
Short Group Signature without Random Oracles

Abstract. Group signature is a central tool for privacy-preserving pro-
tocols, ensuring authentication, anonymity and accountability. It has
been massively used in cryptography, either directly or through variants
such as direct anonymous attestations. However, it remains a complex
tool, especially if ones wants to avoid proving security in the random
oracle model.
In this work, we propose a new group signature scheme proven secure
without random oracles which significantly decreases the complexity in
comparison with the state-of-the-art. More specifically, we halve both
the size and the computational cost compared to the most efficient alter-
native in the same model. Moreover, our construction is also competitive
against the most efficient ones in the random oracle model.
Our construction is based on a tailored combination of two popular sig-
natures, which avoids the explicit use of encryption schemes or zero-
knowledge proofs while signing. It is flexible enough to achieve security
in different models and is thus suitable for most contexts.

1 Introduction

Group Signature, introduced by Chaum and van Heyst [17], enables members
of a group to sign on behalf of the group. The point is that the signature is
anonymous, i.e. it cannot be traced back to its issuer, except for a specific
entity, the opening authority, which can “open” any valid group signature.

Related Works. Combining seemingly contradictory properties such as au-
thentication and anonymity has proved tricky, the first really practical solution
being provided by Ateniese et al. [2]. Few years later, Bellare, Micciancio and
Warinschi [5] proposed the first security model (BMW model) for static group
signature, which was later extended to the case of dynamic group signature by
Bellare, Shi and Zhang [6] (BSZ model). Besides providing a way to assess ex-
isting schemes, these seminal works have introduced a generic construction that
has become the implicit framework for most of the following group signatures.

Informally, a group member of this generic construction receives from a so-
called group manager a certificate (a digital signature) τ on his public key pk
when he joins the group. To compute a group signature on some message m,
he first generates a digital signature σ on m (using the corresponding signing
key sk) and then encrypts σ and τ . Finally, he provides a non-interactive zero-
knowledge (NIZK) proof that every element is well formed. This three-steps
approach is usually known as Sign-Encrypt-Prove (SEP) in the literature.

The strength of the SEP paradigm is that it is based on standard crypto-
graphic primitives for which many instantiations exist. Unfortunately, it leads to



quite complex constructions because of the security requirements placed on each
building block, but primarily because of the complexity of the resulting NIZK
proof. Indeed, the signer must prove, without revealing σ and τ , that the group
signature is a valid encryption of the signature σ that has been generated using
keys certified by the group manager.

Such a statement is difficult to prove and this becomes worse if one wants
to achieve security without relying on the random oracle model (ROM). Indeed,
NIZK proofs are much more complex outside this setting and even by using the
Groth-Sahai methodology [24], group signatures still contain dozens of elements
(see e.g. [22]). One could trade NIZK proofs for zk-SNARKS (see e.g. [23]) that
are fairly compact and enable fast verification, but at the cost of a large common
reference string and a high computational complexity for the prover.

A natural question arising from this observation is whether it is possible to
construct more efficient schemes by using a different paradigm. Bichsel et al. [7]
proposed an interesting answer to this question. They indeed introduced a very
efficient alternative, at the cost of a slightly weaker notion of anonymity. This
allows them to circumvent the result of Abdalla and Warinschi [1] and thus
to avoid encryption. More specifically, their idea was to remove encryption by
using re-randomizable [14] certificates τ and by merging σ with the NIZK proofs,
leading to a signature of knowledge. The resulting construction is very efficient
(see Table 4 at the end of the paper) and can be further improved by instantiating
it with the randomizable signature scheme of Pointcheval and Sanders (PS) [28].

Another alternative based on equivalence-class signature [20] has recently
been proposed by Derler and Slamanig [18]. It shares commonalities with [7],
such as the absence of explicit encryption, but manages to achieve full anonymity
at the cost of increased complexity. Unfortunately, both [7] and [18] inherently
rely on signature of knowledge and so rather fit the random oracle model.

Very recently, Backes et al. [3] proposed a different framework based on a new
primitive called signatures with flexible public keys. It yields secure constructions
without random oracles with improved efficiency compared to the state-of-the-
art in this setting. However, the resulting group signatures are three times larger
than the ones in the ROM and require more computations to be generated.

More generally, designers of group signature schemes are confronted with the
choice of either proving security without random oracles or favoring efficiency
by relying on the random oracle model whose limits are known [16].

Our Contribution. In this work, we propose a new group signature scheme
avoiding the ROM that halves the size and the computational complexity com-
pared to the state-of-the-art [3]. More specifically, our group signature only con-
sists of 2304 bits which makes it very competitive, even against constructions in
the ROM (see section 6 for more details).

As [3, 7, 18], our construction departs from the SEP framework and heavily
relies on the randomizability of its components. However, contrarily to those
works that assemble different building blocks (digital signature, NIZK, etc.) and
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so achieve some level of genericity, we are here interested in optimizing the
combination so as to get the best possible efficiency, thus avoiding NIZK proofs.

Our work results from the observation that the equivalence-class signature of
Fuchsbauer, Hanser and Slamanig (FHS) [20] nicely interacts with the Pointcheval
and Sanders (PS) signature scheme [28]. More specifically, assuming very slight
modifications of the FHS public key and of the PS signatures, we are able to
merge the verification equations of FHS signatures with the one of PS signatures.
Such a merge is crucial for our construction: it indeed means that it is no longer
necessary to provide a NIZK proof that the signatures are valid and related.
Thus, verifying our group signatures is essentially verifying FHS signatures.

Intuitively, we modify the PS signature scheme in such a way that each
signature is of the form (gr, gy·rXr/hm) where gy is the user’s secret key, r is
a random scalar, hm is a public element that depends on the message m to be
signed and X is a public element. Leaving out the term in X, one can note
that each signature contains a different representative of the same projective
equivalence class as (g, gy) and so it is quite easy, given a FHS signature on this
pair, to prove that the PS signature was generated using certified keys.

Our group signature thus only consists of a PS signature and a FHS one
which are both re-randomizable, leading to an anonymity proof under the DDH
assumption. Moreover, we can prove that a non-registered user cannot generate
a valid group signature unless he is able to forge FHS signatures. We only pay
the price for our tailored construction in the proof of non-frameability, where we
want to prove that no one can issue a forged group signature that can be traced
back to an honest user. Indeed, we would like to directly rely on the security
of PS signatures but this is impossible due to the modifications we introduced:
a PS signature is not enough to answer adversary queries in our security proof.
However, we show that we can tweak the original assumption underlying the
security of PS signatures to suit our construction and so that we can rely on
similar arguments to prove non-frameability.

While being non-generic, our construction remains flexible enough to comply
with different group signature models. Interestingly, the different variants we
consider achieve the same efficiency with respect to the group signature but
mostly differ in the registration procedure. This concretely means that the most
suitable setting can be chosen without any impact on the group signature itself.
This also allows us in section 6 to fairly compare our construction with the most
relevant ones of the state-of-the-art and so to highlight the benefits of our group
signature in all cases.

A note on terminology. The literature on group signatures is extremely vast
and contains constructions with very different security features. In this context,
it is necessary to distinguish different classes of group signatures to provide a
fair comparison. In particular, previous papers usually distinguish schemes whose
security is proven in the random oracle model from the other ones. The latter are
then said to be secure “without random oracles”. In practice, such schemes only
rely on computational assumptions, some of which may not be considered as
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standard (e.g. q-type or interactive), as illustrated by [3,22]. These assumptions
are then usually evaluated in the generic group model to provide more confidence
in the security of the overall construction. This is exactly the way we proceed
and so we will say that our scheme is secure “without random oracles”.

Organisation. We describe in section 2 the building blocks that we need to
construct our group signature. The section 3 recalls the standard security model
of group signatures. We describe our construction in section 4 and compare
it with the most relevant alternatives of the state-of-the-art in section 6. The
security proofs are provided in section 5.

2 Preliminaries

Notations. The identity element of a group G is denoted 1G and G∗ means
G\{1G}. If the group G is of order p, then we may say interchangeably that

a ∈ Z/pZ or that a is a scalar. For a finite set X, the notation x
$← X means

that x is an element of X uniformly sampled.

