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Abstract. S-boxes, typically the only nonlinear part of a block cipher,
are the heart of symmetric cryptographic primitives. They significantly
impact the cryptographic strength and the implementation characteris-
tics of an algorithm. Due to their simplicity, quadratic vectorial Boolean
functions are preferred when efficient implementations for a variety of ap-
plications are of concern. Many characteristics of a function stay invariant
under affine equivalence. So far, all 6-bit Boolean functions, 3- and 4-bit
permutations and 5-bit quadratic permutations have been classified up to
affine equivalence. In this work, we propose a highly efficient algorithm
to classify n ×m functions for n ≥ m. Our algorithm enables for the
first time a complete classification of 6-bit quadratic permutations as
well as all balanced quadratic functions for n ≤ 6. These functions can
be valuable for new cryptographic algorithm designs with efficient multi-
party computation or side-channel analysis resistance as goal. In addition,
we provide a second tool for finding decompositions of length two. We
demonstrate its use by decomposing existing higher degree S-boxes and
constructing new S-boxes with good cryptographic and implementation
properties.
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composition

1 Introduction

For a variety of applications, such as multi-party computation, homomorphic
encryption and zero-knowledge proofs, linear operations are considered to have
minimal cost. Nonlinear operations on the other hand cause a rapid growth
of implementation requirements. Therefore, it becomes important to create
cryptographically strong algorithms with minimal nonlinear components. A recent
study in this direction called MiMC [1], which is based on some relatively old
observations [27], uses the simple quadratic function x3 in different fields as the
only nonlinear block of the algorithm. Another work that minimizes the number
of multiplications is the LowMC design [2], where a quadratic 3-bit permutation
is used as the only nonlinear component of a Substitution-Permutation-Network
(SPN).

We also see the importance of minimizing the nonlinear components in the
field of secure implementations against side-channel analysis. Efforts to decom-
pose the S-boxes of existing algorithms, such as the DES and AES S-boxes, into



a minimum number of lower degree nonlinear components (AND-gates, field
multiplications or other quadratic or cubic functions), have produced more than
a handful of papers. Some of these decomposition tools are generic and work
heuristically [17,18,19,24,29,30] whereas others focus on enumerating decomposi-
tions of all permutations for a certain size [10,25]. In general, they all make it
clear that there is a significant advantage in considering side-channel security
during the design process and hence using low degree nonlinear components.
As a reaction to this line of research, a variety of novel symmetric-key designs
use simply a quadratic permutation [3,6,7,21]. Examples include Keccak [5],
one instance of which is the new hash function standard, and several candidates
of the CAESAR competition. Generating strong, higher degree S-boxes using
quadratic functions has also been shown useful in [12]. These works demonstrate
the relevance of our research, which focuses on enumerating quadratic n ×m
functions for n < 7.

A valuable tool for the analysis of vectorial Boolean functions, which are
typically used as S-boxes, is the concept of affine equivalence (AE). AE allows
the entire space of n ×m functions to be classified into groups with the same
cryptographic properties. These properties include the algebraic degree, the
differential uniformity and the linearity of both the function and its possible
inverse in addition to multiplicative complexity. Moreover, the randomness cost
of a first-order masked implementation is also invariant within a class if counter-
measures such as threshold implementations are used [8]. With similar concerns
in mind, our research relies on this affine equivalence classification.

1.1 Classification of (Vectorial) Boolean Functions.

The classification of Boolean functions dates back to the fifties [23]. The equiv-
alence classes for functions of up to five inputs were identified by 1972 [4] and
Fuller [22] was the first to classify all 6-bit Boolean functions in 2003.

For vectorial Boolean functions, only n-bit permutations for n ≤ 4 have
been completely classified so far [10,15,31]. Most of these classifications use
the affine equivalence (AE) tool introduced by Biryukov et al. in [11]. This
algorithm computes a representative of the affine equivalence class for any n-bit
permutation. In [15], De Cannière classifies all 4-bit permutations by transversing
a graph of permutations connected by single transpositions and reducing them
to their affine equivalence class representative. As this method is unpractical
for larger dimensions (n > 4), no classification of the complete space of 5-bit
bijective permutations exists. The quadratic 5-bit permutations alone have been
classified by Bozilov et al. [14]. Their approach consists of two stages: First,
they generate an exhaustive list of 5-bit permutations from quadratic ANF’s.
Then, they use the affine equivalence algorithm of Biryukov et al. [11] to find the
affine representatives of all the candidates in this list. Eliminating the doubles
results in 75 quadratic classes. This approach uses the AE algorithm ≈ 223times,
resulting in a runtime of a couple of hours, using 16 threads. Again, extending
this approach to higher dimensions is not feasible.
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Vectorial Boolean functions from n to m < n bits have been used as S-boxes
as well (e.g. the 6 × 4 DES S-boxes), yet their classification has been largely
ignored. They are also used in the construction of larger 8-bit S-boxes by Boss et
al. [12].

1.2 Decomposition of High Degree Functions into Quadratics and
Cubics

The authors of [10,25] decompose all 4-bit permutations in order to provide
efficient implementations against side-channel analysis. The decompositions in
both works benefit from the affine equivalence classification of permutations. The
main difference between them is that [10] only focuses on decompositions using
quadratic and cubic components. It is shown that not all cubic 4-bit permutations
can be composed from quadratics. This work has been extended in [25], in
which decomposition of all permutations is enabled by including additions and
compositions with non-bijective quadratic functions. The decompositions provided
in both these papers have been proven to have the smallest length with the given
structure. A possible decomposition for all 6× 4 DES S-boxes jointly using 4-bit
permutations is also provided as an output of the aforementioned research [9].

A complementary work which decomposes a function into other quadratic
and cubic functions is [18]. This work starts from a randomly chosen low-degree
function. They iteratively enlarge their set of functions using addition and
composition. Finally, the generated set of functions is used to get a decomposition
for a target function. This approach is not unlike the logic minimization technique
of [13]. The tool is heuristic and the decompositions provided do not necessarily
have the smallest length. The theoretical lower bounds are not necessarily achieved
for a randomly selected function decomposition for bigger sizes. However, it
performs well for small functions.

1.3 Our Contribution.

In this work, we explore the extension of Biryukov’s AE algorithm to non-bijective
n×m functions with m < n and analyse its performance. We propose an algorithm
that does not only classify all n-bit permutations, but also all balanced n×m-bit
functions for m ≤ n. Our complexity is significantly lower than that of previous
algorithms known to date. This allows us to generate all quadratic vectorial
Boolean functions with five inputs in merely six minutes, which makes the search
for even 6-bit quadratic functions feasible. We also provide the cryptographic
properties of these functions and their inverses if possible.

