
On Kilian’s Randomization of Multilinear Map Encodings

Jean-Sébastien Coron and Hilder V. L. Pereira

University of Luxembourg

April 16, 2019

Abstract. Indistinguishability obfuscation constructions based on matrix branching programs gener-
ally proceed in two steps: first apply Kilian’s randomization of the matrix product computation, and
then encode the matrices using a multilinear map scheme. In this paper we observe that by applying
Kilian’s randomization after encoding, the complexity of the best attacks is significantly increased for
CLT13 multilinear maps. This implies that much smaller parameters can be used, which improves the
efficiency of the constructions by several orders of magnitude.
As an application, we describe the first concrete implementation of non-interactive Diffie-Hellman key
exchange secure against existing attacks. Key exchange was originally the most straightforward appli-
cation of multilinear maps; however it was quickly broken for the three known families of multilinear
maps (GGH13, CLT13 and GGH15). Here we describe the first implementation of key exchange based
on CLT13 that is resistant against the Cheon et al. attack. For N = 4 users and a medium level of
security, our implementation requires 18 GB of public parameters, and a few minutes for the derivation
of a shared key. Without Kilian’s randomization of encodings our construction would be completely
unpractical, as it would require more than 100 TB of public parameters.

1 Introduction

Multilinear maps and indistinguishability obfuscation. Since the breakthrough construc-
tion of Garg, Gentry and Halevi [GGH13a], cryptographic multilinear maps have shown amazingly
powerful applications in cryptography, most notably the first plausible construction of program ob-
fuscation [GGH+13b]. A multilinear map scheme encodes plaintext values {ai} into encodings {[ai]}
such that the ai’s are hidden; only a restricted class of polynomials can then be evaluated over these
encoded values; eventually one can determine whether the evaluation is zero or not, using the zero
testing procedure of the multilinear map scheme.

The goal of program obfuscation is to hide secrets in arbitrary running programs. The first plau-
sible construction of general program obfuscation was described by Garg, Gentry, Halevi, Raykova,
Sahai and Waters (GGHRSW) in [GGH+13b], based on multilinear maps; the construction has
opened many new research directions, because the notion of indistinguishability obfuscation (iO) has
tremendous applications in cryptography [SW14]. Since the publication of the GGHRSW construc-
tion, many variants of GGHRSW have been described [MSW14,AGIS14,PST14,BGK+14,BMSZ16].
All constructions of program obfuscation rely on multilinear maps, for which there are essentially
only three known candidate constructions:

• GGH13. The first candidate construction of multilinear maps is based on ideal lattices [GGH13a].
Its security relies on the difficulty of the NTRU problem and the principal ideal problem (PIP)
in certain number fields.

• CLT13. An analogous construction but over the integers was described in [CLT13], based on
the DGHV fully homomorphic encryption scheme [DGHV10].

• GGH15. Gentry, Gorbunov and Halevi described another multilinear maps scheme [GGH15],
based on the Learning With Errors (LWE) problem with encoding over matrices, and defined
with respect to a directed acyclic graph.

However the security of multilinear maps is still poorly understood. The most important attacks
against multilinear maps are “zeroizing attacks”, which consist in using linear algebra to recover

the secrets of the scheme from the encodings of zero. At Eurocrypt 2015, Cheon et al. described
a devastating zeroizing attack against CLT13; when CLT13 is used to implement non-interactive
multipartite Diffie-Hellman key exchange, the attack completely breaks the protocol [CHL+15]. The
attack was also extended to encodings variants, where encodings of zero are not directly available
[CGH+15]. The key-exchange protocol based on GGH13 was also broken by a zeroizing attack in
[HJ16]. Finally, the Diffie-Hellman key exchange protocol under GGH15 was broken in [CLLT16],
using an extension of the Cheon et al. zeroizing attack.

However, not all attacks against the above multilinear map schemes can be applied to indis-
tinguishability obfuscation. While multipartite key exchange based on any of the three families of
multilinear map schemes is broken, iO is not necessarily broken by zeroizing attacks, because of
the particular structure that iO constructions induce on the computation of multilinear map en-
coded values. Namely, in iO constructions, no low-level encodings of zeroes are available, and the
obfuscation of a matrix branching program can only produce zeroes at the last level, moreover
when evaluated in a very specific way. However some partial attacks against iO constructions have
already been described. In [CGH+15] it was shown how to break the GGHRSW branching-program
obfuscator when instantiated using CLT13, when the branching program to be obfuscated has a
very simple structure (input partition). For GGH13, Miles, Sahai and Zhandry introduced “annihi-
lation attacks” [MSZ16] that can break many obfuscation schemes based on GGH13; however, the
attack does not apply to the GGHRSW construction, because in GGHRSW the matrix program
is embedded in a larger matrix with random entries (diagonal padding). In [CGH17], the authors
showed how to break iO constructions under GGH13, using a variant of the input partitioning at-
tack; the attack applies against the GGHRSW construction with diagonal padding. A new tensoring
technique was introduced in [CLLT17] to break iO constructions for branching programs without
the input partition structure. Finally, an attack against iO over GGH15 was described in [CVW18]
based on computing the rank of a certain matrix.

Obfuscating matrix branching programs. The GGHRSW construction and its variants consist
of a “core component” for obfuscating matrix branching programs, and a bootstrapping procedure
to obfuscate arbitrary programs based on the core component, using fully homomorphic encryption
and proofs of correct computation. The core component relies on multilinear maps for evaluat-
ing a product of encoded matrices corresponding to a branching program, without revealing the
underlying value of those matrices.

More precisely, the core component of the GGHRSW construction and its variants proceeds in
two steps: first apply Kilian’s randomization of the matrix product computation, and then encode
the matrices using a multilinear map scheme. In this paper, our main observation is that for CLT13
multilinear maps, the complexity of the best attacks is significantly increased when Kilian’s ran-
domization is also applied after encoding. We note that applying Kilian’s randomization “on the
encoding side” was already used in GGH15 multilinear maps as an additional safeguard [GGH15,
§5.1]. For CLT13 this implies that one can use much smaller parameters (noise and encoding size),
which improves the efficiency of the constructions by several orders of magnitude.

More precisely, a matrix branching program BP of length n is evaluated on input x ∈ {0, 1}` by
computing:

C(x) = b0 ×
n∏
i=1

Bi,xinp(i) × bn+1 (1)

where {Bi,b}1≤i≤n,b∈{0,1} are square matrices and b0 and bn+1 are bookend vectors; then BP(x) = 0
if C(x) = 0, and BP(x) = 1 otherwise. The function inp(i) indicates which bit of x is read at step
i of the product matrix computation. To obfuscate a matrix branching program, the GGHRSW
construction proceeds in two steps. First one randomizes the matrices Bi,b as in Kilian’s protocol
[Kil88]: choose n + 1 random invertible matrices {Ri}ni=0 and set B̃i,b = Ri−1Bi,bR

−1
i , with also

b̃0 = b0R
−1
0 and b̃n+1 = Rnbn+1. The randomized matrix branching program can then be evaluated

2

by computing

C(x) = b̃0 ×
n∏
i=1

B̃i,xinp(i) × b̃n+1.

Namely the successive randomization matrices Ri cancel each other; therefore the matrix product
computation evaluates to the same result as in (1).

The second step in the GGHRSW construction is to encode the entries of the matrices B̃i,b

using a multilinear map scheme. Every entry of a given matrix is encoded separately; the bookend
vectors b̃0 and b̃n are also encoded similarly. Therefore one defines the matrices and vectors

B̂i,b = Encode{i+1}(B̃i,b), b̂0 = Encode{1}(b̃0), b̂n = Encode{n+2}(b̃n+2).

The matrix branching program from (1) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ×
n∏
i=1

B̂i,xinp(i) × b̂n+1 (2)

Eventually one obtains an encoded Ĉ(x) over the universe set S = {1, . . . , n+ 2}, and one can use
the zero-testing procedure of the multilinear map scheme to check if C(x) = 0, thereby learning
the output of the branching program BP(x), without revealing the values of the matrices Bi,b. It
was shown in [BGK+14] that if the multilinear map scheme is ideal, i.e. if the multilinear map
only reveals whether or not the evaluation is zero and does not leak anything else, then the above
obfuscation scheme is secure.

(In)efficiency of iO. However, even with some efficiency improvements (as in [AGIS14]), the
main issue is that indistinguishability obfuscation is currently not feasible to implement in practice.
The first obstacle is that when converting the input circuit to a matrix branching program using
Barrington’s theorem [Bar86], one induces an enormous cost in performance, as the length of the
branching program grows exponentially with the depth of the circuit being evaluated. The second
obstacle is that the multilinear map noise and parameters grow with the degree of the polynomial
being computed over encoded elements, which corresponds to the length of the matrix branching
program.

In this paper, we consider both issues. For the second issue, we show that for CLT13 multilinear
maps, when applying Kilian’s randomization “on the encoding side”, one can significantly reduce
the noise and encoding size while keeping same level of security; this leads to major improvements
of performance. For the first issue, we consider a matrix branching program that only performs a
multipartite DH key-exchange, rather than originating from a circuit through Barrington’s theo-
rem, so that its degree becomes much more manageable. Thanks to Kilian’s randomization of the
encodings, we can then describe the first concrete implementation of DH key-exchange based on
multilinear maps that is resistant against existing attacks.

Kilian’s randomization on the encoding side. As already observed in [GGH15], Kilian’s
randomization can also be applied over the encoding space, as an additional safeguard. Namely
starting from the encoded matrices B̂i,b used to compute Ĉ(x) as in Equation (2), one can again
choose n+ 1 random invertible matrices {R̂i}ni=0 and then randomize the matrices B̂i,b with:

B̄i,b = R̂i−1B̂i,bR̂
−1
i

with also b̄0 = b̂0R̂
−1
0 and b̄n+1 = R̂nb̂n+1. Since the matrices R̂i cancel each other in the matrix

product computation, the evaluation proceeds exactly as in (2), with

Ĉ(x) = b̄0 ×
n∏
i=1

B̄i,xinp(i) × b̄n+1,

3

and therefore the same zero-testing procedure can be applied to Ĉ(x). Note that the R̂i matrices
are applied on the encoding side, that is on the encoded matrices B̂i,b, instead of the plaintext
matrices Bi,b as previously; obviously both randomizations (before and after encoding) can be
applied independently.

In this paper we focus on Kilian’s randomization on the encoding side in the context of the
CLT13 multilinear maps. In CLT13 the encoding space is the set of integers modulo x0, where
x0 =

∏n
j=1 pj ; therefore the matrices {R̂i}ni=0 are random invertible matrices modulo x0. We show

that the complexity of the best attacks against CLT13 is significantly increased thanks to Kilian’s
randomization of the encodings. One can therefore use much smaller parameters (noise size and
encoding size), which can improve the efficiency of a construction by several orders of magnitude.

More precisely, the security of CLT13 is based on the hardness of the multi-prime Approximate-
GCD problem. Given x0 =

∏n
i=1 pi for random primes pi, and polynomially many integers cj such

that
cj ≡ rij (mod pi) (3)

for small integers rij ’s, the goal is to recover the secret primes pi’s. The multi-prime Approximate-
GCD problem is an extension of the single-prime problem, with a single prime p to be recovered
from encodings cj = qj · p + rj and x0 = q0 · p, for small integers rj . The two main approaches for
solving the Approximate-GCD problem are the orthogonal lattice attacks and the GCD attacks.

First contribution: solving the multi-prime Approximate-GCD problem. For the single-
prime Approximate-GCD problem, the classical orthogonal lattice attack has complexity 2Ω(γ/η2),
where γ is the size of x0 and η is the size of the prime p; see [DGHV10, §5.2]. However, extending
the attack to the multi-prime case as in CLT13 is actually not straightforward; in particular, we
argue that the approach described in [CLT13] is incomplete and does not recover the primes pi’s,
except for small values of n; we note that solving the multi-prime case was actually considered as
an open problem in [GGM16].

Our first contribution is to solve this open problem with an algorithm that proceeds in two steps.
The first step is the classical orthogonal lattice attack; it recovers a basis of the lattice generated
by the vectors ri = c mod pi, where c = (c1, . . . , ct). However, the vectors ri cannot be recovered
directly; namely by applying LLL or BKZ one recovers a basis of moderately short vectors, and not
necessarily the ri’s which are the shortest vector in the lattice. Therefore the approach described
in [CLT13] does not work, except in low dimension. In the second step of our algorithm, using the
lattice basis obtained from the first step, we apply a variant of the Cheon et al. attack [CHL+15]; we
show that by computing the eigenvalues of a well chosen matrix, we can recover the primes pi’s. The
asymptotic complexity of the full attack is the same as in the single-prime case; using γ = η · n for
the size of x0 as previously, where n is the number of primes pi, the complexity is 2Ω(n/η). Therefore,
as in [CLT13], one must take n = ω(η log λ) to prevent the lattice attack, where λ is the security
parameter.

