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Abstract. Profiled side-channel attacks are considered the most potent
form of side-channel attacks. They consist of two steps. First, the adver-
sary builds a leakage model using a device similar to the target one. This
leakage model is then exploited to extract the secret information from
the victim’s device. These attacks can be seen as a classification prob-
lem, where the adversary needs to decide to what class (and consequently,
the secret key) the traces collected from the victim’s device belong to.
The research community investigated profiled attacks in-depth, mostly
by using an empirical approach. As such, it emerges that a theoretical
framework to comprehensively analyze profiled side-channel attacks is
still missing.

In this paper, we propose a theory grounded framework capable of mod-
eling and evaluating profiled side-channel analysis. The framework is
based on the expectation estimation problem that has strong theoretical
foundations. We quantify the effects of perturbations injected at differ-
ent points in our framework through the robustness analysis, where the
perturbations represent sources of uncertainty associated with measure-
ments, non-optimal classifiers, and countermeasures. Finally, we use our
framework to evaluate the performance of different classifiers using pub-
licly available traces.

1 Introduction

Embedded and cyber-physical devices, connected to form the Internet of Things
(IoT), are pervading every aspect of our lives. Even though they provide funda-
mental services, their use of sensitive data and access to critical infrastructure
poses new security challenges. It follows that security becomes one of the most
important extra-functional requirements that the designer should grant to the
devices. Designing secure embedded devices is extremely challenging for two
main reasons. First, the limited area and energy budget available in these de-
vices are often not sufficient to implement full flagged and robust cryptographic
primitives. Second, these devices should be resistant to physical attacks. The per-
vasive diffusion of these devices makes them physically available to adversaries



willing to exploit the physical weaknesses of the implementation to extract the
stored secret information (typically, the secret key).

It is necessary to have a complete understanding of the adversary’s capabili-
ties to achieve resistance against physical attacks. Side-channel attacks (SCAs),
in particular profiled ones, are by far the most studied (and the most powerful)
physical attacks since they have been proved to be very effective both in the lab
and in real-world applications [1]. In profiled attacks, the adversary first profiles
the device that is identical (or, at least similar) to the one that will be attacked.
In the second phase, using this profile and the traces measured from the victim
device, the adversary attempts to recover the secret key. Well-known examples
of such profiled attacks are template attack [2, 3] as well as supervised machine
learning-based attacks [4–9].

It is well-known that a template attack is the most powerful one from the
information-theoretic point of view (given that certain assumptions hold) [3].
At the same time, a large literature experimentally shows how machine learning
techniques perform extremely well in many realistic scenarios, see, e.g., [5, 9].
However, there is no guarantee about how machine learning techniques would
behave in different scenarios, even if they are similar. Still, one would expect to
be able to get answers to more specific questions, e.g.,:

1. What machine learning method is optimal for a given side-channel scenario?

2. What machine learning method should be preferred for multiple side-channel
scenarios?

Note that by answering those questions, we also provide insights into connections
among different settings or even countermeasures.

The current state-of-the-art in profiled side-channel analysis progressed tremen-
dously in the last few years. There, results with deep learning show it is possible
to break implementations protected even with countermeasures [5, 8]. More re-
cently, the SCA community started investigating the explainability of machine
learning-based attacks in efforts to produce more powerful attacks, but also novel
countermeasures. At the same time, to the best of our knowledge, no results are
offering theoretical insights into the performance of machine learning-based at-
tacks or providing frameworks in which attacks can be evaluated better.

In this paper, we aim at filling in this gap and offer results considering the
general performance of machine learning attacks (and, in fact, all profiled at-
tacks). We propose a general framework intended to analyze the behavior of
profiled SCAs and give insights into the robustness of such methods. We define
by term robustness the ability of a system to tolerate perturbations (random
changes affecting the system). Although we use the robustness analysis as a tool
to obtain insights into the general behavior of profiled attacks, perturbations are
commonly occurring in SCA. Several sources of perturbations occur in profiled
SCA due to presence of:

– Environment noise.

– Countermeasures.
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– The differences between the profiling device and the device under attack
(portability).

While the first source of perturbation is immediate, the other two deserve fur-
ther explanation. Consider a system with a countermeasure. The profiling attack
does not “know” what the countermeasure is but can only “see” its consequence.
This discrepancy can be successfully modeled as a random variable whose real-
izations are associated with perturbations affecting the system’s functionality.
Finally, while it is common to use the same device for both training and testing,
in reality, there are two devices (the first one to train a model, and the second
one to attack). This simplification is reasonable but will introduce errors where
the attack’s performance will be lower than the one measured in experiments
with only one device [10]. Additionally, the difference in the measurements in
practice can also arise, for instance, from different probes positions when using
electromagnetic (EM) SCA.

By considering the robustness paradigm, we evaluate a setting that approx-
imates the realistic one, where perturbations must occur, and uncertainty is
present. That paradigm is also in the core of the well-known Provably Approx-
imate Correct (PAC) learning [11], where PAC learning theory formalizes the
way computation is carried out within an uncertainty affected environment.

The main contributions of this paper are:

– We propose a framework capable of modeling and evaluating profiled side-
channel attacks where we provide strong theoretical foundations for the
framework.

– We consider the robustness of profiled attacks in 1) the presence of coun-
termeasures and 2) environment settings like feature selection, dataset size,
and hyperparameter tuning.

– We consider the robustness of profiled attacks for commonly used figures of
merit: accuracy, success rate, and guessing entropy.

The rest of this paper is organized as follows. In Section 2, we discuss re-
lated works and directions commonly investigated in the profiled side-channel
analysis. Section 3 first discusses the threat model, and then, it presents an in-
tuitive description of our framework. Afterward, we formally define it through
the expectation estimation problem. Next, Section 4 presents details about our
experimental setting: profiled methods, datasets, figures of merit, and framework
parameters we use. In Section 5, we validate our framework by using a technique
called stylized facts that compares the behavior of simulations and real-world
data. Additionally, we present results for four publicly available datasets. Sec-
tion 6 presents a discussion about general findings from the experiments and
advantages of using our framework. Finally, Section 7 concludes the paper and
Appendices A and B give experimental results when changing the profiling mod-
els and dataset sizes, respectively.
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2 Related Work

In 1996, Kocher demonstrated the possibility to recover secret data by introduc-
ing a method for exploiting the leakages from the device under attack [12]. In
other words, implementations of cryptographic algorithms leak relevant infor-
mation about the data processed through physical side-channels like timing [12],
power consumption [13], EM emanation [14], or sound [15]. Today, when consid-
ering SCA and symmetric-key cryptography, there are two main directions one
could follow:
1. direct attack, see, e.g., Simple Power Analysis (SPA) and Differential Power