Our work focuses on quadratic functions, since they tend to have low area
requirements in hardware, especially for masked implementations. We also in-
troduce a tool for finding length-two quadratic decompositions of higher degree
permutations and we use it to decompose the 5-bit AB and APN permutations.
Furthermore, we find a set of high quality 5-bit permutations of degree 4 with
small decomposition length that can be efficiently implemented.
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Our list of quadratic 6-bit permutations is an important step towards decom-
posing the only known 6-bit APN permutation class as an alternative to [28].

2 Preliminaries

We consider an n × m (vectorial) Boolean function F (x) = y from GF(2n)
to GF(2m). The bits of x and the coordinate functions of F are denoted by
small letter subscripts, i.e. x = (x0, . . . , xn−1) where xi ∈ GF(2) and F (x) =
(f0(x), . . . , fm−1(x)) where fi(x) is from GF(2n) to GF(2). We use ’◦’ to denote
the composition of two or more functions, e.g. F1 ◦ F2(x) = F1(F2(x)) where
F1 : GF(2m)→ GF(2l) and F2 : GF(2n)→ GF(2m). We use |.| and · for absolute
value and inner product respectively.

2.1 (Vectorial) Boolean Function Properties

In this paper, we focus on balanced vectorial Boolean functions F (x) = y, i.e.
each output y ∈ GF(2m) is equiprobable for all inputs x ∈ GF(2n). When n = m,
F is thus bijective and typically called an n-bit permutation.

A Boolean function f : GF(2n)→ GF(2) can be uniquely represented by its
algebraic normal form (ANF)

f(x) =
⊕

j∈GF(2n)

αjx
j where xj =

n−1∏
i=0

xjii .

The algebraic degree of f is

Degr(f) = max
j∈GF(2n),αj 6=0

HW(j) with HW(j) =

n−1∑
i=0

ji.

The algebraic degree of a function F = (f0, f1, . . . , fm−1) is simply the largest
degree of its coordinate functions, i.e. Degr(F ) = max0≤i<m Degr(fi).

Definition 1 (Component [27]). The components of a vectorial Boolean func-
tion F are the nonzero linear combinations β · F of the coordinate functions of
F , with β ∈ GF(2m) \ {0}.

Definition 2 (DDT [16]). We define the Difference Distribution Table (DDT)
δF of F with its entries

δF (α, β) = #{x ∈ GF(2n) : F (x⊕ α) = F (x)⊕ β}

for α ∈ GF(2n) and β ∈ GF(2m). The differential uniformity Diff(F ) is the
largest value in the DDT for α, β 6= 0:

Diff(F ) = max
α,β 6=0

δF (α, β)
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An n-bit permutation F is said to be almost perfect nonlinear (APN) if
∀α, β 6= 0 ∈ GF(2n), the DDT element δF (α, β) is equal to either 0 or 2. The
DDT distribution of F is a histogram of the elements occuring in the DDT.

Definition 3 (LAT [16]). We define the Linear Approximation Table (LAT)
λF of F with its entries

λF (α, β) = |#{x ∈ GF(2n) : α · x = β · F (x)} − 2n−1|

for α ∈ GF(2n) and β ∈ GF(2m). The linearity Lin(F ) is the largest value in the
LAT for α, β 6= 0:

Lin(F ) = max
α,β 6=0

λF (α, β)

An n-bit permutation F is said to be almost bent (AB) if ∀α, β 6= 0 ∈ GF(2n),
the LAT element λF (α, β) is equal to either 0 or ±2(n−1)/2. It is known that all
AB permutations are also APN. The LAT distribution of F is a histogram of the
elements occuring in the LAT

Definition 4 (Walsh spectrum). The Walsh spectrum of a Boolean function
f : GF(2n)→ GF(2) is defined as

f̂(ω) =
∑

x∈GF(2n)

(−1)f(x) · (−1)ω·x

A function’s LAT is directly related to its two-dimensional Walsh transform
F̂ (α, β) =

∑
x∈GF(2n)(−1)α·x · (−1)β·F (x) as follows:

λF (α, β) =
F̂ (α, β)

2

Any column in a function’s LAT (λF (α, β̄) for β̄ fixed) is thus the Walsh spectrum
of a component of F .

2.2 Affine Equivalence

Functions with algebraic degree 1 are called affine. We use them to define affine
equivalence relations that classify the space of all n×m functions.

Definition 5 (Extended Affine Equivalence [16]). Two n × m functions
F1(x) and F2(x) are extended affine equivalent if and only if there exists a pair
of n-bit and m-bit invertible affine permutations A and B and an n×m linear
mapping L such that F1 = B ◦ F2 ◦A⊕ L.

The algebraic degree and DDT and LAT distributions are invariant over extended
affine equivalence.

Definition 6 (Affine Equivalence [16]). Two n × m functions F1(x) and
F2(x) are affine equivalent (F1 ∼ F2) if and only if there exists a pair of n-bit
and m-bit invertible affine permutations A and B such that F1 = B ◦ F2 ◦A.
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Clearly, affine equivalent functions are always extended affine equivalent but not
vice versa. Note that the affine equivalence relation also covers linear equivalence,
where A and B are linear permutations (i.e. A(0) = B(0) = 0). Moreover, also
affine equivalence preserves algebraic degree and DDT and LAT distributions.
In the case of Boolean functions (m = 1), affine equivalence and extended affine
equivalence are the same.

It is common practice to take the lexicographically smallest function in an
affine equivalence class as the representative, which we denote by R. An efficient
algorithm for finding the affine equivalent (AE) representative of any n-bit
permutation S was proposed by Biryukov et al. in [11]. In short, it computes
the linear representatives of S(x⊕ a)⊕ b for all a, b ∈ GF(2n) and chooses the
lexicographically smallest among them as affine equivalent representative. Since,
we rely on this algorithm and modify it according to our needs, we provide a
detailed description of its most significant part, finding the linear representative,
below.

