
Verifying liquidity of Bitcoin contracts

Massimo Bartoletti1 & Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. A landmark security property of smart contracts is liquidity :
in a non-liquid contract, it may happen that some funds remain frozen.
The relevance of this issue is witnessed by a recent liquidity attack to
the Ethereum Parity Wallet, which has frozen ∼160M USD within the
contract, making this sum unredeemable by any user. We address the
problem of verifying liquidity of Bitcoin contracts. Focussing on BitML,
a contracts DSL with a computationally sound compiler to Bitcoin, we
study various notions of liquidity. Our main result is that liquidity of
BitML contracts is decidable, in all the proposed variants. To prove this,
we first transform the infinite-state semantics of BitML into a finite-state
one, which focusses on the behaviour of any given set of contracts, ab-
stracting the moves of the context. With respect to the chosen contracts,
this abstraction in sound and complete. Our decision procedure for liq-
uidity is then based on model-checking the finite space of states of the
abstraction. The computational soundness of the BitML compiler allows
to lift this result from the symbolic to the computational level: if our
decision procedure establishes that a contract is liquid, then it will be
such also under a computational adversary, and vice versa.

Keywords: Bitcoin; smart contracts; verification

1 Introduction

Decentralized ledgers like Bitcoin and Ethereum [31,18] enable the trustworthy
execution of smart contracts — computer protocols which regulate the exchange
of assets among mutually untrusted users. The underlying protocols used to
update the ledger (which defines the state of each contract) ensure that, even
without trusted intermediaries, the execution of contracts is correct with respect
to the contract rules. However, it may happen that the rules themselves are not
correct with respect to the behaviour expected by the users. Indeed, all the
attacks to smart contracts successfully carried out so far, which have plundered
or frozen millions of USD in Ethereum [1,2,3,8,26,29], exploit some discrepancy
between the intended and the actual behaviour of a contract.

To counteract these attacks, the research community has recently started to
formalize smart contracts and their security properties [21,22,23], and to develop
automated verification tools based on these models [20,26,30,34]. As a matter of
fact, most of this research is targeted to Ethereum, the most widespread (and

attacked) platform for smart contracts: for this reason, the security properties
addressed by current tools focus on specific features of Solidity, the high-level lan-
guage for smart contracts in Ethereum. For instance, some vulnerability patterns
checked by these tools are reentrancy and mishandled exceptions, whose peculiar
implementation in Solidity has led to attacks, like to one to the DAO [1]. Only
a few tools verify general security properties of smart contracts, that would be
meaningful also outside the realm of Ethereum. Among these works, [34] checks
a property called liquidity, which holds when the contract always admits a trace
where its balance is decreased (so, the funds stored within the contract do not
remain frozen). This has been inspired from a recent attack to Ethereum [2],
which has frozen ∼160M USD within a contract, exploiting a bug in a library.
While being capable of classifying this particular contract as non-liquid, any
contract where the adversary can lock some funds and redeem them at a later
moment would be classified as liquid. Stronger notions of liquidity may rule out
these unsafe contracts, e.g. by checking that funds are never frozen for all pos-
sible strategies of the adversary. Studying such notions of liquidity in a wider
context than Ethereum would be important for various reasons. First, taking
into account adversaries would allow to detect more security issues w.r.t. those
checked by the current verification tools. Second, defining liquidity in a more
general setting than Ethereum would serve as a guideline for the analysis of
smart contracts in the forthcoming blockchain technologies, e.g. [19,33].

Contributions. We study several notions of liquidity for smart contracts, in
a general setting where their behaviour is defined as a transition system. We
then consider the special case where contracts are expressed in BitML, an high-
level DSL for smart contracts which compiles into Bitcoin [14]. In such setting,
we develop a verification technique for liquidity of smart contracts. We can
summarise our main contributions as follows:

1. We formalize a notion of liquidity (Definition 2), and we illustrate several
meaningful variants.

2. We introduce an abstraction of the semantics of BitML which is finite-state
(Theorem 1), and sound and complete w.r.t. the concrete (infinite-state)
semantics, given a set of contracts under observation (Theorems 2 and 3).

3. We devise a verification technique for liquidity in BitML. Our technique
can establish whether a strategy is liquid for a given contract, and also to
synthesise a liquid strategy, when it exists (Theorem 4).

We remark that our finite-state abstraction is general-purpose: verifying liq-
uidity is only one of its possible applications (some other applications are dis-
cussed in Section 6). We also stress that our verification technique on BitML
can be lifted to the computational model of Bitcoin, where smart contracts are
executed by exchanging messages and appending suitable transactions to the
blockchain. If a contract is verified liquid in BitML, then the computational
soundness result in [14] ensures that also its compilation to Bitcoin transactions
enjoys liquidity, even in the presence of computational adversaries. Because of
space limits, some proofs and auxiliary definitions are deferred to Appendix A.

Related works. Several recent works study security issues related to Ethereum
smart contracts. A few papers address EVM, the bytecode language which is the
target of compilation of Solidity. Among them, [26] introduces an operational se-
mantics of a simplified version of EVM, and develops Oyente, a tool to detect
some vulnerability patterns of EVM contracts through symbolic execution. Secu-
rify [34] checks vulnerability patterns by analysing dependency graphs extracted
from EVM code. As mentioned before, this tool also addresses a form of liquidity,
which essentially assumes a cooperating adversary. EtherTrust [20] is a frame-
work for the static verification of EVM contracts, which can establish e.g. the
absence of reentrancy vulnerabilities. This tool is based on the detailed formali-
sation of EVM provided in [21], which is validated against the official Ethereum
test suite. The work [22] introduces an executable semantics of EVM, specified
in the K framework. The tool in [17] translates Solidity and EVM code into F∗,
and use its verification tools to detect vulnerabilities of contracts; further, the
tool verifies the equivalence between a Solidity program and an alleged compila-
tion of it into EVM. The work [23] verifies EVM code through the Isabelle/HOL
proof assistant [32], proving that, upon an invocation of a specific contract, only
its owner can decrease the balance.

Smart contracts in Bitcoin have a completely different flavour compared to
Ethereum, since they are usually expressed as cryptographic protocols, rather
than as programs. Despite the limited expressiveness of the scripts in Bitcoin
transactions [10], several kinds of contracts for Bitcoin have been proposed [9]:
they range from lotteries [6,7,13,28], to general multiparty computations [4,16,25],
to contingent payments [11,27], etc. All these works focus on proving the security
of a fixed contract, unlike the above-mentioned works on Ethereum, where the
goal is to verify arbitrary contracts. As far as we know, only a couple of works
pursue this goal for Bitcoin. The tool in [24] analyses Bitcoin scripts, in order
to find under which conditions the enclosing transaction can be redeemed. Com-
pared to [24], our work verifies contracts spanning among many transactions,
rather than single scripts. The work [5] models contracts as timed automata,
and then uses the Uppaal model checker [15] to verify their properties. The con-
tracts modelled as in [5] cannot be directly translated to Bitcoin, while in our
approach we can exploit the BitML compiler to translate contracts to standard
Bitcoin transactions. Note also that the properties considered in [5] are specific
to the modelled contract, while in this work we are interested in verifying general
properties of contracts, like liquidity.

2 Overview

In this section we briefly overview BitML; we then give some intuition about
liquidity and our verification technique. Because of space limits, we refer to [14]
for a detailed treatment of BitML, and to [12] for a more gentle introduction.

We assume a set of participants, ranged over by A,B, . . ., and a set of names,
of two kinds: x, y, . . . denote deposits of B, while a, b, . . . denote secrets. We write
x (resp. a) for a finite sequence of deposit (resp. secrets) names.

G ::= precondition

A:! v @x persistent deposit

| A:? v @x volatile deposit

| A:secret a committed secret

| G | G′ composition

C ::=
∑

i∈I Di contract

D ::= guarded contract

withdraw A transfer balance to A

| split v → C split balance (|v| = |C |)
| A :D wait A’s authorization

| after t :D wait until time t

| putx & reveala if p. C collect deposits/secrets

Fig. 1: Syntax of BitML contracts and preconditions.

2.1 BitML in a nutshell

BitML is a domain-specific language for Bitcoin smart contracts, which allows
participants to exchange cryptocurrency according to pre-agreed contract rules.
In BitML, any participant can broadcast a contract advertisement {G}C , where
C is the actual contract, specifiying the rules to transfer bitcoins (B), while G
is a set of preconditions to its execution.