Analysis (DPA) [13].
2. profiled attacks, see, e.g., Template Attack (TA) [3], stochastic models [16],

or a number of machine learning-based techniques.
Profiled attacks require a profiling stage, i.e., a step during which the cryp-

tographic hardware is under full control of the adversary to estimate the leaked
information’s probability distribution. Such attacks have received much atten-
tion in recent years because they define the worst-case security assumptions.
There, a template attack is a de-facto standard in the SCA community. TA is
the best (optimal) technique from an information-theoretic point of view if the
attacker has an unbounded number of traces, and the noise follows the Gaussian
distribution [17, 18]. After the template attack, the stochastic attack emerged
using linear regression in the profiling phase [16]. In years to follow, researchers
recognized certain shortcomings of template attacks and tried to modify them
in order to deal better with the complexity and portability issues. One example
of such an approach is the pooled template attack, where one pooled covariance
matrix is used to cope with statistical difficulties [2].

Alongside such techniques, the SCA community realized that a similar ap-
proach to profiling is used in other domains in the form of supervised machine
learning. Consequently, some researchers started experimenting with different
machine learning methods and evaluating their effectiveness in the SCA con-
text. A survey of available works reveals several papers that discuss different
machine learning methods, targets, experimental settings. When considering at-
tacks on AES (as we do in this paper) and supervised machine learning methods,
one can find a number of papers, see e.g., [4,6,18–25]. More recently, deep learn-
ing started to capture the attention of the SCA community. The first results
confirmed that expectations where most of the attention went to convolutional
neural networks [5, 7–9,26].

When trying to find a common denominator for those works, the most obvious
one is that they report machine learning being able to reach high performance
and often outperform template attack. Additionally, deep learning is commonly
able to break the implementations protected with countermeasures (at least
those available in the publicly available datasets). Still, all of these works have
“only” experimental results with some attempts in explaining why such results
are obtained.

Besides works that consider how to improve attack performance, more re-
cently, there have been several works considering the topics of explainability
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and interpretability of deep learning in side-channel analysis [27–29]. Finally, to
the best of our knowledge, there is one work considering a framework for pro-
filed side-channel analysis, but there, the authors concentrate on the profiling
set size [30]. We note that our framework encompasses this perspective as we
model changes in setup or scenario by perturbing the attack set.

3 General Framework

In this section, we present a framework that can model all profiled side-channel
attacks. First, we introduce the framework in an intuitive way, showing moti-
vation and goals. Then, we introduce the background definitions and the nu-
merical problems on which our framework is based. Finally, we formally present
the framework for modeling profiled side-channel attacks and show how this is
tightly connected with the PAC learning concept.

3.1 Threat Model

We investigate a typical profiled side-channel setting. We consider this to be a
standard as a number of certification laboratories are evaluating hundreds of
security-critical products with this model daily.

The adversary has access to a clone device running the target cryptographic
algorithm. The clone device can be queried with a known key and plaintext,
while corresponding leakage measurement trace is stored. Ideally, the adversary
can have infinite queries and corresponding database of side-channel leakage
measurements to characterize a precise model. Next, the adversary queries the
attack device with known plaintext to obtain the unknown key. The correspond-
ing side-channel leakage measurement is compared to the characterized model
to recover the key.

In the rest of this paper, when discussing profiled side-channel attacks, we
consider those attacks that use power or electromagnetic radiation as side-
channel. Finally, we consider only those scenarios where the task is classification,
i.e., to learn how to assign a class label to examples.

3.2 Intuitive Description of the Framework

The previous works on profiled side-channel attacks discussed in Section 2 pro-
vide a detailed overview of the attacks and methodology used. Still, they do not
abstract the specificity of the attack to a higher-level framework. As a result, a
complete analysis of the attack characteristics is empirical, and so is the direct
comparison of different profiling techniques.

Figure 1 depicts the generic framework we propose in order to model pro-
filed side-channel attacks. Recall, during such attacks, the adversary attempts
to recover the secret (typically, the key) of a cryptographic device in two phases,
commonly known as the profiling and attacking phase. The profiling of the de-
vice D (the physical realization of a cryptographic primitive), depicted on the
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right part of the figure, consists of collecting several leakage traces xi, 1 ≤ i ≤ n
where n is the number of measurements taken corresponding to the encryption of
a certain number of plaintexts PT and a number of known keys K. For each mea-
surement xi, we obtain T time samples (also known as features or attributes):
xi = xi,1, . . . , xi,T . During the profiling phase, for each of the measurements
xi, we additionally obtain the label of the measurement yi, which denotes the
actual value the measurement has. The leaked traces are typically altered by a
random perturbation δ1 that can be caused by measurement or algorithmic noise
but also by the operation of a side-channel countermeasure. The leakage trace
and the corresponding plaintext are used to derive an estimate of the secret key
K̂. These estimates of the secret key, along with the traces, are used to train a
classifier C, depicted in the left part of Figure 1. The specific classifier can be
arbitrarily selected from the corpus of all possible classifiers suitable for side-
channel recovery. Each classifier is trained on the training set, in the sense that
different training sets of the same size will generate different classifier models. To
model this phenomenon, we consider the given classifier’s output influenced by a
specific perturbation δ2, which implies we are assuming the intensity (variance)
of the two perturbations can be the same (i.e., different points are characterized
by the same SNR or values affected by perturbations insist on the same bounded
interval). Without loss of generality, we consider δ1 and δ2 to be equal to δ since
here we do not differentiate between the perturbations coming from one or the
other source. The estimated values of the labels ŷi are compared to the actual
ones and used to estimate the classifier’s robustness.

The robustness problem we consider here can be solved by considering the ro-
bustness of randomized algorithms [31]. In the particular randomized algorithm
setting, we are interested in quantifying the robustness of an algorithm utilizing
a suitable figure of merit. In our setting, we aim to quantify the robustness of
a profiled side-channel attack (first seen as a supervised machine learning prob-
lem) to the perturbations caused by the measurement noise or countermeasures
but also the intrinsic noise of a specific classifier. The framework we consider is
general, which means it supports any profiled/supervised method and model, as
well as any figure of merit. To validate our framework, in Section 5, we select to
work with a number of common SCA classifiers and figures of merit.

Our framework proposes one theoretical interpretation for an analysis that,
to date, was mostly done empirically. Consequently, we can achieve two goals:

1. The connection with well-understood problems (expectation estimation prob-
lem and robustness problem) allows us to model each profiled side-channel
attack and thus compare, in a sound way, the performance of different clas-
sifiers in a specific scenario.