2.1 Bilinear Groups

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 ×G2 → GT that is

– bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Z/pZ, e(ga, g̃b) = e(g, g̃)ab;
– non-degenerate: for any g ∈ G∗1 and g̃ ∈ G∗2, e(g, g̃) 6= 1GT ;
– efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

We will only consider bilinear groups of prime order with type-3 pairings, i.e.
there is no efficiently computable homomorphism between G1 and G2. We stress
that this yields the most efficient parameters [25]. To highlight the differences
between G1 and G2, we will denote elements of the latter with a tilde (e.g. g̃).

2.2 Signature

Our construction will use a digital signature scheme as a building block, along
with a specific instantiation provided by Pointcheval and Sanders [28]. We will
additionally require a variant of digital signature, called equivalence-class signa-
ture [20], where, given a signature on a message m, it is possible to derive new
signatures for messages belonging to the same equivalence class as m.

Digital Signature. A digital signature scheme Σ is defined by four algorithms:

– Setup(1λ): Outputs public parameters pp for security parameter λ.
– Keygen(pp): On input pp, outputs signing and verification keys (sk, pk).
– Sign(sk,m): Outputs a signature σ of message m under signing key sk.
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– Verify(pk,m, σ): On input verification key pk, message m and its alleged
signature σ, outputs 1 if σ is a valid signature onm under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforge-
ability under chosen message attacks (EUF-CMA) [21]: it means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the signing oracle.

PS Signature In [28], Pointcheval and Sanders propose a randomizable signa-
ture scheme, i.e. a scheme enabling to derive re-randomized versions σ′ of any
valid signature σ. An interesting feature of their signatures is that one cannot
link σ and σ′ without knowing the corresponding message. They describe several
versions of their signature scheme, offering different features. In this work we will
use their variant supporting aggregation because it enables to decrease the size
of the public key but we will not use this aggregation feature.

– Setup(1λ): Outputs the parameters pp containing the description of type-3
bilinear groups (G1,G2,GT , e) along with a set of generators (g, g̃) ∈ G1×G2

and a pair (X, X̃)← (gx, g̃x) for some random scalar x.

– Keygen(pp): Generates a random scalar y and sets (sk, pk) as (gy, Ỹ = g̃y).
– Sign(sk,m): On message m, generates a signature (σ1, σ2)← (gr, Xr ·gr·y·m)

for some random scalar r.
– Verify(pk,m, (σ1, σ2)): Accepts signature (σ1, σ2) on m if the following

equality holds: e(σ1, X̃ · Ỹ m) = e(σ2, g̃).

One can note that anyone can re-randomize a signature by raising σ1 and σ2 to
the same power t. The PS signature scheme is proven EUF-CMA-secure under a
LRSW assumption customized for type-3 pairing, that we recall in subsection 2.4.

FHS Signature In [20], Fuchsbauer, Hanser and Slamanig introduce a signa-
ture on equivalence-class for the following equivalence relation on tuples in Gn1 :
(M1, . . . ,Mn) is in the same equivalence class as (N1, . . . , Nn) if there exists a
scalar a such that Ni = Ma

i for all i ∈ [1, n]. In this paper, we will only consider
the case n = 2.

– Setup(1λ): Outputs parameters pp containing the description of type-3 bi-
linear groups (G1,G2,GT , e), with generators (g, g̃) ∈ G1 ×G2.

– Keygen(pp): Generates two random scalars α1 and α2 and sets sk as (α1, α2)

and pk as (Ã1, Ã2) = (g̃α1 , g̃α2).
– Sign(sk, (M1,M2)): Selects a random scalar t and computes the signature

(τ1, τ2, τ̃)← ((Mα1
1 Mα2

2 )t, g1/t, g̃1/t) on the representative (M1,M2) ∈ G2
1.

– Verify(pk, (M1,M2), (τ1, τ2, τ̃)): Accepts (τ1, τ2, τ̃) ∈ G2
1 × G2, a signature

on (M1,M2), if e(τ1, τ̃) = e(M1, Ã1) · e(M2, Ã2) and e(τ2, g̃) = e(g, τ̃) hold.

We note that the signature (τ1, τ2, τ̃) is only valid on the representative (M1,M2).
However, we can easily derive a signature on other representatives (Mr

1 ,M
r
2 ) of

the same equivalence class, while re-randomizing the signature, by generating a

random scalar t′ and computing (τ r·t
′

1 , τ
1/t′

2 , τ̃1/t
′
).
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2.3 Public Key Encryption

We marginally use an encryption scheme Γ defined by the following algorithms:

– Keygen(1λ): Outputs a pair of decryption and encryption keys (sk, pk).

– Encrypt(pk,m): Outputs a ciphertext c of message m under pk.

– Decrypt(sk, c): On input the decryption key sk and a ciphertext c, this al-
gorithm outputs a message m or ⊥.

Several security notions exist for public key encryption but our group signa-
ture scheme will only need indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA2). Informally it requires that no adversary, even given ac-
cess to a decryption oracle, is able to distinguish an encryption of m0 from an
encryption of m1, where m0 and m1 are two messages chosen by the adversary.

2.4 Computational Assumptions

SXDH assumption. For i ∈ {1, 2}, the DDH problem is hard in Gi if, given
(g, gx, gy, gz) ∈ G4

i , it is hard to distinguish whether z = x · y or z is random.
The SXDH assumption holds if DDH is hard in both G1 and G2.

PS assumption. Pointcheval and Sanders [28] introduce “Assumption 1”, here
referred to as PS assumption, to prove the security of their construction.

PS Assumption: Let (p,G1,G2,GT , e) be a bilinear group setting of type-3,

with g (resp. g̃) a generator of G1 (resp. G2). For (X̃ = g̃x, Ỹ = g̃y), where x
and y are random scalars, we define the oracle O(m) on input m ∈ Z/pZ that
chooses a random r ∈ Z/pZ and outputs the pair P = (gr, gr(x+m·y)). Given

(g, gy, g̃, X̃, Ỹ ) and unlimited access to this oracle, no adversary can efficiently
generate (m∗, gr, gr(x+m

∗·y)), with r 6= 0, for a new scalar m∗, not asked to O.

MPS assumption. As we explain in the introduction, we would like to directly
rely on the PS assumption but this is not possible. We therefore introduce a
variant of this assumption that we call MPS assumption (M stands for modified).

MPS Assumption: Let (p,G1,G2,GT , e) a bilinear group setting of type-3,
with g (resp. g̃) a generator of G1 (resp. G2), and h : {0, 1}∗ → Z/pZ a function.
For random scalars x, y and z, we define the oracleO(m) on inputm ∈ Z/pZ that
picks random r, s ∈ Z/pZ and outputs the tuple P = (s, g̃r·s, gr, gr·z, gr(x+t·y))

with t = h(g̃r·s||gr||m). Given (g, gy, gz, gz·x, g̃, X̃, Ỹ ) and unlimited access to
this oracle, no adversary can efficiently generate (t∗, gr, gr(x+t

∗·y)) with r 6= 0
and a value t∗ different from those involved in the answers from O.

The validity of the output can easily be checked thanks to the pairing e:
e(gr(x+t

∗·y), g̃) ?= e(gr, X̃ · Ỹ t∗). We note that the goal of the adversary is still
to output a valid PS signature but it now has access to some additional ele-
ments that do not seem helpful to create forgeries, as we discuss below. We
also give a proof that the MPS assumption holds in the generic group model in
subsection 5.4.
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– Our new oracle still returns a PS signature (gr, gr(x+ty)) but on a scalar
t = h(g̃r·s||gr||m) instead of m. However, we define much harder success
conditions for the adversary: it can only win if the scalar t used in its forgery
is different from the ones used by O (in particular a forgery on a new message
m∗ is not valid if it leads to an already used t). Intuitively, this rules out
any strategy based on the properties of h (such as collisions). From the
security point of view, this therefore does not change anything compared
to an assumption where O would return (gr, gr(x+my)). We introduce this
modification because we will need a way to prevent further re-randomization
of the signatures returned by O.

– This slight modification induces another one: we now need to provide the
pair (gz, gz·x), for some random scalar z, in the assumption. In [28], this
pair is exactly a signature on 0 and so is directly generated by the reduction
in the security proof by running O on 0. This is no longer possible here,
and we then need to explicitly add these elements in the definition of the
assumption. In any case, this does not provide more power to the adversary
than in the PS assumption.