Second contribution: extension to the Vector Approximate-GCD problem. When work-
ing with matrix branching programs and Kilian’s randomization on the encoding side, we must
actually consider a vector variant of the Approximate-GCD problem, in which we have access to
randomized vectors of encodings instead of scalar values as in (3). Therefore, our second contribu-
tion is to extend the orthogonal lattice attack to the Vector Approximate-GCD problem, and to
show that the extended attack has complexity 2Ω(m·n/η), for vectors of dimension m. This implies
that the new condition on the number n of primes pi in CLT13 becomes:

n = ω
(η
m

log λ
)

Compared to the previous condition, the number of primes n in CLT13 can therefore be divided
by a factor m, for the same level of security, where m is the matrix dimension. This implies that

4

the encoding size γ can also be divided by a factor m, which provides a significant improvement in
efficiency.

Third contribution: GCD attacks against the Vector Approximate-GCD problem. The
naive GCD attack against the Approximate-GCD problem with c1 = q1 ·p+r1 and x0 = q0 ·p consists
in computing gcd(c1 − r1, x0) for all possible r1 and has complexity O(2ρ), where ρ is the bitsize of
r1. At Eurocrypt 2012, Chen and Nguyen [CN12] described an improved attack based on multipoint
polynomial evaluation, with complexity Õ(2ρ/2). The Chen-Nguyen attack was later extended by
Lee and Seo at Crypto 2014 [LS14], when the ci’s are multiplicatively masked by a random secret
z modulo x0, as it is the case in the CLT13 scheme; their attack has the same complexity Õ(2ρ/2).

As previously, when working with matrix branching programs and Kilian’s randomization on the
encoding side, we must consider the vector variant of the Approximate-GCD problem. Our third
contribution is to extend the Lee-Seo attack to this vector variant, and we obtain a complexity
Õ(2m·ρ/2) instead of Õ(2ρ/2), where m is the vector dimension. Assuming that this is the best
possible attack, one can therefore divide the noise size ρ by a factor m. Similarly, when Kilian’s
randomization is applied to a m×m matrix, we show that the attack complexity becomes Õ(2m

2·ρ/2),
and therefore the noise size ρ used to encode those matrices in CLT13 can be divided by m2.

In Section 7, we show that by combining with the previous improvement and with some addi-
tional optimizations, the encoding size γ can be divided by a factor m3. Even for moderate values
of m, this improves the efficiency of the constructions by several orders of magnitude.

Fourth contribution: non-interactive DH key exchange from multilinear maps. In prin-
ciple the most straightforward application of multilinear maps is non-interactive multipartite Diffie-
Hellman (DH) key exchange with N users, a natural generalization of the DH protocol for 3 users
based on the bilinear pairing. This was originally described for GGH13, CLT13 and GGH15, but
was quickly broken for the three families of multilinear maps; in particular, key exchange based on
CLT13 was broken by the Cheon et al. attack [CHL+15]. The main question is therefore:

Can we construct a practical N -way non-interactive key-exchange protocol from multilinear maps?

In this paper we provide a first step in that direction. Namely our fourth contribution is to
describe the first implementation of DH key exchange based on CLT13 that is resistant against the
Cheon et al. attack and its variants. Our construction contains many ingredients from the GGHRSW
construction and its variants. Namely we express the session key as the result of a matrix product
computation, and we embed the matrices into larger randomized matrices before encoding, together
with some special “bookend” components at the start and end of the computation, as in [GGH+13b].
We use the “multiplicative bundling” technique from [GGH+13b] to prevent the adversary from
combining the matrices in arbitrary ways. We also use the straddling set systems from [BGK+14] to
further constrain the attacker. We use Kilian’s randomization on the encoding side, but as opposed
to [GGH+13b] we don’t use Kilian’s randomization at the plaintext level, in order to apply further
optimizations (see Section 7). Finally, we use k repetitions in order to prevent the Cheon et al. attack
against CLT13, when considering input partitioning attacks as in [CGH+15], and its extension with
the tensoring attack [CLLT17]. We argue that the extended Cheon et al. attack has complexity
Ω(m2k−1) in our scheme, where m is the matrix dimension and k the number of repetitions.

For N = 4 users and a medium (62 bits) level of security, our implementation requires 18 GB
of public parameters, and a few minutes for the derivation of a shared key. We note that without
Kilian’s randomization of encodings our construction would be completely unpractical, as it would
require more than 100 TB of public parameters.

Related work. In [MZ18], Ma and Zhandry described a multilinear map scheme built on top of
CLT13 that is provably resistant against zeroizing attack, and which can be used to directly construct

5

a non-interactive DH key-exchange. More precisely, the authors develop a new weak multilinear map
model for CLT13 to capture all known attack strategies against CLT13. The authors then construct
a new multilinear map scheme on top of CLT13 that is secure in this model. The construction is
based on multiplying matrices of CLT13 encodings as in iO schemes. To prevent zeroizing attacks,
the same input is read multiple times, as in iO constructions. The input consistency is ensured
by a clever use of “enforcing” matrices based on some permutation invariant property. Finally,
the authors construct a non-interactive DH key-exchange scheme based on their new multilinear
map scheme. However, the authors do not provide implementation results nor concrete parameters
(except for multilinear map degree and number of public encodings), so it is difficult to assess the
practicality of their construction. The authors still provide the following parameters for a 4-party
DH key exchange with 80 bits of security; see Table 1. We provide our corresponding parameters
for comparison (see more details in Section 7).

Scheme MMap degree Public encodings Public-key size

Boneh et al. [BISW17] 4150 244

Ma-Zhandry (setting 1) 52 262

Ma-Zhandry (setting 2) 160 233

Ma-Zhandry (setting 3) 1040 219

Ma-Zhandry (setting 4) 2000 214

Our construction (setting 1) 232 223 217 GB

Our construction (setting 2) 384 219 514 GB

Table 1. Comparison of parameters for 4-party DH key exchange, with 80 bits of security.

The main advantage of the Ma-Zhandry construction is that it has a proof of security in a
weak multilinear map model, whereas our construction has heuristic security only. It seems from
Table 1 that our construction would require a smaller multilinear map degree for the same number
of public encodings. We stress however that providing concrete parameters is actually a complex
optimization problem (see Section 7), so Table 1 should be handled with care. In any case, the
Ma-Zhandry construction can certainly benefit from our analysis, since Kilian’s randomization on
the encoding side can also be applied “for free” in their construction.

2 Preliminaries

We denote by [a]n or a mod n the unique integer x ∈ (−n
2 ,

n
2] which is congruent to a modulo n.

The set {1, 2, . . . , n} is denoted by [n].

2.1 The CLT13 multilinear map

We briefly recall the (asymmetric) CLT13 multilinear map scheme; we refer to [CLT13] for a full
description. For large secret primes pi’s, let x0 =

∏n
k=1 pi, where n is the number of primes. We

denote by η the bitsize of the pi’s, and by γ the bitsize of x0; therefore γ ' n · η. The plaintext
space of CLT13 is Zg1 × Zg2 × · · · × Zgn for secret prime integers gi’s of α bits.

The CLT13 scheme is based on CRT representations. We denote by CRT(a1, . . . , an) or CRT(ai)i
the number a ∈ Zx0 such that a ≡ ai (mod pi) for all i ∈ [n]. An encoding of a vector m =
(m1, . . . ,mn) at level set S = {j} is an integer c ∈ Zx0 such that c = [CRT(m1 + g1r1, . . . ,mn +
gnrn)/zj]x0 for integers ri of size ρ bits, where zj is a secret mask in Zx0 uniformly chosen during
the parameters generation procedure of the multilinear map. This gives:

c ≡ mi + giri
zj

(mod pi)

6

for all 1 ≤ i ≤ n. To support a `-level multilinearity, one uses ` distinct zj ’s.
It is clear that encodings from the same level can be added via addition modulo x0. Similarly

multiplication between encodings can be done by modular multiplication in Zx0 , but the encodings
must be of disjoint level sets; the resulting encoding level set is then the union of the input level
sets. At the top level set S = {1, . . . , `}, one can zero-test an encoding by multiplication with the
zero-test parameter

pzt =

∏̀
j=1

zj

 · CRT(p∗ihig
−1
i)i mod x0,

where p∗i = x0/pi and the hi’s are random β-bit integers. Namely given a top-level encoding c with

c =
CRT (mi + giri)i∏`

j=1 zj
mod x0,

we obtain after multiplication by pzt:

c · pzt = CRT(hip
∗
i (mig

−1
i + ri))i =

n∑
i=1

hip
∗
i (mig

−1
i + ri) (mod x0) (4)

and therefore if mi = 0 for all 1 ≤ i ≤ n then the result will be small compared to x0. From the
previous equation the high-order bits of c · pzt mod x0 only depend on the mi’s; therefore from the
zero-testing procedure one can extract a value that only depends on the mi’s.

2.2 The Approximate-GCD Problem and its Variant

The security of the CLT13 multilinear map scheme is based on the Approximate-GCD problem. For
a specific η-bit prime integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) =
{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r

}
We also consider a noise-free x0 = q0 ·p where q0 is a random (γ−η)-bit prime integer (alternatively
the product of γ/η − 1 primes of size η bits each).

Definition 1 (Approximate-GCD problem with noise-free x0). For a random η-bit prime
integer p, given x0 = q0 · p and polynomially many samples from Dγ,ρ(p), output p.

We also consider the following variant, in which instead of being given elements from Dγ,ρ(p),
we get vectors of elements multiplied by a secret random invertible matrix K modulo x0.

Definition 2 (Vector Approximate-GCD problem with noise-free x0). For a random η-bit
prime integer p, generate x0 = q0 · p and a random invertible m ×m matrix K modulo x0. Given
x0 and polynomially many samples ṽ = v ·K mod x0 where v ← (Dγ,ρ(p))m, output p.

The vector variant of the Approximate-GCD problem cannot be easier than the original problem,
since any algorithm solving the vector variant can be used to solve the Approximate-GCD problem,
simply by generating vectors ṽ = v ·K (mod x0) for some random matrix K. However, the vector
variant could be harder to solve, so that smaller parameters could be used when dealing with the
Vector Approximate-GCD problem. We show in the next section that this is indeed the case.

In the context of the CLT13 scheme, one actually works with multiple primes pi’s. Therefore we
consider the multi-prime variant of the Approximate-GCD problem.

Definition 3 (Multi-prime Approximate-GCD problem). For n random η-bit prime integers
pi, let x0 =

∏n
i=1 pi. Given x0 and polynomially many integers cj = CRT(rij)i where rij ← Z ∩

(−2ρ, 2ρ), output the primes pi.

7

Finally, we consider the vector variant of the multi-prime Approximate-GCD problem.

Definition 4 (Vector multi-prime Approximate-GCD problem). For n random η-bit prime
integers pi, let x0 =

∏n
i=1 pi. Let K be a random invertible m×m matrix modulo x0. Given x0 and

polynomially many vectors ṽ = v ·K mod x0, where v = (v1, . . . , vm) and vj = CRT(rij)i where
rij ← Z ∩ (−2ρ, 2ρ), output the primes pi.

The two main approaches for solving the Approximate-GCD problem are the orthogonal lattice
attacks and the GCD attacks. We consider the orthogonal lattice attacks in Section 3, and the GCD
attacks in Section 4.

3 Lattice attack against the Approximate-GCD Problem

We first recall the lattice attack against the single-prime Approximate-GCD problem [DGHV10,
§B.1], based on the Nguyen-Stern orthogonal lattice attack [NS01]. As mentioned in introduction,
extending the attack to the multi-prime case is actually not straightforward; in particular, we argue
that the approach described in [CLT13] is incomplete and does not recover the primes pi’s, except for
small values of n. Therefore, we describe a new algorithm for solving the multi-prime Approximate-
GCD problem, using a variant of the Cheon et al. attack against CLT13. We then extend the
algorithm to the vector variant of the Approximate-GCD problem, and we provide a more detailed
analysis of the lattice reduction step, in order to derive concrete parameters.

3.1 The orthogonal lattice

We first recall the definition of the orthogonal lattice, following [NS97]. Let L be a lattice in Zm.
The orthogonal lattice L⊥ is defined as the set of elements in Zm which are orthogonal to all the
lattice points of L, for the usual dot product. We define the lattice L̄ = (L⊥)⊥; it is the intersection
of Zm with the Q-vector space generated by L; we have that L ⊂ L̄ and the determinant of L̄ divides
the determinant of L. We have that dim(L) + dim(L⊥) = m and det(L⊥) = det(L̄).