2. A quantitative estimate of the confidence of our results. Ultimately, we will
be able to answer in a sound way the questions like “Which classifier family
behaves better in some specific scenario?” and “How to compare different
profiled side-channel attacks?”.
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3.3 Expectation Estimation Problem and Robustness

In this section, we aim to answer two questions which will be used in subsequent
derivations and provide some common nomenclature. First, how to estimate the
expected value of a function by identifying the minimum number of samples
granting to build an approximation with an arbitrary level of accuracy ε and
confidence δ (Section 3.3). Second, how to estimate the robustness of a system
once affected by perturbations (see Section 3.3).

Lebesgue Measurability A generic function u(ψ), ψ ∈ Ψ ⊆ Rl is Lebesgue
measurable with respect to Ψ when its generic step-function approximation SN
obtained by partitioning Ψ in N arbitrary domains grants that

lim
N→∞

SN = u(ψ)

on set Ψ − Ω, Ω ⊆ Rl being a null measure set [32]. Basically, no engineering-
related mathematical computations are Lebesgue non-measurable.

The Chernoff Bound The Chernoff bound allows determining the number of
samples needed to estimate a probability with arbitrary accuracy in the estimate
approximation and confidence in the made statement. The Chernoff bound can
also be used to estimate the expected value of random variable according to
estimation accuracy and confidence levels set by the designer [33]. The Chernoff
bound for a generic probability density function and continuous variable ψ can
be derived from the Hoeffding inequality for the empirical mean [34].

Let x1, · · ·xn be a sequence of independent random variables so that each xi
is almost surely bounded by the interval [ai, bi], i.e., Pr(xi ∈ [ai, bi]) = 1. Then,
defining the empirical mean Ên = 1

n

∑n
i=1 xi, we have that for any ε value the

Hoeffding inequality for the empirical mean:

Pr
(
|Ên − E[Ên]| ≥ ε

)
≤ 2e

−2ε2n2∑n
i=1

(bi−ai)2 (1)

holds where E is the expectation operator. Eq. (1) can be rewritten as:

Pr
(
|Ên − E[Ên]| < ε

)
> 1− 2e

−2ε2n2∑n
i=1

(bi−ai)2 . (2)

If Ên is the estimate p̂n(γ) of a probability, e.g., (p(γ) = Pr(u(ψ) ≤ γ) for
a given positive scalar γ and a loss function u(ψ)), we have that for a generic
random variable ψi the indicator function

xi = I (u(ψi) ≤ γ) =

{
1 if u(ψi) ≤ γ
0 if u(ψi) > γ

assumes values in {0, 1}. As a consequence, ai = 0, bi = 1 and Eq. (2) becomes

Pr
(
|Ên − E[Ên]| < ε

)
> 1− 2e−2nε

2

.
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Since, p̂n(γ) = Ên and E[p̂n(γ)] = p(γ) we derive

Pr (|p̂n(γ)− p(γ)| < ε) > 1− 2e−2nε
2

. (3)

Finally, we derive the Chernoff bound by requesting δ ≤ 2e−2nε
2

:

n ≥ 1

2ε2
ln

2

δ
. (4)

The Chernoff bound states that if we sample from the domain of random
variable ψ according to its probability density function, then the Eq. (4) holds
with confidence δ. In other words, we can build an approximation p̂n of unknown
probability p(γ) with accuracy ε; the statement holds with confidence δ.

The Expectation Estimation Problem The expectation estimation problem
consists in identifying the minimum number of samples needed to achieve an
arbitrary level of accuracy and confidence in approximating the expected value
of a given function u(ψ).

Let u(ψ) ∈ [0, 1] be a Lebesgue measurable function over Ψ ⊆ Rl and fψ
be the probability density function of a random variable ψ defined over Ψ . The
expectation estimation requires evaluation of the expected mean:

E[u(ψ)] =

∫
Ψ

u(ψ)fψ(ψ)dψ. (5)

Since the evaluation of the expected mean defined in Eq. (5) is generally
computationally hard problem for a generic function, an approximation is built
starting from n i.i.d. samples ψ1, · · · , ψi, · · · , ψn drawn from ψ according to fψ.
We call

Ên(u(ψ)) =
1

n

n∑
i=1

u(ψi) (6)

the empirical mean. It should be commented that Ên(u(ψ)) is a random variable
depending on the particular realization of the n samples. The Chernoff bound
can be used to build an accurate approximation of Eq. (5) through Eq. (6) at
accuracy level ε and confidence δ.

Ên(u(ψ)) is the estimate of the figure of merit. By assuming that the condi-
tion u(ψ) ∈ [0, 1] we immediately derive the bound on n thanks to the Hoeffding’s
inequality. In general, it is enough to require u(ψi) to be bounded, e.g., to the
same ai = a, bi = b, i = 1, . . . , n. If that is the case, the bound on the number of
samples becomes:

n ≥ (b− a)2

2ε2
ln

2

δ
. (7)

Robustness Robustness of a system refers to the ability to tolerate perturba-
tions that might affect its structural parameters and, in turn, its performance,
measured utilizing a given figure of merit.
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More formally, system/function g(θ, x) is robust with respect to pertur-
bations δθ ∈ ∆ ∈ Rl at level γ ∈ R+ when, given a discrepancy function
u (g(θ, x), g(θ, δθ, x)) ∈ U ⊂ R the system experiences a degradation in per-
formance within γ:

u(δθ) = u (g(θ, x), g(θ, δθ, x)) ≤ γ, ∀δθ ∈ ∆,∀x ∈ X̃. (8)

In the rest of the paper, we assume that the level of perturbations can be-
come arbitrarily large so that no small perturbation theories are viable. u(δθ)
represents the perturbation impact on the behavior of the system, as observed
through the figure of merit. Note that u(δθ) does not have an explicit function
in the inputs in the sense that if inputs are in there, they are finite in number
and fixed and belong to the set X̃, which is the discrete set containing a finite
number of input instances.

In this setting, we need to determine the smallest γ satisfying the previ-
ous expression. Since this can be computationally intractable, we move to a
probabilistic setting. There, a computation is robust at level γ with probabil-
ity 1 − η for the perturbation space ∆ when γ is the smallest value such that
Pr(u(δθ) ≤ γ) ≥ 1 − η, ∀δθ ∈ ∆. Here, η is a small positive value in [0, 1] and
1− η is the confidence level.