2.3 Finding the Linear Representative of a Permutation

This recursive algorithm described in [11] finds for a given permutation S the
smallest linear equivalent R = B ◦S ◦A by guessing some of the output values of
the linear permutations A and B and determining the others using the linearity
property. Throughout the algorithm, the numbers nA and nB record logarith-
mically for how many input values the outputs of A and B have been defined.
For example, A(x) is defined for all x < 2nA−1. Since A and B are linear, the
beginning of the algorithm initializes A(0) = B(0) = 0 and thus nA = nB = 1.
The number of defined values for R(x) is NR, i.e. R(x) will be defined for all
x < NR.

The computation starts with x = y = 0 from the ForwardSweep described in
Algorithm 1, which serves as the outer loop of the algorithm. The ForwardSweep
enumerates all inputs x for which affine transformation A(x) has already been
defined and determines the representative output y = R(x). Either there already
exists an output y such that S ◦A(x) = B(y) or we choose y as the next smallest
unused power of 2. When the ForwardSweep is complete, we continue with
the BackwardSweep in Algorithm 2. Note that when nA = 0 (the very first
iteration), there are no inputs to enumerate yet and the computation actually
starts with a BackwardSweep.

At the start of Algorithm 2, x is typically a power of 2 which means A(x)
cannot be determined from linear combinations and can be chosen freely. If the
BackwardSweep is successful (i.e. it finds a suitable A(x) such that S ◦A(x) =
B ◦R(x)), we recurse on the ForwardSweep. If the BackwardSweep fails,
we need to guess A(x). This is for example the case in the very first iteration
when nB = 0.

The Guess function is described by Algorithm 3. It fixes R(x) using Algo-
rithm 4 to the smallest unused y and then loops over all available assignments of
A(x). For each guess, we try recursion on the ForwardSweep. We need to try
all because any guess can result in a lexicographically smaller representative R.
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while x < 2nA−1 do
Determine y′ s.t. B(y′) = S ◦A(x);
if y′ not yet defined then

Pick y′ = 2nB−1;
Set B(y′) = S ◦A(x);
nB = nB + 1;

end
if SetR(x, y′) then

x = x+ 1;
else

Dead end: Stop forward sweep;
end

end
if x < 2n then

BackwardSweep(x, y, nA, nB);
end

Algorithm 1: ForwardSweep(x, y, nA, nB)

while y < 2nB−1 do
Determine x′ s.t. A(x′) = S−1 ◦B(y);
if x′ < x then

y = y + 1;
else

if Set R(x, y) then
Set A(x) = S−1 ◦B(y);
ForwardSweep(x, y + 1, nA + 1, nB);
Return;

end

end

end
Guess(x, y, nA, nB);

Algorithm 2: BackwardSweep(x, y, nA, nB) for invertible S

SetR(x, y);
for all guesses g for A(x) do

Set A(x) = g;
Set B(y) = S ◦A(x);
ForwardSweep(x, y, nA +
1, nB + 1);

end
Algorithm 3: Guess(x, y, nA, nB)

if R(x) already defined (i.e.
x < NR) then

if y > R(x) then
Return False;

end
if y = R(x) then

Return True;
end

end
Set R(x) = y and NR = x+ 1;
Return True;
Algorithm 4: SetR(x, y)

7



Algorithm 4 builds the representative R and only changes previously deter-
mined outputs if they are smaller than the current one.

This whole procedure of finding the linear representative of an n-bit permuta-
tion is exemplified in Figure 1 for clarification. Note that even though the S-box
we use and the one in [11] are the same, the representative we obtain is different
since we focus on the lexicographically smallest one by assigning, for example,
R(0) = 0. Moreover, for the same reason, the representative on the right side of
Figure 1 is favored over the left side.

a 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(a) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x→ A(x)
S→ B(y)← y

Guess 0→ 0 → 1← 0

Guess 1→ 1 → B← 1 or

Guess 2→ 2 → 9← 2

Fwd 3→ 3 → C← 4

Bwd 4→ 7 ← 3← 3

Fwd 5→ 6 → F← 8

Fwd 6→ 5 → 6← 5

x→ A(x)
S→ B(y)← y

Guess 1→ 5 → 6← 1

Guess 2→ A → 7← 2

Fwd 3→ F → 0← 3

Guess 4→ 4 → D← 4

Fwd 5→ 1 → B← 6

Fwd 6→ E → 5← 8

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

R(x) 0 1 2 3 4 6 8

Fig. 1. Example for 4-bit bijective S

3 Finding the Linear Representative of a Non-invertable
Function

It has been suggested in [11] that the algorithm in Section 2.3 can be extended
to find representatives for non-bijective functions S : GF(2n) → GF(2m), but
that this is only efficient when n−m is small. When S is not invertible (but still
balanced), instead of one single solution to the equation S(x) = y, there are 2n−m

possible x candidates for each y. The additional complexity of enumerating these
candidates during BackwardSweep grows larger as m decreases. Therefore,
in [11] the total complexity of finding the representative for an n×m function
where n > m is estimated as:

n3 · 2n · (2n−m!)
n

2n−m

Figure 2 depicts how the predicted complexity (for fixed n = 5) increases
monotonously as m decreases.
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Fig. 2. Complexity estimation from [11]
for 5×m functions.
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Fig. 3. Runtimes for random 5×m func-
tions.

In what follows, we describe an extension of the algorithm in Section 2.2 which
has a non-monotonous complexity behavior as m decreases as can be observed
in Figure 3. The runtimes are calculated using a random selection of 500 5×m
functions for each m. Note that since no pseudo-code is provided in [11] and the
description is very brief, we can not conclude whether this is due to a complexity
estimation error or having a slightly different algorithm.

One of the differences coming from the non-invertability is that we can no
longer compute the inverse of S and thus we cannot obtain x′ in Algorithm 2.
We propose Algorithm 5 as an alternative in which we loop over all possible x′

for which S ◦A(x′) = B(y).

while y < 2nB−1 do
for all x′ s.t. S ◦A(x′) = B(y) do

if x′ < x then
Try next x′;

else
if Set R(x, y) then

Set A(x) = S−1 ◦B(y);
ForwardSweep(x, y, nA + 1, nB) ;

end

end

end
if no x′ found then

y = y + 1;
else

Return;
end

end
Guess(x, y, nA, nB);
Algorithm 5: BackwardSweep(x, y, nA, nB) for non-invertible S
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Another difference is in the assignment of y which is the smallest element
in GF(2m) that does not yet have a corresponding input x such that R(x) = y.
Note that y decides the representative output R(x) in the BackwardSweep and
Guess runs. The representative R of a balanced function S has the same output
distribution as S, which implies each y = R(x) can only occur once in a bijective
permutation. This is why Algorithm 2 immediately increments y after using it. In a
non-bijective function on the other hand, y can be reused 2n−m times. Algorithm 5
therefore does not immediately increase y after each BackwardSweep but only
when it runs out of candidates x′ for which S ◦ A(x′) = B(y). The complete
procedure for finding the representative of a balanced non-injective function is
illustrated in Figure 4.