From Minkowski’s bound, we expect that a reduced basis of a “random” lattice L has vectors of
norm ' (detL)1/dimL. For a “random” lattice L, we also expect that det(L) ' det(L̄) = det(L⊥).
Moreover, for a lattice L generated by a set of d “random” vectors bi ∈ Zm, from Hadamard
inequality we expect that detL '

∏d
i=1 ‖bi‖. In that case, we therefore expect the short vectors of

L⊥ to have norm ' (detL⊥)1/(m−d) ' (detL)1/(m−d) ' (
∏d
i=1 ‖bi‖)1/(m−d).

3.2 The classical orthogonal lattice attack against the single-prime
Approximate-GCD problem

In this section we recall the lattice attack against the Approximate-GCD problem, based on the
Nguyen-Stern orthogonal lattice attack [NS01]; see also the analysis in [DGHV10, §B.1]. We consider
a set of t integers xi = p · qi + ri and x0 = p · q0, for ri ∈ (−2ρ, 2ρ) ∩ Z. We consider the lattice L of
vectors u that are orthogonal to x modulo x0, where x = (x1, . . . , xt):

L = {u ∈ Zt | u · x ≡ 0 (mod x0) }

The lattice L is of full rank t since it contains x0Zt. Moreover, we have

detL = x0/ gcd(x0, x1, . . . , xt) = x0.

Therefore, applying lattice reduction should yield a reduced basis (u1, . . . ,ut) with vectors of length

‖uk‖ ≤ 2ιt · (detL)1/t ≈ 2ιt+γ/t (5)

8

where γ is the size of x0, for some constant ι > 0 depending on the lattice reduction algorithm,
where 2ιt is the Hermite factor.

Now given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that u · r ≡ 0 (mod p)
where r = (r1, . . . , rt). The main observation is that if u is short enough, the equality will hold
over Z. More precisely, if ‖u‖ · ‖r‖ < p, we get u · r = 0 in Z. From (5), this happens under the
condition:

2ιt+γ/t · 2ρ < 2η. (6)

In that case, the vectors (u1, . . . ,ut−1) from the previous lattice reduction step should be orthogonal
to the vector r. One can therefore recover ±r by computing the rank 1 lattice orthogonal to those
vectors. From r one can recover p by computing p = gcd(x0, x1 − r1).

Asymptotic complexity. From condition (6) the attack requires t > γ/η; therefore from the same
condition we must have

ι < η2/γ.

Achieving an Hermite factor of 2ιt heuristically requires 2Ω(1/ι) time, by using BKZ reduction with
block-size β = ω(1/ι) [HPS11]. Therefore, the orthogonal lattice attack has time complexity 2Ω(γ/η2).

3.3 Lattice attack against multi-prime Approximate GCD

We consider the setting of CLT13, that is we are given a modulus x0 =
∏n
i=1 pi and a set of integers

xj ∈ Zx0 such that

xj mod pi = rij

for rij ∈ (−2ρ, 2ρ) ∩ Z, and the goal is to recover the secret primes pi.

First step: orthogonal lattice attack. As previously we consider the integer vector x formed by
the first t integers xj , and we consider the lattice L of vectors u that are orthogonal to x modulo
x0:

L = {u ∈ Zt | u · x ≡ 0 (mod x0) }

Note that the lattice L is of full rank t since it contains x0Zt. For 1 ≤ i ≤ n, let ri = x mod pi.
For any u ∈ Zt, if u · ri = 0 in Z for all 1 ≤ i ≤ n, then u · x ≡ 0 (mod x0). Therefore,
denoting by Lri the lattice generated by the vectors ri, the lattice L contains the sublattice L⊥ri
of the vectors orthogonal in Z to the n vectors ri’s. Assuming that the n vectors ri’s are linearly
independent, we have dimL⊥ri = t−n, and we expect a reduced basis of L⊥ri to have vectors of norm

(
∏n
i=1 ‖ri‖)1/(t−n) ' 2ρ·n/(t−n).

Given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that u · ri ≡ 0 (mod pi) for
all 1 ≤ i ≤ n. As previously, if u is short enough, the equalities will hold over Z. More precisely, if
‖u‖ · ‖ri‖ < pi for all 1 ≤ i ≤ n, we get u · ri = 0 in Z for all i; therefore we must have u ∈ L⊥ri
under the condition ‖u‖ < (min pi)/(max ‖ri‖) ' 2η−ρ. Hence, when applying lattice reduction to
the lattice L, we expect to recover the vectors from the sublattice L⊥ri if there is a gap at least 2ι·t

between the short vectors in L⊥ri and the other vectors in L \ L⊥ri , where 2ι·t is the Hermite factor.
Since the vectors in L \ L⊥ri must have norm at least approximately 2η−ρ, this gives the condition:

2ρ·n/(t−n) · 2ιt < 2η−ρ, (7)

In that case, applying lattice reduction to L should yield a reduced basis (u1, . . . , ut) where the
first t−n vectors belong to the sublattice L⊥ri . By computing the rank n lattice orthogonal to those
vectors, one recovers a basis B = (b1, . . . , bn) of the lattice L̄ri = (L⊥ri)

⊥. However this does not
necessarily reveal the original vectors ri. Namely even by applying LLL or BKZ on the basis B,

9

we do not necessarily recover the short vectors ri’s, except possibly in low dimension; therefore the
approach described in [CLT13] only works in low dimension.

However, the main observation is that since each vector bj of the basis B is a linear combination
of the vectors ri, it can play the same role as a zero-tested value in the CLT13 scheme. More
precisely, since the vectors b1, . . . , bn form a basis of L̄ri , we can write for all 1 ≤ j ≤ n:

bj =

n∑
i=1

λjiri

for unknown coefficients λji ∈ Q. The above equation is analogous to Equation (4) on the zero-tested
value c ·pzt, which is a linear combination of the ri’s over Z when all mi’s are zero. Therefore, we can
apply a variant of the Cheon et al. attack to recover the primes pi’s, by computing the eigenvalues
of a well chosen matrix. Since we have n vectors bj instead of a single pzt value, we only need to
work with equations of degree 2 in the xj ’s, instead of degree 3 as in [CHL+15].

Second step: algebraic attack. The second step of the attack is similar to the Cheon al. attack.
Recall that we receive as input x0 =

∏n
i=1 pi and a set of integers xj ∈ Zx0 such that xj mod pi = rij

for rij ∈ (−2ρ, 2ρ) ∩ Z. Since we must work with an equation of degree 2 in the inputs, we consider
an additional integer y ∈ Zx0 with y mod pi = si with si ∈ (−2ρ, 2ρ) ∩ Z for all 1 ≤ i ≤ n.

We define the column vector x =
[
x1 . . . xn

]T
. Instead of running the orthogonal lattice attack

with x, we run the orthogonal lattice attack from the previous step with the column vector z of
dimension t = 2n defined as follows:

z =

[
x
y · x

]
Letting ri = x mod pi, this gives the column vectors for 1 ≤ i ≤ n:

z mod pi =

[
ri

si · ri

]
We denote by Z the 2n× n matrix of column vectors z mod pi:

Z =

[
r1 · · · rn

s1 · r1 · · · sn · rn

]
=

[
R

R ·U

]
where R is the n× n matrix of column vectors ri, and U := diag(s1, . . . , sn).

By applying the orthogonal lattice attack of the first step on the vector z, we obtain a basis of
the lattice intersection of Z2n with the Q-vector space generated by the n vectors z mod pi, which
corresponds to the columns of the matrix Z. Therefore we obtain two matrices W0 and W1 such
that:

W0 = R ·A
W1 = R ·U ·A

for some unknown matrix A ∈ Qn×n. Therefore, as in the Cheon et al. attack, we compute the
matrix:

W = W1 ·W0
−1 = R ·U ·R−1

and by computing the eigenvalues of W , one recovers the components si of the diagonal matrix
U , from which we recover the pi’s by taking gcd’s. We provide the source code of the attack in
Appendix E.1.

10

Asymptotic complexity. Since the attack requires t = 2n, condition (7) gives 3ρ/2 + 2ιn < η
which implies the condition

ι <
η

2n
.

Achieving an Hermite factor of 2ιt heuristically requires 2Ω(1/ι) time, by using BKZ reduction
with block-size β = ω(1/ι) [HPS11]. Therefore, the orthogonal lattice attack has time complexity
2Ω(n/η). Note that with γ = η · n, we get the same time complexity 2Ω(γ/η2) as for the single-prime
Approximate-GCD problem. In summary, as shown in [CLT13], to prevent the orthogonal lattice
attack, one must take:

n = ω(η log λ) (8)

3.4 Lattice attack against the Vector Approximate-GCD Problem

In this section we extend the previous orthogonal lattice attack to the vector variant of the Approxi-
mate-GCD problem with multiple primes pi’s. We still consider a modulus x0 =

∏n
i=1 pi, but instead

of scalar values xj , we consider row vectors vj , each with m components (vj)k, such that:

(vj)k = rijk (mod pi)

for all components 1 ≤ k ≤ m and all 1 ≤ i ≤ n, where rijk ∈ (−2ρ, 2ρ) ∩ Z. We consider the t×m
matrix V of row vectors vj . We don’t publish the matrix V directly; instead we first generate a
random secret m×m invertible matrix K modulo x0 and publish the t×m matrix:

Ṽ = V ·K (mod x0)

The goal is to recover the primes pi’s as in the previous attack.

First step: orthogonal lattice attack. In our extended attack we consider the lattice L of vectors
u that are orthogonal to all columns of Ṽ modulo x0:

L = {u ∈ Zt | u · Ṽ ≡ 0 (mod x0) }

Since the matrix K is invertible, we obtain:

L = {u ∈ Zt | u · V ≡ 0 (mod x0) } (9)

The lattice L is of full rank t since it contains x0Zt. Let Ri = V mod pi. As previously, the lattice
L contains the sublattice L′ of dimension t−m ·n of the vectors orthogonal in Z to the m ·n column
vectors in Ri for 1 ≤ i ≤ n. We expect a reduced basis of L′ to have vectors of norm ' 2ρ·m·n/(t−m·n).
Therefore, applying lattice reduction to L should yield a reduced basis (u1, . . . ,ut) where the first
t−m · n vectors belong to the sublattice L′, under the modified condition:

2ιt+ρ·m·n/(t−m·n) < 2η−ρ (10)

As previously, by computing the rank n ·m lattice orthogonal to the vectors (u1, . . . ,ut−m·n), we
obtain a basis of the lattice intersection of Zt with the Q-vector space generated by the column
vectors of the Ri’s.

11

Second step: algebraic attack. Actually, we cannot solve the original multi-prime vector Approxi-
mate-GCD problem directly, since the algebraic step of the attack requires degree 2 equations in
the inputs. Instead, we assume that we can additionally obtain the two m×m matrices:

C̃0 = K−1 ·C0 ·K′ (mod x0)

C̃1 = K−1 ·C1 ·K′ (mod x0)

for some random invertible matrix K′ modulo x0, where the components of the matrices C0,C1 ∈
Zm×mx0 are small modulo each pi. This assumption is verified in our construction of Section 5.

Therefore, considering the original t×m matrix Ṽ and using t = nm rows:

Ṽ = V ·K (mod x0)

we can obtain the two nm×m matrices:

D̃0 = Ṽ · C̃0 = V ·C0 ·K′ = D0 ·K′ (mod x0)

D̃1 = Ṽ · C̃1 = V ·C1 ·K′ = D1 ·K′ (mod x0)

where D0 = V ·C0 and D1 = V ·C1.
Instead of applying the lattice attack with Ṽ , we apply the lattice attack of the first step to the

2nm×m matrix D̃ =

[
D̃0

D̃1

]
, with t = 2nm rows. Since D̃ = D ·K′ where D =

[
D0

D1

]
, this is the

same as applying the lattice attack against the matrix D. As previously, for all 1 ≤ i ≤ n we let
Ri = V mod pi, and we let S0,i = C0 mod pi and S1,i = C1 mod pi. This gives:

D mod pi =

[
V ·C0 mod pi
V ·C1 mod pi

]
=

[
Ri · S0,i

Ri · S1,i

]
We denote by E the 2nm × nm matrix obtained by concatenating the columns of D mod pi for
1 ≤ i ≤ n. Similarly we denote by R the nm×nm matrix obtained by concatenating the columns of
the matrices Ri. We denote by Ŝ0 the nm× nm block-diagonal matrix Ŝ0 = diag(S0,1, . . . ,S0,n),
and similarly Ŝ1 = diag(S1,1, . . . ,S1,n). We can write:

E =

[
R1 · S0,1 · · · Rn · S0,n

R1 · S1,1 · · · Rn · S1,n

]
=

[
R · Ŝ0

R · Ŝ1

]
By applying the orthogonal lattice attack of the first step on the matrix D̃, we obtain as

previously a basis of the lattice intersection of Z2nm with the Q-vector space generated by the nm
columns of the matrices D mod pi, which corresponds to the columns of the matrix E. Therefore
as previously we obtain two matrices W0 and W1 such that:

W0 = R · Ŝ0 ·A
W1 = R · Ŝ1 ·A

for some unknown matrix A ∈ Qnm×nm. Therefore we can compute the matrix:

W = W1 ·W0
−1 = R · Ŝ1 · Ŝ0

−1R−1

The characteristic polynomial f(X) of W is therefore the same as the characteristic polynomial
of Ŝ1 · Ŝ0

−1 which is the product of the n characteristic polynomials fi(X) of the matrices S1,i ·
S0,i

−1. By the Cayley-Hamilton theorem, we must have fi(S1,i ·S0,i
−1) = 0 for all i, which implies

fi(C1 · C0
−1) = 0 (mod pi), which also implies fi(C̃1 · C̃0

−1) = 0 (mod pi) for all 1 ≤ i ≤ n.
Therefore, if the polynomials fi(X) are irreducible, they can be recovered by computing f(X) and

12

factoring f(X) into irreducible polynomials; then each prime pi can be recovered by computing the
gcd of the entries of Mi = fi(C̃1 · C̃0

−1) mod x0 with x0. We provide the source code of the attack
in Appendix E.2.