Once defined p(γ) to be the probability that u(δθ) ≤ γ for an arbitrary but
given γ value:

p(γ) = Pr(u(δθ) ≤ γ) for eachδθ ∈ ∆. (9)

Eq. (9) can be estimated with Chernoff and the minimum γ identified through
set Γ = {γ1, · · · , γk}).

3.4 The Profiled SCA Framework

We now express profiled side-channel attacks as the expectation estimation prob-
lem. The starting point is to map the steps of profiled analysis attacks to the
framework depicted in Figure 1. The first phase of profiled side-channel attacks
is the training phase, which is represented by the bold part of Figure 1. The
training phase begins with the collection of the traces corresponding with the
encryption of several plaintext and keys.

Formally, during the encryption, the secret key k∗ is processed with t plain-
texts or ciphertexts of the cryptographic algorithm, while the attacker collects a
set of measurement traces x. In the case of AES, typically k∗ and t are processed
in bytes, which reduces the attack complexity. The mapping y maps the plain-
text or the ciphertext t ∈ T and the key k∗ ∈ K to a value that is assumed to
relate to the deterministic part of the measured leakage x. We denote the output
of y as the label, which is coherent with the terminology used in the machine
learning community. For profiled analysis, there are two main models to define
y(t, k∗) so to calculate the labels of the measurement traces:

– intermediate value model : in this model, the attacker considers an interme-
diate value of the cipher or the distance between two consecutive values
processed.
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– Hamming weight (HW) model : in this model, the attacker assumes the HW
of the intermediate value model.

Considering the intermediate value, the model may be more accurate but
requires more resources. In particular, to gain stable estimations for each possible
value, an attacker needs a sufficient amount of measurement traces per value.
Additionally, as the attacker needs to iterate through all values in the profiling
phase as well as for each measurement in the attacking phase, the computational
complexity may become high - especially when targeting ciphers operating on
more than 8-bit.

The HW model’s preference is related to the underlying device (e.g., for some
devices, the power consumption is assumed to be roughly proportional to the
number of bit transitions) and the lower complexity. In our analysis, we consider
both leakage models for all datasets and profiled methods.

The adversary first profiles the clone device with the known keys and uses
the obtained profiles for the attack. In particular, the attack operates in two
phases:

– profiling phase: N traces xp1 , . . . ,xpN , plaintext/ciphertext tp1 , . . . , tpN and
the secret key k∗p, such that the attacker can calculate the labels y(tp1 , k

∗
p),

. . ., y(tpN , k
∗
p).

– attacking phase: Q traces xa1 , . . . ,xaQ (independent from the profiling traces),
plaintext/ciphertext ta1 , . . . , taQ .

In the attack phase, the goal is to make predictions about the occurring labels

y(ta1 , k
∗
a), . . . , y(taN , k

∗
a),

where k∗a is the secret unknown key on the device under the attack.

4 Experimental Setting

In this section, we discuss the datasets we use, machine learning classifiers, and
the framework’s experimental settings we consider later in the paper.

4.1 Datasets

In our experiments, we consider four publicly available datasets that are a rep-
resentative sample of commonly encountered scenarios and one simulated traces
dataset.

DPAcontest v4 Dataset The 4th version provides measurements of a masked
AES software implementation [35] (denoted as DPAv4 in this paper). As the
mask is known, one can easily turn it into an unprotected scenario. This is a
software implementation, and the most leaking operation is the processing of
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the S-box operation, where we attack the first round. Accordingly, the leakage
model changes to:

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (10)

where Pb1 is a plaintext byte and we choose b1 = 1. The SNR has a max-

imum value of 5.8577. SNR (signal-to-noise ratio) is defined as var(signal)
var(noise) =

var(y(t,k∗))
var(x−y(t,k∗)) . This dataset is available at http://www.dpacontest.org/v4/.

AES HD Dataset This dataset is chosen to target an unprotected implemen-
tation of AES-128. The core of AES-128 was written in VHDL in a round-based
architecture, taking 11 clock cycles for each encryption. A UART module is
wrapped around the core to enable external communication. The module is de-
signed to allow accelerated measurements in order to avoid any DC shift due to
environmental variation over prolonged measurements. The total area footprint
of the design contains 1 850 LUT, and 742 flip-flops. Xilinx Virtex-5 FPGA of a
SASEBO GII evaluation board was used to implement the design. Side-channel
traces were measured using a high sensitivity near-field EM probe, which was
placed over a decoupling capacitor on the power line. Measurements were sam-
pled on the Teledyne LeCroy Waverunner 610zi oscilloscope. A commonly used
HD leakage model, when attacking the last round of an unprotected hardware
implementation, is the register writing in the last round [35], i.e.,

Y (k∗) = HW ( Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

), (11)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2
is given through the inverse ShiftRows operation of AES. b1 = 12 was chosen,
which resulted in b2 = 8, as it is one of the easiest bytes to attack. The obtained
measurements that form the dataset are relatively noisy and the resulting model-
based SNR has a maximum value of 0.0096. In total, there are 500 000 traces cor-
responding to 500 000 randomly generated plaintexts, each trace with 1 250 fea-
tures. Since this implementation leaks in the HD model, we denote it as AES HD.
This dataset is available at https://github.com/AESHD/AES_HD_Dataset.

Random Delay Dataset As our third use case, we use an actual protected
implementation (we denote it as AES RD). Our target is a software implemen-
tation of AES on an 8-bit Atmel AVR microcontroller with implemented ran-
dom delay countermeasure as described by Coron and Kyzhvatov in [36]. We
mounted our attacks against the first AES key byte by targeting the first S-box
operation. The dataset consists of 50 000 traces of 3 500 features each. For this
dataset, the SNR has a maximum value of 0.0556. This dataset is available at
https://github.com/ikizhvatov/randomdelays-traces.
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ASCAD Dataset The last publicly available dataset we used to test our frame-
work is the ASCAD database [37]. The target platform is an 8-bit AVR mi-
crocontroller (ATmega8515) running a masked AES-128 implementation, and
measurements are made using electromagnetic emanation. The dataset provides
60 000 traces, where originally 50 000 traces were used for profiling/training and
10 000 for testing. We use the raw traces and use the pre-selected window of
700 relevant samples per trace corresponding to masked S-box for i = 3. Inter-
ested readers can find more information about this dataset in [37]. This dataset
is available at https://github.com/ANSSI-FR/ASCAD. Note that the leakage
model does not leak information directly as it is first-order protected, and we,
therefore, do not state a model-based SNR. The SNR for the ASCAD dataset
is ≈ 0.8 under the assumption we know the mask while it is almost 0 with the
unknown mask.

