
An Analysis of the ProtonMail

Cryptographic Architecture

Nadim Kobeissi

Symbolic Software

nadim@symbolic.software

November 24, 2018

Abstract

ProtonMail is an online email service that claims to o�er end-to-end

encryption such that �even [ProtonMail] cannot read and decrypt [user]
emails.� The service, based in Switzerland, o�ers email access via webmail

and smartphone applications to over �ve million users as of November

2018. In this work, we provide the �rst independent analysis of Pro-

tonMail's cryptographic architecture. We �nd that for the majority of

ProtonMail users, no end-to-end encryption guarantees have ever been

provided by the ProtonMail service and that the �Zero-Knowledge Pass-
word Proofs� are negated by the service itself. We also �nd and document

weaknesses in ProtonMail's �Encrypt-to-Outside� feature. We justify our

�ndings against well-de�ned security goals and conclude with recommen-

dations.

1 Introduction

ProtonMail1 is an email service founded in 2014 and based in Geneva, Switzer-
land. By promoting its claims of end-to-end encryption features, the service
was able to receive initial support through a crowdfunding campaign and now
supports itself through paid plans being o�ered adjacent to its free-of-charge ser-
vice. As of January 2017, ProtonMail claimed to have over 2 million users [1].
This number grew to over 5 million users by September 2018 [2]. ProtonMail is
primarily accessed through its webmail interface, with iOS and Android appli-
cations launching in 2016, two years after the service was opened to the public.

ProtonMail has published a technical speci�cation [3] detailing its �security
features and infrastructure� in July 2016. Despite the strong security claims
made in this paper and despite ProtonMail's success, no independent formal
analysis of ProtonMail's security claims has been published.

In this work, we provide the �rst independent analysis into ProtonMail's
cryptographic design.

1ProtonMail is accessible at https://protonmail.com.

1

https://protonmail.com


� We begin by de�ning a set of security goals in �2 which are based on Pro-
tonMail's own claims as well as on cryptographic de�nitions for standard
security goals.

� In �3, we establish the cryptographic primitives relevant to our analysis.
This allows us to describe ProtonMail's protocol �ows in �4.

� Based on our comparison of ProtonMail's security goals against its pro-
tocol �ows, we present a security analysis �5 in which we �nd serious
shortcomings with regards to ProtonMail's e�ective security guarantees.
we provide recommendations in our conclusion (�6).

In carrying out this analysis, we evaluated ProtonMail's security claims
against well-de�ned security goals. We found that ProtonMail's cryptographic
architecture ultimately does not guarantee end-to-end encryption for the ma-
jority of users and that Zero-Knowledge Password Proof security goals are ef-
fectively not provided for any ProtonMail user. Furthermore, we also uncover
weaknesses in ProtonMail's �Encrypt-to-Outside� functionality which is intended
to allow ProtonMail users to send end-to-end encrypted email to recipients that
do not use ProtonMail.

2 Security De�nitions

�ProtonMail conservatively assumes that all mail servers may
eventually be compromised. Thus, ProtonMail uses end-to-end en-
cryption to ensure that plaintext email data is never sent to the
server. If a server only contains encrypted messages, then the risks
of a central server breach are mitigated.� � ProtonMail Security
Features and Architecture Speci�cation [3]

We begin with security de�nitions for each of ProtonMail's security claims.
Each security de�nition is motivated by claims made on ProtonMail's website
and is de�ned in such a way as to be consistent with how such security goals
are understood in modern cryptographic literature.

2.1 Security Assumptions

Our security de�nitions concern three clients: ProtonMail user A, ProtonMail
user B and Microsoft Outlook2 user S. We also consider two servers: Pro-
tonMail webmail server P and Microsoft Outlook webmail server M. These
principals operate under the following network assumptions:

� Transport Layer Security. We assume that all communications be-
tween all principals occur over an authenticated TLS link.

2For simplicity, we use Microsoft Outlook as a running example of any third-party run-
of-the-mill email service that is not ProtonMail. This could also potentially be Apple iCloud
Mail, Gmail, FastMail, etc.

2



� No Client State Compromise. We assume that none of the clients A,
B and S ever su�er a local state compromise.

� Untrusted Server. We assume that P is untrusted and could act with
the intent to recover encrypted communications between clients A, B, S.
We treatM as controlled by an adversary.