Alternatively, if the polynomials fi(X) are not irreducible, one can still factor f(X) into monic
irreducible factors f ′1, . . . , f

′
N ∈ Q[X]. Then for k ∈ [N], the attacker defines Fk := f/f ′k ∈ Q[X]

and Gk = Fk · dk ∈ Z[X], where dk is the common denominator of Fk’s coefficients. Since in Fk
we have removed one irreducible factor from f , by the Cayley-Hamilton theorem we have that
Gk(C̃1 · C̃0

−1) = 0 modulo all primes except one, and therefore the remaining prime pi can be
recovered by computing the gcd of the entries of Mk = Gk(C̃1 · C̃0

−1) mod x0 with x0.

Asymptotic complexity. Since the attack requires t = 2mn, condition (10) gives 3ρ/2+2ιmn < η
which gives the new condition

ι <
η

2mn

Therefore, the orthogonal lattice attack has time complexity 2Ω(n·m/η). This implies that to prevent
the orthogonal lattice attack, we must have:

n = ω
(η
m

log λ
)

Compared to the original condition of [CLT13] recalled by (8), the value of n can therefore be
divided by m. This implies that the encoding size γ = η · n can also be divided by m. We show in
Section 7 that this brings a significant improvement in practice.

3.5 Practical complexity of the lattice attack

To derive concrete parameters for our construction from Section 5, we have run some experiments
with LLL and BKZ lattice reduction algorithms applied to a lattice similar to the lattice L of the
previous section. Recall that we have:

L = {u ∈ Zt | u · Ṽ ≡ 0 (mod x0) }

with t = 2nm. We write u = [u1,u2] with u1 ∈ Zt−m and u2 ∈ Zm. Similarly we write Ṽ =

[
A
W

]
where W is a m ×m matrix. With high probability W is invertible modulo x0, otherwise we can
partially factor x0. We obtain

u ∈ L ⇐⇒ u1A + u2W ≡ 0 (mod x0)

⇐⇒ u1AW−1 + u2 ≡ 0 (mod x0)

Therefore, a basis of L is given by the matrix:

L =

[
It−m −AW−1

x0Im

]
For simplicity, we have performed our experiments on a simpler lattice:

L′ =

[
It−m A′

x0Im

]
where the components of A′ are randomly generated modulo x0. We expect to obtain a reduced
basis (u1, . . . ,ut) with vectors of norm:

‖uk‖ ' 2ι·t(detL)1/t ' 2ι·t+m·γ/t

13

where 2ι·t is the Hermite factor, and γ the size of x0. Experimentally, we observed the following
running time (expressed in number of clock cycles) for the LLL lattice reduction algorithm in the
Sage implementation:

TLLL(t, γ,m) ' 2 · t3.3 · γ ·m (11)

The Sage implementation also includes an implementation of BKZ 2.0 [CN11]. Experimentally we
observed the following running-times (in number of clock cycles):

TBKZ(t, β) ' b(β) · t4.3 (12)

where the observed constant b(β) and the Hermite factor are given in Table 2. However we were
not able to obtain experimental results for block-sizes β > 60, so for BKZ-80 and BKZ-100 we used
extrapolated values, assuming that the cost of BKZ sieving with blocksize β is poly(t) · 20.292β+◦(β)
(see [BDGL16]). The Hermite factors for BKZ-80 and BKZ-100 are from [CN11].

LLL BKZ-60 BKZ-80 BKZ-100

(Hermite factor)1/t = 2ι 1.021 1.011 1.01 1.009

Running time parameter b(β) − 103 6 · 104 3 · 106

Table 2. Experimental values of running time and Hermite factor for LLL and BKZ as a function of the blocksize β.
The parameters for β = 80, 100 are extrapolated.

When applying LLL or BKZ with blocksize β on the original lattice L, we obtain an orthogonal
vector u under the condition (10), which gives with t = 2nm:

ι · 2nm+
3ρ

2
< η (13)

Therefore we must run LLL or BKZ-β with a large enough blocksize β so that ι is small enough for
condition (13) to hold. For security parameter λ, we require that

Tlat(t, γ) ≥ 2λ,

with t = 2nm, where the running time (in number of clock cycles) Tlat(t, γ) is given by (11) or (12),
for γ = η · n. We use that condition to provide concrete parameters for our scheme in Section 7.

4 GCD Attacks against the Approximate-GCD Problem and its Variants

4.1 The Naive GCD Attack.

For simplicity we first consider the single prime variant of the Approximate-GCD problem. More
precisely, we consider x0 = q0 · p and an encoding c with

c ≡ r (mod p),

where r is a small integer of size ρ bits. The naive GCD attack, which has complexity O(2ρ), consists
in performing an exhaustive search of r and computing gcd(c− r, x0) to obtain the factor p.

4.2 The Chen-Nguyen Attack

At Eurocrypt 2012, Chen and Nguyen described an improved attack based on multipoint polynomial
evaluation [CN12], with complexity Õ(2ρ/2). One starts from the equation:

p = gcd

(
x0,

2ρ−1∏
i=0

(c− i) (mod x0)

)
(14)

14

The main observation is that the above product modulo x0 can be written as the product of 2ρ/2

evaluations of a single polynomial of degree 2ρ/2. Using a tree structure, it is possible to evaluate a
polynomial of degree 2ρ/2 at 2ρ/2 points in Õ(2ρ/2) time and memory, instead of O(2ρ).

More precisely, one can define the following polynomial f(x) of degree 2ρ/2, with coefficients
modulo x0; we assume for simplicity that ρ is even:

f(x) =
2ρ/2−1∏
i=0

(c− (x+ i)) mod x0

One can then rewrite (14) as the product of 2ρ/2 evaluations of the polynomial f(x):

p = gcd

x0, 2ρ/2−1∏
k=0

f(2ρ/2k) (mod x0)

There are classical algorithms which can evaluate a polynomial f(x) of degree d at d points,

using at most Õ(d) operations in the coefficient ring; see for example [Ber03]. The technique is
as follows. First, one must compute the coefficients of the polynomial f(x); using a product tree,
the product of the d = 2ρ/2 factors can be computed in time Õ(d). Secondly, one must compute
the evaluation of f(x) at d points x1, . . . , xd. This can also be performed in time Õ(d) using a
remainder tree. The basic observation is that the evaluation of f(x) at the first half x1, . . . , xd/2 is
equal to the evaluation of the degree d/2 polynomial fl(x) = f(x) mod (x − x1) · · · (x − xd/2) on
x1, . . . , xd/2. Therefore the evaluation of f(x) can proceed with a recursive algorithm. First compute
the left polynomial fl(x) = f(x) mod (x−x1) · · · (x−xd/2); the computation of (x−x1) · · · (x−xd/2)
can be done in time Õ(d) with a product tree, and the remainder can also be computed in time
Õ(d). Proceed similarly with the right polynomial fr(x) = f(x) mod (x−xd/2+1) · · · (x−xd). Then
recursively evaluate fl(x) and fr(x) on the two halves with d/2 points each. It is easy to see that
the full algorithm has time and memory complexity Õ(d). Therefore, the Chen-Nguyen Attack has
time and memory complexity Õ(2ρ/2)

We provide in Appendix D.1 an implementation of the Chen-Nguyen attack in Sage; our running
time is similar to [CN12, Table 1]. In practice, the running time in number of clock cycles of the
Chen-Nguyen attack with a γ-bit x0 is well approximated by:

TCN (ρ, γ) = 0.3 · ρ2 · 2ρ/2 · γ · log2 γ (15)

4.3 The Lee-Seo Attack

The Chen-Nguyen attack was later extended by Lee and Seo at Crypto 2014 [LS14], when the
encodings are multiplicatively masked by a random secret z modulo x0, as it is the case in the
CLT13 scheme; their attack has the same complexity Õ(2ρ/2). Namely in the asymmetric CLT13
scheme recalled in Section 2.1, an encoding c at level set {i0} is such that:

c ≡ ri · gi +mi

zi0
(mod pi)

for some random secret zi0 modulo x0. Therefore, we consider the following variant of the Approxima-
te-GCD problem. Instead of being given encodings ci with ci ≡ ri (mod p) for small ri’s, we are
given encodings ci with:

ci ≡ ri · z (mod p)

for some random integer z modulo x0, where the ri’s are still ρ-bit integers. Since c1/c2 ≡ r1/r2
(mod p), the naive GCD attack consists in guessing r1 and r2 and computing p = gcd(c1/c2 −
r1/r2 mod x0, x0), with complexity O(22ρ).

15

The Lee-Seo attack with complexity Õ(2ρ/2) is as follows. First, one generates two lists L1 and
L2 of such encodings, and we look for a collision modulo p between those two lists; such collision
will appear with good probability when the size of the two lists is at least 2ρ/2. More precisely, let
ci be the elements of L1 and dj be the elements of L2, with ci ≡ ri · z (mod p) and dj = sj · z
(mod p). If ri = sj for some pair (i, j), then ci ≡ dj (mod p) and therefore:

p = gcd

∏
i,j

(ci − dj) mod x0, x0

where the product is over all ci ∈ L1 and dj ∈ L2. A naive computation of this product would take
time |L1| · |L2| = 2ρ; however, as in the Chen-Nguyen attack, this product can be computed in time
and memory Õ(2ρ/2). Namely one can define the polynomial

f(x) =
∏
i

(ci − x) mod x0

of degree |L1| = 2ρ/2 and the previous equation can be rewritten:

p = gcd

∏
j

f(dj) mod x0, x0

This corresponds to the multipoint evaluation of the degree 2ρ/2 polynomial f(x) at the 2ρ/2 points
of the list L2; therefore, this can be computed in time and memory Õ(2ρ/2).

As observed in [LS14], if only a small set of elements ci is available (much less than 2ρ/2), one
can still generate exponentially more ci’s by using small linear integer combinations of the original
ci’s, and the above attack still applies, with only a slight increase in the noise ρ. We provide in
Appendix D.2 an implementation of the Lee-Seo attack in Sage. Its running time is the same as
Chen-Nguyen, except that the attack is probabilistic only; its success probability can be increased
by taking slightly larger lists L1 and L2 to improve the collision probability.

4.4 GCD Attack against the Vector Approximate GCD Problem

We now consider the Vector Approximate-GCD problem (Definition 2). We consider a set of row
vectors vi of dimension m, such that for each vector vi, all components (vi)j of vi are small modulo
p:

(vi)j = rij (mod p)

However, we only obtain the randomized vectors:

ṽi = vi ·K (mod x0)

for some random invertible matrix K modulo x0. The goal is still to recover the prime p.
Our attack is similar to the Lee-Seo attack recalled previously. We only consider the first com-

ponent ci = (ṽi)1 of each vector ṽi. We have:

ci = (ṽi)1 =
m∑
j=1

(vi)j ·Kj1 =
m∑
j=1

rij ·Kj1 (mod p)

We build the two lists L1 and L2 from the ci’s as in the Lee-Seo attack. Since each ci is a linear
combination of m randoms rij , it has m · ρ bits of entropy modulo p, instead of ρ in the Lee-Seo
attack. Therefore a collision between the two lists will occur with good probability when the lists
have size at least 2m·ρ/2. This implies that the attack has time and memory complexity Õ(2m·ρ/2).

16

Note that the entropy of each ci modulo p is actually upper-bounded by the bitsize η of p. If m·ρ > η,
the attack complexity becomes Õ(2η/2), which corresponds to the complexity of the Pollard’s rho
factoring algorithm. We provide in Appendix D.3 an implementation of the attack in Sage.