– The element gr·z is the only one involving the secret z in P . It seems therefore
useless to combine it with the other elements of P to derive a new valid tuple.

– The last difference with the PS assumption is the pair (s, g̃r·s) that must
be added to the oracle answers. However, we note that g̃r·s is an element of
G2 and so is intuitively useless to forge a PS signature (gr, gr(x+ty)) ∈ G2

1,
thanks to the asymmetry of the pairing. The same holds true for s that is
not one of the secret values used to compute the PS signature.

Remark 2. We note that the hardness of the computational problem underlying
the MPS assumption depends on the function h. For example, if h is constant
then no adversary can succeed as soon as it makes (at least) one query to O.
However, we assume here (and prove in the generic group model) that the MPS
assumption holds for any function h : {0, 1}∗ → Z/pZ.

2.5 Groth-Sahai proof system

We use the In [24], Groth and Sahai proposed a non-interactive proof system,
in the common reference string (CRS) model, which captures most of the rela-
tions for bilinear groups. There are two types of setup for the CRS that yield
either perfect soundness or perfect witness indistinguishability, while being com-
putationally indistinguishable (under the SXDH assumption, in our setting). To
prove that some variables satisfy a set of relations, the prover commits to them
(by using the elements from the CRS) and then computes one proof element per
relation. Efficient non-interactive witness indistinguishable proofs are available
for
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– pairing-product equations, for variables {Xi}ni=1 ∈ G1, {Ỹi}ni=1 ∈ G2 and

constants tT ∈ GT , {Ai}ni=1 ∈ G1, {B̃i}ni=1 ∈ G2, {ai,j}ni,j=1 ∈ Z/pZ:

n∏
i=1

e(Ai, Ỹi)

n∏
i=1

e(Xi, B̃i)

n∏
i=1

n∏
j=1

e(Xi, Ỹj)
ai,j = tT ;

– multi-exponentiation equations, for variables {Xi}ni=1 ∈ Gk, {yi}ni=1 ∈ Z/pZ
and constants T ∈ Gk, {Ai}ni=1 ∈ Gk, {bi}ni=1 ∈ Z/pZ, {ai,j}ni,j=1 ∈ Z/pZ:

n∏
i=1

Ayii

n∏
j=1

X
bj
j

n∏
i=1

n∏
j=1

X
yi·ai,j
j = T, where k ∈ {1, 2}.

The Groth-Sahai framework also supports non-interactive zero-knowledge
(NIZK) proofs for multi-exponentiation equations or for pairing-product equa-

tions such that tT = 1GT or tT =
∏
e(Ai, B̃i).

3 Group Signature

For completeness, we recall here the security model for dynamic group signature
from the BSZ model [6]. We introduce some minor syntactic changes and discuss
popular variants of the original security notions introduced by Bellare et al. [6].
A reader familiar with group signature can safely jump to Remark 3.

Syntax. A group signature scheme is defined by the following algorithms that
involve three types of entities: a group manager, an opening authority and users.
Each of the latter is identified by a public index i ∈ N∗.
– Setup(1λ): Outputs public parameters pp for security parameter λ.
– UKeygen(pp): Returns a user’s key pair (sk, pk) on public parameter pp. We

assume that pk is public and anyone can get an authentic copy of it.
– OKeygen(pp): Returns the opening authority’s key pair (osk, opk) under pp.
– GKeygen(pp): Returns the group manager’s key pair (gsk, gpk) along with a

public register Reg, on public parameters pp.
– Join: This is a two-party interactive protocol between the group manager

and a user i who wants to join the group. The input of the former is
(gsk,Reg, opk, pki) whereas the user takes as input (gpk, opk, ski). If the
protocol does not fail, then the user gets a group signing key uski whereas
the group manager updates Reg. Else, both parties return ⊥.

– Sign(uski,m): Returns a group signature σ of m under signing key uski.
– Verify(gpk, σ,m): On input the group manager’s public key, a group signa-

ture σ and a message m, returns a bit b ∈ {0, 1}.
– Open(osk, gpk,Reg, σ,m): On input the opening authority’s secret key, the

group manager’s public key, the register Reg, a group signature σ and a
message m, returns either 0, ⊥ or an index i ∈ N∗ along with a proof π.

– Judge(gpk,Reg, σ,m, i, π): On input the group manager’s public key, the
register Reg, a group signature σ, a message m, an index i ∈ N∗ and a proof
π, returns a bit b ∈ {0, 1}.
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Security Model. A group signature should achieve correctness, anonymity,
traceability and non-frameability. We refer to [6] for a formal definition of cor-
rectness, but informally it means that any user who has joined the group should
be able to produce valid signatures σ (i.e. one for which Verify outputs 1) on
any message m. Moreover, it should be possible to open such signatures, i.e. to
recover the identity i of the signer, and to produce publicly verifiable proofs that
user i has indeed issued these signatures.

Anonymity requires that group signatures should be anonymous, except for
the opening authority. Traceability requires that no one can produced a valid
signature that cannot be traced back to some user through the Open procedure.
Finally, non-frameability means that no one can be falsely accused of having
produced a signature. The corresponding security games, outlined in Figure 1,
make use of the following oracles:

– OAdd(i) is an oracle that can be used to add a new user i. It then runs
UKeygen(pp) to get (ski, pki) and returns pki. If i has already been used in
a previous query, then it returns ⊥.

– OJoinU (i) is an oracle that plays the user’s side of the Join protocol. It can
be used by an adversary A playing the role of a corrupt group manager. It
returns ⊥ if i has already joined the group or if user i does not exist.

– OCorrupt(i) is an oracle that returns all the secret keys of the user i. The
user i is then said to be corrupt. Any non-corrupt user is considered honest.

– OJoinGM () is the counterpart of the OJoinU oracle that can be used by a
corrupt user to join the group.

– OSign(i,m) is an oracle that returns Sign(uski,m), provided that i is an
honest user that has already joined the group.

– OOpen(σ,m) is an oracle that returns Open(osk, gpk,Reg, σ,m).
– OChb(i0, i1,m) is an oracle that takes as inputs the index of two honest users

and returns Sign(uskib ,m).

Let A be a probabilistic polynomial adversary. A group signature scheme is

– anonymous if Advan(A) = |Pr[ExpanA (1λ) = 1]− 1/2| is negligible for any A;
– traceable if Advtra(A) = Pr[ExptraA (1λ) = 1] is negligible for any A;

– non-frameable if Advnf (A) = Pr[ExpnfA (1λ) = 1] is negligible for any A.

The security model introduced by Bellare, Shi and Zhang [6] places no restric-
tion on the OCorrupt queries in the anonymity experiment. This means that the
adversary is allowed to corrupt the “challenge” users (i.e. those that are involved
in OCh queries). This corresponds to the strongest notion of anonymity, some-
times called full anonymity or CCA-2 anonymity (see e.g. [18]), where anonymity
holds even if the users’ secret keys are leaked.

Remark 3. The BSZ model [6] defines strong security properties that are suffi-
cient in most contexts. However, it may be possible in some situations to relax
some of them, usually leading to more efficient constructions. This is particularly
true for the anonymity property for which popular variants exist, such as CPA
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ExpanA (1λ) – Anonymity Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)

4. b
$← {0, 1}

5. b∗ ← AOAdd,OJoinU ,OCorrupt,OSign,OOpen,OChb(gsk, opk)
6. If OOpen is queried on the output of OChb, then return 0
7. Return (b = b∗)

ExptraA (1λ) – Traceability Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)
4. (σ,m)← AOAdd,OJoinGM ,OCorrupt,OSign(gpk, osk)
5. If ⊥← Open(osk, gpk,Reg, σ,m), then return 1
6. If (i, π)← Open(osk, gpk,Reg, σ,m)

and 0← Judge(gpk,Reg, σ,m, i, π), then return 1
7. Return 0

Exp
nf
A (1λ) – Non-Frameability Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)
4. (σ,m, i, π)← AOAdd,OJoinU ,OCorrupt,OSign(gsk, osk)
5. If σ has been returned by OSign, then return 0
6. If i is corrupt, then return 0
7. Return Judge(gpk,Reg, σ,m, i, π)

Fig. 1. Security Games for Group Signature

anonymity [8, 13] or selfless anonymity [7, 9, 28]. The former removes the oracle
OOpen in the anonymity game but the users remain anonymous even if their
secret keys leak. Contrarily, selfless anonymity allows OOpen queries but users
are no longer anonymous when their secret keys leak. These two notions are
incomparable and so fit different contexts. The construction we describe in the
next section achieves both of them. Interestingly, it also achieves full anonymity
in the model introduced by Bellare, Micciancio and Warinschi [5] (BMW model),
where the group manager is also the opening authority.

