-sum when the columns do not match, but to an expected sum
value of roughly t/p for matched columns, where t is the number of collected
signatures. To attain this, we simply compute a weighted sum instead, assigning
weight −p−12 to count occurrences of e′[j] = e′[h] and weight p−1

2(p−2) to count

occurrences of e′[j] 6= e′[h].
Thus, when the columns are unmatched, the fraction of equal coefficients

between columns h and j is mapped from 1
p−1 to − 1

p−1 ·
p−1
2 = − 1

2 , and the

fraction of different coefficients on those columns is mapped from p−2
p−1 to p−2

p−1 ·
p−1

2(p−2) = 1
2 , yielding the expected zero-sum. In contrast, for matched columns

the fraction of equal coefficients is mapped from 1
p to − 1

p ·
p−1
2 = − p−1

2p(p−2) ·(p−2),

and the fraction of different coefficients is mapped from p−1
p to p−1

p ·
p−1

2(p−2) =
p−1

2p(p−2) · (p − 1), therefore with a bias of p−1
2p(p−2) ≈

1
2p above the zero-sum in

favor of matching column pairs.
Adapting the statistical analysis from Section 5.1 accordingly, the number

of required signatures for this generalized distinguisher is t ≈ (2pβ)2 where β is
again the number of standard deviations that an event with the same probability
as an attack failure would be away from the mean. Thus, the odds of attack
success become negligible when p2 ∈ O(2λ) for λ-bit security. More precisely,
since the signature size is proportional to lg p, the total number of collected bits
from t signatures becomes 4β2p2 lg p, and setting this value to 2λ yields a refined
lower bound for p, namely, p ≈ 2λ/2−1/(α

√
λ). For instance, for λ = 128 and

β = 6 (corresponding to a probability of roughly n/506797346 ≈ 2−17 that the
attack fails for the proposed n = 5172), the minimum characteristic to thwart
the attack would be p ≈ 257.

Yet, it is far less clear how to choose secure parameters that prevent other
types of vulnerability for p as large as this: it might well turn out that other
vulnerabilities are introduced by this setting, which we therefore neither recom-
mend nor claim to be secure at all. Investigating the possibilities left, if any,
transcends the scope of this paper.

8 The TSUNAMI variant

The Wave signature scheme is conceptually elegant, sports a detailed concrete
assessment of the coding-theoretical problems related to the hardness assump-
tion, and comes with a formal security proof which still formally holds, even
though the hardness assumption itself does not. One can therefore legitimately
ask if there is any way of fixing its security shortcomings. We now present in-
triguing evidence that this just might be the case. We focus on characteristic
p = 3 to keep as close as possible to the original Wave setting, but similar
observations hold for higher characteristics as well.

The distinguisher we exploit to mount our attack is based on the property
that, for matching columns h and j that happen not to have been chosen for the
information set needed for signing, equality of signature coefficients e′[h] = e′[j]
holds a fraction 0.46687 of the time (specifically, when eV [j] = 0 and hence
eU [j] + eV [j] = eU [j]), while inequality e′[h] 6= e′[j] holds the remaining 0.53313
fraction (that is, when eV [j] 6= 0 and hence eU [j] = eV [j], leading to eU [j] +
eV [j] = −eU [j]). This distinguisher stems from the setting α = 0.545 for the
Laplace distribution in the DV decoder.

We now propose the Tsunami variant, that coincides with Wave except
in the computation of eV (and possibly in the way rejection sampling is set,
depending on its parameters). Specifically, we set the distribution of the eV
coefficients in such a way that equality and inequality of entries on the final
signature are equiprobable, that is, Pr{e′[h] = e′[j]} = Pr{e′[h] 6= e′[j]} for all
columns h, j.

In other words, let ζ be the fraction of zero entries on the columns of eV
in the information set chosen for solving the linear system. The number of zero
coefficients in that part is thus ζkV , and the number of ±1 coefficients there
is (1 − ζ)kV . Outside the information set, the expected number of zero entries
is ≈ 1

3rV and the number of nonzero entries is ≈ 2
3rV , since those entries are

essentially uniform. We want the total number of zero entries on eV to match
the number of nonzero entries, since this nullifies the distinguisher. That is, we

need ζkV + 1
3rV = (1− ζ)kV + 2

3rV , which means ζ = 1
2

(
1 + 1

3
rV
kV

)
.

Algorithmically, this means choosing the kV free coefficients of eV (that is,
those in the information set used to solve the linear system) to zero with prob-
ability ζ, and uniformly to ±1 with probability (1− ζ).

For Wave parameters apart from α (and the corresponding variance), we
have ζ ≈ 0.6012, hence we must set ≈ 60.12% of the free entries of eV , or ≈ 967
columns, to zero, and the remaining ≈ 39.88% of them, or ≈ 642 columns,
uniformly to ±1.

We remark that the weight distribution of the signatures themselves remains
extremely close to uniform: the only weight affected by the Tsunami setting is
that of eV , not that of e = (eU , eU + eV).