The Untrusted Server assumption is directly informed by the above-mentioned
quotes from ProtonMail.

We are therefore assuming a relatively safe threat model where transport
layer communications are always encrypted and where local state compromise
never occurs.

2.2 End-to-End Encryption

�ProtonMail's zero access architecture means that your data is
encrypted in a way that makes it inaccessible to us. Data is encrypted
on the client side using an encryption key that we do not have access
to. This means we don't have the technical ability to decrypt your
messages, and as a result, we are unable to hand your data over to
third parties. With ProtonMail, privacy isn't just a promise, it is
mathematically ensured. For this reason, we are also unable to do
data recovery. If you forget your password, we cannot recover your
data.� � ProtonMail Security Details Page [4]

End-to-end encryption denotes a collection of properties inherent to a cryp-
tographic protocol, almost always a secure channel protocol. These properties,
known as con�dentiality, integrity and authenticity, �rst became available to the
general public through the introduction of the Pretty Good Privacy (PGP) email
encryption protocol in 1991. O�-the-Record Messaging (OTR), a communica-
tions system that meant to supersede PGP [5] built upon these properties and
expanded them with new ones: forward secrecy and deniability. A decade later,
rigorous formal analysis [6, 7, 8] of the Signal Protocol [9, 10], which itself was in
turn inspired by OTR and which currently encrypts all messages sent through
WhatsApp and other applications, further formalized the security properties of
modern end-to-end encryption systems. Tangentially, similarly rigorous formal
analysis [11, 12, 13] of TLS, the protocol underlying the transport encryption of
almost all web tra�c, further helped provide strong applied security de�nitions
for the properties underlying end-to-end encryption.

Given that ProtonMail uses PGP to provide end-to-end encryption, we con-
sider the following security properties as being the components that achieve end-
to-end encryption in the context of ProtonMail3. Given that this is a practical
analysis, we colloquialize the understanding of the security properties provided
by the cited work into the following de�nitions:

� Con�dentiality. An email sent from any client to any other client can
only be decrypted by the recipient and, optionally, the sender.

3We note that forward secrecy, post-compromise security [14] and deniability are not con-
sidered as relevant properties in this context.

3



� Authenticity. If a client receives a message that appears to be from
another client, then this apparent sender must have sent the email to
the recipient. Note that this de�nition of authenticity also encapsulates
the standard de�nition of integrity in production end-to-end encryption
systems.

2.3 Zero-Knowledge Password Proof

�ProtonMail users enter a user-chosen password on each login,
but while ProtonMail's backend is responsible for validating and re-
setting the password, the password cannot be derived by either Pro-
tonMail or an attacker with access to the network. This is achieved
with the Secure Remote Password protocol, which as detailed be-
low, conveys a Zero-Knowledge Password Proof from the user to the
server. The security granted by this protocol extends to the user's
private keys, which are encrypted with a salted hash of their pass-
word before being sent to the server. [...] The Secure Remote
Password protocol [15] promises theoretically optimal security. When
using SRP, even an attacker who can arbitrarily read, modify, delay,
destroy, repeat, or fabricate messages between ProtonMail and a le-
gitimate user in an undetectable fashion is limited to checking only a
single password guess per login attempt, a task which could be done
just by trying to log in directly. Even if a server is compromised and
acts maliciously, password-equivalent information is never revealed.
This is all done without permanent private keys: all secret informa-
tion is derived from the user's password.� � ProtonMail Security
Features and Architecture Speci�cation [3]

Zero-Knowledge Password Proofs (ZKPP) result from mechanisms intended
to protect against dictionary attacks [16]. By employing ZKPP, a client can
prove to a server that it knows the value of some password, without revealing any
information about the password itself. This is di�erent from more traditional
design where the server stores a hash of the client's password. In the latter
design:

� Passwords are vulnerable to brute force attacks in the event that the
adversary obtains the hash.

� The server can distinguish a valid password from an invalid password entry
by comparing it to the stored hash.

However, the ProtonMail Security Features and Architecture Speci�cation,
quoted above, states that no information is stored on the ProtonMail server
that allows the password to be derived by �either ProtonMail or an attacker
with access to the network.�

We therefore de�ne the ZKPP security goal thus: a server P should at no
point in time possess any information that would allow them to con�rm brute
force or dictionary attack attempts for the password of a client A (also known
as an �o�ine attack�). ProtonMail's own SRP implementation is illustrated in
Fig. 1.