Preconditions (Figure 1, left) may require participants to deposit some B
in the contract (either upfront or at runtime), or to commit to some secret.
More in detail, A:! v @x requires A to own vB in a deposit x, and to spend it
for stipulating a contract C . Instead, A:? v @x only requires A to pre-authorize
the spending of x, which can be gathered by the contract at run-time. The
precondition A:secret a requires A to commit to a secret a before C starts.

After {G}C has been advertised, each participant can choose whether to
accept it, or not. When all the preconditions G have been satisfied, and all the
involved participants have accepted, the contract C becomes stipulated. The con-
tract starts its execution with a balance, initially set to the sum of the !-deposits
required by its preconditions. Running C will affect this balance, when partici-
pants deposit/withdraw funds to/from the contract.

A contract C is a choice among zero or more branches. Each branch is a
guarded contract (Figure 1, right) which enables an action, and possibly pro-
ceeds with a continuation C ′. The guarded contract withdraw A transfers the
whole balance to A, while split v1 → C1 | · · · | vn → Cn decomposes the
contract into n parallel components Ci, each one with balance vi. The guarded
contract putx & reveala if p atomically performs the following: (i) spend all
the ?-deposits x, adding their values to the contract balance; (ii) check that all
the secrets a have been revealed and satisfy the predicate p (Figure 2). When
enabled, the above-mentioned actions can be fired by anyone, at anytime. To
restrict who can execute actions and when, one can use the decoration A :D,
which requires the authorization of A, and the decoration after t :D, which
requires to wait until time t.

A basic example. As a first example, we express in BitML the timed commit-
ment [6], a basic protocol to construct more complex contracts, like e.g. lotteries
and other games [7]. In the timed commitment, a participant A wants to choose
a secret, and promise to reveal it before some time t. The contract ensures that

p ::= predicate

true truth

| p ∧ p conjunction

| ¬p negation

| E ◦ E (◦ ∈ {=, <})

E ::= expression

N 32-bit constant

| |a| length of a secret

| E ◦ E (◦ ∈ {+,−})

Fig. 2: Syntax of predicates.

if A does not reveal the secret in time, then she will pay a penalty of 1B to B
(e.g., the opponent player in a game). In BitML, this is modelled as follows:

{A:! 1 @x | A:secret a} (reveal a. withdraw A + after t : withdraw B)

The precondition requires A to pay upfront 1B, and to commit to a secret
a. The contract (hereafter, named TC) is a non-deterministic choice between
two branches. Only A can choose the first branch, by performing reveal a (syn-
tactic sugar for put [] & reveal a if true). Subsequently, anyone can transfer 1B
to A. Only after t, if the reveal has not been fired, any participant can fire
withdraw B in the second branch, moving 1B to B. So, before t, A has the op-
tion to reveal a (avoiding the penalty), or to keep it secret (paying the penalty).
If no branch is taken by t, the first one who fires its withdraw gets 1B.

2.2 BitML semantics

We briefly recall from [14] the semantics of BitML. The semantics is a labelled
transition system between configurations of the following form:

– {G}C , representing the advertisement of contract C with preconditions G;
– 〈C, v〉x , representing a stipulated contract, holding a current balance of vB.

The name x uniquely identifies the contract in a configuration;
– 〈A, v〉x representing a fund of vB owned by A, and with unique name x;
– A[χ], representing A’s authorizations to perform some operation χ;
– {A : a#N}, representing that A has committed to a random secret a with

(secret) length N ;
– A : a#N , representing that A has revealed her secret a (with its length N).
– Γ | ∆ is the parallel composition of two configurations (with identity 0);
– Γ | t is a timed configuration, where t ∈ N is a global time.

We now illustrate the BitML semantics by examples; when time is immaterial,
we only show the steps of the untimed semantics. We omit labels on transitions.

Deposits. When A owns a deposit 〈A, v〉x, she can use it in various ways: she
can divide the deposit into two smaller deposits, or join it with another deposit
of hers to form a larger one; the deposit can also be transferred to another
participant, or destroyed. For instance, to donate a deposit x to B, A must first
issue the authorization A[x B B]; then, anyone can transfer the money to B:

〈A, v〉x | · · · −→ 〈A, v〉x | A[x B B] | · · · −→ 〈B, v〉y | · · · (y fresh)

We assume that whenever a participant authorizes an operation on some deposit
x, then she is also authorising a self-donation A[x B A] of such deposit3.

Advertisement. Any participant can advertise a new contract C (with pre-
conditions G). This is obtained by performing the step Γ −→ Γ | {G}C .

Stipulation. Stipulation turns a contract advertisement into an active con-
tract. For instance, let G = A:! 1B @x | A:? 1B @ y | A:secret a . Given a
contract C , the stipulation of {G}C is done in a few steps:

〈A, 1B〉x | 〈A, 1B〉y | {G}C −→∗ 〈A, 1B〉y | 〈C, 1B〉z | {A : a#N}

Above, the funds in the deposit x are transferred to the newly created contract,
to fulfill the precondition A:! 1B @x. Instead, the deposit y remains in the con-
figuration, to be possibly spent after some time. The component {A : a#N}
represents the secret committed to by A, with its length N .

Withdraw. Executing withdraw A terminates the contract, and transfers its
whole balance to A by creating a fresh deposit owned by A:

〈withdraw A + C ′, v〉x −→ 〈A, v〉y (y fresh)

Above, withdraw A is executed as a branch within a choice: as usual, taking a
branch discards the other ones (denoted as C ′).

Split. The split primitive can be used to spawn several new concurrent con-
tracts, dividing the balance among them. For instance:

〈(split v1 → C1 | v2 → C2), v1 + v2〉x −→ 〈C1, v1〉y | 〈C2, v2〉z (y, z fresh)

Put & reveal. A prefix put z& reveal a if p can be fired when the previ-
ously committed secret a (satisfying the predicate p) has been revealed, and the
deposit z is available in the configuration. For instance:

〈put z& reveal a if |a| = N.C, v〉x | 〈A, v′〉z | {A : a#N}
−→ 〈put z& reveal a if |a| = N.C, v〉x | 〈A, v′〉z | A : a#N

−→ 〈C, v + v′〉y | A : a#N

In the first step, A reveals her secret a. In the second step, any participant
fires the prefix; doing so rakes the deposit z within the contract.

Authorizations. When a branch is decorated by A : · · · it can be taken only
after A has provided her authorization. For instance:

〈A : withdraw B + A : withdraw C , v〉x
−→〈A : withdraw B + A : withdraw C , v〉x | A[xB A : withdraw B] −→ 〈B, v〉y

In the first step, A authorizes to take the branch withdraw B . After that,
any participant can fire such branch.
3 This assumption, while helpful to simplify the subsequent technical development,

does not allow an adversary to steal money; at worst, the adversary can use the
authorization to transfer the money back to the original owner.

Time. We always allow time t to advance by a delay δ > 0, through a transition
Γ | t −→ Γ | t + δ. Advancing time can enable branches decorated with after t.
For instance, if t0 + δ ≥ t, we have the following computation:

〈(after t : withdraw B) + C ′, v〉x | t0
−→ 〈(after t : withdraw B) + C ′, v〉x | t0 + δ −→ 〈B, v〉y | t0 + δ

Runs and strategies. A run R is a (possibly infinite) sequence:

Γ0 | t0
`0−→ Γ1 | t1

`1−→ · · ·

where `i are the transition labels, Γ0 contains only deposits, and t0 = 0. If R is
finite, we write ΓR for its last untimed configuration, and δR for its last time. A
strategy ΣA is a PPTIME algorithm which allows A to select which actions to
perform (possibly, time delays), among those permitted by the BitML semantics.
The choice among these actions is controlled by the adversary strategy ΣAdv ,
which acts on behalf of all the dishonest participants. Given the strategies of all
participants (including Adv), there is a unique run conforming to all of them.

2.3 Liquidity

A desirable property of smart contracts is liquidity, which requires that the con-
tract balance is always eventually transferred to some participant. In a non-liquid
contract, funds can be frozen forever, unavailable to anyone, hence effectively de-
stroyed. There are many possible flavours of liquidity, depending e.g. on which
participants are assumed to be honest, and on which are their strategies. The
simplest form of liquidity is to consider the case where everyone cooperates: i.e.
a contract is liquid if there exists some strategy for each participant such that
no funds are ever frozen. However, this notion does not capture the essence of
smart contracts, i.e. to allow mutually untrusted participants to safely interact.