Also, we stress once again that we do not claim this variant to be secure: it
withstands the core of our attack, but there may exist other distinguishers that
enable pairing up the columns of Hsk (or that break the scheme in an entirely
different fashion). Still, since Tsunami appears to share all positive properties
of Wave and was designed to fix its only drawback known so far, it is proposed
explicitly as a target for further cryptanalysis, and as motivation for follow-up
research on the possibility (or otherwise) of achieving code-based signatures.

8.1 The effect of rejection sampling

We observed earlier that the peak acceptance rate for the DV rejection sampling
occurs at a slightly higher weight than γn/2 ≈ 1383, namely, at weight 1411.
This is even farther away from the Tsunami weight, which is simply n/4 = 1293
at which the acceptance rate is only about 5%. Now this has a curious effect:
the attack actually benefits from it.

Indeed, without rejection sampling the average number of signatures needed
for a successful attack is about 6500. Turning the DV rejection sampling on, that
number is observed empirically to slightly drop to an average of 6300 signatures.

Computing the acceptance rates for DV and especially for DU is no easy
task: despite their apparent simplicity in the statement of [3, Theorem 1], they
are only obtained for DV by virtue of [3, Proposition 1], and are entirely missing
from [3] for DU .

However, it is quite unlikely that the signatures that pass that final layer of
rejection sampling will have any substantial effect on the attack: thwarting it
would require countering the effects of both the chosen α and that of the DV

rejection sampling, effectively filtering out the signatures where the weight of
eV was far away from n/4 and thus emulating a scenario where α is replaced by

ζ. Since only about 5% of those signatures survive the DV rejection sampling
itself, such a setting would decrease the acceptance rate at the DU decoder from
about 81% down to 5% or less, and even if it did, one would be left wondering
why α was not set to ζ to begin with.

Nevertheless, in the absence of explicit formulas for the DU we did a simple
experiment and replaced 19% of the signatures by entirely random noise (so they
do not even verify) rather than by different but valid signatures. The attack is
still observed to work, the only effect being an increase in the number of necessary
signatures to an average of 12000 and a standard deviation of 1000.

9 Conclusion

We have described distinguishers for (plain or generalized admissible) (U,U+V)
codes in small-to-moderate characteristic, exploiting leaks in genuinely generated
signatures that enable recovering an equivalent signing key. The recovered key
can in turn be used to sign arbitrary messages, not merely to produce an exis-
tential forgery. Thus the attack constitutes a total break of Wave, and shows
that the hardness assumption required for that scheme to be secure does not
hold.

The attack is practical as corroborated by empirical assessment (see the
Appendix for a simple but complete implementation). Proposed parameters for
the 128-bit classical security level can be broken in about a minute, with the
actual key recovery taking only a few seconds after a modest number of genuine
signatures are collected.

We have also proposed a potential fix in the form of the Tsunami variant.
While we do not claim it to resist all kinds of structural attacks, it was designed
specifically to withstand ours while keeping all positive aspects of Wave, and is
thus offered as a target for further cryptanalysis. We hope this helps fostering
continued research into the possibility (or otherwise) of achieving code-based
digital signatures.

Acknowledgments

We are grateful to the authors of Wave for their comments on preliminary
versions of this document.

References

1. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001.
pp. 157–174. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

2. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier sig-
nature scheme. In: Lucks, S., Sadeghi, A.R., Wolf, C. (eds.) Research in Cryptology.
pp. 65–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

3. Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new code-based signature
scheme. arXiv preprint arXiv:1810.07554 (2018)

4. Faugère, J.C., Gauthier-Umaña, V., Otmani, A., Perret, L., Tilllich, J.P.: A distin-
guisher for high-rate McEliece cryptosystems. IEEE Transactions on Information
Theory 59(10), 6830–6844 (Oct 2013). https://doi.org/10.1109/TIT.2013.2272036

5. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009.
pp. 598–616. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

6. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis,
ResearchSpace@ Auckland (2012)

7. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) Advances in Cryptology — CRYPTO’ 93. pp. 13–21. Springer Berlin
Heidelberg, Berlin, Heidelberg (1994)

8. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

A Magma script to illustrate the attack

The following script matches the available description of Wave except for the
DU rejection sampling layer, which is only implicitly defined in [3] (see the
discussion in Section 8.1).

ZZ := Integers();

K := GF(3);

/*

* Rejection sampling infrastructure for {\Wave}.

*

* Inspired by software kindly provided by T. Debris-Alazard, J.-P. Tillich, and N. Sendrier.