Simulated Dataset The circuit we simulated to obtain the simulated traces
is a reduced portion of the AES algorithm, composed by a key addition fol-
lowed by an S-box lookup. The obtained data are then stored in a register. The
flow used to generate the simulated traces is implemented using state-of-the-art
commercial electronic design automation commodities and is derived from the
simulation flow presented by Regazzoni et al. [38]. The test circuit is designed
using HDL language, synthesized with a synthesis tool (Synopsys design com-
piler), and placed and routed with an automated tool (Cadence Encounter). The
final circuit, together with the parasitic extracted using the extractor build in
the place and route tool, are simulated at SPICE level using Synopsys Nanosim,
where the simulation resolution has been set to 1ps, thus producing, for each
input-output pair, a trace of 5 000 data points. The target technological library
used in the process is the Nangate 45 nm library. At the end of the simulation
process, this dataset contains 256 simulated traces of execution, one for each
S-box output, and, being obtained from simulation, free from environmental or
measurement noise (that will be added as described in Section 5.1).

4.2 Figures of Merit

We consider three standard metrics when conducting SCA: accuracy, success
rate, and guessing entropy. The accuracy is defined as:

ACC =
TP + TN

TP + TN + FP + FN
. (12)

TP refers to true positive (correctly classified positive), TN to true negative
(correctly classified negative), FP to false positive (falsely classified positive),
and FN to false negative (falsely classified negative) instances. TP, TN, FP, and
FN are well-defined for hypothesis testing and binary classification problems. In
the multi-class classification, they are defined in one class–vs–all other classes
manner and are calculated from the confusion matrix.
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Most of the time, in side-channel analysis, an adversary is not only interested
in predicting the labels y(·, k∗a) in the attacking phase for which accuracy is a
good metric, but aims at revealing the secret key k∗a. For this, common mea-
sures are the success rate (SR) and the guessing entropy (GE) of a side-channel
attack [39]. In particular, let us assume, given Q amount of samples in the at-
tacking phase, an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in
decreasing order of probability with |K| being the size of the keyspace. So, g1 is
the most likely and g|K| the least likely key candidate.

The success rate is defined as the average empirical probability that g1 is
equal to the secret key k∗a. The guessing entropy is the average position of k∗a in
g. As SCA metrics, we report the number of traces needed to reach a success
rate SR of 0.9 or guessing entropy GE < 10.

4.3 Profiled methods – Classifiers

It is not a trivial task to select the best classifier for the given problem. Still,
some classifiers can be regarded as a usual choice when a highly accurate classi-
fication is sought [40]. In order to provide relevant experiments, we select several
classifiers that are a common choice in SCA, as discussed in Section 2.

Naive Bayes The Naive Bayes (NB) classifier [41] is based on the Bayesian
rule but is labeled “Naive” as it works under a simplifying assumption that the
predictor features (measurements) are mutually independent among the features,
given the class value. The existence of highly-correlated features in a dataset can
influence the learning process and reduce the number of successful predictions.
NB assumes a normal distribution for predictor features. NB classifier outputs
posterior probabilities as a result of the classification procedure [41]. The Bayes’
formula is used to compute the posterior probability of each class value y given
the vector of N observed feature values x.

Radial Kernel Support Vector Machines Radial Kernel Support Vector
Machines (denoted SVM in this paper) is a kernel-based machine learning family
of methods that are used to classify both linearly separable and linearly insepa-
rable data accurately. The idea for linearly inseparable data is to transform them
into a higher dimensional space using a kernel function, wherein the data can
usually be classified with higher accuracy. Radial kernel-based SVM used here
has two significant tuning parameters: the cost of the margin C and the kernel
parameter γ. The scikit-learn implementation we use considers libsvm’s C-SVC
classifier that implements SMO-type algorithm [42]. The multi-class support is
handled according to a one-vs-one scheme.

Random Forest Random Forest (RF) is a well-known ensemble decision tree
learner [43]. Decision trees choose their splitting attributes from a random sub-
set of k attributes at each internal node. The best split is taken among these

14



randomly chosen attributes, and the trees are built without pruning, RF is a
parametric method concerning the number of trees in the forest. RF is a stochas-
tic method because of its two sources of randomness: bootstrap sampling and
attribute selection at node splitting. Commonly, the most important parameter
to tune is the number of trees I (note, we do not limit the tree size.)

Template Attack The template attack (TA) relies on the Bayes theorem and
considers the features as dependent. In the state-of-the-art, template attack relies
mostly on a normal distribution. Accordingly, a template attack assumes that
each P (X = x|Y = y) follows a (multivariate) Gaussian distribution that is
parameterized by its mean and covariance matrix for each class Y . The authors
of [2] propose to use only one pooled covariance matrix averaged over all classes Y
to cope with statistical difficulties and thus lower efficiency. In our experiments,
we use that version of the attack.

Multilayer Perceptron The multilayer perceptron (MLP) is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs. MLP
consists of multiple layers (at least three) of nodes in a directed graph, where
each layer is fully connected to the next one, and training of the network is done
with the backpropagation algorithm [44]. We investigate the behavior of MLP
with various activation functions, solvers, number of layers, and the number of
nodes.

Convolutional Neural Networks Convolutional neural networks (CNNs)
commonly consist of three types of layers: convolutional layers, pooling layers,
and fully-connected layers. Convolution layer computes the output of neurons
that are connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the input vol-
ume. Pooling decrease the number of extracted features by performing a down-
sampling operation along the spatial dimensions. The fully-connected layer (the
same as in MLP) computes either the hidden activations or the class scores.

4.4 Points of Interest

For NB, SVM, RF, MLP, and TA, we use 50 most important features, as com-
monly done in related works. To select those features, we use the Pearson cor-
relation coefficient [45]:

Pearson(x, y) =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
. (13)

For convolutional neural networks, we do not conduct any feature selection.
Additionally, we run experiments with MLP without any feature selection (de-
noted DLMLP) as related works showed it to be a powerful attack option, espe-
cially when considering masked implementations.
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Hyperparameter Tuning We conduct a tuning phase to select hyperparam-
eters for which classifiers perform well over considered datasets. We emphasize
that the tuned parameters represent a reasonable choice that exhibits good be-
havior but should not be considered the best possible ones. A more detailed
tuning could result in a somewhat improved performance if concentrating on
any specific scenario. Nevertheless, since we consider scenarios where we intro-
duce perturbations in the testing phase, there is no guarantee that good initial
hyperparameters would still be suitable for the measurements with the added
noise.