For instance, consider the following contract, where A and B contribute 1B
each for a donation of 2B to either C or D (we omit the preconditions for brevity):

A :B : withdraw C + A :B : withdraw D

In order to unlock the funds, A and B must agree on the recipient of the donation,
by giving their authorization on the same branch. This contract would be liquid
only by assuming the cooperation between A and B: indeed, A alone cannot
guarantee that the 2B will eventually be donated, as B can choose a different
recipient, or even refuse to give any authorization. Consequently, unless A trusts
B, it makes sense to consider this contract as non-liquid, from the point of view
of A (and for similar reasons, also from that of B).

Consider now the timed commitment contract discussed before:

reveal a. withdraw A + after t : withdraw B

This contract is liquid from A’s point of view (even if B is dishonest), because A
can reveal the secret and then redeem the funds from the contract. The timed

commitment is also liquid from B’s point of view: if A does not reveal the secret
(making the first branch stuck), the funds in the contract can be redeemed
through the second branch, after time t.

In a mutual timed commitment contract, where A and B have to exchange
their secrets or pay a 1B penalty, achieving liquidity is a bit more challenging.
We first consider a wrong attempt:

reveal a. reveal b. split (1B→ withdraw A | 1B→ withdraw B)

+ after t : withdraw B

If A reveals a immediately, then a dishonest B could make the funds frozen
within the contract. Therefore, to guarantee liquidity, A’s has only two strategies:
either she chooses not to reveal her secret, or she reveals a after B has revealed
b. However, neither of these strategies is fully satisfactory for A: if A does not
reveal, then after the deadline B can get A’s penalty; if A waits that B reveals
first, then a dishonest B can make the contract stuck by never revealing b.

This example highlights a crucial point: participants’ strategies have to be
taken into account when defining liquidity. Indeed, the mere fact that a liq-
uid strategy exists does not imply that it is the ideal strategy for the honest
participant. We can fix this issue for the mutual timed commitment as follows:

reveal a.
(
reveal b. split (1B→ withdraw A | 1B→ withdraw B)

+ after t′ : withdraw A
)

+ after t : withdraw B

where t < t′. Now, A has a liquid strategy where she does not pay the penalty.
First, A reveals a before time t. After that, if B reveals b, then A can execute the
split, transferring 1B to herself and 1B to B (note that this does not require
B’s cooperation); otherwise, after time t′, A can withdraw 2B by executing the
withdraw A in the after t′ : · · · branch.

These examples, albeit elementary, show that detecting if a strategy is liquid
for a contract is not straightforward, in general. The problem of determining
a liquid strategy for a given contract seems even more demanding. Automatic
techniques for the verification and inference of liquid strategies can be useful
tools for the developers of smart contracts.

2.4 Verifying liquidity

One of the main contributions of this paper is a verification technique for the
liquidity of BitML contracts. Our technique is based on a more general result,
i.e. a strict correspondence between the semantics of BitML in [14] (hereafter,
called concrete semantics) and a new abstract semantics, which is finite-state
(Theorem 1). Our abstraction is a correct and complete approximation of the
concrete semantics with respect to a given set of contracts (Theorems 2 and 3).
To obtain a finite-state abstraction, we need to cope with three sources of in-
finiteness of the concrete semantics of BitML: the unbounded passing of time,

the advertisement/stipulation of new contracts, and the operations on deposits.
Our abstraction replaces the time t in concrete configurations with a finite num-
ber of time intervals T = [t0, t1), and it disables the transitions to advertise new
contracts. Further, the only operations on deposits allowed by the abstract se-
mantics are the ones for transferring them to contracts and for destroying them.
The latter is needed e.g. to properly model the situation where a participant
spends a ?-deposit.

The intended use of our abstraction is to start from a configuration containing
an arbitrary (but finite) set of contracts, and then analyse their possible evolu-
tions in the presence of an honest participant and an adversary. This produces
a finite set of (finite) traces, which we can model-check for liquidity. Soundness
and completeness of the abstraction are exploited to prove that liquidity is de-
cidable (Theorem 4). The computational soundness of the BitML compiler [14]
guarantees that if a contract is verified to be liquid according to our analysis,
this property is preserved when executing it on Bitcoin.

3 Liquidity

In this section we formalise a notion of liquidity of contracts, and we suggest
some possible variants. Aiming at generality, liquidity is parameterised over (i) a
set X of contract names, uniquely identifying the contracts under observation;
(ii) a participant A (with her strategy ΣA), which we assume to be the only
honest participant in the system. Roughly, we want that the funds stored within
the contracts X are eventually transferred to some participant, in any run con-
forming to A’s strategy. The actual definition is a bit more complex, because the
other participants may play against A, e.g. avoiding to reveal their secrets, or to
give their authorizations for some branch.

We start by introducing an auxiliary partial function origR0
(R, x) that, given

a contract name x and an extension R of a run R0, determines the ancestor y of
x in the last configuration of R0, if any. Intuitively, origR0

(R, x) = y means that
y has evolved into R, eventually leading to x (and possibly to other contracts).

In BitML, there are only two ways to make a contract evolve into another
contract. First, a split can spawn new contracts, e.g.:

〈split (v1 → C1 | v2 → C2), v1 + v2〉x
split(x)−−−−−→ 〈C1, v1〉y1 | 〈C2, v2〉y2

Here, both y1 and y2 have x as ancestor. Second, put&reveal reduces as follows:

〈put z& reveal a.C, v〉x | 〈A, v′〉z | · · ·
put(z,a,x)−−−−−−−→ 〈C, v + v′〉y | · · ·

In this case, the ancestor of y is x.

Definition 1. Let R be a run extending some run R0, and let x be a contract
name. We define origR0

(R, x) by induction on the length of R in Figure 3, where
cn(Γ) denotes the set of contract names in Γ.

origR0
(R0, x) = x if x ∈ cn(ΓR0)

origR0
(R′ `−→ Γ, x) =

origR0

(R′, x) if x ∈ cn(R′)

origR0
(R′, y) if

x ∈ cn(R′ `−→ Γ) \ cn(R′) and

(` = split(y) or ` = put(z,a, y))

Fig. 3: Origin of a contract name within a run.

Example 1. Let R0 be a run with last configuration ΓR0
= 〈C1, v〉y | 〈A, v〉z ,

and let R be the following extension of R0, where the contracts C1 and C2 are
immaterial, but for the fact that they enable the displayed moves:

〈C1, v〉y | 〈A, v〉z −→ 〈C1, v〉y | 〈A, v〉z | {G}C2 −→∗ 〈C1, v〉y | 〈C2, v〉x
split(x)−−−−−→ 〈C1, v〉y | 〈C ′2, v〉x′
split(y)−−−−−→ 〈C ′1, v′〉y′ | 〈C ′′1 , v − v′〉y′′ | 〈C ′2, v〉x′

We have that origR0
(R, y′) = origR0

(R, y′′) = y, since the corresponding con-
tracts have been obtained through a split of the ancestor y, which was in the
last configuration of R0. Instead, origR0

(R, x′) is undefined, because its ancestor
x is not in R0. Further, origR0

(R, y) = y, while origR0
(R, x) is undefined.

We now formalise liquidity. Assume that we want to observe a single contract
x, occurring in the last configuration of some run R0 (note that x has been
stipulated at some point during R0). A participant A wants to know if the
strategy ΣA allows her to make x evolve so that funds are never frozen within the
contract. We require that A can do this without the help of the other participants,
which therefore we model as a single adversary Adv. More precisely, we say that
x is liquid for A when, after any extension R of R0, ΣA can choose a sequence
of moves so to make all the descendant contracts of x terminate, transferring
their funds to some participant (possibly not A). Note that such moves can not
reveal secrets of other participants, or generate authorizations for them: A must
be able to unfreeze the funds on her own, using her strategy. By contrast, R

can also involve such moves, but it must conform to A’s strategy. The actual
definition of liquidity generalises the above to sets X0 of contract names.

Definition 2 (Liquidity). Let A be an honest participant, with strategy ΣA ,
let R0 be a run, and let X0 be a set of contract names in ΓR0

. We say that X0

is liquid w.r.t. ΣA in R0 if, for all finite extensions R of R0 conforming to ΣA

and to some ΣAdv , there exists an extension R′ = R
`1−→ · · · `n−→ of R such that:

∀i ∈ 1..n : `i ∈ ΣA(R
`1−→ · · · `i−1−−−→) (1)

x ∈ cn(ΓR′) =⇒ origR0
(R′, x) 6∈ X0 (2)

Condition (1) requires that all the moves after R can be taken by A alone,
conforming to her strategy. Condition (2) checks that R′ no longer contains

descendants of the contracts X0: since in BitML active contracts always store
some funds, this is actually equivalent to checking that funds are not frozen.