4 Our Construction

4.1 Intuition

A group signature usually contains two kinds of digital signatures that we will
denote by σ and τ . The first one is issued on the message to be signed by
the user using his own key pair (usk, upk). Intuitively, the unforgeability of the
digital signature ensures that no adversary is able to produce a forged group
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signature which can be traced back to upk (non-frameability). The second one is
issued by the group manager on usk (or upk) to differentiate key pairs of group
members from those of unregistered users. Here, unforgeability ensures that only
users that have joined the group can issue group signature, which is necessary
to achieve traceability.

If non-frameability and traceability were the only two conditions expected
from a group signature, then the latter would simply be (τ, σ, upk,m). However,
this cannot work when anonymity is also required so the standard practice has
been to encrypt/commit at least τ and upk and then provide zero-knowledge
proofs that these elements are well-formed.

The work of Bichsel et al [7] has shown that we can do better when τ is
randomizable. Indeed, in such a case there is no need to encrypt τ , the latter
can simply be re-randomized and sent unencrypted, leading to significant gains
in efficiency. Their group signature can only achieve a weaker selfless anonymity
notion in the ROM, but it seems a reasonable price to pay in view of the benefits.

Despite its novelty, [7] still shares commonalities with the standard frame-
work of the BSZ model [6]. There is indeed still a modular composition of two
signatures τ and σ with a proof of knowledge. The latter two can be merged
(leading to a signature of knowledge) using the Fiat-Shamir heuristic [19] in the
ROM, but the spirit remains the same. Modular systems are interesting since
they can leverage any advance in the construction of their building blocks. For
example, the scheme of [7] can straightforwardly be improved by using PS signa-
tures [28] to instantiate τ , instead of Camenisch-Lysyanskaya signatures [14] in
the original construction. Unfortunately, the complexity of a modular construc-
tion is the sum of all its parts, so a natural question is whether it is possible to
improve efficiency by optimizing the combination of the different building blocks
for some specific instantiations.

In this section we construct the most efficient group signature without ran-
dom oracles by noticing that FHS equivalence-class signatures [20] nicely interact
with PS signatures [28]. Indeed let us recall the latter, and more specifically its
variant designed to support aggregation. A (non-aggregated) signature on a mes-
sage m in this case is given by (σ1, σ2) = (gr, Xr(gy·m)r) where r is some random
scalar, X = gx is a public element and y is the signer’s secret key. One can note

that we can alternatively define σ2 as σ
1/m
2 = Xr/m(gy)r: any adversary able to

forge such a signature can trivially be converted into an adversary against the
original PS-signature scheme.

Therefore, any signature issued by a user will be of the form (σ1, σ2) =
(gr, Xr/m(gy)r). If we applied the standard methodology here, we would provide
a signature τ on y (or gy) and then prove in a zero-knowledge way that τ is valid
on the key that has been used to generate (σ1, σ2). However, we can do better
if we directly use the FHS-signature scheme [20].

Indeed, for all r, if we discard the term Xr/m in σ2, it only remains (gr, gy·r)
which are different representatives of the same equivalent class. Thus, if we
provide a FHS signature on (gr, gr·y) one can directly check that (σ1, σ2) was
generated using a certified key, without any proof of knowledge. Anonymity of
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the resulting construction simply follows from the ability to re-randomize FHS
signature while changing the representative of the class.

It then only remains to explain how to remove Xr/m. Recall that a FHS
signature on (gr, gr·y) is a tuple (τ1, τ2, τ̃) such that

e(τ1, τ̃) = e(gr, Ã1) · e(gr·y, Ã2) and e(τ2, g̃) = e(g, τ̃),

where (Ã1, Ã2) = (g̃α1 , g̃α2) is the public key. Assume that we add B̃ = X̃α2 to

this public key (X̃ = g̃x is a part of the public key of the PS-signature scheme).

Then, e(σ1, Ã1) · e(σ2, Ã2) · e(σ1, B̃−1/m) = e(gr, Ã1) · e(gy·r, Ã2) = e(τ1, τ̃),
and the second equation remains unchanged. This means that we can check the
validity of both FHS and PS signatures at essentially the cost of verifying a FHS
signature. Moreover, the fact that we merge the verification of these signatures
makes zero-knowledge proofs unnecessary. Concretely, this means that our group
signature only consists of (σ1, σ2, τ1, τ2, τ̃), i.e. four elements of G1 and one
element of G2, and can be verified with merely two pairing equations.

Interestingly, the fact that we avoid the classical signature of knowledge of y
allows to achieve both CPA anonymity and selfless anonymity. Indeed, schemes
based on randomizable signatures (see e.g. [14,28]) are usually proven anonymous
under the DDH assumption in G1. Therefore, to enable opening, they usually
force the users to provide some “trapdoor” g̃y ∈ G2 that allows the opening
authority to break DDH on their specific signatures. When y is part of the user’s
signing key usk (which is necessary for a signature of knowledge of y), leakage of
the latter means that the adversary can recover y and thus g̃y. Anonymity can
then no longer hold in this case leading to the selfless anonymity notion.

In our case, we note that gy ∈ G1 is enough to issue group signatures,
meaning that users can discard y after generating their keys. In case usk leaks,
the adversary now recovers gy, which is useless to break DDH. We can thus
retain some level of anonymity (at least CPA anonymity) in this case.

4.2 The Protocol

– Setup(1λ): Let (G1,G2,GT , e) be the description of type-3 bilinear groups

of prime order p, this algorithm first selects g
$← G∗1 and g̃

$← G∗2, and then

computes (X, X̃)← (gx, g̃x) for some random scalar x. It also generates the
public parameters ppΣ for a digital signature scheme Σ and selects a hash
function h : {0, 1}∗ → Z/pZ. Finally, it generates a common reference string
crs for the Groth-Sahai proof system [24] in the SXDH setting and then sets

the public parameters as pp = (G1,G2,GT , e, g, g̃,X, X̃, crs, ppΣ , h).
– UKeygen(pp): The user defines his own key pair as (sk, pk)← Σ.Keygen(ppΣ).
– OKeygen(pp): The opening authority generates a key pair (osk, opk) for a

public key encryption scheme Γ .
– GKeygen(pp): The group manager selects two random scalars α1 and α2 and

then computes (Ã1, Ã2, B̃) ← (g̃α1 , g̃α2 , X̃α2). He then initializes a public

register Reg and returns (gsk, gpk)← ((α1, α2), (Ã1, Ã2, B̃)).

12



– Join: To join the group, a user i first selects two random scalars, u and
y, and computes (gu, gu·y) along with C ← Γ.Encrypt(opk, g̃y). He then
generates a NIZK proof π that C encrypts an element g̃y ∈ G2 such that
e(gu, g̃y) = e(gu·y, g̃). Finally, he generates µ← Σ.Sign(ski, (g

u||gu·y||C||π))
and sends it, along with (gu, gu·y, C, π), to the group manager.
Upon receiving these elements, the group manager checks the validity of the
proof π and that Σ.Verify(pki, µ, (g

u||gu·y||C||π)) = 1. If π and µ are both

valid, then he stores (gu, gu·y, C, π, pki, µ) in Reg[i], generates a t
$← Z/pZ

and returns τ ′1 ← ((gu)α1(gu·y)α2)t, τ2 ← g1/t and τ̃ ← g̃1/t.
Finally, the user computes τ1 ← (τ ′1)1/u and sets uski = (τ1, τ2, τ̃ , g

y).
– Sign(uski,m): To sign a message m, the user first selects two random scalars
r and s, and generates the following elements:

τ ′1 ← τ r·s1 , (τ ′2, τ̃
′)← (τ

1/s
2 , τ̃1/s), (σ1, σ2)← (gr, Xr/h(τ̃ ′||σ1||m) · (gy)r).