a 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(a) 1 3 1 0 1 2 3 3 2 0 3 0 2 2 1 0

x→ A(x)
S→ B(y)← y

Guess 0→ 0 → 1← 0

Bwd 1→ 2 ← 1← 0

Bwd 2→ 4 ← 1← 0

Fwd 3→ 6 → 3← 1

Bwd 4→ E ← 1← 0

Fwd 5→ D → 2← 2

Fwd 6→ B → 0← 3

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

R(x) 0 0 0 1 0 2 3

Fig. 4. Example for 4-bit non-bijective S

This second feature actually makes the new algorithm very efficient in finding
the smallest representative when n − m is not too large. Instead of guessing
A(x), which implies a loop over approximately 2n guesses, now the list of 2n−m

candidates x′ immediately gives us the guesses A(x′) that result in the smallest
output value R(x). The more often we can reuse an output value y, the less
often we need to guess. This can also be observed by comparing the examples in
Figure 1 and 4. As a result, the algorithm to find a linear representative becomes
more efficient for n ×m functions with m < n. If m becomes very small, the
complexity increases again since the enumeration of 2n−m candidates, which
is used also in [11], becomes the dominant factor. That the complexity first
decreases and then increases with m corresponds to our initial observation in
Figure 3.
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4 Classifying Balanced 5 ×m Quadratic Functions

In this section, we first describe how all 5×m balanced quadratic functions can be
classified iteratively using our algorithm. Even though all 5-bit Boolean functions
and permutations have already been classified in [4] and [14] respectively, this
is the first time such an analysis is performed for m /∈ {1, 5}. Moreover, we
introduce novel optimizations using the (non-)linearity of the components to
perform this classification much faster. We then compare the performances of
finding all quadratic permutations using the method in [14] with ours.

4.1 Naive Iteration

There exist 215 different 5-bit quadratic Boolean functions. Since we target
balanced functions, we consider only the balanced 18 259 out of 215 as candidate
coordinate functions fi : GF(25) → GF(2). In iterative stages for m = 1 to
5, we systematically augment all balanced 5 × (m − 1) functions with these
18 259 candidates to form a set of 5 ×m functions. We then use the adapted
AE algorithm to reduce these functions to their affine equivalent representative.
This reduction step is the key feature of the classification algorithm, since it not
only provides us with all 5×m representatives, but also significantly lowers the
workload of the next stage. The search procedure is described by Algorithm 6.

Initialize R = {0}, S = ∅ and m = 1;
Let F contain all balanced quadratic Boolean functions;
while m < 5 do

for all S = (S1, . . . , Sm−1) ∈ R do
for all candidates f ∈ F do

if S′ = (S, f) is balanced then
S ← S ∪ {S′};

end

end

end
R← ∅;
for all S ∈ S do

Find affine equivalent representative R of S;
R← R∪R;

end
Sort and eliminate doubles from R.
S ← ∅;
m← m+ 1;

end
Algorithm 6: Generate Quadratic Functions
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Table 1 shows the number of functions we obtain for m = 1, . . . , 51. Our
results for m ∈ {1, 5} align with those from previous works and require 50 minutes
of computation time, using 4 threads on a Linux machine with an Intel Core
i5-6500 processor at 3.20GHz. The comparison of this timing alone with a couple
of hours, using 16 threads given in [14] shows the impact of using an iterative
approach, made possible by the new AE algorithm.

Table 1. Number of affine equivalence classes for 5×m functions for m = 1, . . . , 5

5× 1 5× 2 5× 3 5× 4 5× 5

# functions 3 12 80 166 76

4.2 Impact of Linear Components on Efficiency

The runtime for finding the linear representative of a function depends on the
accuracy of guesses. That is, the algorithm searches the smallest representative
for each guess of A(x). As a result, we notice that the more nonlinear components
the function has, the more dead ends the algorithm encounters and the more
quickly it finishes. On the other hand, the more linear components the function
has, the more valid solutions for the affine transforms and thus the longer the
algorithm needs to search through them. Therefore, the algorithm for finding the
linear representative becomes less efficient as the number of linear components of
the function increases.

In order to illustrate this significant difference, we choose five 5-bit affine
equivalence classes with a different number of linear components. We use the
same class enumeration as in [14] and represent the ith quadratic permutation

with Q
(5,5)
i . From each class, we randomly choose 100 permutations and observe

the average runtime of the AE algorithm. The results of this experiment are
shown in Table 2.

Moreover, we further analyze the runtime of the AE algorithm by removing
coordinates to derive n×m functions with less linear components. The result is
illustrated in Figure 5.

We introduce the following definition of a Linear Extension in order to define
our optimization for the algorithm.

Definition 7 (Linear Extension). An n-bit permutation F = (f0, . . . , fn−1)
is the linear extension of an n×m function G = (f0, . . . , fm−1) if ∀m ≤ i < n,
fi is linear.

Linearly extending any balanced n×m function with n−m linear coordinates
results in a balanced n-bit permutation. Correspondingly, each balanced n-bit

1 The exact listing of the representatives and their cryptographic properties can be
found on http://homes.esat.kuleuven.be/~ldemeyer/
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Table 2. Average runtimes of the AE algorithm [11] for some 5-bit permutation classes

Class # Linear Components Av. Runtime (s.)

Q
(5,5)
1 15 1.36

Q
(5,5)
2 7 0.39

Q
(5,5)
37 3 0.017

Q
(5,5)
49 1 0.0083

Q
(5,5)
75 0 0.0053

1 2 3 4 5

m

10 -4

10 -3

10 -2

10 -1

10 0

10 1

ru
n
ti
m

e
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s
)

Q
1

Q
2

Q
37

Q
49

Q
75

Fig. 5. Actual runtimes observed for some 5-bit functions

permutation with 2n−m − 1 linear components can be generated as a linear
extension of some balanced n ×m function with zero linear components. We
therefore initially eliminate all linear coordinate functions from our search,
generating 5 × m functions with only nonlinear coordinates in each step. In
the very last stage, we obtain a list of 5-bit bijections without linear components.
Finally, we add to this list all the linear extensions of the 5×m representatives
found so far (for m = 1, . . . , 4) to also obtain the 5-bit bijections with 2n−m − 1
linear components. This optimization increases the efficiency of the search in three
ways. Firstly, it reduces the number of fi candidates inserted in each stage (|F|
decreases). Secondly, it discards functions for which finding the AE representative
is slow. Finally, it reduces the number of n×m representatives that each stage
starts from.