With an attack complexity Õ(2mρ/2) instead of Õ(2ρ/2), one can therefore divide the size of
the noise ρ by a factor m compared to the original CLT13, which is a significant improvement. For
example, it is recommended in [CLT13] to take ρ = 89 bits for λ = 80 bits of security; with a vector
dimension m = 10, one can now take ρ = 9 for the same level of security.

With matrices. The previous GCD attack can be generalized to m ×m matrices Vi instead of
m-dimensional vectors vi. More precisely, we consider a set of matrices Vi of dimension m×m with
small components modulo p, that is:

(Vi)jk = rijk (mod p) (16)

for ρ-bit integers rijk. As previously, instead of publishing the matrices Vi, we publish the random-
ized matrices

Ṽi = K · Vi ·K′ (mod x0) (17)

for two random invertible m×m matrices K and K′ modulo x0. In that case, each component of
Ṽi depends on the m2 elements of the matrix Vi. This implies that the entropy of each component
of Ṽi is now m2 · ρ and therefore the GCD attack has complexity Õ(2m

2·ρ/2).
Formally, using the Kronecker product (see Appendix A), we can rewrite (17) as

vec (Ṽi) = (K′T ⊗K) vec (Vi),

where vec (Vi) denotes the column vector of dimension m2 formed by stacking the columns of Vi

on top of one another, and similarly for vec (Ṽi). We can therefore apply the previous attack with
vectors of dimension m2 instead of m; the attack complexity is therefore Õ(2m

2·ρ/2). This implies
that we can divide the noise size ρ by a factor m2 compared to [CLT13], where m is the matrix
dimension.

With discrete Gaussian distribution. Since for matrices the noise size ρ can be divided by a
large factor m2, it can be more convenient to use a different distribution for the noise rijk in (16).
For our construction in Section 5, instead of the uniform distribution, we use the discrete Gaussian
distribution on Z with mean 0 and parameter σ, denoted Dσ. We let E be the random variable on
Z such that for x ∈ Z,

Pr[E = x] =
1

S
e−x

2/(2σ2),

where S =
∑∞

k=−∞ e
−k2/(2σ2). Let hσ be the entropy of the distribution Dσ. When using Dσ to

generate the integers rijk instead of the uniform distribution in [0, 2ρ), the entropy of each component

of Ṽi is now m2 · hσ instead of m2ρ, and the attack complexity is therefore Õ(2m
2·hσ/2). Since the

attack is based on the same multipoint polynomial evaluation as in the Chen-Nguyen attack, its
running time can be approximated by TCN (ρ, γ) from (15), with ρ = m2hσ.

With multiple primes pi’s. Instead of considering an encoding c that is small modulo a single
prime p, we consider as in CLT13 a modulus x0 =

∏n
i=1 pi and an integer c ∈ Zx0 such that

c mod pi = ri

for ρ-bit integers ri. With good probability, we have |ri| ≤ 2ρ/n for some i but not all i, and
Equation (14) from the Chen-Nguyen attack can be rewritten:

pi| gcd

x0, b2ρ/nc∏
j=0

(c− j) (mod x0)

17

where the gcd is not equal to x0; therefore a sub-product of the pi’s is revealed. Since the number
of terms in the product is divided by n, the complexity of the Chen-Nguyen attack for recovering
a single pi (or a sub-product of the pi’s) is divided by

√
n. By repeating the same attack n times

in different intervals of the ri’s, one can recover all the pi’s; the running time of the Chen-Nguyen
attack is then increased by a factor

√
n.

Similarly, in the Lee-Seo attack with multiple primes pi’s, the collision probability for recovering
a single pi is multiplied by n, and therefore the attack complexity is divided by

√
n for recovering

a single pi. The same applies to our variant attack against the Vector Approximate GCD problem
and to the matrix variant. In the later case, the running time of the attack in number of clock cycles
can therefore be approximated by

TGCD(m, γ, hσ, n) = TCN (ρ, γ)/
√
n (18)

with ρ = m2hσ. We will use that approximation to provide concrete parameters for our scheme in
Section 7.

5 Our Construction

In this section we describe our construction of a non-interactive multipartite Diffie-Hellman key
exchange scheme based on the CLT13 multilinear maps. We first recall the definition of such a
scheme.

5.1 Non-interactive Multipartite Diffie-Hellman Key Exchange

A multipartite key exchange protocol aims to derive a shared value between N parties. This is
achieved via a procedure in which the parties broadcast some values and then use some secret
information together with the values broadcasted by the other parties to set up the shared key. In
a non-interactive protocol, the parties broadcast their public values only once and at the same time
(or equivalently, the values broadcasted by each party do not depend on the values broadcasted by
the others). Following the notation of [BS03], such protocol can be described with three randomized
probabilistic polynomial-time algorithms as follows.

– Setup(1λ, N): This algorithm runs in polynomial time in the security parameter λ ∈ N and in
the number of parties N , and outputs the public parameters params.

– Publish(params, u): Given a party u ∈ [N], this algorithm generates a pair of keys (sku, pku).
Party u broadcasts pku and keeps sku secret.

– KeyGen(params, v, skv, {pku}u6=v): Party v ∈ [N] uses its secret skv and all the values pku broad-
casted by other parties to generate a session key sv.

We say that the protocol is correct if s = s1 = s2 = · · · = sN , i.e., if all the parties share the same
value at the end. We say that the protocol is secure if no probabilistic polynomial-time adversary
can distinguish the shared value s from a random string given the public parameters params and
the broadcasted values pk1, . . . , pkN .

5.2 Our Construction

We describe ourN -party one-round key exchange protocol. We start with the Setup procedure, which
is run a single time to generate the public parameters. As illustrated in Table 3, Setup generates

for each party v two sequences of matrices (C
(v)
i,b)i=1,...,` for b ∈ {0, 1}. In the KeyGen procedure,

each party v will use the product of the matrices C
(v)
i,b on his row v to generate the session-key.

The product is computed according to the secret-key skv of Party v and the secret-keys sku of the

18

Party 1
C

(1)
1,0 C

(1)
2,0 . . . C

(1)
`,0

C
(1)
1,1 C

(1)
2,1 . . . C

(1)
`,1

Party 2
C

(2)
1,0 C

(2)
2,0 . . . C

(2)
`,0

C
(2)
1,1 C

(2)
2,1 . . . C

(2)
`,1

Party 3
C

(3)
1,0 C

(3)
2,0 . . . C

(3)
`,0

C
(3)
1,1 C

(3)
2,1 . . . C

(3)
`,1

Table 3. Public matrices for N = 3 generated during the Setup procedure.

other parties. Therefore, in the Publish procedure, each party u will compute and publish the partial
sub-products corresponding to his sku on the other rows v 6= u, to be used by each party v on his
row v.

Setup(1λ, N): given a security parameter λ and the number of participants N , we set the length
µ of each parties’ secret, the number of repetitions k, and the dimension m of the matrices, with
m ≡ 0 (mod 3). We then instantiate the CLT13 multilinear map with degree of multilinearity `+ 2
with ` := µNk. Let g =

∏n
i=1 gi be the integer defining the message space Zg. Let ν be the number

of high-order bits that can be extracted from a zero-tested value.

To ensure that all users 1 ≤ u ≤ N compute the same session-key, we define A
(u)
i,b as a larger

matrix embedding a matrix Bi,b that is the same for all users, with some random block padding in

the diagonal and the multiplicative bundling scalars α
(u)
i,b to prevent the adversary from switching

the corresponding bits bi’s between the k repetitions of the secret keys:

A
(u)
i,b ∼

$. . . $
...

. . .
...

$. . . $
$. . . $
...

. . .
...

$. . . $

α
(u)
i,b ·Bi,b

(19)

More precisely, we first sample 2` random invertible matrices Bi,b in Zm′×m′
g where m′ = m/3,

for 1 ≤ i ≤ ` and b ∈ {0, 1}. For each u ∈ [N], we additionally sample 2` scalars α
(u)
i,b in Z?g and 4`

random invertible matrices S
(u)
i,b and T

(u)
i,b in Zm′×m′

g , for 1 ≤ i ≤ ` and b ∈ {0, 1}. As illustrated in
(19), we let

A
(u)
i,b := diag(S

(u)
i,b , T

(u)
i,b , α

(u)
i,b ·Bi,b) (20)

The scalars α
(u)
i,b must satisfy the following condition:

∀u, v ∈ [N],∀i ∈ [Nµ],∀b ∈ {0, 1},
k−1∏
j=0

α
(u)
j·N ·µ+i−1,b =

k−1∏
j=0

α
(v)
j·N ·µ+i−1,b (mod g)

In addition, we sample the vectors s∗, t∗ uniformly from Zm′
g , and for each u ∈ [N] we define a left

bookend vector
s(u) := (0, . . . , 0, $, . . . , $, s∗) ∈ Zmg

where the block of 0’s and the block of randoms have the same length m′ = m/3 as s∗, and similarly
a right bookend vector t(u) := ($, . . . , $, 0, . . . , 0, t∗) ∈ Zmg .

19

We let Ã
(u)
i,b ∈ Zm×mx0 be the matrix obtained by encoding each entry of A

(u)
i,b independently.

Similarly we encode s(u) and t(u) entry-wise, obtaining s̃(u) and t̃(u). For each u ∈ [N], we sample

uniformly random invertible matrices K
(u)
i ∈ Zm×mx0 for 0 ≤ i ≤ `. We then use Kilian’s randomiza-

tion “on the encoding side” and define:

C
(u)
i,b := K

(u)
i−1Ã

(u)
i,b

(
K

(u)
i

)−1
(mod x0)

Similarly, we define s̄(u) := s̃(u)
(
K

(u)
0

)−1
(mod x0) and t̄(u) := K

(u)
` t̃(u)pzt (mod x0). Finally we

output params, which is defined as the set containing all the matrices C
(u)
i,b , the bookend vectors

s̄(u) and t̄(u), and the scalars µ, k,N, `, x0, ν and m.

Publish(params, u): Party u samples a bit string sk(u) ∈ {0, 1}µ and for each v ∈ [N] such that u 6= v,
Party u computes k products using matrices from the row of party v. This ensures that from the
extraction procedure of the multilinear map scheme, each user u can derive the session key from
his own sk(u) by computing on his row u the partial products corresponding to his sk(u), combined
with the published partial matrix products from the other users. More precisely, Party u computes
and broadcasts the following products:

D(u→v)
r :=

µ−1∏
i=0

C
(v)

(r−1)Nµ+(u−1)µ+i,sk(u)[i]
(mod x0) (21)

for each v 6= u and r ∈ [k]. The notation u → v stands for “computed by u to be used by v”. We

let pku = {D(u→v)
r : v ∈ [N], v 6= u, r ∈ [k]}.

KeyGen(params, v, sk(v), {pku}u6=v): Using secret sk(v), party v computes the products D
(v→v)
r for all

r ∈ [k] using (21), and then the product

z(v) := s̄(v)

(
k∏
r=1

(
N∏
u=1

D(u→v)
r

))
t̄(v) (mod x0). (22)

Eventually the shared key is obtained by applying a strong randomness extractor to the ν most-
significant bits of z(v). This terminates the description of our construction.

Correctness. It is easy to verify the correctness of our construction. Namely defining sk as the
concatenated secret-keys with the k repetitions:

sk = (sk(1), . . . , sk(N)︸ ︷︷ ︸
First repetition

, . . . , sk(1), . . . , sk(N)︸ ︷︷ ︸
k-th repetition

) (23)

we obtain from (21) and (22), and then from the cancellation of Kilian’s randomization on the
encoding side:

z(v) = s̄(v)

(∏̀
i=1

C
(v)
i,sk[i]

)
t̄(v) = s̃(v)

(∏̀
i=1

Ã
(v)
i,sk[i]

)
t̃(v)pzt (mod x0).

This corresponds to a zero-tested encoding of:

vv = s(v) ·

(∏̀
i=1

A
(v)
i,sk[i]

)
· t(v) = s∗

(∏̀
i=1

α
(v)
i,sk[i]Bi,sk[i]

)
t∗ (mod g)

From the condition satisfied by the α
(v)
i,b ’s, the values are independent from v. Therefore, each party

v will extract from z(v) the same session-key, as required.

20

5.3 Additional safeguard: straddling sets

As an additional safeguard one can use the straddling set systems from [BGK+14]. Like the mul-

tiplicative bundling scalars α
(u)
i,b , this prevents the adversary from switching the secret-key bits

between the k repetitions. Additionally, the straddling set system prevents the adversary from mix-

ing the matrices Ã
(u)
i,0 and Ã

(u)
i,1 , since in that case the matrices are encoded at a different level

set.

6 The Cheon et al. Attack and its Generalization using Tensor Products

At Eurocrypt 2015, Cheon et al. described in [CHL+15] a total break of the basic key-exchange
protocol of CLT13. The attack was then extended and applied to several constructions based on
CLT13. In this section, we argue that the complexity of the Cheon et al. attack against our con-
struction is Ω(m2k−1), where m is the matrix dimension and k the number of repetitions. Therefore,
the Cheon et al. attack is prevented by using a large enough k.