The group signature σ on m is then defined as σ = (τ ′1, τ
′
2, τ̃
′, σ1, σ2).

– Verify(gpk, σ,m): To verify a group signature σ on m, one checks that none
of its elements is 1G1

or 1G2
and that the following equalities hold:

e(σ1, Ã1B̃
−1/h(τ̃ ||σ1||m)) · e(σ2, Ã2) = e(τ1, τ̃) and e(τ2, g̃) = e(g, τ̃),

in which case one outputs 1. Otherwise, one returns 0.
– Open(osk, gpk, σ,m): Before opening a signature, the opening authority first

checks that it is valid. Otherwise, he returns 0. By using its secret key osk,
the opening authority has the ability to decrypt any ciphertext Ci stored in
Reg[i] and thus recover the elements g̃yi ∈ G2 for all registered users. He
can then check, for each of them, whether the following equality holds:

e(σ2, g̃) · e(σ1, X̃−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yi).

If there is no match, then the opening authority returns⊥. Otherwise, let j be
the corresponding user. The opening authority recovers the data (guj , guj ·yj ,
Cj , πj , pkj , µj) stored in Reg[j], commits to g̃yj and then outputs j along
with a Groth-Sahai proof π that:

e(σ2, g̃) · e(σ1, X̃−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yj ) and e(guj ·yj , g̃) = e(guj , g̃yj ).

– Judge(gpk, σ,m, i, π): To verify an opening, one checks that πi is valid,
Verify(gpk, σ,m) = 1 and Σ.Verify(pki, µi, (g

ui ||gui·yi ||Ci||πi)) = 1. If all
conditions are satisfied, then one returns 1. Otherwise, one returns 0.

Correctness. First note that at the end of the Join protocol, the user gets
a FHS equivalence-class signature [20] on the representative (g, gy). Indeed,
(τ1, τ2, τ̃) = ((gα1gy·α2)t, g1/t, g̃1/t).

To issue a group signature on m, the user first re-randomizes (τ1, τ2, τ̃) using
s while updating the representative to (gr, gr·y). The resulting tuple (τ ′1, τ

′
2, τ̃
′)

is ((gr·α1gr·y·α2)t·s, g1/(t·s), g̃1/(t·s)) and is still a FHS signature on the same
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equivalent class. He then generates a pair (σ1, σ2) where (σ1, σ
m′

2 ) is a PS sig-
nature [28] on m′ = h(τ̃ ′||σ1||m) using the same randomness r. Therefore, such
a group signature satisfies:

e
(
σ1, Ã1B̃

−1/m′
)
· e(σ2, Ã2) = e

(
gr, g̃α1− x·α2

m′
)
· e
(
gr(

x
m′+y), g̃α2

)
,

= e(g, g̃)r(α1+y·α2) = e(τ ′1, τ̃
′),

and e(τ ′2, g̃) = e(g1/(t·s), g̃) = e(g, g̃1/(t·s)) = e(g, τ̃ ′).

Remark 4. Group signatures following the classical Sign-Encrypt-Prove frame-
work usually provide an efficient opening procedure. Indeed, the opening author-
ity knows the corresponding decryption key and so can decrypt the ciphertext
included in the group signature and then identify the signer. Unfortunately, there
is no equivalent for constructions without encryption and in particular there is
no longer a “master” key that the opening authority can use to break anonymity.

Constructions based on randomizable signatures [7,18] circumvent this issue
by forcing each user to provide to the opening authority a way to open their
signatures. Concretely, during the Join protocol, each user must transmit some
elements depending on their secret keys to this authority. Unfortunately this
requirement does not fit the BSZ model [6] where Join is a two-party protocol
between the user and the group manager. There are then two ways to solve
this problem. Either we add the opening authority as an acting party in Join

or we require that the user sends these elements to the group manager. The
first solution is conceptually the simplest but modifies the original BSZ model.
The second one does not but requires additional primitives to ensure security.
Indeed, the user cannot transmit such elements in clear (otherwise the group
manager could break anonymity) so he must send them encrypted and prove (in
a zero-knowledge way) that the resulting ciphertext is well-formed.

In this paper we choose to describe the most complex (second) solution since
one can easily derive from it a group signature scheme complying with the first
option. We will then need an IND-CCA2 secure public key encryption scheme
that is compatible with NIZK proofs. In practice, one can choose for instance [27]
that nicely interacts with Groth-Sahai proofs [24]. We note that efficiency is not
really a concern here since this step of the Join protocol has no impact on the
group signatures themselves.

Remark 5. We note that the security model of Bellare et al [6] already assumes
a trusted Setup phase, so our construction perfectly fits this model on this
point. However, this does not explain how to generate the public parameters
in real-world conditions. In practice, it would be natural that the opening au-
thority generates them. Regarding security, it would only be problematic for
non-frameability if corruption of this entity occurred before Setup, but this is
excluded by the model of [6]. We can also mitigate the risks by relying on a
cooperative generation of the parameters, as in [15].
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5 Security Analysis

Theorem 6. Our group signature is:

– traceable under the EUF-CMA security of the FHS signature scheme;
– non-frameable under the MPS assumption, the collision-resistance of the

function h and the EUF-CMA security of Σ;
– CPA anonymous under the SXDH assumption and the IND-CCA2 of Γ ;
– selfless anonymous if it is non-frameable, if Γ is IND-CCA2 secure and if

the SXDH assumption holds;
– fully anonymous, with merged opening authority and group manager, if it is

traceable and if the SXDH assumption holds.

Remark 7. Theorem 6 shows that our scheme retains some security properties
(namely CPA security) even when users’ secret keys are leaked, contrarily to the
ones of [7,28]. The fact that selfless anonymity depends on the non-frameability
may seem surprising but this is due to the special opening process that the
reductionR uses in our security proof. Informally,R is able to open all signatures
but the ones generated by the “challenge” user. To circumvent this problem R
stores all the signatures it has produced on behalf of this user so that it will be
able to recognize them if they are later submitted to the OOpen oracle. However,
this works as long as the adversary is unable to forge signatures for this user,
hence the non-frameability requirement.

The last statement of the theorem shows that we can achieve the strongest
notion of anonymity if we additionally assume that the opening authority is also
the group manager, as in the model of Bellare, Micciancio and Warinschi [5].

5.1 Proof of Anonymity

Our proofs of CPA anonymity and selfless anonymity are very similar and only
differ by one game. We will then consider an adversary against “anonymity”
without specifying which property we consider except in Game 5 where the
distinction is necessary. We discuss the case of full anonymity in Remark 8.

Let A be an adversary against the anonymity of our construction succeeding
with probability ε. We define a sequence of games to show that this advantage
is negligible. For each Game i we define Advi = |Pr(Si) − 1/2|, where Si is the
event “A succeeds in Game i”. We additionally define AdvSXDH as the advantage
against the SXDH problem.

Game 1. Our first game is exactly the one of anonymity of Figure 1 where the
reduction R generates normally all the secret values and so is able to answer
any oracle query. By definition, we have Adv1 = ε.

Game 2. In our second game, R selects a random index i∗ ∈ [1, qA], where qA
is a bound on the number of OAdd queries. R proceeds as usual but aborts if
A queries (i0, i1,m) to the OCh oracle with ib 6= i∗. The advantage of A in this
new game is then at least ε

qA
.
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Game 3. In the third game, R generates a simulated common reference string
crs and simulates all the zero-knowledge proofs. Any change in the behaviour of
A can then be used against the zero-knowledge property of these proofs, which
rely on SXDH in our setting. Therefore, Adv3 ≥ Adv2 − AdvSXDH.

Game 4. In the fourth game, R sets opk as the public key of a IND-CCA 2
experiment. It then uses the decryption oracle to decrypt the ciphertext Ci
stored in Reg[i] for all users i and so can answer any query as usual. However,
upon receiving the OJoinU query on i∗ (this query necessarily occurs because
of Game 2), it proceeds normally except that it generates C as an encryption
of a random element of G2 and simulates the proof. A change in the behaviour
of A would imply an attack against the IND-CCA2 security of Γ , so we get
Adv4 ≥ Adv3 − AdvIND−CCA2.