4



Has username Au

A
Has veri�er v = gp

P

Au

k
R←− {0, 1}128

s
R←− {0, 1}128

S = gs + kv
S

c
R←− {0, 1}128

C = gc

C

u = HASH(C, S)
g(c+up)s = (gs)c+up

x = HASH(C, S, g(c+up)s)

u = HASH(C, S)
g(c+up)s = (gcvu)s

x

x
?≡ HASH(C, S, (gcvu)s

y = HASH(C, x, g(c+up)s)
y

y
?≡ HASH(C, x, g(c+up)s)

Figure 1: Authentication via SRP, as implemented in ProtonMail [3]. All arith-
metic operations are modulo some safe 2048-bit Sophie-Germain prime.

5



3 Cryptographic Primitives

We de�ne the following cryptographic primitives:

� Hashing. HASH(x) −→ y. A standard one-way cryptographic hash func-
tion.

� Encryption and Decryption.

� Encryption. ENC(ek, p, a) −→ (Eek,p,n,a,t, n, t). This is an authen-
ticated encryption with associated data (AEAD) construction where
ek is an encryption key, n is a randomly generated nonce, a is asso-
ciated data and t is an authentication tag.

� Decryption. DEC(ek,Eek,p,n,a,t, n, a, t) −→ {p,⊥}.

PGP Interface. We also describe the following simpli�ed PGP API:

� Key Generation. PGPGEN(c) −→ (sk, pk).

� Encryption. PGPSEND(c,m, pk) −→ PGPm,pk.

� Decryption. PGPREAD(c,PGPm,pk, sk) −→ {m,⊥}.

In the operations described above, c indicates the application code that the
client is using in order to perform PGP operations, generally assumed to contain
a correct implementation of the OpenPGP protocol. The relevance of c is such
that if c does not contain a correct implementation of OpenPGP, all output
generated by PGPGEN, PGPSEND and PGPREAD could be arbitrarily a�ected.
PGPm,pk is a ciphertext of m encrypted towards public key pk. PGPREAD
decrypts this ciphertext if the corresponding secret key sk is provided for pk.
Otherwise, it returns ⊥.

4 Protocol Flows

In this section, we provide high-level descriptions of two distinct protocol �ows:

� ProtonMail-to-ProtonMail. A sends a PGP-encrypted message m to
B through P.

� �Encrypt-to-Outside�. A sends a symmetrically encrypted email to S
through P which relays the email to S through M. S sends a PGP-
encrypted reply r to A using the web interface J and A's PGP public key
Apk, both provided by P.

Both protocol �ows are pre-empted by a ZKPP password mechanism using
SRP, described in Fig 1.

6



4.1 E�ects of Client Application Choice on Protocol Flows

Users have the option of accessing ProtonMail either through a webmail client
or through a smartphone application.4 How A accesses their ProtonMail inbox
has substantial implications on protocol �ows and ultimately on the security
properties that their communications obtain. The reason for this has to do with
the authenticity properties provided by the code delivery methods, which di�er
between applications.

4.1.1 ProtonMail Webmail

ProtonMail's webmail application appears to be the primary ProtonMail prod-
uct and how ProtonMail is most often accessed by its users.5 When visiting
https://protonmail.com, A's web browser is served with JavaScript code rep-
resenting the ProtonMail web application [17] and its underlying OpenPGP
implementation, also written in JavaScript [18].

Since communication between all ProtonMail users (including A and B) to
P is assumed to be encrypted using TLS (�2.1), delivery of the ProtonMail web
application is assumed to be safe against a network attacker. However, we note
that a malicious P (also an assumption in �2.1) would be able to arbitrarily serve
compromised webmail clients to A or any other ProtonMail user without this
being detectable and that, conversely, correct delivery of webmail/OpenPGP
client code is not veri�able.

Therefore, for A, providing input to ProtonMail's webmail application pro-
vided by P is directly equivalent to providing input to P since, in e�ect, P acts
as a man-in-the-middle between the user and the webmail application code.
No existing mechanism, including TLS, is su�cient to o�set P's middle-man
authority in this application scenario.