6.1 The original Cheon et al. attack

The Cheon et al. attack [CHL+15] against CLT13 consists in multiplying the level-one encodings of
zero available in the original CLT13 by other encodings to obtain top-level encodings of zero, which
are then zero-tested to provide equations over Z instead of Zx0 ; the attack recovers all secret primes
p1, . . . , pn from the public parameters.

More precisely, given level-one encodings of zero ai (for i ∈ [n]), level-one encodings cj (for
j ∈ [n]) and a level-zero encoding b0, assuming only κ = 2 levels, the attacker defines wi,j :=
[ai · b0 · cj · pzt]x0 and w′i,j := [ai · cj · pzt]x0 , and then computes two matrices W0,W1 ∈ Zn×nx0 whose
entries are defined as W0[i, j] := wi,j and W1[i, j] := w′i,j .

From the definition of pzt, we obtain wi,j =
∑n

k=1 ai,kb0,kcj,kξk (mod x0), where ai,k, b0,k and cj,k
represent the modulo pk component of the numerator of ai, b0, and cj respectively, and ξk gathers
the terms from pzt. Since we obtain encodings of zero, the equation also holds over Z, hence it can
be rewritten as

wi,j = [ai,1 ai,2 . . . ai,n] ·

ξ1b0,1

ξ2b0,2
. . .

ξnb0,n

 ·

cj,1
cj,2

...
cj,n

 .
Therefore we can write W0 = AB0C, where the rows of A are the vectors in the left (for i ∈ [n]),

B0 is the diagonal matrix in the middle, and C is the matrix whose columns are the vectors in the
right (for j ∈ [n]). By the same argument, W1 = AB1C, where B1 = diag(ξ1, . . . , ξn). Thus, the
attacker can compute over Q:

W = W0W1
−1 = (AB0C)(AB1C)−1 = AB0B

−1
1 A−1

The eigenvalues of W are the same as those of B0B
−1
1 and are equal to b0,1, . . . , b0,n. The attacker

can therefore recover the b0,i’s and eventually the primes pi’s by computing gcd’s. We provide an
implementation of the attack in Appendix F.1.

Variant modulo q. Since the eigenvalues b0,i are small, they can be computed modulo a small
prime q of size η bits. Therefore it suffices to compute the matrix W0W1

−1 modulo q only. The
characteristic polynomial of W0W1

−1 is computed modulo q and then factored to recover the b0,i’s
modulo q. Experimentally, computing the two matrices W0 and W1 takes time O(n3.5). Computing

21

the full W0W1
−1 over Q takes time O(n6), whereas computing W0W1

−1 mod q and recovering the
eigenvalues modulo q takes only O(n3). Therefore the variant attack modulo q is much faster, and
its dominant cost is to compute the two matrices W0 and W1. We also provide an implementation
of the variant in Appendix F.1.

6.2 Generalization to matrices

The previous attack was extended to matrices of encodings in [CGH+15]. More precisely, the ex-
tended attack defines an attack set of dimension d as 3 sets of matrices A :=

{
Ai ∈ Zd×dx0 : i ∈ [nd]

}
,

B =
{
Bσ ∈ Zd×dx0 : σ ∈ {0, 1}

}
, and C :=

{
Cj ∈ Zd×dx0 : j ∈ [nd]

}
, and two vectors s ∈ Zdx0 and

t ∈ Zdx0 such that the value wi,σ,j := sAiBσCjt (mod x0) is a zero-tested top-level encoding of zero.
The attack then proceeds as previously by computing two matrices W σ ∈ Znd×nd (for σ ∈ {0, 1})
whose each entry is defined as W σ[i, j] = wi,σ,j , then computing the matrix W := W0W1

−1 over
Q. As previously we can write:

W σ = AB̄σC

where the matrix B̄σ of dimension nd is block-diagonal with the matrices ξi · (Bσ mod pi) ∈ Zd×d
on the diagonal. We obtain:

W = W0W1
−1 = AB̄0B̄

−1
1 A−1

The characteristic polynomial f(X) of W is the same as the characteristic polynomial of B̄0B̄
−1
1 ,

which is the product of the n characteristic polynomials fi(X) of the matrices B̃i = (B0 mod pi) ·
(B1 mod pi)

−1. By the Cayley-Hamilton theorem, we must have fi(B̃i) = 0 for all 1 ≤ i ≤ n. This
implies fi(B0 · B1

−1 mod x0) = 0 (mod pi). Therefore, if the polynomials fi(X) are irreducible,
they can be recovered by computing f(X) and factoring f(X) into irreducible polynomials. Then
each prime pi can be recovered by computing the gcd of the entries of Mi = fi(B0 ·B1

−1 mod x0)
with x0. We provide the source code of the attack in Appendix F.2.

Alternatively, if the polynomials fi(X) are not irreducible, one can still factor f(X) into monic
irreducible factors f ′1, . . . , f

′
N ∈ Q[X]. Then for k ∈ [N], the attacker defines Fk := f/f ′k ∈ Q[X]

and Gk = Fk · dk ∈ Z[X], where dk is the common denominator of Fk’s coefficients. As previously,
by the Cayley-Hamilton theorem we have that Gk(B0 ·B−11 mod x0) = 0 modulo all primes except
one, and therefore the remaining prime pi can be recovered by computing the gcd of the entries of
Mk = Gk(B0 ·B−11) mod x0 with x0.

Variant without B0B
−1
1 mod x0. We describe an alternative attack in which one does not need

to compute the matrix B0B
−1
1 mod x0; only the matrix W is used. This alternative attack will

be useful in the context of the tensoring attack from [CLLT17]; in that case we will not have to
compute tensors explicitly as in [CLLT17], which makes the attack slightly simpler.

Our variant attack is as follows. We define the polynomials Gk(X) as previously, and instead of
computing the matrices Mk = Gk(B0 ·B−11) mod x0, we compute the matrices:

M ′
k = Gk(W) ·W 0 mod x0

Then as previously each prime pi can be recovered by computing the gcd of the entries of M ′
k with

x0. Namely we have:

M ′
k = Gk

(
AB̄0B̄

−1
1 A−1

)
·W 0 (mod x0)

= AGk(B̄0 · B̄−11)A−1AB̄0C (mod x0)

= AGk(B̄0 · B̄−11)B̄0C (mod x0)

The characteristic polynomial of W is the same as the one of B̄0 · B̄−11 . Therefore, by the Cayley-
Hamilton theorem, all the blocks on the diagonal of Gk(B̄0 · B̄−11) are zero except the block cor-
responding to B̃i = (B0 mod pi) · (B1 mod pi)

−1 for some i. When multiplying by B̄0, such block

22

is multiplied by ξi · (B0 mod pi) ∈ Zd×d. Therefore, the resulting block is a multiple of ξi, while
all the other blocks are zero. This implies that all entries of M ′

k are multiple of ξi, which is a
multiple of all primes except pi; this enables to recover pi by gcd. We also provide in Appendix F.2
an implementation of this variant.

6.3 Application to our construction

Our attack proceeds as follows. For simplicity we consider the case of 3 users only; the generalization
to N users is straightforward. As in (23) we use sk ∈ {0, 1}` to compute the product matrices in
each row, with:

sk = (sk(1), sk(2), sk(3)︸ ︷︷ ︸
First repetition

, . . . , sk(1), sk(2), sk(3)︸ ︷︷ ︸
k-th repetition

)

Since the session key must be the same in the first two rows, we obtain by difference a zero-tested
top-level encoding of zero:

ω = s̄(1)
∏̀
i=1

C
(1)
i,sk[i]t̄

(1) − s̄(2)
∏̀
i=1

C
(2)
i,sk[i]t̄

(2) (mod x0). (24)

In principle, to produce the attack sets A, B, and C needed for the extended Cheon et al. attack,
one should find a partition of sk so that its first bits affect only the first matrices, the middle bits
affect the matrices in the middle, and the last bits affect only the last matrices. However, the k
repetitions in sk prevents us from constructing such independent sets, because flipping any bit of
sk forces to flip the other k− 1 corresponding bits (otherwise, subtracting two rows does not result
in a encoding of zero). Therefore to generate the attack sets, we use the tensoring technique from
[CLLT17] to group the matrices that depend on the same input bits.

More precisely, given three secrets sk(1), sk(2), sk(3) and a given row u, we let the matrices

Ai :=
∏µ
j=1C

(u)

φ(i,1,j),sk
(1)
j

, Bi :=
∏µ
j=1C

(u)

φ(i,2,j),sk
(2)
j

, Ci :=
∏µ
j=1C

(u)

φ(i,3,j),sk
(3)
j

, where the function

φ(r, v, j) = (r − 1)Nµ+ (v − 1)µ+ j − 1

is used to access the matrices, where 1 ≤ r ≤ k is the repetition index, 1 ≤ v ≤ N is the user index,
and 1 ≤ j ≤ µ is the bit index in sk(v). Therefore Ai is the i-th matrix of the first user computed
using secret sk(1) on row u, Bi is the i-th matrix of the second user, and likewise for Ci. Thus,
given the number of repetitions k, the product of all matrices with respect to sk(1), sk(2), and sk(3)

on row u can be written as
∏k
i=1AiBiCi, where Ck is considered to be an m-dimensional column

vector (that is obtained by multiplying by the right bookend vector) and all the other factors are
m×m matrices.

Using the same tensoring technique as in [CLLT17], we show that this product can be written
as ABC where A is an m×m2k−1 matrix depending only on sk(1), B is an m2k−1×m2k−1 matrix
depending only of sk(2), and C is an m2k−1 × 1 matrix (column vector) depending only of sk(3);
see Appendix B for the details. Since we must compute the difference of two rows as in (24), we
must consider matrices of dimension d = 2m2k−1 instead of m2k−1. Therefore, the final matrices
W 0 and W 1 from the Cheon et al. attack have dimension d′ = nd = 2nm2k−1. Note that the case
for N > 3 users is analogous, since we can simply merge multiple users into the same secret-key,
and proceed as if there were only three users. This implies that the Cheon et al. attack against
our construction has complexity Ω(m2k−1); it is therefore prevented by taking a large enough k.
We provide a basic implementation of the attack in Appendix F.3, including the variant without
B0B

−1
1 mod x0 described in the previous section; in the latter case, the attack recovers the primes

pi’s from the matrices W0 and W1 only, without computing tensors explicitly.

23

6.4 Practical complexity

We have implemented the previous attack and verified for small n, m, k that it requires a minimal
dimension d′ = 2nm2k−1 to recover the prime factors pi. To estimate the practical complexity of
the attack, we consider only the cost of constructing the matrices W0 and W1. While the attack
also requires to invert W1, find the characteristic polynomial, and factor it over Z, these operations
could probably be performed more efficiently by working modulo a small prime q. 1

The matrices W 0 and W 1 have d′2 = 4n2m4k−2 elements, and the production of each element
requires at least one vector-matrix multiplication modulo x0 in dimension m, which takes at least
m2 multiplications modulo x0. In our experiments with the Sage library, the number of clock cycles
to compute a modular multiplication of γ bit integers is well approximated by

Tmul(γ) = 0.5 · γ · log2 γ,

where γ = n · η in our scheme. Therefore the complexity of the Cheon et al. attack against our
scheme is lower-bounded by

TCheon(η, n,m, k) = 4η · n3 ·m4k log2(η · n)

and we require TCheon(η, n,m, k) > 2λ.

7 Optimizations and Implementation

In this section we describe a few optimizations in order to obtain a concrete implementation of our
construction from Section 5.

7.1 Encoding of elements

For the bookend vectors, the components are CLT13-encoded with randoms of size ρb bits. Letting
α be the size of the gi’s, for simplicity we take ρb = α. Therefore the encoded bookend vectors have
α · (2m/3)+ρ ·m = 5αm/3 bits of entropy on each slot. For the matrices, we can use a much smaller
encoding noise thanks to the analysis from Section 4.4; namely the GCD attack has complexity
Õ(2m

2·ρ/2) where m2 · ρ is the total entropy of the matrix components modulo a single prime pi.

On a single slot, the matrices A
(u)
i,b have entropy ' α ·m2/3, and when CLT13-encoded with noise

ρm, the matrices Ã
(u)
i,b have entropy ' α ·m2/3 + ρm ·m2 on each slot. For the parameters below,

it suffices to take ρm = 2 to prevent GCD attacks. 2

7.2 Number of matrices per level

Instead of taking only two matrices A
(u)
i,0 , A

(u)
i,1 for each 1 ≤ i ≤ `, we can take 2τ matrices for each

i. In that case, the secret key of each user has µ words of τ bits, where each word selects one of the
2τ matrices; the size of the secret-key is therefore µ · τ bits. For the same secret-key size, one can
therefore divide the total degree ` by a factor τ , but the number of encoded matrices is multiplied
by a factor 2τ/τ . In order to minimize the size of the public parameters, we use τ = 3. Note that
the straddling set system from [BGK+14] is easily adapted for τ > 1.