Game 5. In the fifth game, R stores every signature it generates on behalf of i∗

in some register Sig. Upon receiving a Open query for some pair (σ,m), it first
checks whether σ ∈ Sig in which case it returns i∗ along with a simulated proof.
Otherwise, it returns Open(σ,m).

We note that Game 5 is the same as Game 4 when we consider CPA anonymity
since there is no OOpen query in this case. For selfless anonymity, a difference
only occurs when the adversary manages to submit a forged signature that can be
traced back to i∗. However, such an adversary can straightforwardly be converted
into an adversary against non-frameability. We then have Adv5 ≥ Adv4 − Advnf .

Game 6. In the sixth game, R proceeds as in the previous game except that
it answers to the OCh query by returning a signature generated using a random
key. The advantage of A can then only be 0. We prove below that the Games
5 and 6 cannot be distinguished under the SXDH assumption and we then have
Adv6 ≥ Adv5 − AdvSXDH.

Proof (of indistinguishability between anonymity Games 5 and 6). R receives a
DDH challenge (g, ga, gb, gz) in G1 and must then decide whether z = a ·b. It will
then act as if y = a for the secret key uski∗ of user i∗. This is not a problem since
ga is sufficient to issue group signatures and to join the group since Game 4.
Moreover Game 5 ensures R is able to answer any OOpen query, even without
knowing g̃a.

To answer the OCh query for a message m, it selects a random scalar t and
computes a group signature σ as follows:

• τ1 ← ((gb)α1 · (gz)α2)t;
• (τ2, τ̃)← (g1/t, g̃1/t);
• (σ1, σ2)← (gb, (gb)x/h(τ̃ ||σ1||m) · (gz)).

In any case, σ is a valid group signature on m, i.e. Verify(gpk, σ,m) outputs
the bit 1. If z = a · b, then σ s a valid signature issued by user i∗ and A is still
playing Game 5. Else, σ is a signature issued with a random key, independent
of a and A is playing Game 6. Any change of behavior of A between these two
games can then be used against the DDH assumption in G1 and so against the
SXDH assumption. ut
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We get the following result:

• ε/qA ≤ 2 AdvSXDH + AdvIND−CCA2 for any adversary succeeding against CPA
anonymity with probability ε;

• ε/qA ≤ 2 AdvSXDH+AdvIND−CCA2+Advnf for any adversary succeeding against
selfless anonymity with probability ε;

which proves both CPA anonymity and selfless anonymity of our construction.

Remark 8. Let us now consider the case where the group manager and the open-
ing authority are merged, as in the BMW model [5]. As explained in Remark 4,
the use of IND-CCA2 encryption during the Join protocol is only necessary
when the opening authority is not involved in this process, which is no longer
the case here. We can then discard Γ and remove Game 4 in the security proof.

In Game 5, R proceeds as follows. It still stores the signatures generated on
behalf of i∗ in Sig but now answers OOpen queries on (σ,m) as follows:

– if σ ∈ Sig, then it returns i∗ along with a simulated proof π;
– if Open(σ,m) returns (i, π) or 0, then it forwards this answer to the adversary;
– if Open(σ,m) returns ⊥, then it returns i∗ along with a simulated proof π.

We note that a problem may only occur in the third case if the adversary
managed to submit a group signature that cannot be traced back to a registered
user. However, this would mean that A is a valid adversary against traceability,
which is unlikely.

All the other games remain unchanged so ε/qA ≤ 2 AdvSXDH +Advtra for any
adversary succeeding against full anonymity with probability ε in BMW [5].

5.2 Proof of Traceability

We prove here that any untraceable group signature can be used to construct
a forgery against the FHS equivalence-class signature scheme. More specifically,
let A be an adversary against the traceability of our group signature succeeding
with probability ε, then A can be converted into an adversary succeeding against
the EUF-CMA security of FHS signature with the same probability.

Technically, A can succeed by returning a valid signature σ on m that either
foils the opening process or that can be opened but for which it is impossible to
produce a valid proof of opening. We can exclude the latter in our construction
because of the correctness and of the soundness of Groth-Sahai proofs.

Our reduction R generates the public parameters as usual except that it
does not discard x after generating X and X̃. It then gets the public key Ã1 and
Ã2 from the EUF-CMA challenger and sets the group manager’s public key as
(Ã1, Ã2, Ã

x
2). By using its signing oracle, it is able to handle Join query so the

simulation is perfect. At the end of the game, A then outputs with probability
ε an untraceable group signature σ on m. If we parse σ as (τ1, τ2, τ̃ , σ1, σ2), this
means that:

(1.) e
(
σ1, Ã1B̃

−1/h(τ̃ ||σ1||m)
)
· e(σ2, Ã2) = e(τ1, τ̃);
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(2.) e(τ2, g̃) = e(g, τ̃);

(3.) e(σ2, g̃) · e
(
σ1, X̃

−1/h(τ̃ ||σ1||m)
)
6= e(σ1, g̃

yi) for all g̃yi stored (encrypted).

Equation (1.) is equivalent to:

e(σ1, Ã1) · e
(
σ2 · σ−x/h(τ̃ ||σ1||m)

1 , Ã2

)
= e(τ1, τ̃),

which means (together with equation (2.)) that (τ1, τ2, τ̃) is a valid FHS signature

on
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
. However, (τ1, τ2, τ̃) will be considered as a valid

forgery only if
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
does not belong to the equivalence class

of a message submitted to the signing oracle.
Let S = {(hi, hyii )}qi=1, for hi ∈ G1 be the set of queried messages. All these

messages were involved in a Join query during which the group manager received
(and stored) g̃yi (encrypted). Therefore, if (µ1, µ2) belongs to the equivalent class
of an element of S, then there exists i ∈ [1, q] such that e(µ1, g̃

yi) = e(µ2, g̃).

Let us then assume that
(
σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)

1

)
satisfies the previous condi-

tion, i.e. that there is i such that: e(σ1, g̃
yi) = e

(
σ2 · σ−x/h(τ̃ ||σ1||m)

1 , g̃
)
. We then

have e(σ1, g̃
yi) = e(σ2, g̃) · e

(
σ
−x/h(τ̃ ||σ1||m)
1 , g̃

)
= e(σ2, g̃) · e

(
σ1, X̃

−1/h(τ̃ ||σ1||m)
)
,

which contradicts equation (3.). The pair
(
σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)

1

)
has then never

been signed, nor any representative of the same equivalence class, which means

that (τ1, τ2, τ̃) along with
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
is a valid forgery against the

EUF-CMA security of the FHS scheme.

5.3 Proof of Non-Frameability

A successful adversary A against the non-frameability of our scheme is able to
forge a valid group signature σ = (τ1, τ2, τ̃ , σ1, σ2) on a message m that can be
traced back to some honest user i. We then distinguish four cases:

– Case 1: the pair (gu, gu·y) stored in Reg[i] is not the one sent by user i when
he joined the group;

– Case 2: the user i has issued a signature (τ ′1, τ
′
2, τ̃
′, σ′1, σ

′
2) on m′ such that

(τ̃ ′, σ′1,m
′) 6= (τ̃ , σ1,m) but h(τ̃ ||σ1||m) = h(τ̃ ′||σ′1||m′);

– Case 3: the user i has issued a signature (τ ′1, τ
′
2, τ̃
′, σ′1, σ

′
2) on m′ such that

(τ̃ ′, σ′1,m
′) = (τ̃ , σ1,m);

– Case 4: none of the previous events occurred.

We recall that a user can be accused of having produced a signature only
if the opening is valid, i.e. only if the Judge algorithm outputs 1. One step
of the Judge algorithm is to check that the user i has indeed signed the el-
ements stored in Reg[i], i.e. that there is a signature µ in Reg[i] such that
Σ.Verify(pki, µ, (g

u||gu·y||Ci||πi)) = 1. Therefore, Case 1 straightforwardly im-
plies a forgery against Σ, which is assumed to be EUF-CMA.

Similarly, Case 2 directly implies a collision of the hash function h.
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Case 3. Let us now consider the third case. As the algorithm Judge returns 1,
σ is valid, which means that:

(1.) e(σ1, Ã1B̃
−1/h(τ̃ ||σ1||m)) · e(σ2, Ã2) = e(τ1, τ̃),

(2.) e(τ2, g̃) = e(g, τ̃).