4.1.2 ProtonMail Smartphone Application

Mainstream smartphone applications on modern mobile platforms are delivered
through a signi�cantly di�erent process to ProtonMail's webmail application.
When a new ProtonMail smartphone application version is released for the
Apple App Store or the Google Play Store, its author must increment a version
number and release timestamp. The application binary and its manifest are
both cryptographically signed with a key owned by the author and again by
Apple or Google (depending on the platform) upon publication.

Note that in this application scenario, releases are cryptographically au-
thenticated and tracked through an incremental version number, and that the
delivery of client code is restricted purely to software update instances. Users
are therefore able to audit whether they received the same binary for some
version of the application as everyone else. Furthermore, the application dis-
tributor (Apple, Google) adds a second layer of authentication and its separate

4A desktop �bridge� application is also o�ered to paying customers. For simplicity, we
group it with smartphone applications.

5This observation is made based on anecdotal evidence. ProtonMail does not publish
platform usage statistics.

7

https://protonmail.com


A
Has application J

P
Has public key Bpk

B

BpkBpk

J

PGPm,Bpk
←− PGPSEND(J,m,Bpk)

PGPm,Bpk
PGPm,Bpk

(a) A sends an email to B using the ProtonMail webmail application. We assume that A
authenticates the �ngerprint for PGP public key Bpk out of band.

Has application I

A P
Has public key Bpk

B

BpkBpk

PGPm,Bpk
←− PGPSEND(I,m,Bpk)

PGPm,Bpk
PGPm,Bpk

(b) A sends an email to B using the ProtonMail smartphone application. We assume that A
authenticates the �ngerprint for PGP public key Bpk out of band.

Figure 2: A sends an email to B using the ProtonMail webmail application
(Fig. 2a) and using the ProtonMail smartphone application (Fig. 2b).

governance from ProtonMail renders targeted delivery of malicious code even
more di�cult for a malicious P.

4.2 ProtonMail-to-ProtonMail

In Fig. 2, we see a ProtonMail user A sending a PGP-encrypted email to another
ProtonMail user B. Notice that there is a signi�cant di�erence in the protocol
�ow depending on whether Alice uses the webmail application (Fig. 2a) or the
smartphone application (Fig. 2b). In the former case, A is forced to obtain an
unauthenticated copy of J from P every time before sending an encrypted email
to B. In the latter case, A can simply rely on her local authenticated binary
residing in her smartphone.

4.3 �Encrypt-to-Outside�

In Fig. 3, we see a ProtonMail user A sending a symmetrically encrypted email
to a Microsoft Outlook user S using ProtonMail's �Encrypt-to-Outside� (ETO)
feature. Both the sender and the recipient are expected to have advanced knowl-
edge of some symmetric encryption key psk. A sends her symmetrically en-
crypted message m through P mail servers, which add a URI to J and a copy
of Alice's PGP public key Apk into the payload and in turn relay it to the Mi-
crosoft Outlook mail servers atM which then relay it to S. S follows the URI

8



Has key psk

A
Has application J

P M
Has key psk

S

(Epsk,m,n,∅,t, n, t)←− ENC(psk,m, ∅)

Epsk,m,n,∅,t, n, t URIJ ,Apk, (Epsk,m,n,∅,t, n, t) URIJ ,Apk, (Epsk,m,n,∅,t, n, t)

HTTPSGET(URIJ)

J

m←− DEC(psk,Epsk,m,n,∅,t, n, ∅, t)
PGPr,Apk

←− PGPSEND(J, r,Apk)
PGPr,Apk

PGPr,Apk

Figure 3: A sends an email containing message m to Microsoft Outlook user S
symmetrically encrypted using a pre-shared key psk. S responds through the
webmail interface provided by P, encrypting his reply r using PGP to Apk.

to J using HTTPS, whereupon he enters psk in order to obtain m. Using J , S
may also send a reply r which is PGP-encrypted to public key Apk.

5 Security Analysis

In this section, we provide the results of our examination as to whether the
protocol �ows described in �4 achieve the end-to-end encryption security goals
as de�ned in �2.2 and the ZKPP security goals as de�ned in �2.3 while operating
under the assumptions de�ned in �2.1.

5.1 On End-to-End Encryption

We present three �ndings showing that ProtonMail has, since its inception,
never achieved end-to-end encryption security guarantees for the majority of its
users.