*/

function defN(kV, mu, sigma)

return (1/2)*(&+[Exp((i+1-mu)/sigma) - Exp((i-mu)/sigma) : i in [0..Round(mu)-1]]

+ &+[Exp((mu-i)/sigma) - Exp((mu-i-1)/sigma) : i in [Round(mu)..kV]]);

end function;

function proba(mu, sigma, N, t)

return (t lt mu)

select (1/(2*N))*(Exp((t+1-mu)/sigma) - Exp((t-mu)/sigma))

else (1/(2*N))*(Exp((mu-t)/sigma) - Exp((mu-t-1)/sigma));

end function;

function q1(n, rV, i, probavec, binomvec, pow2vec)

return &+[probavec[t + 1]*binomvec[(i-t) + 1]*pow2vec[(i-t) + 1] :

t in [0..i]]/3^rV;

end function;

function q1u(n, w, i, pow2vec, binomvec, binomipvec)

//assert n mod 2 eq 0;

//assert w mod 2 eq 0;

res := 0.0;

for p := 0 to i by 2 do

if (w+p) gt n then

break; // all remaining terms are zero

end if;

if 2*i gt (w+p) then

break; // all remaining terms are zero

end if;

res +:= 1.0*binomipvec[p + 1]*Binomial((w+p) div 2, i)

*binomvec[(w+p) div 2 + 1]*pow2vec[(w+p) div 2 + p + 1];

end for;

return res/(Binomial(n, w)*2^w);

end function;

/**

* Compute the acceptance rate vector needed for rejection sampling.

* NB: choosing sigmaV < 1 disables rejection sampling

* by setting all entries to 1.

*/

function MakeRsV(n, w, kV, alpha, sigmaV)

n2 := n div 2; rV := n2 - kV; assert n mod 2 eq 0; assert kV lt n2;

if sigmaV ge 1 then // actual rejection sampling (Wave)

mu := (1 - alpha)*kV;

N := defN(kV, mu, sigmaV);

"N =", N;

probavec := [proba(mu, sigmaV, N, j) : j in [0..n2]];

binomvec := [Binomial(rV, j) : j in [0..n2]];

pow2vec := [2^j : j in [0..n]];

"computing q1vec...";

time q1vec := [q1(n, rV, i, probavec, binomvec, pow2vec) :

i in [0..n2]];

"q1vec has been computed";

binomvec := [Binomial(n2, j) : j in [0..(w + n2) div 2]];

binomipvec := [1 : j in [0..n2]];

"computing q1uvec...";

q1uvec := [0.0 : i in [0..n2]];

time for i in [0..n2] do

q1uvec[i + 1] := q1u(n, w, i, pow2vec, binomvec, binomipvec);

for p in [0..i] do

binomipvec[p + 1] *:= (i + 1)/(i + 1 - p);

end for;

end for;

"q1uvec has been computed";

rsV := [q1uvec[i + 1]/q1vec[i + 1] : i in [0..n2]]; // raw vector

M, wmax := Max(rsV); wmax -:= 1;

invM := 1/M;

"M =", M, ":", invM;

"weight accepted with max prob:", wmax;

rsV := [invM*rsV[i + 1] : i in [0..n2]];

else // accept signatures without rejection sampling (Tsunami)

rsV := [1 : i in [0..n2]];

end if;

return rsV; // acceptance rate vector

end function;

/*

* General support for {\Wave} signatures and the {\Tsunami} variant.

*/

/**

* Compute the Hamming weight of a vector.

*/

function Hweight(e)

return &+[(e[k] ne 0) select ZZ!1 else ZZ!0 : k in [1..Ncols(e)]];

end function;

/**

* Sample from the Laplace distribution of mean mu and variance sigma.

*/

function Laplace(mu, sigma)

// sigma = 2*b^2

b := Sqrt(sigma/2);

// sample Z from Laplace(0, 1):

X := 1.0*Random(0, 2^128 - 1)/2^128;

Y := 1.0*Random(0, 2^128 - 1)/2^128;

Z := Log(X/Y);

// sample L from Laplace(mu, b):

return Round(mu + b*Z);

end function;

/**

* The D_V decoder.

*/

function D_V(sV, VT, alpha, sigmaV, rsV)

n2 := Nrows(VT); rV := Ncols(VT); kV := n2 - rV;

assert Ncols(sV) eq rV;

A := {u : u in K} diff {0};

mu := (1 - alpha)*kV;

aatt := 0;

repeat

aatt +:= 1;

// choose kV components:

repeat

eV := Vector(K, n2, [0 : j in [1..n2]]);

ss := sV;

// pick weight t in [0..kV] from the Laplace distribution:

repeat

t := Laplace(mu, sigmaV);

until t ge 0 and t le kV;

J := {1..n2}; // all available columns

// choose t columns out of the kV components to guess uniformly to a nonzero value:

for c in [1..t] do

j := Random(J); J diff:= {j};

// guess one component and update the syndrome accordingly:

eV[j] := Random(A);

ss -:= eV[j]*VT[j];

end for;

// choose kV - t components to be set to zero:

for c in [1..kV - t] do

j := Random(J); J diff:= {j};

eV[j] := 0;

end for;

// group together the remaining coefficients

// (to be computed as the solution to a linear system):

L := [];

for j in [1..n2] do

if j in J then

L cat:= [j];

end if;

end for;