We then have e(τ2, g̃) = e(g, τ̃) = e(g, τ̃ ′) = e(τ ′2, g̃) and thus τ2 = τ ′2.

Moreover, we know that e(σ2, g̃) · e(σ1, X̃−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yi) because σ is

traced back to i. If we rewrite this equation, we have

e(σ2, g̃) = e(σ1, X̃
1/h(τ̃ ||σ1||m) · g̃yi) = e(σ′1, X̃

1/h(τ̃ ′||σ′1||m
′) · g̃yi) = e(σ′2, g̃)

and so σ2 = σ′2. Combining this equality with (1.), we also get τ1 = τ ′1. Therefore,
σ is exactly the signature (τ ′1, τ

′
2, τ̃
′, σ′1, σ

′
2) returned by the OSign algorithm and

so cannot constitute a valid attack against non-frameability.

Case 4. We now consider Case 4 and prove that a successful adversary breaks
the MPS assumption. Let (g, gy, gz, gz·x, g̃, g̃x, g̃y) be a MPS instance for the
function h defined in pp. The reduction R generates the public parameters pp
as usual except that it sets (g,X) = (gz, gz·x) and (g̃, X̃) = (g̃, g̃x). It then
generates the keys (osk, opk) and (gsk, gpk) as in section 4, selects i∗ ∈ [1, qA]
(where qA is a bound on the number of OAdd) and handles the oracles queries
as follows:

– OAdd(i): R answers to every query normally with (ski, pki)← Σ.Keygen.
– OCorrupt(i): R returns requested secret keys if i 6= i∗ and aborts otherwise.
– OJoinU (i): R proceeds normally if i 6= i∗ by generating the necessary secret

values. Otherwise, it encrypts g̃y as C and sends (g, gy) along with the cor-
responding NIZK proof π. We note that (g, gy) is a valid pair for g̃y (so the
NIZK proof can be generated normally) which implicitly defines u as z−1.

– OSign(i,m): here we only consider the case where i = i∗ since R can nor-
mally generate this signature otherwise. R forwards the message m to the
MPS oracleO which returns (s, g̃r·s, gr, gr·z, gr(x+t·y)) with t = h(g̃r·s||gr||m).
R then constructs the following group signature σ:
• (σ′1, σ

′
2)← (gr, (gr(x+t·y))1/t);

• (τ ′2, τ̃
′)← ((gr·z)s, (g̃r)s);

• τ ′1 ← (gα1 · (gy)α2)1/s);
where (α1, α2) = osk. This is indeed a valid group signature since:

e(σ′1,Ã1B̃
−1/h(τ̃ ′||σ′1||m)) · e(σ′2, Ã2)

= e(gr, g̃α1−(α2·x)/h(g̃r·s||gr||m)) · e(gr(x/h(g̃
r·s||gr||m)+y), g̃α2),

= e(gr, g̃α1) · e(gr·y, g̃α2),

= e(τ ′1, τ̃
′),

and e(τ ′2, g̃) = e((gr·z)s, g̃) = (gz, g̃r·s) = e(g, τ̃ ′). Moreover, σ is correctly
distributed as this construction implicitly defines r and s of the Sign algo-
rithm as r/z and 1/rs from the MPS instance, where r and s are random.
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We note that R is perfectly able to answer any adversary query as long as
its guess on i∗ is correct, which occurs with probability at least 1/qA. In this
case, A returns, with some probability ε, a valid signature σ = (τ1, τ2, τ̃ , σ1, σ2)
on some message m that can be traced back to i∗. Concretely, this means that
σ satisfies the following relations:

• e(σ1, Ã1B̃
−1/t) · e(σ2, Ã2) = e(τ1, τ̃);

• e(τ2, g̃) = e(g, τ̃);

• e(σ2, g̃) · e(σ1, X̃−1/t) = e(σ1, g̃
y);

with t = h(τ̃ ||σ1||m). Since we here consider the Case 4, we know that the value
of t is different from the ones used by R to answer OSign queries. Moreover,
the third equation means that:

e(σt2, g̃) = e(σt2, g̃) = e(σ1, X̃ · (g̃y)t) = e(σ1, g̃
x · (g̃y)t)

which implies that (t, σ1, σ
t
2) is a valid solution to the MPS problem. Any ad-

versary corresponding to Case 4, succeeding with probability ε, can then be
converted into an adversary against the MPS assumption succeeding with prob-
ability at least ε/qA. Case 4 thus occurs with negligible probability under the
MPS assumption.

5.4 Assessment of the MPS Assumption

The goal of an adversary A against the MPS assumption is to forge a new PS
signature with the help of an oracle O that outputs more elements than in the
original PS assumption. As we discuss in subsection 2.4, these new elements
do not seem provide any advantage to A. We formalize this intuition with an
evaluation of the MPS assumption in the generic group model.

Lemma 9. In the generic group model, no adversary can succeed against the
MPS assumption with probability greater than O((4qO + 7 + qG)2/p), where qG
is a bound on the group oracle queries and qO is a bound on the number of
queries to O.

Proof. The adversary has access to (g, gy, gz, gz·x, g̃, X̃, Ỹ ) along with the out-
puts (si, g̃

ri·si , gri , gri·zi , gri(xi+ti·yi)), with ti = h(g̃ri·si ||gri ||mi), of the ora-
cle O. We will first prove that A cannot symbolically produce a valid tuple
(t∗, σ1, σ2) ∈ Zp × G2

1 by associating each group element with a polynomial
whose formal variable are x, y, z and ri, ∀i ∈ [1, qO].

In the generic group model, any group element must have been generated
through queries to the oracle of the internal law of the group or to O. Since
the goal of A is to output elements σ1 and σ2 of G1, the latter can only be
combinations of elements from the same group. This means that there are known
coefficients {a, b, c, d, αi, βi, γi} and {a′, b′, c′, d′, α′i, β′i, γ′i}, for i ∈ [1, qO], such
that:
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τ1 = ga · (gy)b · (gz)c · (gz·x)d ·
∏
i

(gri)αi · (gri·zi)βi · (gri(x+ti·y))γi ;

τ2 = ga
′
· (gy)b

′
· (gz)c

′
· (gz·x)d

′
·
∏
i

(gri)α
′
i · (gri·zi)β

′
i · (gri(x+ti·y))γ

′
i .

A tuple (t∗, σ1, σ2) is valid only if e(σ1, X̃ · Ỹ t
∗
) = e(σ2, g̃), σ1 6= 1G1

and
t∗ 6= ti for all i ∈ [1, qO]. This gives the following relation:

(a+ by+cz + dzx+
∑
i

αiri + βiriz + γiri(x+ yti))(x+ yt∗)

= (a′ + b′y + c′z + d′zx+
∑
i

α′iri + β′iriz + γ′iri(x+ yti)).

The factor (x + yt∗) implies that any monomial of the left member will be of
degree at least 1 in x or y. We can therefore conclude that a′ = c′ = α′i = β′i = 0,
∀i ∈ [1, qO], leading to the following equation:

(a+ by+cz + dzx+
∑
i

αiri + βiriz + γiri(x+ yti))(x+ yt∗)

= (b′y + d′zx+
∑
i

γ′iri(x+ yti)).

The right member does not contain any monomial of degree 2 in x or y, which
implies that b = d = γi = 0, ∀i ∈ [1, qO]:

(a+ cz +
∑
i

αiri + βiriz)(x+ yt∗) = (b′y + d′zx+
∑
i

γ′iri(x+ yti)).

If we develop the left member, we get monomials such as ax, czy and βirizx.
However, there are no similar terms in the right member, which implies that
a = c = βi = 0, ∀i:

(
∑
i

αiri)(x+ yt∗) = (b′y + d′zx+
∑
i

γ′iri(x+ yti)).

Any term of the left member is then of degree 1 in some ri, which implies that
b′ = d′ = 0:

(
∑
i

αiri)(x+ yt∗) = (
∑
i

γ′iri(x+ yti)).