5.1.1 ProtonMail Webmail Does Not Provide End-to-End Encryp-

tion

A crucial security assumption, based on ProtonMail's self-professed security
goals in its speci�cation documents (�2.1), is that the ProtonMail server P
is untrusted. In Fig. 2a, we see that this untrusted server P must serve an
authentic OpenPGP implementation J every time A logs into ProtonMail or,
in some cases, multiple times in between A same single ProtonMail session.
Since P is untrusted and since no authentication mechanism is implemented to
check for the correctness of J , P can arbitrarily and untraceably compromise
any information that A sends as part of her ProtonMail session. This includes
A's PGP secret key and any emails she has sent and received.

9



The ProtonMail smartphone applications are una�ected by this issue. How-
ever, even if A has used the ProtonMail smartphone applications for the entire
lifetime of her ProtonMail account thus far and then logs into ProtonMail via
the web application just once, P still obtains A's PGP secret key and is therefore
able to not only impersonate A going forward but also to retroactively decrypt
all of A's previous communications.

In e�ect, this means that any ProtonMail webmail user has never obtained
end-to-end encryption guarantees under ProtonMail's own security model and
security goal de�nitions.

5.1.2 �Encrypt-to-Outside� Allows Mail Servers to Recover Pre-Shared

Key and Reply Plaintext

In Fig. 3, we see that P relays the URI for ProtonMail web application code J
to S through third-party mail serverM. This provides both P andM with the
ability to stage signi�cant Man-in-the-Middle attacks:

� P is free to arbitrarily replace J with an incorrect OpenPGP implemen-
tation or to replace Apk with a PGP public key corresponding to a secret
key that P itself controls. The former would allow P to recover psk and
m, while the later would allow P to recover r.

� M is free to arbitrarily replace URIJ with any other arbitary URI to
a web application that it controls, which could in e�ect pretend to be
ProtonMail. This would allowM to harvest psk as well as r. M can then
obtain A's legitimate ciphertext and decrypt it using J and psk, thereby
obtaining m, and also encrypt r to A using Apk thereby performing an
undetected man-in-the-middle attack.

5.1.3 Mailbox Keys, PGP Secret Keys and �Encrypt-to-Outside�

Pre-Shared Keys Vulnerable to Dictionary Attacks

In our testing6 of the ProtonMail applications, we were able to set both user
mailbox passwords and �Encrypt-to-Outside� pre-shared key passwords that
were exceptionally weak and vulnerable to simple guessing attacks. These pass-
words included �1�, �iloveyou� and �password� and were used to derive encryp-
tion keys for PGP secret keys that were later stored on ProtonMail servers as
well as for �Encrypt-to-Outside� symmetric encryption.

As we will see in �5.2, the ProtonMail servers do indeed possess a pass-
word oracle that renders dictionary and brute force attacks possible. Allowing
extremely weak passwords only further exacerbates the issue and could poten-
tially allow for the easy obtention of a user's PGP secret key. Furthermore, an
attacker that obtains access to ProtonMail's database of millions of encrypted
user PGP secret keys will likely �nd that a signi�cant portion of them can be
brute-forced using dictionary attacks that simply run through the top 100,000
most common passwords, a relatively small amount of guesses.

6Our testing occurred on November 17, 2018.

10



Has username Au

A P

Chooses password p

(Ask,Apk)←− PGPGEN(c)
(Ep,Ask,n,∅,t, n, t)←− ENC(p,Ask, ∅)

Ep,Ask,n,∅,t, n, t

Figure 4: A sends an encrypted copy of her PGP secret key to P during account
creation. In this �ow, the application code c provided to PGP operations is
irrelevant.

5.2 On User Authentication

While SRP authentication, as described in Fig. 1, does indeed provide ZKPP-
based authentication, the ProtonMail Security Features and Architecture spec-
i�cation also states the following:

�The private key is symmetrically encrypted with the mailbox
password using AES-256. The public key and encrypted private key
are then stored on the ProtonMail server along with the user's other
account information and retreived whenever a user logs in succes-
fully. The encrypted private key is decrypted on successful mailbox
password entry on the user's local device and can be used to read and
sign messages during that session.� �ProtonMail Security Features
and Architecture Speci�cation [3]

Indeed, we document this functionality in Fig. 4. During account creation,
A will send P a copy of her PGP secret key Ask encrypted under her mailbox
password p. This encrypted secret key acts as an oracle for p. Therefore, P
posesses an oracle for A's mailbox password. This oracle can be used for brute
force or dictionary �o�ine� attack attempts, thereby invalidating ProtonMail's
ZKPP claims [3] and breaking the Zero-Knowledge Password Proof security goal
as de�ned in �2.3.7

7ProtonMail uses the bcrypt [19] password hash which slows down dictionary attacks.
However, ProtonMail restricts the number of bcrypt rounds to a relatively small number of
210 [17] which, especially when coupled with recent advances in bcrypt computation [20],
renders dictionary attacks feasible once more.