HH := VerticalJoin([VT[L[i]] : i in [1..rV]]);

until Determinant(HH) ne 0; // make sure the linear system admits a (unique) solution

// compute the remaining coefficients:

ee := ss*HH^-1;

c := 0;

for j in [1..n2] do

if j in J then

c +:= 1; eV[j] := ee[c];

end if;

end for;

assert c eq rV;

//assert eV*VT eq sV;

// perform rejection sampling:

weV := Hweight(eV);

//"*** wt(e_V) =", weV, ":", 1.0*((1 - alpha)*kV + (2/3)*rV);

acc := Random(0, 2^128-1) le rsV[weV + 1]*2^128; // accept with probability rsV[wt(eV)]

until acc or aatt gt 100;

//"***", aatt, ":", weV;

assert aatt le 100;

return eV;

end function;

/**

* The D_U decoder.

*/

function D_U(sU, UT, eV, sigmaU, rsU)

n2 := Nrows(UT); rU := Ncols(UT); kU := n2 - rU;

assert Ncols(sU) eq rU; assert Ncols(eV) eq n2;

A := {u : u in K} diff {0};

// count the number of 1’s and -1’s on eV:

t1 := &+[(eV[j] eq 1) select ZZ!1 else ZZ!0 : j in [1..n2]];

tm := &+[(eV[j] eq -1) select ZZ!1 else ZZ!0 : j in [1..n2]];

t0 := n2 - t1 - tm;

//"========> t1 =", t1, ": tm =", tm, ": t0 =", t0, ": t1 + tm =", t1 + tm, ":", kU;

// select the mean values for the Laplace distributions

// (take them to match the expected amounts of 1’s and -1’s

// on kU randomly chosen columns from eV):

mu1 := (t1/n2)*kU; // NB: the Wave paper is unclear here; this is just a guess! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

mum := (tm/n2)*kU; // NB: the Wave paper is unclear here; this is just a guess! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

//"========> mu1 =", mu1, ": mum =", mum;

aatt := 0;

repeat

aatt +:= 1;

// choose kU components:

repeat

eU := Vector(K, n2, [0 : j in [1..n2]]);

ss := sU;

// pick weights j1, jm in [0..kV] from the Laplace distribution:

repeat

j1 := Laplace(mu1, sigmaU);

jm := Laplace(mum, sigmaU);

until j1 + jm le kU

and j1 gt 0 and j1 le t1 // ensure there are at least j1 1-entries on eV

and jm gt 0 and jm le tm // ensure there are at least jm (-1)-entries on eV

and kU - j1 - jm le t0 // ensure there are at least (kU-j1-jm) 0-entries on eV

;

//"*** j1 =", j1, ": jm =", jm, ": j1 + jm =", j1 + jm, ":", kU, ":", kU - j1 - jm;

J := {1..n2}; // all available columns to pick the information set from

// choose j1 columns to match the corresponding 1-entry on eV:

J1 := {(eV[j] eq 1) select j else 0 : j in [1..n2]} diff {0}; // all 1-columns

for c in [1..j1] do

j := Random(J1); J1 diff:= {j}; J diff:= {j};

// set one entry of eU to match the corresponding entry of eV,

// and update the syndrome accordingly:

eU[j] := eV[j]; assert eU[j] eq 1;

ss -:= eU[j]*UT[j];

end for;

// choose jm columns to match the corresponding -1-entry on eV:

Jm := {(eV[j] eq -1) select j else 0 : j in [1..n2]} diff {0}; // all (-1)-columns

for c in [1..jm] do

j := Random(Jm); Jm diff:= {j}; J diff:= {j};

// set one entry of eU to match the corresponding entry of eV,

// and update the syndrome accordingly:

eU[j] := eV[j]; assert eU[j] eq -1;

ss -:= eU[j]*UT[j];

end for;

J0 := {(eV[j] eq 0) select j else 0 : j in [1..n2]} diff {0}; // all 0-columns

assert #J0 ge kU - j1 - jm;

// choose kU - j1 - jm columns from those corresponding to a 0-entry on eV,

// set them to uniformly random nonzero values, and update the syndrome accordingly:

for c in [1..kU - j1 - jm] do

j := Random(J0); J0 diff:= {j}; J diff:= {j};

// guess one entry and update the syndrome accordingly:

eU[j] := Random(A); assert eU[j] ne 0;

ss -:= eU[j]*UT[j];

end for;

// group together the remaining coefficients

// (to be computed as the solution to a linear system):

L := [];

for j in [1..n2] do

if j in J then

L cat:= [j];

end if;

end for;

HH := VerticalJoin([UT[L[i]] : i in [1..rU]]);

until Determinant(HH) ne 0; // make sure the linear system admits a (unique) solution

// compute the remaining coefficients:

ee := ss*HH^-1;

c := 0;

for j in [1..n2] do

if j in J then

c +:= 1; eU[j] := ee[c];

end if;

end for;

assert c eq rU;

assert eU*UT eq sU;

// perform rejection sampling:

weU := Hweight(eU);

//"*** wt(e_U) =", weU, ":", 1.0*(weU - (kU + (2/3)*rU)), ":", weU - (n2 - Ceiling(rU/3));

acc := Random(0, 2^128-1) le rsU[weU + 1]*2^128; // accept with probability rsU[wt(eU)]

until acc or aatt gt 100;

//"***", aatt, ":", weU - (n2 - Ceiling(rU/3));

assert aatt le 100;

return eU;

end function;

/**

* Compute the matrix R such that R*M is in echelon form, and also the rank of M.