1 At least this is true in the original Cheon et al. attack, where the eigenvalues can be computed modulo a small
prime q; see Section 6.1. Using the same approach in the extended attack with the Cayley-Hamilton theorem seems
less straightforward.

2 In a previous version of this paper, we used an agressive optimization in which the matrices where CLT13 encoded
without noise. However this leads to an attack; we refer to Appendix C for a description of the optimization and
the attack.

24

7.3 Other attacks

Orthogonal lattice attack on last-level encoding. There is an orthogonal lattice attack against
the values obtained by subtracting two zero-tested last-level encodings from two different rows. The
attack is analogous to the attack described in Section 3.3, and is prevented under the condition
n = ω(ν

2

η log λ).

Meet-in-the-middle attack. There is a meet-in-the-middle attack on the secret key of each user
with length µ · τ bits, with complexity O(2µ·τ/2). The complexity is at least

M(m, γ) · 2µ·τ/2,

where M(m, γ) is the time it takes to multiply m ×m matrices with entries of size γ. We ensure
M(m, γ) · 2µ·τ/2 ≥ 2λ.

7.4 Concrete parameters and implementation results

In this section we propose concrete parameters for our key-exchange construction withN = 4 parties.
These parameters are generated so that all known attacks have running time ≥ 2λ. We provide the
parameters in Table 4. The total number of encoded matrices is 2τ · ` ·N with τ = 3, with a total
degree ` = µ ·k ·N . Therefore, the total number of CLT13 encodings is NCLT13 ' 2τ · ` ·N ·m2. The
size of the secret key is τµ = 3µ. The size η of the primes pi is adjusted so that we extract ν = λ
bits.

λ η m n µ α k γ = n · η ` NCLT13 params

Small 52 1759 6 160 15 11 2 281 · 103 120 1.4 · 105 4.8 GB

Medium 62 2602 6 294 21 12 2 764 · 103 168 1.9 · 105 18.5 GB

Large 72 3761 6 1349 27 14 2 5073 · 103 216 2.5 · 105 157.8 GB

High 82 5159 9 4188 33 16 2 21605 · 103 264 6.8 · 105 1848.0 GB

Table 4. Concrete parameters for a 4-party key-exchange.

The main difference with the original (insecure) key-exchange protocol based on CLT13 is that
we get a much larger public parameter size; for λ = 62 bits of security, we need 18 GB of public
parameters, instead of 70 MB originally. However our construction would be completely unpractical
without Kilian’s randomization on the encoding side. Namely for λ = 62 and a degree ` = 152, one
would need primes pi of size η ' (α+ ρ) · ` ' 2.1 · 104 with α = 80 and ρ = 62 as in [CLT13]. Since
γ = ω(η2 log λ) in [CLT13], one would need γ ' 1.2 ·109. With NCLT13 = 7 ·105, that would require
100 TB of public parameter size. Hence Kilian’s randomization on the encoding side provides a
reduction of the public parameter size by a factor ' 104.

We have implemented the key-exchange protocol in SAGE [S+17] and executed it on a machine
with processor Intel Core i5-8600K CPU (3.60GHz), 32 GB of RAM, and Ubuntu 18.04.2 LTS. The
execution times are shown in Table 5. We could not run the Large and High instantiations (λ = 72
and λ = 82) because of the huge parameter size. While the Setup time is significant, the Publish
and KeyGen times remain reasonable.

8 Conclusion

We have shown that Kilian’s randomization “on the encoding side” can bring orders of magni-
tude efficiency improvements for iO based constructions when instantiated with CLT13 multilinear

25

Setup (once) Publish (per party) KeyGen (per party)

Small 2 h 20 min 45 s 19 s

Medium 12 h 23 min 3 min 35 s 1 min 24 s

Table 5. Timings for a 4-party key-exchange.

maps. As an application, we have described the first concrete implementation of multipartite DH
key exchange secure against existing attacks. The main advantage of Kilian’s randomization is that
it can be applied essentially for free in any existing implementation; for example it could be easily
integrated in the 5Gen framework [LMA+16] for experimenting with program obfuscation construc-
tions.

References

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfuscation: Avoid-
ing barrington’s theorem. In ACM CCS, pages 646–658. ACM, 2014.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 1–5, 1986.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 10–24, 2016.

[Ber03] Daniel J. Bernstein. Fast multiplication and its applications, 2003.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting obfuscation
against algebraic attacks. In Advances in Cryptology – EUROCRYPT 2014 - Proceedings, 2014.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based snargs and their application to
more efficient obfuscation. In Advances in Cryptology - EUROCRYPT 2017 - Proceedings, Part III, pages
247–277, 2017.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing obfuscation: New
mathematical tools, and the case of evasive circuits. In EUROCRYPT (2), volume 9666 of LNCS, pages
764–791. Springer, 2016.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, 324:71–90, 2003.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric Miles, Mari-
ana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In CRYPTO 2015, Part I, volume 9215 of LNCS, pages 247–266. Springer, 2015.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program obfuscators.
In Advances in Cryptology - EUROCRYPT 2017 - Proceedings, Part III, pages 278–307, 2017.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the
multilinear map over the integers. In EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12.
Springer, 2015.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of GGH15
multilinear maps. In Advances in Cryptology - CRYPTO 2016 - Proceedings, Part II, pages 607–628,
2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing attacks on
indistinguishability obfuscation over CLT13. In Public-Key Cryptography - PKC 2017 - Proceedings, Part
I, pages 41–58, 2017.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the in-
tegers. In Ran Canetti and Juan A. Garay, editors, CRYPTO, volume 8042 of LNCS, pages 476–493.
Springer, 2013.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology
- ASIACRYPT 2011 - Proceedings, pages 1–20, 2011.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 502–519. Springer, 2012.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs:
Proofs, attacks, and candidates. In Advances in Cryptology - CRYPTO 2018 - Proceedings, Part II, pages
577–607, 2018.

26

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 1–17. Springer,
2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, pages 40–49. IEEE
Computer Society, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC, volume 9015 of LNCS, pages 498–527, 2015.

[GGM16] Steven D. Galbraith, Shishay W. Gebregiyorgis, and Sean Murphy. Algorithms for the approximate
common divisor problem. LMS Journal of Computation and Mathematics, 19(A):58–72, 2016.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Advances in Cryptology - EUROCRYPT 2016
- Proceedings, Part I, pages 537–565, 2016.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms using dy-
namical systems. In CRYPTO 2011, pages 447–464, 2011.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 20–31, 1988.

[Lau04] Alan J. Laub. Matrix Analysis For Scientists And Engineers. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2004.

[Len87] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126:649–673, 1987.

[LMA+16] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel Wagner, David W.
Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova. 5gen: A framework for prototyping applica-
tions using multilinear maps and matrix branching programs. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 981–992, 2016.

[LS14] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over the integers. In Advances
in Cryptology - CRYPTO 2014 - Proceedings, Part I, pages 224–240, 2014.

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic attacks. Cryptology
ePrint Archive, Report 2014/878, 2014. Available at https://eprint.iacr.org/2014/878.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over GGH13. In Advances in Cryptology - CRYPTO 2016 - Proceedings,
Part II, pages 629–658, 2016.

[MZ18] Fermi Ma and Mark Zhandry. The mmap strikes back: Obfuscation and new multilinear maps immune to
CLT13 zeroizing attacks. In Theory of Cryptography - 16th International Conference, TCC 2018, Panaji,
India, November 11-14, 2018, Proceedings, Part II, pages 513–543, 2018.

[NS97] Phong Q. Nguyen and Jacques Stern. Merkle-hellman revisited: A cryptanalysis of the qu-vanstone
cryptosystem based on group factorizations. In Advances in Cryptology - CRYPTO ’97, Proceedings,
pages 198–212, 1997.

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Cryptography and Lattices,
International Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers, pages
146–180, 2001.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-secure
multilinear encodings. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO (1), volume 8616 of
LNCS, pages 500–517. Springer, 2014.

[S+17] W. A. Stein et al. Sage Mathematics Software (Version 8.0). The Sage Development Team, 2017.
http://www.sagemath.org.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption, and
more. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14,
pages 475–484, New York, NY, USA, 2014. ACM.

A Kronecker product of matrices

For any two matrices A ∈ Rm×n and B ∈ Rp×q, we define the Kronecker product (or tensor product)
of A and B as the block matrix A⊗B ∈ R(mp)×(nq) given by:

A⊗B =

a11B · · · a1nB...
. . .

...
am1B · · · amnB

 , where A = (aij).

27

We recall the following property of the Kronecker product [Lau04, Ch. 13]. Given a matrix
C ∈ Rn×m, we let ci ∈ Rn, i = 1, . . . ,m be its column vectors, so that C =

[
c1, . . . , cm

]
. We denote

by vec(C) the column vector of dimension mn formed by stacking the columns ci of C on top of
one another:

vec(C) =

c1...
cm

 ∈ Rmn.
Using the fact that vec(xyT) = y ⊗ x for any x, y, we obtain that for any three matrices A, B,
and C for which the matrix product A ·B ·C is defined:

vec(A ·B ·C) = (CT ⊗A) · vec(B)

B The tensoring attack

We show that the product
∏k
i=1AiBiCi from Section 6.3 can be written as ABC, using the

tensoring technique from [CLLT17]. The base case with k = 1 is clearly true. For k ≥ 2, we use
induction to write

k∏
i=1

AiBiCi = A1B1C1

(
k∏
i=2

AiBiCi

)
= A1B1C1ÃB̃C̃

with Ã, B̃, and C̃ having dimensions m ×m2(k−1)−1, m2(k−1)−1 ×m2(k−1)−1, and m2(k−1)−1 × 1,
respectively. Then, since C̃ is a column vector, we have

A1B1C1ÃB̃C̃ = A1B1 vec(C1ÃB̃C̃) = A1B1(C̃
T ⊗C1) vec(ÃB̃)

= A1B1(C̃
T ⊗C1) vec(ImÃB̃)

= A1B1(C̃
T ⊗C1)(B̃

T ⊗ Im) vec(Ã)

= vec
(
A1B1(C̃

T ⊗C1)(B̃
T ⊗ Im) vec(Ã)

)
= (vec(Ã)T ⊗A1) vec

(
B1(C̃

T ⊗C1)(B̃
T ⊗ Im)

)
= (vec(Ã)T ⊗A1)((B̃

T ⊗ Im)T ⊗B1) vec(C̃
T ⊗C1)

= (vec(Ã)T ⊗A1)((B̃ ⊗ Im)⊗B1) vec(C̃
T ⊗C1)

Defining A = vec(Ã)T ⊗A1, B = (B̃ ⊗ Im)⊗B1, and C = vec(C̃T ⊗C1), we obtain

k∏
i=1

AiBiCi = ABC.

Because vec(Ã)T has dimension 1 ×m2(k−1), the dimension of A is m ×m2(k−1)+1 = m ×m2k−1.
Furthermore, the dimension of B̃ ⊗ Im is m2(k−1) × m2(k−1), therefore, the dimension of B is
m2k−1 ×m2k−1. Similarly, the dimension of C is m2k−1 × 1, so the result holds.

C Encoding the matrices without noise

In a previous version of this paper, we used an agressive optimization in which the matrices A
(u)
i,b

where CLT13-encoded without noise, in order to reduce the bitsize η of the primes pi. Below we
provide a short description of the optimization, and an attack that breaks this optimization.

28

Encoding without noise. One could try to encode the matrices A
(u)
i,b from (20) without any

additional randomness, while relying on the intrinsic randomness of the matrices A
(u)
i,b and on

Kilian’s randomization on the encoding side. Recall that the plaintext space of CLT13 is Zg where
g =

∏n
i=1 gi. Each matrix entry a ∈ Zg is then encoded as an integer c ∈ Zx0 with c ≡ ai (mod pi)

where ai = a mod gi, instead of c ≡ ai + rigi (mod pi); that is, we take ri = 0 for all 1 ≤ i ≤ n.

Attack. Unfortunately the above optimization is broken by the following attack. Namely without

noise an encoding of zero is simply 0 modulo x0. Since the matrices A
(u)
i,b are block-diagonal with

three (m/3)×(m/3) blocks on the diagonal, the encoded matrices Ã
(u)
i,b are then also block-diagonal.