We remark that, although Definition 2 is instantiated on BitML, the basic
concepts it relies upon (runs, strategies, termination of contracts) are quite gen-
eral. Hence, our notion of liquidity, as well as the variants proposed below, can be
applied to other languages for smart contracts, using their transition semantics.

Example 2. Recall the timed commitment contract TC from Section 2 . Assume
that A’s strategy is to wait until time t − 1 (i.e., one time unit before the
deadline), then reveal the secret and fire withdraw A . Let R0 be a run with final
configuration 〈TC , 1B〉x | {A : a#N}, for some length N . We have that {x} is
liquid w.r.t. ΣA in R0, while it is not liquid w.r.t. the strategy where A does not
reveal the secret, or reveals it without firing withdraw A . Indeed, under these
strategies A alone cannot make x terminate.

Example 3. Consider the following two contracts, which both require as precon-
dition that A put a deposit of 2B and commits to a secret a, and where p is an
arbitrary predicate on a:

C1 = reveal a if p. withdraw A + reveal a if¬p. withdraw B

C2 = split 1B→ reveal a if p. withdraw A

| 1B→ reveal a if¬p. withdraw B

Assume that A’s strategy is to reveal the secret, and then fire any enabled
withdraw. Under this strategy, C1 is liquid, because one of the reveal branches
is enabled, and the corresponding withdraw is fired, transferring 2B either to A
or to B. Instead, no strategy of A can make C2 liquid. If A does not reveal the
secret, then the 2B are frozen; otherwise, if A reveals the secret, then only one
of the two descendents of C2 can fire the reveal, and so 1B remains frozen.

Example 4 (Lottery). Consider a lottery between two players. The preconditions
require A and B to commit to one secret each (a and b, respectively), and to put
a deposit of 3B each (1B as a bet, and 2B as a penalty for dishonest behaviour):

Lottery(Win) = split
(

2B→ (reveal b if 0 ≤ |b| ≤ 1. withdraw B) + (after t : withdraw A)

| 2B→ (reveal a. withdraw A) + (after t : withdraw B)

| 2B→Win
)

Win = reveal a b if |a| = |b|. withdraw A

+ reveal a b if |a| 6= |b|. withdraw B

The contract splits the balance in three parts, of 2B each. The first part allows
B to reveal b and then redeem 2B; otherwise, after the deadline A can redeem
B’s penalty (as in the timed commitment). Similarly, the second part allows A
to redeem 2B by revealing a. To determine the winner we compare the secrets,
in the subcontract Win : A wins if the secrets have the same length, otherwise

B wins. This lottery is fair, since: (i) if both players are honest, then they will
reveal their secrets within the deadlines (redeeming 2B each), and then they will
have a 1/2 probability of winning4; (ii) if a player is dishonest, not revealing the
secret, then the other player has a positive payoff, since she can redeem 4B.

Although fair, Lottery(Win) is non-liquid w.r.t. any strategy of A. Indeed,
if B does not reveal his secret, then the 2B stored in the Win subcontract are
frozen. We can recover liquidity by replacing Win with the following:

Win2 = Win + (after t′ : reveal a. withdraw A)

+ (after t′ : reveal b. withdraw B)

where t′ > t. In this case, even if B does not reveal b, A can use a strategy firing
any enabled withdraw at time t′, to unfreeze the 2B stored in Win2.

We now present some variants of the notion of liquidity presented before.

Multiparty liquidity. A straightforward generalisation of liquidity is to as-
sume a set of honest participants (rather than just one). In this case, we can
extend Definition 2 by requiring that the run R conforms to the strategies of all
honest participants, and the moves in (1) can be taken by any honest participant.

We illustrate this notion through the following escrow contract between two
participants A and B, where the precondition requires A to deposit 1B:

Escrow = A : withdraw B + B : withdraw A + A : Resolve + B : Resolve

Resolve = split(0.1B→ withdraw M

| 0.9B→ M : withdraw A + M : withdraw B)

After the contract has been stipulated, A can choose to pay B, by authorizing
the first branch. Similarly, B can allow A to take her money back, by authorizing
the second branch. If they do not agree, any of them can invoke a mediator M
to resolve the dispute, invoking a Resolve branch. There, the 1B deposit is split
in two parts: 0.1B go to the mediator, while 0.9B are assigned either to A and
B, depending on M’s choice.

Assuming that only A is honest, this contract does not admit any liquid
strategy for A, according to Definition 2. This is because B can invoke the
mediator, who can refuse to act, freezing the funds within the contract. Similarly,
B alone has no liquid strategy, as well as M. Instead, Escrow admits a liquid
multiparty strategy for any pair of honest participants. For instance, if A and M
are honest, their strategies could be the following. A chooses whether to authorize
the first branch or not; in the first case, she fires withdraw B ; otherwise, if B gives
his authorization within a certain deadline, then A withdraws 1B; if not, after
the deadline A invokes M. The strategy of M is to authorize some participant to
redeem the 0.9B, and to fire all the withdraw within Resolve.

4 Note that B could increase his probability to win the lottery by choosing a secret
with length N > 1. However, doing so will make B lose his 2B deposit in the first
part of split, and so B’s average payoff would be negative.

Strategyless liquidity. Another variant of liquidity can be obtained by in-
specting only the contract, neglecting A’s strategy. In this case, we consider the
contract as liquid when there exists some strategy of A which satisfies the con-
straints in Definition 2. For instance, the contract B : withdraw A is non-liquid
from A’s point of view, according to this notion, while it would be liquid for B.

Quantitative liquidity. Definition 2 requires that no funds remain frozen
within the contract. However, in some cases A could accept the fact that a
portion of the funds remain frozen, especially when these funds would be ideally
assigned to other participants. Following this intuition, we could define a con-
tract v-liquid w.r.t. ΣA if at least v bitcoins are guaranteed to be redeemable. If
the contract uses only !-deposits, the special case where v is the sum of all these
deposits corresponds to the notion in Definition 2. For instance, Lottery(Win)
from Example 4 is non-liquid for any strategy of A, but it is 4B-liquid if A’s
strategy is to reveal her secret, and perform all the enabled withdraw. Instead,
Lottery(Win2) is 6B-liquid, and then also liquid, under this strategy.

A refinement of this variant could require that at least vB are transferred
to A, rather than to any participant. Under this notion, both Lottery(Win)
and Lottery(Win2) would be 2B-liquid for A. Further, Lottery(Win2) would be
4B-liquid in case A wins the lottery.

Liquidity with unknown secrets. All the notions of liquidity proposed so
far depend on the initial run R0, which contains the lengths of the committed
secrets. For instance, consider the run ending with the following configuration:

{B : b#0} | 〈(reveal b if |b| = 1. B : withdraw A) + withdraw A , 1B〉x

Since the length of b is zero, the reveal branch cannot be taken, so A has a
liquid strategy (e.g., fire the withdraw A). Instead, in an alternative initial run
where B chooses a secret of length 1, A has no liquid strategy, since B can reveal
the secret and then deny his authorization, freezing 1B.

In practice, when A performs the liquidity analysis, she does not know the
secrets of other participants. To be safe, A should use a worst-case analysis, which
would regard the contract (reveal b if |b| = 1. B : withdraw A)+withdraw A as
non-liquid. We can obtain such worst-case analysis by applying the basic analysis
induced from Theorem 4 for all possible choices of the lengths of Adv’s secrets.
Although there is an infinite set of such lengths, each contract only checks a
finite set of if conditions. Hence, the infinite set of lengths can be partitioned
into a finite set of regions, which can be used as samples for the analysis. In this
way, the basic liquidity analysis is performed a finite number of times.

Similar worst-case analyses can be obtained for all the other above-mentioned
variants of liquidity. An average-case analysis can be obtained by assuming to
know the probability distribution of A’s secrets lengths, partitioning secrets
lengths like in the worst-case analysis.