4.3 Impact of the Order of Coordinate Functions on Efficiency

Consider the three Boolean quadratic function classes Q
(5,1)
0 , Q

(5,1)
1 and Q

(5,1)
2

for which representative ANF’s and nonzero Walsh coefficient distributions are
provided in Table 3.
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Table 3. 5-bit Boolean functions

Class Representative
#|ω : f̂(ω) = ξ|

ξ = 32 ξ = 16 ξ = 8

Q
(5,1)
0 x0 1 0 0

Q
(5,1)
1 x0 ⊕ x1x2 0 4 0

Q
(5,1)
2 x0 ⊕ x1x2 ⊕ x3x4 0 0 16

We can use these Walsh properties to further optimize the number of function
candidates F to which we need to apply the AE algorithm. Since swapping
coordinate functions in a function corresponds to an affine output transformation,
we can fix the order of coordinate functions according to a certain property
(Lemma 8). We choose this property to be the linearity and demand the maximum
value of the Walsh transform of fi to be not smaller than that of (f0, . . . , fi−1).

Lemma 8. Every n × m function F = (f0, f1, . . . , fm−1) is affine equivalent
to an n×m function G(x) = (g0, g1, . . . , gm−1) with max ĝ0(ω) ≤ max ĝ1(ω) ≤
. . . ≤ max ĝm−1(ω), where ĝi(ω) is the Walsh spectrum of gi(x).

4.4 Performance Comparison

Table 4 summarizes the results of the optimized search that takes only 6 minutes,
using 4 threads. This significant increase of performance enables us to classify
all 6-bit functions as described in Section 6. Note that the first column (m = 0)
corresponds to the classes of affine 5 × i functions. The last row shows the
number of linear components in the corresponding 5-bit bijections and is equal
to 25−m − 1.

Each column starts with the number of “purely nonlinear” 5×m representa-
tives (only nonlinear coordinates). The rows below the diagonal hold the number
of classes that result from linearly extending the classes in previous rows. We
find 22 quadratic 5-bit equivalence classes without linear components. Adding to
this the linear extensions of smaller functions, we obtain all the 75 quadratic and
the one affine 5-bit representatives.

Note that the number of classes obtained from linearly extending all 5×m
functions can be much smaller than the number of 5×m classes itself (for example
22� 55 for m = 3). This can be explained by the fact that linearly extending two
extended affine but not affine equivalent functions can result in affine equivalent
permutations (i.e. a collision in the linear extension). Consider for example the
following two 5× 3 functions that are extended affine equivalent but not affine
equivalent: 

x0 ⊕ x1x2
x1 ⊕ x2x3
x4 ⊕ x0x1

6∼


x0 ⊕ x3 ⊕ x1x2
x1 ⊕ x3 ⊕ x2x3
x4 ⊕ x0x1

14



Table 4. Number of affine equivalence classes for 5× i functions for i = 1, . . . , 5 with
2i−m − 1 linear components.

# 5× i functions
m

Tot. #
0 1 2 3 4 5

# 5× 1 1 2 - - - - 3
# 5× 2 1 3 8 - - - 12
# 5× 3 1 5 19 55 - - 80
# 5× 4 1 3 17 52 93 - 166
# 5× 5 1 2 6 22 23 22 76

# Linear Components: 31 15 7 3 1 0

It is straightforward to verify that linearly extending both functions with coordi-
nate functions x2 and x3 results in two affine equivalent 5-bit permutations.

x0 ⊕ x1x2
x1 ⊕ x2x3
x4 ⊕ x0x1
x2

x3

∼



x0 ⊕ x3 ⊕ x1x2
x1 ⊕ x3 ⊕ x2x3
x4 ⊕ x0x1
x2

x3

5 Decomposing and Generating Higher Degree
Permutations

We now adapt our algorithm to (de)compose higher degree functions into/from
quadratics. This leads to area efficient implementations especially in the context
of side-channel countermeasures and masking, where the area grows exponentially
with the degree of a function. Below we describe length-two decompositions and
constructions of cryptographically interesting permutations.

5.1 Length-two Decomposition

We are trying to decompose a higher degree function H : GF(2n) → GF(2m).
If a quadratic decomposition of length two exists, then we can state that H =
B ◦R1 ◦A ◦R2 ◦ C with A,B,C affine permutations and R1, R2 representatives
of for example resp. n ×m and n-bit quadratic classes. Alternatively, we can
state that H is affine equivalent to R1 ◦A ◦R2. Suppose we fix R2 (to one of the
known n-bit representatives) and we want to find the representative R1 and the
affine permutation A such that

H ∼ R1 ◦A ◦R2 (1)

We perform this search iteratively as well, starting for m = 1 with all Boolean
functions f for which f ◦R2 : GF(2n)→ GF(2) is extended affine equivalent to a
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component function of H. We thus select the candidates for f using the following
criteria:

– f is balanced
– H has a component with the same algebraic degree as f ◦R2

– The Walsh transform of f ◦R2 has the same distribution as one of the columns
in the LAT of H

Starting from this list of candidates, we proceed in the same manner as in
Algorithm 6. When we augment an n× (m− 1) function with one of the Boolean
function candidates f to a balanced n×m function F , we verify that the LAT
of the composition F ◦ R2 has the same distribution as some part of the LAT
of H. While the relation between the LAT of a vectorial function and the LAT
of its components is straightforward, we do not have a clear criterion for the
DDT of a subset of the output bits of a permutation. Any n×m function H ′

that has as its coordinate functions a subset of the components of H can be an
intermediate composition result in our search. For optimal efficiency, we need
to know what the DDT of this function can look like so we can filter out any
false candidates as early as possible. In general, we can state H ′ = L ◦H with
L : GF(2n)→ GF(2m) a linear mapping such that H ′ is balanced. We propose
to enumerate all these functions H ′ for m = 1, . . . , n− 1 and generate the list of
possible DDT frequency distributions as input for the search. We then check for
each intermediate n×m candidate F if the DDT distribution of the composition
F ◦R2 occurs in this list.