*/

function Echelon(M)

r := Nrows(M); m := Ncols(M);

A := HorizontalJoin(M, IdentityMatrix(K, r)); // [M | I]

n := Ncols(A);

// echelonize the i-th row:

p := 0; // pivot column

for i in [1..r] do

repeat

p +:= 1;

// force unit pivot on the p-th column:

for k in [i..r] do

if A[k, p] ne 0 then

scale := A[k, p]; // A[k, p]^-1; // no inversion if char 3

// swap k-th and i-th rows and

// normalize i-th row from the p-th column onward:

swap := Submatrix(A, k, p, 1, n - p + 1);

InsertBlock(~A, Submatrix(A, i, p, 1, n - p + 1), k, p);

InsertBlock(~A, scale*swap, i, p);

break; // done pivoting

end if;

end for;

until A[i, p] eq 1 or p eq m;

// clear the p-th column below the i-th line:

for k in [i+1..r] do

if A[k, p] ne 0 then

scale := -A[k, p];

InsertBlock(~A, Submatrix(A, k, p, 1, n - p + 1)

+ scale*Submatrix(A, i, p, 1, n - p + 1), k, p);

end if;

end for;

end for;

// compute rank(M) from its echelon form:

rank := 0;

for i in [1..r] do

if &and[A[i, j] eq 0 : j in [1..m]] then

break;

end if;

rank +:= 1;

end for;

//assert Rank(M) eq rank;

return Submatrix(A, 1, m+1, r, r), rank;

end function;

/**

* Create a random (U, U+V) {\Wave} key pair.

*/

function KeyGen(rU, rV, n)

n2 := n div 2; assert rU lt n2; assert rV lt n2;

r := rU + rV;

// create a matrix Hsk of form [U O]:

// [-V V]

U := Matrix(K, rU, n2, [Random(K) : i in [1..rU], j in [1..n2]]);

UT := Transpose(U);

V := Matrix(K, rV, n2, [Random(K) : i in [1..rV], j in [1..n2]]);

VT := Transpose(V);

O := ZeroMatrix(K, rU, n2);

Hsk := VerticalJoin(HorizontalJoin(U, O), HorizontalJoin(-V, V));

// create an invertible scrambling matrix S:

repeat

S := Matrix(K, r, r, [Random(K) : i, j in [1..r]]);

until Determinant(S) ne 0;

SinvT := Transpose(S^-1);

// create a permutation matrix P:

P := ZeroMatrix(K, n, n);

J := {1..n};

for i in [1..n] do

j := Random(J); J diff:= {j};

P[i, j] := 1;

end for;

// compute the public key:

Hpk := S*Hsk*P;

return UT, VT, SinvT, Hsk, P, Hpk;

end function;

/**

* Sign a given syndrome s given a {\Wave} private key (S^-T, U^T, V^T, P)

* to an error pattern of weight w +- wThreshold.

*

* NB: The weight threshold is used only to speed up the generation of valid signatures.

* It is irrelevant for the attack, and could be set to zero.

*/

function Sign(SinvT, UT, VT, P, s, w, wThreshold, alpha, sigmaV, rsV, sigmaU, rsU)

r := Ncols(s); assert Nrows(SinvT) eq r; assert Ncols(SinvT) eq r;

n := Nrows(P); k := n - r; assert Ncols(P) eq n; assert n mod 2 eq 0; assert r lt n;

n2 := n div 2;

rU := Ncols(UT); kU := n2 - rU; assert Nrows(UT) eq n2; assert rU lt n2;

rV := Ncols(VT); kV := n2 - rV; assert Nrows(VT) eq n2; assert rV lt n2;

assert r eq rU + rV;

// compute the privately decodable syndrome:

ss := Eltseq(s*SinvT);

sU := Vector(K, rU, ss[1..rU]);

sV := Vector(K, rV, ss[rU+1..r]);

sattv := 0;

repeat

sattv +:= 1;

// find a suitable solution of eV*V^T = sV:

eV := D_V(sV, VT, alpha, sigmaV, rsV);

// find a dense solution of eU*U^T = sU s.t. |wt(eU, eU + eV) - w| <= wThreshold:

sattu := 0;

repeat

sattu +:= 1;

eU := D_U(sU, UT, eV, sigmaU, rsU); // only eV is different in Tsunami

e := Vector(K, n, Eltseq(eU) cat Eltseq(eU + eV));

wt := Hweight(e);

//"*** wt(e) =", wt, "vs", w, ":", wt - w;

assert wt ge n - 2*rU and wt le n;

until Abs(wt - w) le wThreshold or sattu ge 10;

until Abs(wt - w) le wThreshold or sattv ge 10;

// random sigs have weight very close to, but often not exactly, w.

assert Abs(wt - w) le wThreshold;

// permute the error pattern:

return e*P;

end function;

/**

* Verify a purported signature e for syndrome s

* under public key Hpk within a given weight threshold of w.