Other variants. Mixing multiparty and strategyless liquidity, we obtain the
notion of liquidity used in [34], in the context of Ethereum smart contracts. This

αX,Z(〈C, v〉x) =

{
〈C, v〉x if x ∈ X
0 otherwise

αX,Z({A : a#N}) =

{
{A : a#N} if a ∈ Z
0 otherwise

αX,Z(〈A, v〉x) =

{
〈A, v〉x if x ∈ Z
0 otherwise

αX,Z(A : a#N) =

{
A : a#N if a ∈ Z
0 otherwise

αX,Z(A[χ]) =

A[χ] if χ = xBD and x ∈ X
A[x, 0 B y?] if χ = xB B and x ∈ Z
0 otherwise

αX,Z({G}C) = 0 αX,Z(∆ | ∆′) = αX,Z(∆) | αX,Z(∆′)

Fig. 4: Abstraction of configurations.

notion considers a contract liquid if there exists a collaborative strategy of all
participants that never freezes funds. Other variants may take into account the
time when funds become liquid. More complex notions of liquidity could take
into account the payoff of strategies, e.g. ruling out irrational adversaries.

4 A finite-state semantics of BitML

The concrete BitML semantics is infinite-state because participants can always
create new contracts and deposits, and can advance the current time (a natural
number). In this section we introduce an abstract semantics for BitML, which
focuses on both these features so to reduce the state space to a finite one. More
specifically, for a concrete configuration Γ | t:

– we abstract Γ as an abstract configuration αX(Γ), where X is the (finite) set
of contract names under observation. Roughly, αX(Γ) represents only the
part of Γ needed to run the contracts X, discarding the other parts;

– we abstract t as a time interval αT(t) = [t0, t1), where t0, t1 ∈ T ∪ {0,+∞}.
The parameter T is a finite set of naturals, which intuitively represents all
the deadlines occurring in the contracts X.

We start by defining the abstraction of configurations.

Definition 3 (Abstraction of configurations). We define the function αX,Z
on concrete configurations in Figure 4, where y? denotes a fixed name not present
in any concrete configuration. We write αX(Γ) for αX,N(X,Γ)(Γ), where:

N(X,Γ) = {z | ∃x,C, v, Γ ′ : Γ = 〈C, v〉x | Γ ′ ∧ x ∈ X ∧ z ∈ dn(C) ∪ sn(C)}

where we denote with dn(C) the set of deposit names in some put within C , and
with sn(C) the set of secrets names in some reveal within C .

The abstraction removes from Γ all the deposits not in Z, all the (committed
or revealed) secrets not in Z, and all the authorizations enabling branches of some
contracts not in Z. All the other authorizations — but the deposit authorizations,
which are handled in a special way — are removed. This is because, in the
concrete semantics, deposits move into fresh ones which are no longer relevant
for the contracts X. Note that if we precisely tracked such irrelevant deposits
and their authorizations, our abstract semantics would become infinite-state.
To cope with this issue, the abstract semantics will render deposit moves as
“destroy” moves, removing the now irrelevant deposits from the configuration.
As anticipated in Section 2.2, an authorization of a deposit move can only be
performed after a “self-donate” authorization A[xB A], which lets A transfer
the funds in x to another of her deposits. Our abstraction maps such A[xB A]
into an “abstract destroy” authorization A[x, 0 B y?]. In this way, in abstract
configurations, deposits can be destroyed when, in concrete configurations, they
are no longer relevant.

The abstraction of time αT is parameterised over a finite set of naturals T,
which partitions N into a finite set of non-overlapping intervals5. Each time t is
abstracted as αT(t), which is the unique interval containing t.

Definition 4 (Abstraction of time). Let T ∈ ℘fin(N). We define the function
αT : N→ ℘(N) as αT(t) = [t0, t1) where:

t0 = max ({t′ ∈ T | t′ ≤ t} ∪ {0}) t1 = min ({t′ ∈ T | t′ > t0} ∪ {+∞})

Lemma 1. If T ∈ ℘fin(N), then: (i) ∀t ∈ N : t ∈ αT(t); (ii) ranαT is finite.

Abstract semantics. We now describe the abstract semantics of BitML (the
detailed formalisation is deferred to Definition 7 in Appendix A). An abstract
configuration is a term of the form Γ | T, where Γ is a concrete untimed con-
figuration, and T ∈ ranαT . We then define the relation →] between abstract
configurations by differences w.r.t. the concrete relation −→:

1. the rule to advertise contracts is removed.

2. the rules for deposits are replaced by two rules, which authorize and perform
the destroy of deposits. In these rules we use the fixed name y?, unlike the
fresh names in the concrete semantics, so to avoid infinite branching.

3. the rule for delays is replaced by a new rule, which allows for transitions

Γ | T δ−→] Γ | T ′. The delay δ is the least positive integer which makes T (in
the earliest moment) step to T ′, i.e. δ = minT ′ −minT.

4. the rule for making a contract 〈withdraw A , v〉x reduce to a deposit 〈A, v〉y
is replaced so that 〈withdraw A , v〉x reduces to 0 (the empty configuration).

5. the rule for making branches after t :D evolve is adapted to time intervals.
The new rule requires that the current time interval T is later than t.

5 A specific choice of T, which considers all the deadlines in the contracts X under
observation, is defined later on (Definition 8).

Abstract runs. Given an arbitrary abstract configuration Γ0 | T0, an abstract
run R] is a (possibly infinite) sequence Γ0 | T0 →] Γ1 | T1 →] · · ·. While concrete
runs always start (at time 0) from configurations which contain only deposits,
abstract runs can start from arbitrary configurations.

Abstract strategies. An abstract strategy Σ#
A is a PPTIME algorithm which

allows A to select which actions to perform, among those permitted by the
abstract semantics. Conformance between abstract runs and strategies is defined
similarly to the concrete case [14].

Concretisation of strategies. Each abstract strategy Σ#
A can be transformed

into a concrete strategy ΣA = γ(Σ#
A) as follows. The transformation is param-

eterised over a concrete run R0 and a set of contract names X0 ⊆ cn(ΓR0):
intuitively, R0 is the concrete counterpart of the initial abstract configuration
Γ0 | T0, and X0 is the set of contracts under observation. The strategy ΣA re-
ceives as input a concrete run R, and it must output the next actions. If R is
a prefix of R0, the next move is chosen as in R0. The case where R is not an
extension of R0 is immaterial. Assuming that R extends R0, we first abstract
the part of R exceeding R0, so to obtain an abstract run R]. This is done by
abstracting every configuration in the run: times are abstracted with αT0 , while
untimed configurations are abstracted with αX , where X is the set of the de-
scendants of X0 in the configuration at hand. The moves of R are mapped to
abstract moves in a natural way: moves not affecting the descendents of X0, nor
their relevant deposits or secrets, are not represented in the abstract run. Once
the abstract run R] has been constructed, we apply Σ#

A (R]) to obtain the next
abstract actions. ΣA(R) is defined as the concretisation of these actions. The

concretisation of the adversary strategy Σ#
Adv can be defined in a similar way.

Theorem 1. Starting from any abstract configuration, the abstract transition
relation →] is finitely branching, and it admits a finite number of runs.

A direct consequence of Theorem 1 is that the abstract semantics is finite-
state, and that that each abstract run is finite.

Correspondence between the semantics. We now establish a correspon-
dence between the abstract and the concrete semantics of BitML. Assume that
we have a concrete run R0, representing the computation done so far. We want
to observe the behaviour of a set of contracts X0 in ΓR0

(the last untimed con-
figuration of R0). To this purpose, we run the abstract semantics, starting from

an initial configuration Γ]0 , whose untimed component is αX0(ΓR0). The time
component is obtained by abstracting the last time δR0 in the concrete run.
The parameter T0 used to abstract time is any finite superset of the deadlines
occurring in contracts X0 within ΓR0

. Hereafter we denote this set of deadlines
as ticksX0

(ΓR0
) (see Definition 8 in Appendix A).

When the contracts in X0 evolve, the run R0 is extended to a run R, which
contains the descendents of X0, i.e. those contracts whose origin belongs to X0.
These descendents are denoted with descR0

(R, X0).

Definition 5. For all concrete runs R0,R such that R extends R0, and set of
deposit names X0, we define the set of deposit names descR0

(R, X0) as follows:

descR0(R, X0) =
{
x
∣∣ ∃Γ ′, C , v : ΓR = 〈C, v〉x | Γ ′ and origR0

(R, x) ∈ X0

}
The following theorem states that the abstract semantics is a sound approx-

imation of the concrete one. Every abstract run (conforming to A’s abstract

strategy Σ#
A) has a corresponding concrete run (conforming to the concrete

strategy derived from Σ#
A). More precisely, each configuration Γ] | T in the ab-

stract run has a corresponding configuration in the concrete run, containing the
concretization Γ of Γ], besides a term ∆ containing the parts unrelated to X0.
Further, each move in the abstract run corresponds to an analogous move in the
concrete run.