The quadratic function classification algorithm (Algorithm 6) is very efficient
because it reduces the lists of intermediate functions to their affine equivalent
representatives at each step m. However, we cannot do that in this case as this
would change the affine transformation A in the decomposition (see Eqn. (1)).
Let S1 = B ◦ R1 ◦ A be a candidate for which S1 ◦ R2 ∼ H and let R1 be its
affine representative. Reducing S1 to R1 would discard the affine transformation
A. In that case, we would only be able to decompose functions that are affine
equivalent to the composition of two representatives: R1 ◦R2. In other words, if
there is another candidate S′1 affine equivalent to S1, we do not want to discard
it as it will not necessarily result in affine equivalent compositions.

S′1 ∼ S1 ⇒/ S′1 ◦R2 ∼ S1 ◦R2

However, without any reductions in the intermediate steps of the algorithm,
the search becomes very inefficient as the list of candidate functions grows
exponentially. There is still a redundancy in our search because of the affine
output transformation B that is included in S1. If S′1 is only left affine equivalent
to S1, then their compositions are affine equivalent:

S′1 = B′ ◦ S1 ⇒ S′1 ◦R2 ∼ S1 ◦R2

We therefore adapt the AE algorithm to find the lexicographically smallest
function RL1 that is left affine equivalent to S1: RL1 = B−1 ◦S1 = R1 ◦A. We call
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this function RL1 the left affine representative of S1. The algorithm to find RL1
is identical to finding the affine equivalent representative with the input affine
transformation constrained to the identity function. This constraint removes the
need for guesses and makes the algorithm very efficient. An example is shown in
Figure 6. Algorithm 7 summarizes the resulting decomposition method.

for all quadratic n-bit representatives R2 do
Initialize R = {0}, S = ∅ and m = 1;
F ← all quadratic Boolean functions f satisfying above criteria;
while m < n do

for all S ∈ R do
for all candidates f ∈ F do

if S′ = (S, f) is balanced and the DDT and LAT distribution of
S′ ◦R2 are possible then
S ← S ∪ {S′};

end

end

end
R← ∅;
for all S ∈ S do

Find left affine equivalent representative RL of S;
R← R∪RL;

end
Sort and eliminate doubles from R.
S ← ∅;
m← m+ 1;

end
if R 6= ∅ then

Decomposition of length 2 found;
end

end
Algorithm 7: Find decompositions of length two
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a 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(a) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x→ A(x)
S→ B(y)← y

Fwd 0→ 0 → 1← 0

Fwd 1→ 1 → B← 1

Fwd 2→ 2 → 9← 2

Fwd 3→ 3 → C← 4

Fwd 4→ 4 → D← 8

Fwd 5→ 5 → 6← 5

Fwd 6→ 6 → F← 7

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

RL(x) 0 1 2 4 8 5 7

Fig. 6. Example for finding the left representative RL of S. Input transformation A is
fixed to the identity function: A(x) = x

5.2 Almost Bent Permutations

In GF(25), there are two cubic AB permutation classes that are the inverses of

Q(5,5)
74 and Q(5,5)

75 . Finding their length-two quadratic decompositions is relatively
easy because their properties are so well defined. Firstly, all components of the
cubic AB’s have the same algebraic degree (=3). We also know that the DDT of
an AB function contains only zeros and twos and its LAT contains only zeros
and elements with absolute value 4. It immediately follows that also the Walsh
transform of each coordinate function of the AB is equal to either 0 or ±8.

Moreover, when we look at 5×m subfunctions, there is only one permitted
DDT frequency distribution for each m. It is indeed known that all coordinate
functions of the AB are (extended) affine equivalent. As a result, all 5 × m
functions that can be built using those coordinate functions are extended affine
equivalent.

We enumerate all 75 candidates for R2 and perform the search for R1 and

A using Algorithm 7. When R2 is the representative of classes Q
(5,5)
1 to Q

(5,5)
74 ,

the algorithm finds no 5-bit bijections that compose with R2 to a cubic AB. The
search only ends with non-emtpyR when we perform it with R2 the representative

of Q
(5,5)
75 , which is itself a quadratic AB permutation. The resulting R1 is equal

to R2 and their composition forms the AB class that holds the inverse of Q
(5,5)
75 .

Without the constraint that the AB needs to be cubic, we also find a de-

composition for class Q
(5,5)
75 itself with R1 = R2 = Q

(5,5)
74 . Decompositions of

length two for the odd AB permutations are not found. We suspect they require
a decomposition of length 3.
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Table 5. Look-up-tables for the even cubic AB and its decomposition AB = S1 ◦R2

with S1 ∼ R2

AB 0,1,2,8,4,17,30,13,10,18,5,19,6,20,11,26,16,15,9,23,3,7,29,21,14,12,25,31,28,27,22,24
S1 0,1,2,4,8,10,16,21,17,28,18,24,23,25,14,7,30,6,19,12,20,15,3,31,9,29,5,22,13,26,27,11
R2 0,1,2,4,3,8,16,28,5,10,26,18,17,20,31,29,6,21,24,12,22,15,25,7,14,19,13,23,9,30,27,11

5.3 The Keccak χ Inverse

The nonlinear transformation χ used in the Keccak [5] sponge function family χ

(Figure 7) is a quadratic 5-bit permutation from class Q
(5,5)
68 with a cubic inverse.

For the possibility of implementing an algorithm using χ−1, we decompose this
cubic permutation (see Table 6).

Fig. 7. The nonlinear transformation χ from Keccak [5]

Table 6. Look-up-tables for the Keccak permutation χ and its inverse χ−1

χ 0,9,18,11,5,12,22,15,10,3,24,1,13,4,30,7,20,21,6,23,17,16,2,19,26,27,8,25,29,28,14,31
χ−1 0,11,22,9,13,4,18,15,26,1,8,3,5,12,30,7,21,20,2,23,16,17,6,19,10,27,24,25,29,28,14,31

The Keccak inverse does not have the same strong properties as the AB
permutations. Each coordinate function is still cubic but the differential and
linear properties are naturally weaker. Firstly, apart from zeros we find both
±4 and ±8 in the LAT. For the DDT, there are multiple possible frequency
distributions for the intermediate 5×m sub functions. As explained above, we
generate the list of possible DDT and LAT distributions for each m = 1, . . . , 4
and feed this as input to the search algorithm. We filter out all intermediate
functions F : GF(2n)→ GF(2m) for which the DDT and LAT distributions of
F ◦R2 do not occur in this list.