*

* NB: The weight threshold is used only to speed up the generation of valid signatures.

* It is irrelevant for the attack, and could be set to zero.

*/

function Verify(Hpk, e, s, w, wThreshold)

return Abs(Hweight(e) - w) le wThreshold and e*Transpose(Hpk) eq s;

end function;

/**

* Basic {\Wave} key generation, signing & verification tests.

*/

procedure TestKeySigVer(rU, rV, n, w, wThreshold, keys, sigs, alpha, sigmaV, rsV, sigmaU, rsU)

if keys gt 0 and sigs gt 0 then

"**** Testing signing/verification:", keys, "key(s), ", sigs, "sig(s) per key...";

r := rU + rV; assert n gt rU + rV;

fail := 0;

for key in [1..keys] do

UT, VT, SinvT, Hsk, P, Hpk := KeyGen(rU, rV, n);

for sig in [1..sigs] do

s := Vector(K, r, [Random(K) : j in [1..r]]);

e := Sign(SinvT, UT, VT, P, s, w, wThreshold, alpha, sigmaV, rsV, sigmaU, rsU);

fail +:= (Verify(Hpk, e, s, w, wThreshold)) select 0 else 1;

end for;

end for;

if fail eq 0 then

"**** Testing complete. No failures detected.";

else

"**** Testing complete. Failures:", fail;

end if;

end if;

end procedure;

/*

* Support infrastructure for the attack on {\Wave}.

*/

/**

* Collect a number of legitimate signatures created under a given {\Wave} private key.

* @return consolidated column-pairing counts inferred from those signatures.

*/

function CollectSigs(SinvT, UT, VT, P, w, wThreshold, numSig, alpha, sigmaV, rsV, sigmaU, rsU)

r := Nrows(SinvT);

assert Ncols(SinvT) eq r; assert Nrows(UT) eq Nrows(VT); assert Ncols(UT) + Ncols(VT) eq r;

n := Nrows(P); assert Ncols(P) eq n;

// collect signatures:

sigTab := ZeroMatrix(ZZ, numSig, n);

for sig in [1..numSig] do

s := Vector(K, r, [Random(K) : j in [1..r]]);

e := Sign(SinvT, UT, VT, P, s, w, wThreshold, alpha, sigmaV, rsV, sigmaU, rsU);

sigTab[sig] := Vector(ZZ, n, [(e[j] eq 2) select ZZ!(-1) else ZZ!e[j] : j in [1..n]]);

end for;

// pair up matching columns:

countTab := -Transpose(sigTab)*sigTab;

return countTab;

end function;

/**

* Pair up matching columns from both sides of the private (U, U+V) parity-check matrix

* and recover an unscrambling matrix R that reveals an equivalent permuted private key,

* given the corresponding public key and statistics inferred from the collected signatures.

*/

function RecoverR(Hpk, countTab, criticalCols)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; assert n mod 2 eq 0;

Z := ZeroMatrix(K, r, criticalCols);

// compute the differences from the runner-up count to the maximum for each column:

diffs := [[j, 0, 0] : j in [1..n]];

for h in [1..n] do

c := Eltseq(countTab[h]);

maxc, j := Max(c); // find max count (i.e. the suggested pair for column h)

diffs[h][2] := j; // position of max count

c[j] := -n; // sentinel;

maxt, t := Max(c); // find runner-up (i.e. the worst potential noise)

diffs[h][3] := maxc - maxt;

end for;

//"***", diffs;

Sort(~diffs, func<x, y | y[3] - x[3]>);

done := {};

cols := 0;

for i in [1..n] do

j := diffs[i][1]; // scan columns from highest to lowest S/N ratio

if j in done then

continue; // already paired-up (with higher S/N ratio)

end if;

// guess the pair for the target column:

h := diffs[i][2];

if h in done then

// report failure:

return false, Z;

end if;

done join:= {j, h};

cols +:= 1;

InsertBlock(~Z, Submatrix(Hpk, 1, j, r, 1) + Submatrix(Hpk, 1, h, r, 1), 1, cols);

if cols eq criticalCols then

break;

end if;

end for;

assert cols eq criticalCols;

R, rZ := Echelon(Z);

return true, R;

end function;

/**

* Recover the column permutation that reveals the equivalent admissible (U, U+V) code structure.