Theorem 2 (Soundness). Let R0 be a concrete run, let X0 ⊆ cn(ΓR0
), let

Z0 ⊇ N(X0, ΓR0), let T0 ∈ ℘fin(N), let Γ]0 = αX0,Z0(ΓR0) | αT0(ΓR0). Let Σ#
A

and Σ#
Adv be the abstract strategies of A and of Adv, and let ΣA = γ(Σ#

A) and

ΣAdv = γ(Σ#
Adv) be the corresponding concrete strategies. For each abstract run

Γ]0 →∗] Γ] | T conforming to Σ#
A and Σ#

Adv , there exists a concrete run:

R = R0 −→∗ Γ | ∆ | minT

such that: (i) R conforms to ΣA and ΣAdv ; (ii) ∆ contains all the subterms of ΓR0

which are mapped to 0 when evaluating αX0,Z0(ΓR0); (iii) αX,Z0(Γ | ∆) = Γ],
where X = descR0

(R, X0); (iv) αT0
(minT) = T; (v) the labels in R are the same

as in R], except for the occurrences of y?.

Note that soundness only guarantees the existence of some concrete runs,
which are a strict subset of all the possible concrete runs. For instance, the con-
crete semantics also allows the non-observed part ∆ to progress, and it contains
configurations with a time t 6= minT, for any T in any abstract run. Still, these
concrete runs have an abstract counterpart, as established by the following com-
pleteness result (Theorem 3). This is almost dual to our soundness ompleteness
maps concrete configurations to abstract ones using our abstraction functions
for untimed configurations and time. Moreover, this run correspondence holds
when the concrete strategy of A is derived from an abstract strategy, while no
such restriction is required for the adversary strategy.

Theorem 3 (Completeness). Let R0 be a concrete run, let X0 ⊆ cn(ΓR0
), let

Z0 ⊇ N(X0, ΓR0), let T0 ⊇ ticksX0(ΓR0), and let Γ]0 = αX0,Z0(ΓR0) | αT0(ΓR0).

Let Σ#
A be the abstract strategy of A, and let ΣA = γ(Σ#

A) be the corresponding
concrete strategy. For each concrete run R = R0 →∗ Γ | t conforming to ΣA and
to some ΣAdv , there exists an abstract run:

R] = Γ]0 →∗] αX,Z0
(Γ) | αT0

(t)

such that: (i) R] conforms to Σ#
A and to some Σ#

Adv ; (ii) X = descR0
(R, X0);

(iii) if R = R0 −→∗ Γ ′ | t′
`−→ · · · and ` ∈ ΣA(R0 −→∗ Γ ′ | t′), then there

exists `′ such that R] = Γ]0 →∗] Γ] = αX′,Z0
(Γ ′) | αT0

(t′)
`′−→] · · · where

`′ ∈ Σ#
A (Γ]0 →∗] Γ]) and X ′ = descR0

(R0 −→∗ Γ ′ | t′, X0).

Example 5. Let C = reveal a.withdraw A + put y.withdraw B , and let R be
the following concrete run, where the prefix · · · is immaterial (for simplicity, we
also omit labels, times, and participants’ strategies):

· · · −→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} = Γ0

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} | B[y B B]

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | {A : a#10} | B[y B B] | B[y B C]

−→ 〈C, 1B〉x | 〈B, 1B〉y | 〈A, 2B〉z | A : a#10 | B[y B B] | B[y B C]

−→ 〈withdraw A , 1B〉x′ | 〈B, 1B〉y | 〈A, 2B〉z | A : a#10 | B[y B B] | B[y B C] = Γ

−→ 〈withdraw A , 1B〉x′ | 〈C, 1B〉y′ | 〈A, 2B〉z | A : a#10 | B[y B B] | B[y B C]

−→ 〈A, 1B〉x′′ | 〈C, 1B〉y′ | 〈A, 2B〉z | A : a#10 | B[y B B] | B[y B C]

By Theorem 3, this concrete run has the following corresponding abstract run
w.r.t. X0 = {x}. The initial configuration Γ0 is abstracted w.r.t. X0 and Z0 =
N(X0, Γ0) = {a, y}. This causes deposit z to be neglected in the abstraction.

〈C, 1B〉x | 〈B, 1B〉y | {A : a#10} = Γ]0
→] 〈C, 1B〉x | 〈B, 1B〉y | {A : a#10} | B[y, 0 B y?]

→] 〈C, 1B〉x | 〈B, 1B〉y | A : a#10 | B[y, 0 B y?]

→] 〈withdraw A , 1B〉x′ | 〈B, 1B〉y | A : a#10 | B[y, 0 B y?] = Γ]

→] 〈withdraw A , 1B〉x′ | A : a#10

→] A : a#10

We now compare the two runs. The concrete authorization for a self-donate
of y is abstracted as an authorization for destroying y. Instead, the concrete
authorization for donating y to C has no abstract counterpart. The concrete
reveal of secret a and the subsequent contract move have identical abstract
moves, which reach the abstract configuration Γ]. Technically, Γ] is the result
of abstracting the concrete configuration Γ w.r.t. X ′ = {x′} and Z0: here, we
no longer abstract w.r.t. X0, but instead use the set of its descendents X ′. By
contrast, the set Z0 is unchanged. Note that, if we instead abstracted with respect
to X0, we would discard the contract x′, in which case we could not perform the
abstract step, because the abstract semantics does not discard x′. Similarly, if we
instead used Z ′ = N(X ′, Γ) = ∅ we would discard the secret a and the deposit
y, invalidating the abstract steps. When Γ performs the next move (a donation)
this is abstracted as a destroy move. Finally, the last concrete withdraw move
is mapped to an abstract withdraw move, which does not create the deposit x′′.

5 Verifying liquidity

In this section we devise a verification technique for liquidity of BitML contracts,
exploiting our abstract semantics. The first step is to give an abstract counterpart
of liquidity: this is done in Definition 6, which mimics Definition 2, replacing
concrete objects with abstract ones.

Definition 6 (Abstract liquidity). Let A be an honest participant, with ab-

stract strategy Σ#
A , let R

]
0 be an abstract run, and let X0 be a set of contract

names in Γ
R

]
0
. We say that X0 is]-liquid w.r.t. Σ#

A in R
]
0 if for all exten-

sions R] of R
]
0 conforming to Σ#

A and to some Σ#
Adv , there exists an extension

Ṙ] = R]
`1−→ · · · `n−→ of R] such that:

∀i ∈ 1..n : `i ∈ Σ#
A (R]

`1−→] · · ·
`i−1−−−→]) (3)

x ∈ cn(Γ
Ṙ]) =⇒ orig

R
]
0
(Ṙ] , x) 6∈ X0 (4)

To verify liquidity of a set of contracts X0 in a concrete run R0, we will choose
R
]
0 to be the run containing a single configuration Γ]0 , obtained by abstracting

with αX0 the last configuration of R0. In such case, the condition (4) above can
be simplified by just requiring that cn(Γ

Ṙ]) = ∅.
The following lemma states that abstract and concrete liquidity are equiva-

lent. For this, it suffices that the abstraction is performed with respect to the
contract names X0, and to the set of deadlines occurring in the contracts X0.

Lemma 2 (Abstract vs. concrete liquidity). Let R0 be a concrete run, let

X0 ⊆ cn(ΓR0), and let T0 = ticksX0(ΓR0). Let Γ]0 = αX0(ΓR0) | αT0(δR0).

Let Σ#
A be an abstract strategy (w.r.t. T0 and Γ]0), and let ΣA = γR0

(Σ#
A). Let

R
]
0 = Γ]0 (i.e., the run with no moves). Then:

X0 is liquid w.r.t. ΣA in R0 ⇐⇒ X0 is]-liquid w.r.t. Σ#
A in R

]
0.

The following lemma states that if a contract is liquid w.r.t. some concrete
strategy, then is is also liquid w.r.t. some abstract strategy, and vice versa.
Intuitively, this holds since if it is possible to make a contract evolve with a
sequence of moves conforming to any concrete strategy, then the same moves
can be also be generated by an abstract strategy.

Lemma 3. Let R0 be a concrete run, and let X0 ⊆ cn(ΓR0
). X0 is liquid w.r.t.

some ΣA in R0 iff X0 is liquid w.r.t. γ(Σ#
A) in R0, for some Σ#

A .

Our main technical result follows. It states that liquidity is decidable, and
that it is possible to automatically infer liquid strategies for a given contract.

Theorem 4 (Decidability of liquidity). Liquidity is decidable. Furthermore,
for any R0 and X0, it is decidable whether there exists a strategy ΣA such that
X0 is liquid w.r.t. ΣA in R0. If such strategy exists, then it can be automatically
inferred given R0 and X0.