While the search finds many classes with the same cryptographic properties
as the Keccak inverse, a decomposition of length 2 for χ−1 itself does not appear
to exist.

19



5.4 Towards higher degree permutations

When it comes to choosing a nonlinear permutation for use in a cryptographic
primitive, the designer will sooner go to those with higher degree as they provide
more resilience against higher-order differential and algebraic attacks [20]. With
masked implementations in mind, we thus want to find strong n-bit permutations
with high algebraic degree for which a decomposition into quadratic blocks
exists. Our decomposition algorithm can be used for this purpose. If instead of
searching for functions with specific DDT and LAT distributions, we define a set
of more general but strong criteria, we can use the algorithm to generate a list of
favorable permutations. In particular, we use the following criteria to perform a
search for 5-bit permutations S with optimal algebraic degree and near-optimal
cryptographic properties:

– S is balanced
– algebraic degree of S = 4
– maxα,β 6=0 λS(α, β) ≤ 6
– maxα,β 6=0 δS(α, β) ≤ 4

The first three criteria are easily translated for intermediate 5×m functions.
As we are not looking for a known class, this is more difficult for the bound on
the DDT. We use the fact that the upperbound on the values in the DDT at most
doubles every time we discard one output bit (see Theorem 9). This upperbound
is not tight, but can be used to filter some of the unusable intermediate functions
F .

Theorem 9 ([26, Thm. 12]). Let S = (f0, f1, . . . , fn−1) : GF(2n) → GF(2n)
be an n-bit bijection with Diff(S) = maxα,β 6=0 δS(α, β) the maximal value in its
DDT. Then, for any function F : GF(2n)→ GF(2m) with m < n, composed from
a subset of the coordinate functions of S, F = (fi1 , fi2 , . . . , fim) with i1, . . . , im ∈
{0, . . . , n− 1}, the values in its DDT are upperbounded by Diff(S) · 2n−m.

Our search delivers 17 quartic affine equivalence classes with very good
cryptographic properties, shown in Table 7. One of those classes is even almost
perfect nonlinear and contains the permutation formed by the inversion x−1 in
GF(25). Most importantly, each of these very strong 5-bit S-boxes have an efficient
masked implementation, as they can be decomposed into only two quadratic
components.
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Table 7. Strong quartic 5-bit permutations with decomposition length two

Cl. Representative Diff Lin R1 R2

1: 0,1,2,3,4,6,7,8,5,9,16,12,21,26,29,30,10,18,24,13,27,17,20,31,14,11,23,19,22,28,15,25 4 6 Q
(5,5)
52 Q

(5,5)
57

2: 0,1,2,3,4,6,7,8,5,12,16,26,28,18,29,13,9,21,30,25,10,27,20,22,14,19,23,31,17,24,11,15 4 6 Q
(5,5)
71 Q

(5,5)
62

3: 0,1,2,3,4,6,7,8,5,16,18,29,9,15,28,26,10,30,20,19,23,31,24,11,12,22,27,17,13,21,14,25 4 6 Q
(5,5)
53 Q

(5,5)
67

4: 0,1,2,3,4,6,8,11,5,9,16,18,12,17,28,23,7,31,21,19,10,26,14,29,30,25,27,22,24,13,15,20 4 6 Q
(5,5)
71 Q

(5,5)
75

5: 0,1,2,3,4,6,8,11,5,12,16,24,15,21,17,20,7,23,9,18,14,19,25,30,31,10,28,22,13,26,27,29 4 6 Q
(5,5)
69 Q

(5,5)
71

6: 0,1,2,3,4,6,8,12,5,7,16,27,26,15,28,18,9,14,22,17,20,31,24,21,13,29,10,19,25,23,11,30 4 6 Q
(5,5)
33 Q

(5,5)
70

7: 0,1,2,3,4,6,8,12,5,9,16,24,31,10,17,20,7,21,28,22,15,29,14,27,25,19,11,23,13,26,30,18 4 6 Q
(5,5)
74 Q

(5,5)
74

8: 0,1,2,3,4,6,8,12,5,9,16,31,18,17,15,23,7,24,10,29,21,27,11,28,25,30,14,22,26,19,20,13 4 6 Q
(5,5)
74 Q

(5,5)
75

9: 0,1,2,3,4,6,8,12,5,10,16,27,25,19,22,11,7,18,30,13,24,21,28,15,31,9,26,29,23,17,20,14 4 6 Q
(5,5)
74 Q

(5,5)
68

10: 0,1,2,3,4,6,8,12,5,11,16,25,18,10,19,29,7,17,30,21,31,24,13,14,27,22,26,9,20,23,28,15 4 6 Q
(5,5)
75 Q

(5,5)
74

11: 0,1,2,3,4,6,8,12,5,11,16,24,22,26,9,19,7,23,10,13,31,18,20,29,27,30,28,15,14,17,21,25 4 6 Q
(5,5)
74 Q

(5,5)
68

12: 0,1,2,3,4,6,8,12,5,13,16,23,17,18,24,11,7,29,21,27,25,9,22,10,31,14,15,20,19,30,28,26 4 6 Q
(5,5)
72 Q

(5,5)
68

13: 0,1,2,3,4,6,8,12,5,14,16,26,10,27,23,31,7,24,11,28,20,17,9,18,25,21,13,30,15,22,29,19 4 6 Q
(5,5)
10 Q

(5,5)
72

14: 0,1,2,3,4,6,8,12,5,16,13,23,25,21,26,14,7,17,20,28,29,19,11,9,15,10,31,24,27,18,30,22 4 6 Q
(5,5)
72 Q

(5,5)
74

15: 0,1,2,3,4,6,8,12,5,16,21,26,31,22,18,10,7,24,17,13,30,14,19,27,20,9,23,25,11,29,15,28 4 6 Q
(5,5)
74 Q

(5,5)
74

16: 0,1,2,3,4,6,8,16,5,10,20,29,7,31,27,13,9,25,15,18,19,14,22,26,21,17,11,12,30,28,23,24 4 6 Q
(5,5)
10 Q

(5,5)
75

17: 0,1,2,4,3,6,8,16,5,10,15,27,19,29,31,20,7,18,25,21,12,14,24,28,26,11,23,13,30,9,17,22 2 6 Q
(5,5)
75 Q

(5,5)
74

6 Classifying 6 ×m Quadratic Functions

The efficiency of Algorithm 6 makes it feasible to extend the search for quadratic
permutations to n = 6 bits. There are 221 different 6-bit quadratic Boolean
functions, of which there are 914 004 nonlinear balanced ones and 63 linear
balanced ones. This is our list F of candidate coordinate functions fi : GF(26)→
GF(2). Generating all classes of 6 × m functions for m < 6 without linear
components takes 8,5 hours on 24 cores. The total number of classes found for
each m is shown in Table 82. Tables 9 to 12 show histograms of the classes’
cryptographic properties. It is interesting to note that the two best 6× 5 classes

in Table 12 correspond to the two AB 5× 5 classes Q
(5,5)
74 and Q

(5,5)
75 , extended

with a sixth unused input bit.