*/

function Unpermute(RHpk, rU)

r := Nrows(RHpk); n := Ncols(RHpk); rV := r - rU; n2 := n div 2;

assert rU lt r; assert n mod 2 eq 0;

pair := [0 : j in [1..n]];

for j in [1..n] do

if pair[j] ne 0 then

assert pair[pair[j]] eq j;

continue; // done

end if;

mcolj := -Submatrix(RHpk, rU + 1, j, rV, 1);

for p in [j+1..n] do

if pair[p] ne 0 then

assert pair[pair[p]] eq p;

continue;

end if;

if Submatrix(RHpk, rU + 1, p, rV, 1) eq mcolj then

assert pair[p] eq 0;

// pair up columns j and p:

pair[j] := p; pair[p] := j;

break;

end if;

end for;

if pair[j] eq 0 then

// report failure:

return false, ZeroMatrix(K, n, n);

end if;

assert pair[pair[j]] eq j;

end for;

col := 0;

perm := [0 : j in [1..n]];

J := {};

for j in [1..n2] do

repeat

col +:= 1;

until not col in J;

perm[j] := col; perm[j + n2] := pair[col];

J join:= {col, pair[col]};

end for;

Q := Matrix(K, n, n, [(i eq perm[j]) select 1 else 0 : i, j in [1..n]]);

return true, Q;

end function;

/**

* Recover a full equivalent {\Wave} private key for a given public key

* given a suitable collection of legitimate signatures.

*/

function RecoverStructure(Hpk, rU, countTab, criticalCols)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; assert n mod 2 eq 0;

rV := r - rU; assert rU lt r;

// exploit statistics to pair up columns:

ok, R := RecoverR(Hpk, countTab, criticalCols);

if not ok then

// report failure:

return false, R, ZeroMatrix(K, n, n),

ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rV);

end if;

// unscramble the public key and unpermute it into an equivalent private key:

Hbk := R*Hpk;

ok, Q := Unpermute(Hbk, rU);

if not ok then

// report failure:

return false, R, Q,

ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rV);

end if;

Hbk *:= Q;

ok := IsZero(Submatrix(Hbk, rU+1, 1, rV, n2) + Submatrix(Hbk, rU+1, n2+1, rV, n2));

if not ok then

// report failure:

return false, R, Q,

ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rU), ZeroMatrix(K, n2, rV);

end if;

BT := Transpose(Submatrix(Hbk, 1, n2+1, rU, n2)); // B^T

DT := Transpose(Submatrix(Hbk, 1, 1, rU, n2)) + BT; // (A + B)^T

//rD := Rank(DT); assert rD eq rU;

WT := Transpose(Submatrix(Hbk, rU+1, n2+1, rV, n2)); // W^T

//rW := Rank(WT); assert rW eq rV;

return true, R, Q, BT, DT, WT;

end function;

/**

* Forge a {\Wave} signature for an arbitrarily given syndrome,

* given an equivalent trapdoor corresponding to the legitimate public key.

*/

function ForgeSignature(R, BT, DT, WT, Q, Hpk, s, w, alpha, sigmaV, rsV, sigmaU, rsU)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; rU := Ncols(BT);

assert Nrows(Q) eq n; assert Ncols(Q) eq n; assert n mod 2 eq 0;

rV := r - rU; kV := n2 - rV; assert rU lt r;

sp := Eltseq(s*Transpose(R));

sU := Vector(K, rU, sp[1..rU]);

sV := Vector(K, rV, sp[rU+1..r]);

// find a suitable solution of eV*V^T = sV:

attv := 0;

repeat

attv +:= 1;

eV := D_V(sV, WT, alpha, sigmaV, rsV);

// find a dense solution of e_U D^T = s_U - e_V B^T.

ss := sU - eV*BT;

attu := 0;

repeat

attu +:= 1;

eU := D_U(ss, DT, eV, sigmaU, rsU); // only eV is different in Tsunami

e := Vector(K, n, Eltseq(eU) cat Eltseq(eU + eV));

wt := Hweight(e);

assert wt ge n - 2*rU and wt le n;

until wt eq w or attu ge 32;

until wt eq w or attv ge 32;

assert wt eq w;

// permute the error pattern:

e := e*Transpose(Q);

return e;

end function;

// some toy parameters, for testing purposes only:

//kU := 17; kV := 12; k := kU + kV; n := 38; r := n - k;

//kU := 23; kV := 16; k := kU + kV; n := 52; r := n - k;

//kU := 46; kV := 32; k := kU + kV; n := 104; r := n - k;

//kU := 92; kV := 64; k := kU + kV; n := 208; r := n - k;

//kU := 230; kV := 161; k := kU + kV; n := 518; r := n - k; // avg numSig: 3400

//kU := 460; kV := 322; k := kU + kV; n := 1034; r := n - k;

//kU := 920; kV := 644; k := kU + kV; n := 2068; r := n - k;

//kU := 1150; kV := 805; k := kU + kV; n := 2586; r := n - k;

//kU := 1840; kV := 1288; k := kU + kV; n := 4132; r := n - k;