For TA and NB, there are no parameters to tune. For SVM, we conduct a grid
search for C = [0.001, 0.01, 0.1, 1] and γ = [0.001, 0.01, 0.1, 1]. For RF, we exper-
iment with a different number of trees I = [10, 50, 100, 200, 500, 1 000]. For MLP
when using feature selection, we investigate activation functions tanh and ReLU ,
solvers lbfgs and adam, and number of layers/nodes [(50, 10, 50),(50, 30, 20, 50),
(50, 25, 10, 25, 50)]. For RF, MLP, and SVM, we use 5-fold cross-validation.

Selected Hyperparameters For SVM, we select C = 1 and γ = 1. For RF,
we use 200 trees, and for MLP with feature selection tanh activation function,
adam solver, and (50, 30, 20, 50) configuration of layers/nodes.

For DLMLP (MLP without feature selection), we use six hidden layers with
200 neurons per layer, ReLU activation function, RMSprop optimizer, and the
learning rate equal to 0.00001. This architecture is based on [37].

For CNN, we use different architectures based on [9]. For DPAv4 and AES HD,
we use one convolutional block and a fully connected layer with two neurons.
The convolutional block consists of the convolution layer (two filters) and the
average pooling layer (pooling size and strides 2). The learning rate is 0.001. For
ASCAD, we use one convolutional block and two fully-connected layers with ten
neurons each. The convolutional block consists of the convolution layer (four fil-
ters) and the average pooling layer (pooling size and strides 2). The learning rate
is 0.005. Finally, for AES RD, we use three convolutional blocks and two fully-
connected layers with ten neurons each. The first convolutional block consists of
the convolution layer (eight filters) and the average pooling layer (pooling size
and strides 2). The second block has 16 filters in convolution, and the average
pooling layer with size and strides 50. Finally, the third block has convolution
with 32 filters and average pooling with stride and size 7. The learning rate is
0.00001. All CNN architectures use the SELU activation function. For DLMLP
and CNN, we run experiments for 100 epochs, and we use batch normalization
(to normalize the input layer by adjusting and scaling the activations) equal to
100. We use a validation dataset of 5 000 traces. Note, while these hyperparam-
eters reached the best attack performance, we do not claim they are the optimal
ones.

Profiling Set Size We consider a setting with 20 000 measurements for the
profiling phase, and 20 000 measurements for the attack phase. While the profil-
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ing set is usually larger than the attack set, we opted to increase the size of the
attack set to evaluate the influence of perturbation in the attack phase.

4.5 Framework Setting

We conduct our experiments for a scenario where ε = 0.1 and δ = 0.1. The
Chernoff bound (Eq. (4)) gives n ≥ 149.7 to achieve the desired level of accuracy
and confidence. Consequently, we set n = 150 in our experiments. Next, we select
to work with the noise α equal to 0.005 that goes in the range [−α·f, α·f ], where
f denotes the factor going in the range [1, 50]. By doing so, we will evaluate noise
levels going up to 25% of the signal, which would capture most of the realistic
settings (more noise is, of course, possible, but then we reach setting where the
trained model is very far from the test data). More precisely, we can consider
our scenario as working with 50 different noise intensities. Recall, the noise we
inject could arise from various sources in practical applications, for example:

– variations between the profiling and attacking device [10],
– environmental noise between acquisition campaigns,
– (minor) changes in the experimental setup (probes, devices, hyperparame-

ters, points of interest).
– effect of countermeasure randomness.

5 Framework Validation and Application

In this section, we first use our framework with simulated measurements to
validate its correctness. Next, we use the framework to evaluate four publicly
available datasets. We consider three standard figures of merit, six classifiers
(two versions of MLP), two leakage models, and settings with and without fea-
ture selection in our experiments. Additionally, we explore the influence of the
profiling set size and hyperparameter tuning. In total, we conduct more than 500
experiments to evaluate our framework objectively. Note, we give results where
noise is added to the attack phase measurements. This simulates the behavior
one would encounter in portability but also from the influence of the countermea-
sure or environment (as adding measurements to the training phase would cause
profiling methods to model such data, which would make the model less reliable
but the difference between the train and test data would remain “same”). Ad-
ditionally, the goal of this evaluation is not to find the best performing method
but to confirm the validity of our framework and obtain information about the
robustness of profiled methods.

In Algorithm 1, we give the pseudocode of the procedure we follow in order to
assess the robustness of a certain classifier against perturbations in the attacking
environment. Since n = 150 and the number of intensities f equals 50, this means
that for each scenario, we need to run the attack phase 7 500 times, where for
each of those times, we run guessing entropy 50 times to obtain statistically
relevant data.
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Algorithm 1 Algorithm to solve the probabilistic robustness evaluation prob-
lem.
Identify the perturbation space ∆ and the random variable δθ with pdf fδθ over ∆;
Select the accuracy ε and confidence δ
Identify the interested performance level set Γ = {γ1, · · · , γk}
p̂n,Γ (γ)= verification-problem(∆, fδθ, u(δθ), Γ, ε, δ)
use p̂n,Γ (γ)

function verification-problem (∆, fδθ, u(δθ), Γ, ε, δ):
Draw n ≥ 1

2ε2
ln 2

δ
samples δθ1, · · · , δθn from δθ according to fδθ

For each γ ∈ Γ estimate

p̂n(γ) =
1

n

n∑
i=1

I (u(δθi) ≤ γ) , I (u(δθi) ≤ γ) =

{
1 if u(δθi) ≤ γ
0 if u(δθi) > γ

Return p̂n,Γ

5.1 Framework Validation on Simulated Measurements

In general, it is not an easy problem to validate a theoretical framework for
machine learning as one needs to consider all possible scenarios. As this is im-
possible in practice, we use the concept of stylized facts, which is a generalization
that summarizes data. More precisely, we examine the behavior of the framework
with the simulation data and compare it with the real data. If the simulation
data behaves in the same manner as the real data, then we can assume that
the framework can indeed be used with real data. Naturally, this approach must
be able to handle certain inaccuracies as simulation data is far from a perfect
representation of the real data. Here, we use the simulated measurements where
we add Gaussian noise. This dataset can then be compared with DPAv4, as
both datasets do not have countermeasures and have (relatively) small amount
of noise. Additionally, we compare the simulated measurements with the added
random delay countermeasure and the AES RD dataset.

Simulated Measurements Data Augmentation and Noise Addition Re-
call, our dataset with simulated measurements contains 256 traces, one for each
possible S-box output value and 5 000 features. To match our other datasets, we
select 50 features that correspond to the highest correlation between the mea-
surements and the S-box output. Next, we need to extend this dataset to allow
for profiled attacks to build reliable models and to add noise. For this, we use
two noise settings: Gaussian noise and Gaussian noise plus random delay.