We then have, for each i ∈ [1, qO], αi(x + yt∗) = γ′i(x + tyi), which implies
that αi = γ′i. However, we also know that t∗ 6= ti ∀i ∈ [1, qO] which means that
αi = γ′i = 0. A has thus returned a tuple (t∗, 1G1

, 1G1
), which is invalid.
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Now, let us assess the probability of an accidental validity, i.e. when two
different polynomials involved in group oracle queries evaluate to the same value.
All the polynomials considered in this proof are of degree at most 2. Since there
are at most 4qO+ 7 + qG polynomials, there are at most (4qO+ 7 + qG)2/2 pairs
that could evaluate to the same value. By the Schwartz-Zippel lemma, this can
occur with probability at most (4qO + 7 + qG)2/p, which is negligible. ut

6 Efficiency comparison

We compare the signing algorithm of our scheme with the ones of other construc-
tions of the state-of-the-art. All of them are proven under interactive assumptions
so we do not take this point into account in our comparison.

In Table 4, we enumerate the number of expensive operations, i.e. exponen-
tiations in G1, G2 and GT (denoted by e1, e2 and eT respectively). Regarding
signing cost, our scheme is the most efficient one whenever computing 3e1 + 1e2
is cheaper than computing 1eT .

To compare these operations, we choose a common metric. We aim at the
128-bit security.

As stated in section 6, we select Barreto-Lynn-Scott curves with k = 12,
since those are more efficient than the widely-used Barreto-Naehrig curves, con-
sidering the recent attacks on pairings [26], as pointed out by Barbulescu and
Duquesne [4]. Moreover, they are getting involved in more implementations, e.g.
in Zexe [12], a ledger-based system, and in ZCash [11] for zk-SNARKs.

Like in [4], we select a prime p ≡ 3 (mod 4) and construct the tower of fields:

Fp2 =
Fp[U ]

(U2 + 1)
, Fp6 =

Fp2 [V ]

(V 3 − U − 1)
and Fp12 =

Fp6 [W ]

(W 2 − V )
.

This choice yields the costs in Table 1, where m is the cost of one multiplication in
Fp (we make the rough assumption that squaring is the same cost as multiplying
in Fp). The last line of Table 1 represents costs in the so-called cyclotomic
subgroup GΦ12(p) ⊂ Fp12 of order Φ12(p) (where Φ12(p) is the 12th cyclotomic
polynomial evaluated at p, see [4]). This is of interest to us since GT ⊂ GΦ12(p)

and squaring in GΦ12(p) are twice faster.

Field Mult. (M) Squaring (S)

Fp m m

Fp2 3m 2m

Fp12 54m 36m

GΦ12(p) 54m 18m
Table 1. Costs of arithmetic operations in the tower extension as in [4]

For simplicity, we take our BLS12 curve in the short Weierstrass model, that
is y2 = x3 + b with b ∈ Fp, and use the Jacobian coordinate system: representing
(x, y) as (X,Y, Z) and satisfying the equations x = X/Z2 and y = Y/Z3. This
is the most efficient for pairings, without changing models (see [10]): it takes
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11 field multiplications and 5 field squarings to add two distinct points and 2
field multiplications and 5 field squarings to double a point. After converting
squarings to multiplications (see Table 1), we end up with Table 2. Note that a
point in G2 is on the degree-6 twist curve, i.e. over Fp2 .

Group
Addition Doubling

11M + 5S 2M + 5S

G1 16m 7m

G2 43m 16m
Table 2. Costs of arithmetic operations in the pairing groups G1/Fp and G2/Fp2 , when
modeling the curve with a short Weierstrass equation and using Jacobian coordinates

Now, to compare exponentiation, let n be a positive integer. Think of n
as one of the random scalars in our Sign procedure. A square-and-multiply
algorithm will, on average, “square” log2 n times and “multiply” (log2 n)/2 times.
It means, for instance, that an exponentiation by n in G1 costs 15(log2 n) field
multiplications. The (log2 n) factor is irrelevant for cost comparison (since we
want to compare the relative costs of exponentiation and this factor appears
everywhere), so we drop it and sum that up for all three pairing groups in Table 3.

Group G1 G2 GT
Cost 15m 38m 45m

Table 3. Normalized cost of one group exponentiation

Using BLS12 curves leads to a 256-bit representation of scalars, at least 384-
bit for the elements of G1 and 768-bit for those of G2. So our group signature
scheme produces signatures of size 4 × 384 + 768 = 2 304 bits. The cost to
compute said signature is 5× 15 + 38 = 113 field multiplications.

We summarize our comparison in Table 4, where the BMW model is the one
of [5] whereas the BSZ model is the one of [6] that we recall in section 3. The last
line of the table corresponds to our construction where the opening authority
and the group manager are merged, which impacts security but not efficiency.

Scheme
Size Cost in Cost with

ROM?
GS

Anonymity
in bit grp. exp. BLS12 model

BCNSW [7] 1664 3 e1 + 1 eT 90m yes BMW selfless

PS [28] 1280 2 e1 + 1 eT 75m yes BMW selfless

DS [18] 2816 5 e1 + 1 e2 113m yes BSZ CPA

DS* [18] 4608 5 e1 + 6 e2 303m yes BSZ full

BHKS [3] 4992 9 e1 + 2 e2 211m no BMW full

Ours 2304 5 e1 + 1 e2 113m no BSZ CPA & selfless

Ours* 2304 5 e1 + 1 e2 113m no BMW full
Table 4. Efficiency and security comparisons using BLS12 curves (m represents the
cost of one multiplication in the base field of the curve)

If we focus on constructions without random oracles, our group signature
outperforms the recent construction of [3]: it halves both the signature size and
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the signature cost. We also note that it is competitive against the most efficient
construction [28] in the random oracle model (ROM). Indeed, while the signature
size remains larger (double the size), the computational cost is quite similar and,
more importantly, our signer no longer needs to perform operation in GT and
so, does not need to implement the arithmetic in Fp12 , which is noticeable.

We would like to add that this comparison was made targeting the 128-bit
security level. At higher security levels, BLS12 curves might not be relevant any-
more. For instance, at 256 bits of security, the authors from [10] choose a BLS24
curve and different curve models for G1 and G2, thus satisfying the condition
3e1 + 1e2 < 1eT . In that case, our group signature scheme is computationally
the most efficient, even compared to the best alternative in the ROM [28].

Conclusion

In this paper, we have introduced the most efficient group signature scheme
proved secure without random oracles. Our construction is based on a tailored
combination of the PS signature scheme and the FHS equivalence-class signature
scheme, leading to a group signature consisting only of four elements in G1 and
one in G2. Its security essentially relies on the one of these signature schemes
which have been widely used in cryptographic protocols, although we need to
slightly modify the proof of PS signature to fit our construction.

Our scheme halves both the size and the computational cost compared to
the most efficient alternative in the same model. It also significantly closes the
gap with constructions in the ROM, showing that it is no longer necessary to
choose between security and efficiency.
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signature schemes. In Javier López, Sihan Qing, and Eiji Okamoto, editors, ICICS
04, volume 3269 of LNCS, pages 1–13. Springer, Heidelberg, October 2004.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer, Heidelberg,
August 2000.

3. Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signatures
with flexible public key: Introducing equivalence classes for public keys. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273
of LNCS, pages 405–434. Springer, Heidelberg, December 2018.

4. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pair-
ings. J. Cryptology, 32(4):1298–1336, 2019.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629. Springer, Heidelberg, May 2003.

24



6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of
LNCS, pages 136–153. Springer, Heidelberg, February 2005.

7. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. In Juan A. Garay
and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages 381–398.
Springer, Heidelberg, September 2010.

8. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55.
Springer, Heidelberg, August 2004.

9. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 2004, pages 168–177. ACM Press, October 2004.

10. Joppe W. Bos, Craig Costello, and Michael Naehrig. Exponentiating in pairing
groups. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013,
volume 8282 of LNCS, pages 438–455. Springer, Heidelberg, August 2014.

11. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. https:

//electriccoin.co/blog/new-snark-curve/, 2017.

12. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. IACR Cryptology
ePrint Archive, 2018:962, 2018.

13. Xavier Boyen and Brent Waters. Compact group signatures without random ora-
cles. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
427–444. Springer, Heidelberg, May / June 2006.

14. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.
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