// actually proposed 128-bit level parameters:

kU := 2299; kV := 1609; k := kU + kV; n := 5172; r := n - k;

n2 := n div 2;

rU := n2 - kU;

rV := n2 - kV;

w := n - Ceiling(2*rU/3);

wThreshold := Ceiling((n - w)/20); // 5% tolerance, just for practicality of legitimate signatures

"n =", n, ": w =", w;

"kU =", kU, ": rU =", rU;

"kV =", kV, ": rV =", rV;

"k =", k, ": r =", r;

"threshold:", wThreshold;

criticalCols := Ceiling(rU + Log(3, rU)); // minimum = rU, maximum = n2

"*** criticalCols:", criticalCols;

Tsunami := false; // set this to true to test the Tsunami variant

if Tsunami then

"Testing the Tsunami variant...";

zeta := (1/2)*(1 + (1/3)*rV/kV); // Tsunami co-density

alpha := zeta;

sigmaV := 2^-64*n; // should not exceed 2^{-lambda/2}*n at the lambda-bit security level

sigmaU := sigmaV; // idem

else

"Testing the original Wave...";

alpha := 0.545;

sigmaV := (kV eq 1609) select 18.81 else Sqrt(kV)/2; // approximate sigmaV for toy parameters

sigmaU := sigmaV; // NB: the Wave paper is unclear here; this is just a guess! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

end if;

"computing acceptance rate vector rsV...";

time rsV := MakeRsV(n, w, kV, alpha, sigmaV);

"rsV computed";

"computing acceptance rate vector rsU...";

rsU := [1 : i in [0..n2]]; // PROVISIONALLY!

"rsU computed";

TestKeySigVer(rU, rV, n, w, wThreshold, 10, 10, alpha, sigmaV, rsV, sigmaU, rsU);

time TestKeySigVer(rU, rV, n, w, wThreshold, 1, 100, alpha, sigmaV, rsV, sigmaU, rsU);

numSig0 := 5500;

topSigs := 15000;

// in the unlikely case of attack failure, slightly increase topSigs

// (NB: Tsunami resists this attack, increasing topSigs is ineffective against it)

succ := 0;

fail := 0;

loop := 100;

deltaSig := 100;

avgSigs := 0;

sdvSigs := 0;

minSigs := topSigs;

maxSigs := 0;

time for test in [1..loop] do

"================ test #", test, "-- success ratio so far:",

(test - 1 - fail), "out of", test - 1,

"-- avg #signatures:", (test gt 1) select Round(avgSigs/(test-1)) else 0,

"+-", (test gt 1) select Round(Sqrt(sdvSigs/(test-1) - (avgSigs/(test-1))^2)) else 0,

(test gt 1) select "["*Sprint(minSigs)*".."*Sprint(maxSigs)*"]" else "[0 .. 0]";

// create a sample key pair:

UT, VT, SinvT, Hsk, P, Hpk := KeyGen(rU, rV, n);

// break Wave:

"collecting", numSig0, "signatures..."; // in chunks of deltaSig signatures

countTab := CollectSigs(SinvT, UT, VT, P, w, wThreshold, deltaSig, alpha,

sigmaV, rsV, sigmaU, rsU);

numSig := deltaSig;

while numSig lt numSig0 do

moreSigs := Min(deltaSig, numSig0 - numSig);

countTab +:= CollectSigs(SinvT, UT, VT, P, w, wThreshold, moreSigs, alpha,

sigmaV, rsV, sigmaU, rsU);

numSig +:= moreSigs;

end while;

repeat

"recovering structure...";

ok, R, Q, BT, DT, WT := RecoverStructure(Hpk, rU, countTab, criticalCols);

if not ok then

if numSig ge topSigs then

break; // failure

end if;

"collecting", deltaSig, "more signatures...";

countTab +:= CollectSigs(SinvT, UT, VT, P, w, wThreshold, deltaSig, alpha,

sigmaV, rsV, sigmaU, rsU);

numSig +:= deltaSig;

end if;

until ok;

avgSigs +:= numSig;

minSigs := Min(minSigs, numSig);

maxSigs := Max(maxSigs, numSig);

sdvSigs +:= numSig^2;

if not ok then

"recover failure!";

fail +:= 1;

continue;

end if;

"forging signature...";

s := Vector(K, r, [Random(K) : j in [1..r]]); // target syndrome

e := ForgeSignature(R, BT, DT, WT, Q, Hpk, s, w, alpha, sigmaV, rsV, sigmaU, rsU);

ok := Verify(Hpk, e, s, w, 0); // NB: zero tolerance for the signature weight here

if not ok then

"forging failure!";

fail +:= 1;

continue;

end if;

"success!";

end for;

"*** success ratio:", (loop - fail), "out of", loop, "("*Sprint((loop - fail)/loop)*")",

"-> failures:", fail;

avgSigs /:= loop;

sdvSigs := Sqrt(sdvSigs/loop - avgSigs^2);

"*** avg collected signatures:", Round(avgSigs), "+-", Round(sdvSigs),

"["*Sprint(minSigs)*".."*Sprint(maxSigs)*"]";