To mimic real (noisy) data, we add noise to the simulated measurements in
the following way:

X ′ = X +N. (14)

We make the simplified but still commonly used assumption that the noise is
univariate Gaussian distributed with zero-mean, i.e., N ∼ N (0, σ2) where σ is
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the standard deviation. We repeat this procedure for 15 000 times to create 15 000
noisy traces with σ = (0, 0.5]. Note, our final dataset contains approximately the
same number of measurements for each S-box output value.

Additionally, we repeat the procedure of adding noise, but now, we add a
random delay. For this we randomly select five indices within the features to
add an artificially created measurement point. In particular, we randomly select
i ∈ [1, 49] and create

xnew =
xi + xi+1

2
, (15)

where xnew will be placed between xi and xi+1. The remaining setting stays the
same, and we create 15 000 traces where we keep the number of measurements
per class the same in the final dataset. We divide the simulated dataset into
10 000 for training and 5 000 for testing.

For these experiments, we do not consider deep learning as we conducted
the feature selection step. In Figure 2, we display results for simulations with
Gaussian noise and DPAv4 dataset. Figure 2a shows the influence of pertur-
bations when using accuracy as the figure of merit. We can observe that most
of the methods do not suffer from the added perturbation, but the accuracy is
around 26%, which indicate that the classifier did not actually learn to classify
but simply assigns all measurements to the Hamming weight 4 (see [7] for more
explanation about the imbalancedness problem). The only classifier that works
is RF, and the effect of perturbation is clear as accuracy drops from 37% to 29%.
We observe that even when considering the setting with the largest intensity, RF
still does more than simply classifying all measurements into HW 4 (as HW 4
is the most occurring class). This indicates that from all considered classifiers,
RF is the only one that works in noisy settings and even adapts to more noise
in the attack phase. Similar observations can be seen when considering guessing
entropy. RF starts by easily breaking the target when there is no added per-
turbation, and then its behavior gradually decreases where we see that we need
around 25 times more traces when the intensity equals 50 to reach a similar
performance level.

In Figure 3, we investigate the behavior of profiled methods when dealing
with the random delay countermeasure added to the simulated dataset. We de-
pict here the intermediate value leakage model results, so there are no obvious
results indicating imbalancedness, but we observe very low values for accuracy.
More precisely, in Figure 3a, we observe three characteristic behaviors. First,
SVM does not change the behavior at all. While the accuracy is low, the clas-
sifier is stable in the presence of noise, and as such, there is no influence of
perturbation (which, of course, does not mean that the classifier makes good
predictions). Second, RF starts as the best performing method but suffers from
the influence of perturbation and ends with an accuracy below the one from
SVM. Third, all other classifiers (TA is somewhat worse than MLP and NB)
start with marginally better behavior than random guessing, and with added
noise, their performance slightly reduces to random guessing. In Figure 3b, we
depict results for guessing entropy. Interestingly, we observe that only NB and
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Fig. 2: Simulated measurements with added Gaussian noise.

MLP manage to break the target with up to 5 000 attack traces. Their per-
formance slightly decreases with the increase in the intensity level, which is in
line with their behavior for accuracy. Note how RF cannot break target even
with 5 000 attack traces, which is once more confirmation how accuracy can be
misleading metric, even in the intermediate value leakage model (this is well
established for the HW leakage model).
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Fig. 3: Simulated measurements with added random delays.
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5.2 Publicly Available Datasets and Framework Evaluation

Next, we present and briefly discuss several characteristic scenarios for pub-
licly available datasets. In Figure 4, we depict results for DPAv4 and AES RD
datasets. First, in Figure 4a, we see how the accuracy is high, and for all classi-
fiers, except SVM, this dataset should be easy to classify. Such observations are
confirmed from guessing entropy results (Figure 4b), as, for most of the classi-
fiers, an increase in the perturbation intensity does not bring any decrease in
the attack performance. The exception is SVM, where we observe how the per-
formance decreases and already for intensity equal to 25, 20 000 attack traces is
not enough to break the target. Finally, TA cannot break the target regardless
of the perturbation level.

For AES RD, we observe that most of the classifiers perform on the level
of random guessing (Figure 4c) except CNN, which has significantly higher ac-
curacy. As we know that CNNs are well-equipped to handle the random delay
countermeasure due to their spatial invariance [5, 8], this result can serve as a
strong indication that CNN should be able to break the target rather easily. This
is confirmed in Figure 4d, where we observe CNN breaking the target easily, and
no amount of added perturbation makes the attack harder. An interesting result
appears for NB, as it also breaks the target (granted, with orders of magnitude
more traces than CNN). We postulate this happens due to its generative nature
and independence of features assumption.

In Figure 5, we depict results for AES HD and ASCAD. First, for AES HD
and accuracy, observe how the accuracy has erratic behavior when adding per-
turbation. This happens because AES HD is already very noisy dataset to start
with, and then, any change in the noise level, brings unstable behavior as many
predictions are equally likely. The behavior for guessing entropy shows that while
accuracy can be affected (as each measurement is treated separately), the effect
of cumulative probabilities stabilizes the results for guessing entropy. Still, sev-
eral methods cannot break the target even without added noise, while NB is
most stable (as a consequence of feature independence assumption, the noise
has less effect).

Finally, we show results for the ASCAD dataset. From the accuracy perspec-
tive, several methods can be considered as performing well, but still under the
influence of added noise (RF, CNN, DLMLP). On the other hand, SVM conducts
random guessing regardless of the added noise. Finally, NB, MLP, and TA classi-
fiers show more oscillations in their behavior due to added noise. On the guessing
entropy side, we observe that classifiers do not suffer much when adding more
perturbation. CNN and DLMLP perform very well, while TA cannot break the
implementation even with 20 000 traces and regardless of the perturbation level.
Other classifiers perform reasonably well (similar as in related works), where RF
has most problems with handling high perturbation levels.

In Appendix A and B, we depict additional results where we show the influ-
ence of the suboptimal hyperparameter choice and smaller dataset size, respec-
tively. We note that these experiments are in line with already presented results
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Fig. 4: Results for the DPAv4 and AES HD datasets.

and indicate that we can model various effects with noise, but also, that our
framework can be used in various settings.

6 General Observations and Remarks

There are four main types of behavior one can expect when modeling the system
with perturbations. We give the list in the order from the most preferred to the
least preferred setting:

1. “Resilient” behavior. In this setting, the classifier is resilient to perturba-
tions, which means that its performance remains practically unchanged even
in the presence of noise. Naturally, after some point, the performance starts
to deteriorate, and then, the behavior resembles one of the following types.