11



6 Recommendations and Conclusion

Our �ndings, presented in �5, constitute serious shortcomings in ProtonMail's
cryptographic architecture that we believe should be urgently remedied. As it
stands, ProtonMail does not meet its self-professed security goals when these
are subjected to analysis.

While this paper presents the �rst formal argument justifying these �ndings,
some of them have already been documented: the results discussed in �5.1.1
seem to have been known informally since at least 2015 [21, 22].

With regards to the ProtonMail web application, features such as Subre-
source Integrity (SRI) [23] could arguably provide some increased authenticity
to the code delivery mechanism. However, these features are deemed insu�-
cient for ProtonMail to meet its security goals, and it is our conclusion that no
webmail-style application could. Other messaging services, such as WhatsApp
and Signal, provide downloadable web applications which run locally on the
user's device and therefore accomplish the same code integrity as ProtonMail's
smartphone applications (as described in Fig. 2b).

Failing the removal of ProtonMail's web application, ProtonMail simply
should not claim end-to-end encryption except for use cases where both senders
and recipients restrict themselves to ProtonMail's mobile applications.

We also recommend that ProtonMail never store user PGP secret keys on
its servers. As shown in �5 and in contradiction with ProtonMail's claims, these
keys are indeed vulnerable to �o�ine� dictionary attacks and moreso with the
allowance of exceptionally weak passwords. Instead, we recommend a system
in which the device from which the user is signing up to ProtonMail from (iOS
app, Android app, desktop app) locally derive a PGP identity and that this
identity be communicated from device to device using QR codes. This method
is already implemented by other popular secure messaging applications with
success.

With regards to user passwords, we recommend that ProtonMail at the very
least impose a minimum character requirement and to use a password strength
measurement library such as zxcvbn [24]. A stronger way to address the issue,
however, could be for ProtonMail to encourage the use of passphrases instead
of passwords, which seems warranted given that PGP does not provide forward
secrecy and that the atomic compromise of a PGP secret key has inde�nite
consequences for the lifetime of that PGP key pair.

Finally, we would like to pre-empt ProtonMail's potential response, which
could indicate that the �ndings in this analysis were already known to Proton-
Mail. If this is the case, then ProtonMail must radically overhaul its existing
speci�cations, documentation and product presentation materials ([3, 4, 17])
to remove all mentions of end-to-end encryption and Zero-Knowledge Password
Proof authentication, as any continued claim of achieving these properties would
be misleading for most users and therefore indefensible.

12



Acknowledgements

This paper is dedicated to music composer Toby Fox.

References

[1] Proton Technologies A.G. Fighting Censorship with ProtonMail En-
crypted Email over Tor, Jan 2017. https://protonmail.com/blog/
tor-encrypted-email/. 1

[2] Nick Lucchesi. ProtonMail Hits 5 Million Accounts and Wants Users to
Ditch Google by 2021, Sep 2018. https://www.inverse.com/article/
49041-protonmail-ceo-andy-yen-interview. 1

[3] Proton Technologies A.G. ProtonMail Security Features and Infrastructure,
Jul 2016. https://protonmail.com/docs/business-whitepaper.pdf. 1, 2,
4, 5, 11, 12

[4] Proton Technologies A.G. ProtonMail Security Details Page, Nov 2018.
https://protonmail.com/security-details. 3, 12

[5] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. O�-the-record com-
munication, or, why not to use PGP. In Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES 2004, Washington,
DC, USA, October 28, 2004, pages 77�84, 2004. 3

[6] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A Formal Security Analysis of the Signal Messaging Proto-
col. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium
on, pages 451�466. IEEE, 2017. 3

[7] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema.
2018. 3

[8] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated
Veri�cation for Secure Messaging Protocols and their Implementations: A
Symbolic and Computational Approach. In IEEE European Symposium on
Security and Privacy (EuroS&P), 2017. 3