Table 8. Number of affine equivalence classes with/without linear components for
6×m functions for m = 1, . . . , 5

6× 1 6× 2 6× 3 6× 4 6× 5

# classes without 2 19 604 10 480 7 458
# classes with 3 24 670 11 891 12 671

2 The exact listing of the representatives and their cryptographic properties can be
found on http://homes.esat.kuleuven.be/~ldemeyer/
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Table 9. Number of 6× 2 function classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16

Diff = 32 5 3
Diff = 64 2 9

Table 10. Number of 6× 3 function classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16

Diff = 16 57 7
Diff = 32 128 252
Diff = 64 11 149

Table 11. Number of 6× 4 function classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16

Diff = 8 10 1
Diff = 16 1935 845
Diff = 32 618 5013
Diff = 64 42 2016

Table 12. Number of 6× 5 function classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16

Diff = 4 2 0
Diff = 8 111 3
Diff = 16 124 1028
Diff = 32 0 3343
Diff = 64 4 2843

In order to complete the final stage of the search for all 6-bit permutations,
we generate the list of candidates for the AE algorithm by extending the 6 ×
5 functions with the Boolean function candidates fi and we add the linear
extensions of all 6×m functions. We split this list into 100 parts and complete
the rest of the algorithm on 100 cores. In the end ,we find 2 263 classes of 6-bit
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quadratic permutations (not including the one linear permutation)3. Table 13
shows how these classes are distributed among even and odd permutations or
how many of them have quadratic/cubic inverses. Table 14 depicts the histogram
of cryptographic properties. There are eight classes with Diff = 4 and Lin = 8.
These are shown in Table 15. One of those permutations is odd. Finally, Figure 8
shows the total number of affine equivalence classes of n×n permutations. While
it was already clear that this number grows fast with n, the figure demonstrates
how difficult it was before this work to predict just how fast.

Fig. 8. Number of affine equivalence classes of n× n permutations for growing n

Table 13. Number of 6-bit permutation classes with certain properties

Even/Odd 2258 5
Inverse = quadratic/cubic 70 2193

Table 14. Number of 6-bit permutation classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32

Diff = 4 8 0 0
Diff = 8 0 0 12
Diff = 16 0 49 100
Diff = 32 0 49 1067
Diff = 64 0 200 778

3 The exact listing of the representatives and their cryptographic properties can be
found on http://homes.esat.kuleuven.be/~ldemeyer/
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Table 15. Strong quadratic 6-bit permutations

Cl. Representative Diff Lin Parity

2256:
0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,40,51,53,46,50,47,52,41,63,33,56,38,10,45,

4 8 Even
27,60,43,15,59,31,58,24,49,19,55,22,61,28,29,35,18,44,25,36,23,42,30,37,11,48,54,14,34,26

2257:
0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,41,50,52,47,40,53,46,51,36,58,35,61,10,25,

4 8 Even
37,54,33,49,15,31,45,59,24,14,42,63,30,11,29,23,44,38,18,27,34,43,19,28,56,55,48,60,26,22

2258:
0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,41,50,52,47,55,42,49,44,59,37,60,34,10,25,

4 8 Even
38,53,35,51,14,30,61,43,11,29,56,45,15,26,22,28,36,46,27,18,40,33,23,24,63,48,54,58,31,19

2259:
0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,20,41,58,47,63,15,31,48,44,9,21,57,38,14,17,12,25,

4 8 Even
24,13,34,52,56,46,40,50,43,49,39,62,42,51,35,36,27,28,33,37,23,19,53,61,26,18,22,29,55,60

2260:
0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,24,40,55,48,44,17,13,9,25,49,33,31,12,41,58,14,27,

4 8 Even
26,15,57,47,35,53,61,39,62,36,43,50,38,63,46,37,23,28,42,34,29,21,22,18,56,60,51,52,19,20

2261:
0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,34,21,48,13,43,17,55,56,18,61,23,19,58,24,49,9,52,

4 8 Even
20,41,31,33,12,50,46,28,36,22,25,40,29,44,62,39,51,42,38,60,37,63,35,53,57,47,26,15,14,27

2262:
0,1,2,3,4,6,8,10,5,12,16,25,32,42,59,49,7,20,14,29,52,36,51,35,53,46,43,48,39,63,55,47,9,58,

4 8 Even
44,31,22,38,61,13,19,40,33,26,45,21,17,41,54,23,24,57,30,60,62,28,27,50,34,11,18,56,37,15

2263:
0,1,2,3,4,8,16,28,5,12,32,41,10,14,57,61,6,62,23,47,33,20,38,19,43,27,29,45,7,58,39,26,9,22,

4 8 Odd
55,40,11,25,35,49,44,59,53,34,37,63,42,48,21,51,56,30,52,31,15,36,24,54,18,60,50,17,46,13

Conclusion

This work studies the classification of quadratic vectorial Boolean functions
under affine equivalence. It extends Biryukov’s Affine Equivalence algorithm
to non-bijective functions for use in a new classification tool that provides us
with the complete classification of balanced n×m quadratic vectorial Boolean
functions for m ≤ n and n < 7. We also introduce a tool for finding length-two
quadratic decompositions of higher degree functions.

New cryptographic algorithms should be designed with resistance against side-
channel attacks in mind. When it comes to choosing S-boxes, designers can use
our classification to pick quadratic components and use our (de)composition tool
to create cryptographically strong S-boxes with efficient masked implementations.
After the classifications of 4- and 5-bit permutations in previous works, this work
expands the knowledge base on both classification and decomposition, bringing
us one step closer to classifying 8-bit functions and decomposing the AES S-box
using permutations instead of tower field or square-and-multiply approaches.
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