2. “Stable” behavior. In this setting, the classifier is affected by perturbation,
and the performance is gradually decreased.

3. “Unstable” behavior. Here, already a small level of perturbation results in
a significant performance drop or very erratic behavior, i.e., jumps between
good and poor performance.
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Fig. 5: Results for the AES HD and ASCAD datasets.

4. “No learning” behavior. With this behavior, the perturbation does not in-
fluence the performance of the profiling method. This happens because the
classifier, even before perturbation, was not working, and naturally, making
the problem more difficult cannot improve the behavior but also cannot de-
teriorate it. While this behavior has certain similarities with the first one,
the underlying idea is different. Here, the classifier never works while in the
“Resilient” setting, it is stable up to a certain level of perturbation (i.e., no
difference between that level of perturbation and no perturbation).

Besides these four types, there are several subtypes one can recognize by combin-
ing the traits of the basic behaviors. Next, we give several remarks that clarify
the potential of our framework. Note that we give this in a classifier-agnostic
way.

1. Our framework indicates what settings/classifiers are most resilient to per-
turbation, which can then be used to select the preferred attack. Note how
this changes the research question from the best-performing method (which
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can be a very volatile concept that depends on many factors) into the most
stable method.

2. If the dataset is easy to attack, adding perturbations does not significantly
influence the performance. Indeed, our results indicate that the classifiers
then behave as “Resilient” or “Stable”.

3. If the dataset is difficult to attack due to noise, then adding perturbation
commonly results in “Unstable” behavior.

4. Accuracy is the least resilient metric for perturbations as we consider each
measurement separately. More resilience to perturbation happens with guess-
ing entropy and success rate due to the cumulative probabilities approach.
Additionally, we observe an interesting trade-off. From the performance side
without added perturbation, guessing entropy is more powerful as it consid-
ers all key guesses and not only the best one. When adding perturbation, the
success rate is more stable as it considers only the best guess, so it avoids
any instability stemming from multiple key guesses that are (approximately)
equally likely.

5. When considering the random delay and masking countermeasures, we see
that the classifiers can work easier with random delay and perturbation
than with masking and perturbation. This indicates that masking benefits
more from added noise than random delay, which is especially interesting for
portability settings where there are always differences between the profiling
and attack device.

6. With our framework, it is possible to “map” different setting: for instance,
1) to see what level of perturbation causes the classifiers to behave in the
same way as, e.g., having a masking countermeasure, or, 2) at what point
the suboptimal hyperparameter results in the same behavior as an added
perturbation.

Besides these observations, we make two more remarks:

– The generative nature of TA and NB gives those methods more resilience to
perturbations, which is especially pronounced for NB, as there, we also work
under feature independence assumption.

– Our results indicate that accuracy is not a reliable measure for the interme-
diate value leakage model for difficult datasets. This is well-known for the
Hamming weight model [7].

When considering the hyperparameter tuning and perturbations, we see that
tuning is beneficial if perturbations are not too large. If we expect to work in
scenarios with large perturbations, it could be better just to conduct a coarse-
grained tuning since the performance will not suffer due to the influence of
noise. A similar effect can be observed from decreasing the dataset size where
for smaller levels of noise, there is not much influence, but larger perturbations
affect smaller datasets more (as the learned models are less reliable).
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7 Conclusions

In this paper, we concentrate on the problem of profiled side-channel attacks and
uncertainties stemming from the experimental results. To that end, we propose a
general framework that can be used to analyze the behavior of any profiled side-
channel attack (i.e., a method performing the classification task). Our framework
supports datasets with any characteristics as well as different leakage models. To
offer such a general behavior, we model it as the expectation estimation problem
where we can achieve any desired accuracy and confidence level. After we model
the classifiers, we use the robustness analysis to estimate their performance in
the presence of perturbations. Such an analysis allows us to answer the question
of which classifier is the best for some scenarios. We give robustness analysis
for all standard figures of merit in SCA: accuracy, success rate, and guessing
entropy.

We believe our framework to be a powerful tool that will allow researchers
to compare the behavior of various classifiers in a more fair way than it is done
up to now. Since profiled SCA in realistic settings should consider different pro-
filing and attacking devices, we see that our framework allows us more than
just connecting SCA with problems that have reliable theoretical results. More
precisely, our framework allows modeling the realistic behavior of profiled SCA,
where uncertainty must occur because of several different noise sources.

We note that our framework is demanding: to conduct a proper analysis, the
Chernoff bound requires a large number of samples, which potentially can be a
prohibiting factor for specific computationally intensive classifiers or very large
datasets. One easy way how to circumvent this is to parallelize the process for
different intensities. Another option, which we plan to explore in the future work
is to use the Chernoff-Okamoto bound that is tighter than the Chernoff bound.
Since it applies when p ≤ 0.5 only, it remains to be seen how useful this bound
can be in the SCA domain.
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A Influence of Hyperparameter Change

We evaluate the attack performance with changed hyperparameters to examine
the behavior of our framework when using suboptimal profiling methods. More
precisely, we select the second-best performing hyperparameter combinations
for several classifiers. Here, we use SVM with C = 0.001 and γ = 0.001, RF
with 100 trees, and MLP with feature selection and ReLU activation function,
adam solver, and (50, 30, 50) configuration of layers/nodes. Figures 6a and 6b
show results for ASCAD with guessing entropy, and DPAv4 with success rate,
respectively. For ASCAD, we see that changed hyperparameters only slightly
decreased performance, but now, adding noise makes the results much less stable.
For DPAv4, we depict results for success rate, and we observe stable behavior
in the presence of added noise. The success rate can be less influenced by added
noise than guessing entropy since it uses cumulative probabilities (which adds
stability) but does not consider less likely guesses (where added noise more easily
causes miss-classification).

B Influence of the Dataset Size Change

Finally, we investigate the influence of dataset sizes. Here, we use 10 000 measure-
ments for the profiling phase, and 5 000 for the attack phase. Figure 7 depicts
several characteristic behaviors. Observe how smaller dataset size makes the
model less reliable and more prone to the influence of noise. Indeed, if having
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Fig. 6: Changes in hyperparameters.

already noisy datasets like AES HD (Figure 7a), adding perturbations causes
erratic behavior, while if the dataset is easy to break (like DPAv4, Figure 7b),
adding more noise reduces the performance. The erratic behavior is more likely
to be observed with accuracy as there is no compensation in the form of cumula-
tive probabilities, but even for guessing entropy, we observe a slight but steady
decrease in the attack performance when adding more perturbations.
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