These matrices are hidden by the Kilian matrices, as follows:

C
(u)
i,b := K

(u)
i−1Ã

(u)
i,b

(
K

(u)
i

)−1
(mod x0)

By multiplying consecutive matrices for a given user u and various bits b, one can obtain a large
set of ` known matrices Ci of the form:

Ci = K0 ·Ai ·K1
−1 (mod x0)

where the unknown matrices Ai are as previously block-diagonal, and K0 and K1 are unknown
m×m matrices. We can rewrite the previous equation as:

Ai = K0
−1 ·Ci ·K1 (mod x0)

for 1 ≤ i ≤ `. Since the matrices Ai have six (m/3) × (m/3) blocks outside the diagonal equal to
0, we can obtain a system of ` · 6 ·m2/9 quadratic equations in the coefficients of K0

−1 and K1.
By linearizing the system, we obtain a system of ` · 6 ·m2/9 equations in (m2)2 = m4 unknowns.
The system can then be solved by linear algebra if ` · 6 · m2/9 > m4, which gives the condition
` > 3m2/2. Once the matrices K0 and K1 have been recovered (up to a scalar value), the remaining
secret CLT13 parameters are easily recovered.

D Implementation of the GCD Attacks

D.1 Source Code of the Chen-Nguyen Attack

import sage.rings.polynomial.polynomial_ring as pring

def genXi(rho ,eta ,gam ,p):

return p*ZZ.random_element (2^(gam -eta))+ZZ.random_element (2^ rho)

def multiPointEval(f,li ,R):

n,x=len(li),R.0

if n==1: return [f(x=li[0])]

li1 ,li2=li[:n//2],li[n//2:]

f1=f.quo_rem(prod((x-xi for xi in li1)))[1]

f2=f.quo_rem(prod((x-xi for xi in li2)))[1]

return multiPointEval(f1,li1 ,R)+ multiPointEval(f2,li2 ,R)

def attackGCDMultiPoint(rho=12,eta =1000, gam =40000 , verbose=True):

p=random_prime (2^eta ,lbound =2^(eta -1), proof=False)

if verbose: print p

x0=p*prod([random_prime (2^eta ,lbound =2^(eta -1),proof=False)

for i in range(gam/eta -1)])

R=pring.PolynomialRing_dense_mod_n(Integers(x0),’x’)

x=R.0

c=genXi(rho ,eta ,gam ,p)

29

t=cputime(subprocesses=True)

f=prod((x+i-c for i in range (2^(rho /2))))

ev=multiPointEval(f,range (0,2^rho ,2^(rho/2)),R)

pp=gcd(x0 ,prod(ev))

if verbose: print pp

return cputime(t)

D.2 Source Code of the Lee-Seo Attack

def attackGCDMaskedMultiPoint(rho=10,eta=100,gam=200, verbose=True):

p=random_prime (2^eta ,lbound =2^(eta -1), proof=False)

print "p=",p

x0=p*prod([random_prime (2^eta ,lbound =2^(eta -1),proof=False)

for i in range(gam/eta -1)])

R=pring.PolynomialRing_dense_mod_n(Integers(x0),’x’)

x=R.0

z=Integers(x0). random_element ()

L1=[genXi(rho ,eta ,gam ,p)*z for i in range (2^(rho //2))]

L2=[genXi(rho ,eta ,gam ,p)*z for i in range (2^(rho //2))]

t=cputime(subprocesses=True)

f=prod((x-c for c in L1))

ev=multiPointEval(f,L2,R)

pp=gcd(x0 ,prod(ev)). lift()

print pp

return cputime(t)

D.3 Source Code of our GCD Attack against the Vector Approximate-GCD Problem

def genVecXi(rho ,eta ,gam ,m,p,K,x0):

v=vector ([genXi(rho ,eta ,gam ,p) for i in range(m)])

return K*v

def attackGCDMatrixMultiPoint(rho=6,eta=100,gam=200,m=2):

p=random_prime (2^eta ,lbound =2^(eta -1), proof=False)

print "p=",p

x0=p*prod([random_prime (2^eta ,lbound =2^(eta -1),proof=False)

for i in range(gam/eta -1)])

R=pring.PolynomialRing_dense_mod_n(Integers(x0),’x’)

x=R.0

K=matrix(Integers(x0),m,m)

for i in range(m):

for j in range(m):

K[i,j]=ZZ.random_element(x0)

L1=[genVecXi(rho ,eta ,gam ,m,p,K,x0)[0] for i in range (2^(m*rho //2+1))]

L2=[genVecXi(rho ,eta ,gam ,m,p,K,x0)[0] for i in range (2^(m*rho //2+1))]

t=cputime(subprocesses=True)

f=prod((x-c for c in L1))

ev=multiPointEval(f,L2,R)

pp=gcd(x0 ,prod(ev)). lift()

print pp

return cputime(t)

30

E Implementation of the Lattice Attacks against the Approximate-GCD
Problem

E.1 Source Code of the Orthogonal Lattice Attack

def AttOrtho(eta=50,n=30,rho =10):

p=[random_prime (2^eta ,False ,15*2^(eta -1-4)) for i in range(n)]

x0=prod(p)

r=[[ZZ.random_element (-2^rho+1,2^rho) for i in range(n)]

for j in range(n)]

x=[crt(rj,p) for rj in r]

y=crt([ZZ.random_element (-2^rho+1,2^rho) for i in range(n)],p)

x=x+[mod(xi*y,x0).lift() for xi in x]

tau =2*n

M=matrix(ZZ,tau ,tau)

for i in range(tau -1):

M[i,i]=1

M[i,tau -1]= mod(-x[i]* inverse_mod(x[tau -1],x0),x0)

M[tau -1,tau -1]=x0

ML=M.LLL()

V=ML[:tau -n]. right_kernel (). matrix ()

W0,W1=V[:,:n].T,V[:,n:tau].T

v=(W1*W0^-1). eigenvalues ()

rprimes=Set([gcd(y-vi ,x0) for vi in v])

print "Number of primes recovered:",len(Set(p). intersection(rprimes)),

print "out of",n

E.2 Source Code of the Orthogonal Lattice Attack, Vector Variant

def smallMat(nrows ,ncols ,rho ,p):

n=len(p)

r=[Matrix ([[ZZ.random_element (-2^rho+1,2^rho) for k in range(ncols)]

for j in range(nrows)]) for i in range(n)]

return Matrix(ZZ ,[[crt([r[i][j,k] for i in range(n)],p)

for k in range(ncols)]

for j in range(nrows)])

def AttOrthoVec(eta=60,n=5,rho=10,m=2):

p=[random_prime (2^eta ,False ,2^(eta -1)) for i in range(n)]

x0=prod(p)

V=smallMat(n*m,m,rho ,p)

K=random_matrix(Integers(x0),m)

VT=V*K

Kp=random_matrix(Integers(x0),m)

A0,A1=smallMat(m,m,rho ,p),smallMat(m,m,rho ,p)

C0,C1=K^-1*A0*Kp,K^-1*A1*Kp

Vp0 ,Vp1=VT*C0,VT*C1

Vp=Matrix(ZZ ,2*n*m,m)

Vp[:n*m,:],Vp[n*m:,:]=Vp0 ,Vp1

tau =2*n*m

M=matrix(ZZ,tau ,tau)

for i in range(tau -m):

M[i,i]=1

M[:,tau -m:]=-Vp*Matrix(Integers(x0),Vp[tau -m: ,:]). inverse ()

M[tau -m:,tau -m:]=x0*matrix.identity(m)

31

ML=M.LLL()

VO=ML[:m*n]. right_kernel (). matrix ()

W0,W1=VO[:,:n*m].T,VO[:,n*m:].T

f=(W0*W1^-1). charpoly ()

B=matrix(Integers(x0),C0)* matrix(Integers(x0),C1)^-1

rprimes=Set([gcd(f1[0]. change_ring(Integers(x0))(B)[0,0],x0)

for f1 in factor(f)])

print "Number of primes recovered:",

print len(Set(p). intersection(rprimes)),"out of",n

F Implementation of the Cheon et al. Attacks

F.1 Source Code of the Basic Cheon et al. Attack

def encodeRand(rho ,p):

return crt([ZZ.random_element (2^ rho) for i in range(len(p))],p)

def AtkCheon ():

eta =100

n=10

rho =20

p=[random_prime (2^eta ,False ,2^(eta -1)) for i in range(n)]

x0=prod(p)

pzt=crt([ZZ.random_element (2^ rho)*x0/pi for pi in p],p)

c=[encodeRand(rho ,p) for i in range(n)]

d=[encodeRand(rho ,p) for i in range(n)]

b0=encodeRand(rho ,p)

b1=encodeRand(rho ,p)

W0=matrix(ZZ ,[[ci*dj*b0*pzt % x0 for dj in d] for ci in c])

W1=matrix(ZZ ,[[ci*dj*b1*pzt % x0 for dj in d] for ci in c])

print "Basic attack",

W=W0*W1^-1

rec_primes=sorted ([gcd(x0 ,a.denominator ()*b0 -a.numerator ()*b1)

for a in W.eigenvalues ()])

assert rec_primes == sorted(p)

print "OK"

print "Attack modulo q",

q=random_prime (2^eta ,False ,2^(eta -1))

W0q=matrix(Integers(q),W0)

W1q=matrix(Integers(q),W1)

Wq=W0q*W1q^-1

eigen =[a.rational_reconstruction () for a in Wq.eigenvalues(extend=False)]

rec_primes=sorted ([gcd(x0 ,a.denominator ()*b0 -a.numerator ()*b1) for a in eigen])

assert rec_primes == sorted(p)

print "OK"

F.2 Source Code of the Cheon et al. Attack with Matrices

def encodeVec(m,rho ,p):

return vector ([encodeRand(rho ,p) for i in range(m)])

def AtkMatrixCheon(m=2):

eta =100

n=5

rho =20

32

p=[random_prime (2^eta ,False ,2^(eta -1)) for i in range(n)]

x0=prod(p)

pzt=crt([ZZ.random_element (2^ rho)*x0/pi for pi in p],p)

d=m*n

c=[encodeVec(m,rho ,p) for i in range(d)]

d=[encodeVec(m,rho ,p) for i in range(d)]

b0=matrix ([encodeVec(m,rho ,p) for i in range(m)])

b1=matrix ([encodeVec(m,rho ,p) for i in range(m)])

W0=matrix(ZZ ,[[ci*b0*dj*pzt % x0 for dj in d] for ci in c])

W1=matrix(ZZ ,[[ci*b1*dj*pzt % x0 for dj in d] for ci in c])

print "Basic attack",

W=W0*W1^-1

f=W.charpoly ()

B=matrix(Integers(x0),b0)* matrix(Integers(x0),b1)^-1

rec_primes=sorted ([gcd(f1[0]. change_ring(Integers(x0))(B)[0,0],x0)

for f1 in factor(f)])

assert rec_primes == sorted(p)

print "OK"

print "Variant attack",

W=W0*W1^-1

f=W.charpoly ()

rec_primes = sorted ([gcd(matrix(Integers(x0),f1[0](W)*W0)[0,0],x0)

for f1 in factor(f)])

assert rec_primes == sorted(p)

print "OK"

F.3 Source Code of the Tensoring Attack

def encodeMat(m,rho ,p):

return matrix(ZZ ,[[encodeRand(rho ,p) for i in range(m)] for j in range(m)])

def AtkTensoringCheon(m=2):

eta =180

n=3

rho =20

p=[random_prime (2^eta ,False ,2^(eta -1)) for i in range(n)]

x0=prod(p)

pzt=crt([ZZ.random_element (2^ rho)*x0/pi for pi in p],p)

d=m^3*n

a1=[encodeVec(m,rho ,p) for i in range(d)]

B1=[encodeMat(m,rho ,p) for i in range (2)]

C1=[encodeMat(m,rho ,p) for i in range(d)]

A2=[encodeMat(m,rho ,p) for i in range(d)]

B2=[encodeMat(m,rho ,p) for i in range (2)]

c2=[encodeVec(m,rho ,p) for i in range(d)]

W=[matrix(ZZ ,[[a1[i]*B1[k]*C1[j]*A2[i]*B2[k]*c2[j]*pzt % x0

for j in range(d)] for i in range(d)])

for k in range (2)]

WW=W[0]*W[1]^-1

f=WW.charpoly ()

print "Basic attack",

BB=[matrix(Integers(x0),

B2[k]. tensor_product(matrix.identity(m)). tensor_product(B1[k]))

for k in range (2)]

BinvB=BB[0]*BB[1]^ -1

33

rec_primes=sorted ([gcd(f1[0]. change_ring(Integers(x0))(BinvB)[0,0],x0)

for f1 in factor(f)])

assert rec_primes == sorted(p)

print "OK"

print "Variant attack",

rec_primes = sorted ([gcd(matrix(Integers(x0),f1[0](WW)*W[0])[0 ,0] ,x0)

for f1 in factor(f)])

assert rec_primes == sorted(p)

print "OK"

34