[9] Trevor Perrin and Moxie Marlinspike. The X3DH Key Agreement Protocol,
2016. https://signal.org/docs/specifications/x3dh/. 3

[10] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm,
2016. https://signal.org/docs/specifications/doubleratchet/. 3

[11] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A Comprehensive Symbolic Analysis of TLS 1.3. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS '17, pages 1773�1788, New York, NY, USA, 2017.
ACM. 3

[12] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A
Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates.
In ACM Conference on Computer and Communications Security (CCS),
pages 1197�1210, 2015. 3

13

https://protonmail.com/blog/tor-encrypted-email/
https://protonmail.com/blog/tor-encrypted-email/
https://www.inverse.com/article/49041-protonmail-ceo-andy-yen-interview
https://www.inverse.com/article/49041-protonmail-ceo-andy-yen-interview
https://protonmail.com/docs/business-whitepaper.pdf
https://protonmail.com/security-details
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/


[13] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Veri�ed
models and reference implementations for the TLS 1.3 standard candidate.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 483�502.
IEEE, 2017. 3

[14] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-
Compromise Security. In Computer Security Foundations Symposium
(CSF), 2016 IEEE 29th, pages 164�178. IEEE, 2016. 3

[15] Thomas Wu. SRP-6: Improvements and Re�nements to the Secure Remote
Password Protocol, Oct 2002. 4

[16] Steven M Bellovin and Michael Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks. In Research
in Security and Privacy, 1992. Proceedings., 1992 IEEE Computer Society
Symposium on, pages 72�84. IEEE, 1992. 4

[17] Proton Technologes A.G. O�cial AngularJS web client for the ProtonMail
secure email service. https://github.com/ProtonMail/WebClient. 7, 11,
12

[18] Proton Technologes A.G. OpenPGP.js: OpenPGP Implementation for
JavaScript. https://github.com/openpgpjs/openpgpjs. 7

[19] Niels Provos and David Mazieres. Bcrypt algorithm. USENIX, 1999. 11

[20] Katja Malvoni, Designer Solar, and Josip Knezovi¢. Are your passwords
safe: Energy-e�cient bcrypt cracking with low-cost parallel hardware. In
WOOT'14 8th Usenix Workshop on O�ensive Technologies Proceedings
23rd USENIX Security Symposium, 2014. 11

[21] Arno. A Case Study on ProtonMail Design Limits and Secu-
rity Flaws, Sep 2015. https://arno0x0x.wordpress.com/2015/09/16/
end2end-encryption-protonmail/. 12

[22] Bob Ortiz. ProtonMail Security Concerns, Apr 2015. https://security.
stackexchange.com/questions/85047/protonmail-security-concerns.
12

[23] Devdatta Akhawe, Francois Marier, Frederik Braun, and Joel Weinberger.
Subresource Integrity. W3C working draft, W3C, July, 2015. 12

[24] Daniel Lowe Wheeler. zxcvbn: Low-Budget Password Strength Estimation.
In USENIX Security Symposium, pages 157�173, 2016. 12

14

https://github.com/ProtonMail/WebClient
https://github.com/openpgpjs/openpgpjs
https://arno0x0x.wordpress.com/2015/09/16/end2end-encryption-protonmail/
https://arno0x0x.wordpress.com/2015/09/16/end2end-encryption-protonmail/
https://security.stackexchange.com/questions/85047/protonmail-security-concerns
https://security.stackexchange.com/questions/85047/protonmail-security-concerns

	Introduction
	Security Definitions
	Security Assumptions
	End-to-End Encryption
	Zero-Knowledge Password Proof

	Cryptographic Primitives
	Protocol Flows
	Effects of Client Application Choice on Protocol Flows
	ProtonMail Webmail
	ProtonMail Smartphone Application

	ProtonMail-to-ProtonMail
	``Encrypt-to-Outside''

	Security Analysis
	On End-to-End Encryption
	ProtonMail Webmail Does Not Provide End-to-End Encryption
	``Encrypt-to-Outside'' Allows Mail Servers to Recover Pre-Shared Key and Reply Plaintext
	Mailbox Keys, PGP Secret Keys and ``Encrypt-to-Outside'' Pre-Shared Keys Vulnerable to Dictionary Attacks

	On User Authentication

	Recommendations and Conclusion