Proof. Let A be an honest participant with strategy ΣA , let R0 be a concrete
run, and let X0 be a set of contract names in ΓR0

. By Lemma 3, X0 is liquid

w.r.t. ΣA iff there exists some abstract strategy Σ#
A such that X0 is liquid w.r.t.

Σ′A = γ(Σ#
A). By Lemma 2, X0 is liquid w.r.t. Σ′A iff X0 is]-liquid w.r.t. Σ#

A .
By Theorem 1, the abstract semantics is finite, and so the possible abstract
strategies are finite. Therefore,]-liquidity is decidable, and consequently also
liquidity is decidable. Note that this procedure also finds a liquid strategy, if
there exists one. ut

6 Conclusions

We have developed a theory of liquidity for smart contracts, and a verification
technique which is sound and complete for contracts expressed in BitML. Our
finite-state abstraction can be applied, besides liquidity, to verify other proper-
ties of smart contracts. For instance, we could decide whether a strategy allows
a participant to always terminate a contract within a certain deadline. Addi-
tionally, we could infer a strategy which guarantees that the contract terminates
before a certain time (if any such strategy exists), or infer the strategy that ter-
minates in the shortest time, etc. Although our theory is focussed on BitML, the
various notions of liquidity we have proposed could be applied to more expressive
languages for smart contracts, like e.g. Solidity (the high-level language used by
Ethereum). To the best of our knowledge, the only form of liquidity verified so
far in Ethereum is the “strategyless multiparty” variant, which only requires the
existence of a cooperative strategy to unfreeze funds (this property is analysed,
e.g., by the Securify tool [34]). While in Ethereum it seems unfeasible to have
a sound and complete verification, the more limited expressive power of BitML
makes liquidity decidable, as shown by Theorem 4.

References

1. Understanding the DAO attack (June 2016), http://www.coindesk.com/
understanding-dao-hack-journalists/

2. Parity Wallet security alert (July 2017), https://paritytech.io/blog/
security-alert.html

3. A Postmortem on the Parity Multi-Sig library self-destruct (November 2017),
https://goo.gl/Kw3gXi

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via Bitcoin deposits. In: Financial Cryptography Workshops. LNCS,
vol. 8438, pp. 105–121. Springer (2014)

5. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Modeling Bit-
coin contracts by timed automata. In: International Conference on Formal Model-
ing and Analysis of Timed Systems. pp. 7–22. Springer (2014)

6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014), first appeared
on Cryptology ePrint Archive, http://eprint.iacr.org/2013/784

http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://goo.gl/Kw3gXi
http://eprint.iacr.org/2013/784

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

8. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Principles of Security and Trust (POST). LNCS, vol. 10204, pp.
164–186. Springer (2017), http://dx.doi.org/10.1007/978-3-662-54455-6_8

9. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling Bitcoin
smart contracts. In: Principles of Security and Trust (POST). LNCS, vol. 10804,
pp. 217–242. Springer (2018)

10. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transac-
tions. In: Financial Cryptography and Data Security. LNCS, vol. 10957. Springer
(2018)

11. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016)

12. Bartoletti, M., Cimoli, T., Zunino, R.: Fun with Bitcoin smart contracts. In: ISoLA.
LNCS, vol. 11247, pp. 432–449. Springer (2018)

13. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017)

14. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: ACM
SIGSAC CCS. pp. 83–100. ACM (2018)

15. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Formal methods
for the design of real-time systems, pp. 200–236. Springer (2004), http://www.it.
uu.se/research/group/darts/papers/texts/new-tutorial.pdf

16. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014)

17. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Beguelin, S.: For-
mal verification of smart contracts. In: PLAS (2016)

18. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

19. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Symposium on Operating Systems
Principles. pp. 51–68 (2017)

20. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: CAV. LNCS, vol. 10981, pp. 51–78.
Springer (2018)

21. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the se-
curity analysis of Ethereum smart contracts. In: Principles of Security and Trust
(POST). LNCS, vol. 10804, pp. 243–269. Springer (2018)

22. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B.M., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A complete formal
semantics of the Ethereum Virtual Machine. In: IEEE Computer Security Foun-
dations Symposium (CSF). pp. 204–217. IEEE Computer Society (2018)

23. Hirai, Y.: Defining the Ethereum Virtual Machine for interactive theorem provers.
In: Financial Cryptography Workshops. LNCS, vol. 10323, pp. 520–535. Springer
(2017)

24. Klomp, R., Bracciali, A.: On symbolic verification of Bitcoin’s script language. In:
CBT. LNCS, vol. 11025, pp. 38–56. Springer (2018)

25. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
https://github.com/ethereum/wiki/wiki/White-Paper

26. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS. pp. 254–269 (2016)

27. Maxwell, G.: The first successful zero-knowledge contin-
gent payment. https://bitcoincore.org/en/2016/02/26/
zero-knowledge-contingent-payments-announcement/ (2016)

28. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017)

29. Miller, A., Cai, Z., Jha, S.: Smart contracts and opportunities for formal methods.
In: ISoLA. LNCS, vol. 11247, pp. 280–299. Springer (2018)

30. Mythril. https://github.com/ConsenSys/mythril (2018)
31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.

org/bitcoin.pdf (2008)
32. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-

order logic, vol. 2283. Springer Science & Business Media (2002)
33. Rocket, T.: Snowflake to avalanche: A novel metastable consensus protocol family

for cryptocurrencies. https://avalanchelabs.org/avalanche.pdf (2018)
34. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,

M.T.: Securify: Practical Security Analysis of Smart Contracts. In: ACM CCS. pp.
67–82 (2018)

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://github.com/ConsenSys/mythril
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://avalanchelabs.org/avalanche.pdf

A Appendix

The following lemma establishes a transitivity property of orig .

Lemma 4. Let R0,R1,R2 be such that R1 extends R0 and R2 extends R1. Then:

origR0
(R1, origR1

(R2, x)) = origR0
(R2, x)

Proof of Lemma 4 (sketch) By induction on R1.

Definition 7 (Abstract semantics). Let T ∈ ℘fin(N). An abstract configu-
ration is a term of the form Γ | T, where Γ is a concrete untimed configuration,
and T ∈ ranαT . We then define the relation →] between abstract configurations
by differences w.r.t. the concrete relation −→:

1. the rule [C-Advertise] is removed.

2. the rules for deposits are replaced by the following two rules:

〈A, v〉x | Γ
A:x,0,y?−−−−−→] 〈A, v〉x | A[x, 0 B y?] | Γ

[Dep-AbsAuthDestroy]

〈A, v〉x | A[x, 0 B y?] | Γ destroy(x,y?)−−−−−−−−→] Γ
[Dep-AbsDestroy]

3. the rule [Delay] is replaced by the following:

δ = minT ′ −minT > 0

Γ | T δ−→] Γ | T ′
[AbsDelay]

4. the rule [C-Withdraw] is replaced by the following:

〈withdraw A , v〉y | Γ
withdraw(A,v,y)−−−−−−−−−−→ 0

[C-AbsWithdraw]

5. the rule [Timeout] is replaced by the following:

D ≡ after t1 : · · · : after tm :D ′ D ′ 6≡ after t′ : · · ·

〈D, v〉x | Γ
`−→] Γ

′ x ∈ cv(`) minT ≥ t1, . . . , tm
〈D + C, v〉x | Γ | T

`−→] Γ ′ | T
[AbsTimeout]

Definition 8. We define the function ticks from contracts to ℘fin(N) as follows:

ticks (
∑
i∈I Di) =

⋃
i∈I

ticks (Di) ticks (A :D) = ticks (D)

ticks (withdraw A) = ∅ ticks (after t :D) = {t} ∪ ticks (D)

ticks (split v → C) =
⋃

ticks (C) ticks (putx & reveala if p. C) = ticks (C)

Then, for any set of names X, we define the function ticksX from concrete
untimed configurations to ℘fin(N) as follows:

ticksX({G}C) = ∅

ticksX(〈C, v〉x) =

{
ticks (C) if x ∈ X
∅ otherwise

ticksX(〈A, v〉) = ticksX(A[χ]) = ticksX({A : a#N}) = ticksX(A : a#N) = ∅
ticksX(Γ | Γ ′) = ticksX(Γ) ∪ ticksX(Γ ′)

Lemma 5. If R = R0 −→∗ Γ | t, then ticksX0
(ΓR0

) ⊇ ticksdescR0
(R,X0)(Γ).

Proof of Lemma 5 (sketch) When a move is performed, a contract becomes
syntactically smaller, hence the set of deposit names and secret names within
the contract becomes a subset.

Definition 9 (Abstract strategies). For any T ∈ ℘fin(N) and initial abstract

configuration Γ0 | T0 with T0 ∈ ranαT , we define an abstract strategy Σ#
A

as a PPTIME algorithm which takes as input an abstract run starting from
Γ0 | T0 and a randomness source, and gives as output a finite sequence of actions.
Abstract strategies are subject to same constraints imposed to concrete ones.

Note that, since Σ#
A can only output moves according to the abstract seman-

tics, it can only choose delays δ which jump from an interval T to a subsequent
interval T ′, i.e. δ = minT ′ −minT.

Proof of Theorem 2 (sketch) Essentially, the concrete run can perform the
same moves of the abstract run, with the following minor changes. The abstract
rules for destroying deposits (and the related authorizations) involve the name
y?, which are replaced by fresh names y in the concrete run. Further, abstract
delay moves change the abstract time T to T ′: in the concrete run, instead, we
make time move from minT to minT ′. This makes the concrete and abstract
timeout rules to agree on which branches after t :D are enabled.

Proof of Theorem 3 (sketch) Each concrete move corresponds to zero or
more abstract moves: in the latter case, the concrete and abstract moves are
related as follows: (i) contract moves are left unchanged; (ii) all authorizations
are left unchanged, but for A : x,B (generated by [Dep-AuthDonate]) which is
abstracted as A : x, 0, y?; (iii) deposit moves affecting a set Y of deposits are
transformed to a sequence of [Dep-AbsDestroy] moves, destroying those deposits
in Y which are present in the abstract configuration; (iv) reveal moves are left
unchanged; (v) delay moves are mapped to delay moves (not necessarily of the
same duration).

Proof of Lemma 2 We first prove the ⇒ direction, i.e. that liquid implies
]-liquid. By contradiction, assume that X0 is liquid but not]-liquid. By Defini-
tion 6, there exists an extension R] of R]0 conforming to Σ#

A (and to some Σ#
Adv),

such that, for all extensions Ṙ] of R] of the form:

R]
`1−→ · · · `n−→

and such that for all i ∈ 1..n, `i ∈ Σ#
A (R]`1 · · · `i−1), we have that:

Γ
Ṙ] = 〈C, v〉x | · · · with orig (Ṙ] , x) ∈ X0

Since abstract runs cannot advertise and stipulate new contracts, this is equiv-
alent to saying that:

Γ
Ṙ] contains active contracts (5)

By Theorem 2, since
Γ]0 →∗] ΓR] = Γ] | T

then there exists a concrete run R of the form:

R0 −→∗ Γ | ∆ | minT

conforming to ΣA and ΣAdv such that (i) Γ] and Γ are equal, except for the
occurrences of y? in Γ], which are replaced by fresh names; (ii) ∆ contains all

the subterms of Γ]0 which are mapped to 0 by αX0 when evaluating αX0(Γ]0),
(iii) αT0

(minT) = T, (iv) αX(Γ | ∆) = Γ], where:

X =
{
x
∣∣ ∃Γ ′, C , v : Γ | ∆ = 〈C, v〉x | Γ ′ and origR0

(R, x) ∈ X0

}
Since by hypothesis X0 is liquid w.r.t. ΣA in in R0, by Definition 2 there must
exist an extension R′ of R of the form:

R
`1−→ · · · `n−→

such that for all i ∈ 1..n, `i ∈ ΣA(R
`1−→ · · · `i−1−−−→), and:

if ΓR′ = 〈C, v〉x | · · · then origR0
(R′, x) 6∈ X0 (6)

By Theorem 3, using as initial parameters R as concrete run, X as set of names,
and T0 as set of ticks (by Lemma 5, T0 is a superset of ticksX(ΓR)), since

R
`1−→ · · · `n−→ ΓR′ | δR′ = Γ ′ | t′

then there exists an abstract run

ΓR] | δR]

`]1−→ · · · `
]
m−−→ αX′(Γ

′) | αT0
(t′)

where for all i ∈ 1..m, `]i ∈ Σ
#
A (R]`]1 · · · `

]
i−1), and

X ′ =
{
x
∣∣ ∃Γ ′′, C , v : Γ ′ = 〈C, v〉x | Γ ′′ and origR(R′, x) ∈ X

}

Summing up, we obtain the following abstract run Ṙ] , which extends R]:

R
]
0 →] αX′(Γ

′) | αT0
(t′)

By (5), we have that αX′(Γ
′) contains some active contracts, say 〈C, v〉x . By

definition of αX′ , this implies that x ∈ X ′. Then, by definition of X ′ it must be:

y = origR(R′, x) ∈ X

Then, by definition of X:
origR0

(R, y) ∈ X0

By Lemma 4, it follows that:

origR0
(R′, x) ∈ X0

Since 〈C, v〉x occurs in ΓR′ , (6) gives that origR0
(R′, x) 6∈ X0 — contradiction.

The⇐ direction is proved in a similar way, exchanging the roles of soundness
(Theorem 2) and completeness (Theorem 3) within the proof.

Proof of Lemma 3 (sketch) The lemma holds since Σ#
A can be defined in

terms of ΣA , in such a way to preserve the following invariant: each conforming

run to Σ#
A can be transformed into a concrete run conforming to ΣA . Upon

receiving a (conforming) abstract run, if some descendent of X0 is still present,

Σ#
A computes a corresponding concrete run and queries Σ#

A with it, learning the
next concrete moves. Since X0 is liquid, the concrete strategy eventually must
perform a move which is relevant for the contracts X0, and that move can then
be chosen by Σ#

A . If such move is then taken by the abstract adversary, the
invariant is clearly preserved. If instead the adversary takes another move, we
can extend the concrete run accordingly, and still preserve the invariant.

Liquidity for finite LTS. We now give an alternative characterization of
liquidity, which corresponds to Definition 2 on transition systems with finite
traces, like the one obtained through the abstraction introduced in Section 4.

Definition 10 (Maximal run). We say that a run R is maximal w.r.t. a set

of strategies Σ when R
`−→ implies ` 6∈ Σ(R).

Definition 11 (Liquidity for finite LTS). Assume that A is the only honest

participant, with strategy Σ#
A . We say that X0 is]fin -liquid w.r.t. Σ#

A in R
]
0

when, for all extensions R] of R]0 conforming to Σ#
A (and to some Σ#

Adv), if R]

is maximal w.r.t. ΣA , ΣAdv and x ∈ cn(ΓR]), then orig
R

]
0
(R], x) 6∈ X0.

Lemma 6. X0 is]-liquid w.r.t. Σ#
A in R

]
0 iff X0 is]fin -liquid w.r.t. Σ#

A in R
]
0

Proof. For the “only if part”, assume that X0 is]-liquid w.r.t. Σ#
A in R

]
0, and

let R] be a maximal extension (w.r.t. Σ#
A , Σ

#
Adv) of R]0 conforming to Σ#

A , Σ
#
Adv .

By Definition 6, condition (3) can only hold for Ṙ] = R]. Hence, for all x ∈
cn(ΓR]), by condition (4) it follows that orig

R
]
0
(R], x) 6∈ X0.

For the “if part”, assume that X0 is]fin -liquid w.r.t. Σ#
A in R

]
0, and let R]

be an extension of R]0 conforming to Σ#
A , Σ

#
Adv . There are two cases:

– If R] is maximal w.r.t. Σ#
A , Σ

#
Adv , then by Definition 11 it follows that x ∈

cn(ΓR]) implies orig
R

]
0
(R], x) 6∈ X0. Hence, conditions (3)-(4) of Definition 6

follow by choosing Ṙ] = R].

– If R] is not maximal w.r.t. Σ#
A , Σ

#
Adv , let Ṙ] be the longest extension of R]

made only by moves conforming to Σ#
A . Let Σ̇#

Adv be the strategy which

(i) is equal to Σ#
Adv on the prefix R], (ii) permits A’s action on the extension,

(iii) forbids any action after Ṙ] . By this construction, Ṙ] is maximal w.r.t.

Σ#
A , Σ̇

#
Adv . So, by Definition 11 we have orig

R
]
0
(Ṙ] , x) 6∈ X0 for all x ∈

cn(Γ
Ṙ]). Conditions (3)-(4) of Definition 6 follow by choosing Ṙ] . ut

	Verifying liquidity of Bitcoin contracts

