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Abstract

We design a group key exchange protocol with forward secrecy where most of the par-
ticipants remain offline until they wish to compute the key. This is well suited to a cloud
storage environment where users are often offline, but have online access to the server which
can assist in key exchange. We define and instantiate a new primitive, a blinded KEM,
which we show can be used in a natural way as part of our generic protocol construction.
Our new protocol has a security proof based on a well-known model for group key exchange.
Our protocol is efficient, requiring Diffie–Hellman with a handful of standard public key
operations per user in our concrete instantiation.

Keywords: Authenticated Key Exchange, Group Key Exchange, Forward Secrecy, Cloud Stor-
age, Blinded Key Encapsulation

1 Introduction

We consider the following collaboration scenario. Isabel would like to use a cloud storage provider
to share some files with her collaborators Robin and Rolf. While Isabel and her collaborators
have some level of trust in the cloud storage provider, they do not want the provider to be able
to see the contents of their files. In other words, Isabel needs to share some secret key material
with Robin and Rolf. This paper addresses the problem of sharing this secret key material.

There are a number of possible solutions. The simplest is for Isabel to encrypt the key
material using public key encryption and send the ciphertexts to Robin and Rolf, who can then
decrypt. However, this solution does not provide forward secrecy. If either Robin or Rolf’s
decryption keys are compromised at any point in the future, the confidentiality of the key
material is also compromised.

Group key exchange (GKE) can give us forward secrecy. However, Isabel and her collabo-
rators will not be online all the time, and the time spent offline is non-trivial. If Isabel and
her collaborators want to use a traditional GKE, then Isabel cannot share her files until every
collaborator has been online. Likewise, the individual collaborators cannot look at the shared
files until every other collaborator has been online. This is impractical, and no system that has
interactions between the initiator and the responders can be practical in this setting.

In this paper, we propose a GKE protocol that provides forward secrecy and is non-interactive
with respect to the sharing parties, hence suitable for our collaboration scenario: Isabel comes
online, runs her part of the GKE protocol, receives the key material and shares the files. As the
individual collaborators come online, they run their part of the GKE protocol, receive the key
material and get access to the shared files.
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1.1 Secure Sharing and Forward Secrecy

The users in our collaboration scenario will be content to trust their cloud storage provider
(CSP) to make their data available. Some users will be content to trust their CSP to use simple
access control to prevent unauthorized access or modification. However, for many users such a
convenient trust assumption regarding confidentiality or integrity is either unreasonable, legally
impossible or otherwise undesirable. For this reason, many CSPs support (in addition to access
control) the obvious solution of user-side encryption of data, where the CSP does not know the
key material used for encryption and decryption1.

The use of encryption means that groups of users must establish shared key material in order
to share data. This suggests group key exchange. However, group key exchange protocols are
usually interactive, while in our collaboration scenario, Isabel’s collaborators may not all be
online at the same time, so completing the group key exchange would take too long, and until
the key material was agreed upon, no work could be done.

We therefore desire non-interactive solutions that allow the initiator to complete their actions
before any recipients come online, and do not require any interaction between the recipients.
This rules out traditional group key exchange protocols [5, 2, 18, 3, 13].

The natural non-interactive solution is to use public key encryption (or perhaps other similar
primitives, such as broadcast encryption). However, in the outsourced storage scenario, forward
secrecy – compromise of long-term keys does not compromise previously completed sessions –
is important. Forward secrecy is typically achieved through the use of interaction with Diffie–
Hellman or other ephemeral keys. Using ephemeral keys for confidentiality and long-term keys
only for authentication ensures that later release of long-term secrets does not reveal the session
key.

Forward secrecy presents an inherent conflict with our requirement to have a non-interactive
solution. Indeed, a simple generic argument implies that forward secrecy without interaction is
impossible: without interaction the recipient cannot provide an ephemeral input and therefore
the recipient’s long-term key alone must be sufficient to recover the session key. Recent proposals
have attempted to work around this argument in different ways. The first line of work, including
the X3DH [23] and ART [8] protocols, insists that recipients upload some pre-keys to the CSP
at some point before the initiator begins their activity. These pre-keys are then used as if
they were ephemeral, however if one recipient never comes online then they could sit on the
server indefinitely: this is a re-definition of ephemeral and long-term keys, as used by standard
key exchange security models. Another approach, taken by Green and Miers [14] and further
developed by Günther et al. [16] and Derler et al. [12], concerns so-called zero-round-trip-time
(0RTT) key exchange. In this model, the long-term decryption key is updated (punctured)
once the recipient comes online, in such a way that the crucial ciphertexts can no longer be
decrypted by that (long-term) key. Thus the long-term key is no longer static but evolves over
time. Forward secrecy with puncturable encryption relies crucially on the assumption that the
protocol (single) message arrives at the receiver. Until that happens the receiver private key is
not updated and so the encrypted data is vulnerable to receiver compromise. In addition we
note that these works rely on less efficient cryptographic primitives and require increased storage
and secure deletion properties at the receiver. Fig. 1 summarizes selected existing literature on
file-sharing protocols.

1.2 Contributions

In this paper, we run into two major obstacles. We need a group key exchange protocol that
is non-interactive with respect to the initiator and the responders, and that at the same time
provides forward secrecy.

1This practice is confusingly often called zero knowledge in commercial circles.
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Forward Non- Security
Protocol Secrecy Interactive Proof Efficient Parties
X3DH [23] 3a 8d 8 3 2
ART [8] 3a 8d 3 3 N

0RTT KE [14, 16, 12] 3b 3 3 8 2
GKE [5, 2, 18, 3, 13] 3 8 3 3 N

Mona [22], Tresorit [20, 21] 8 3 3 3 N

Chu et al. [7] 8 3 8 3 N

This work 3c 3 3 3 N

Figure 1: Comparison of secure sharing protocols. aRe-defined ‘ephemeral keys’; bRe-defined
‘long-term keys’; cIf the server honestly deletes all ephemeral data; dUsers must upload pre-keys.

We overcome these obstacles by noting that the cloud server is online at all times, and use
ephemeral values provided by the cloud server to give us forward secrecy. This allows us to
achieve the best possible level of forward secrecy in our collaboration scenario, without trusting
the cloud server. Our protocol is simple and relies only on standard assumptions.

We regard the following as the main contributions of this paper.

• We propose a novel practical group key exchange protocol suitable for use in cloud storage.
Our protocol is described in Section 5.

• We include a formal security analysis of our protocol in a strong security model with trust
assumptions suited to the cloud scenario. The proof is in a security model which is detailed
in Section 3.

• We introduce definitions and constructions for a new cryptographic primitive, blinded
KEMs, which may find other applications. We describe this primitive and provide two
secure constructions in Section 4.

2 Preliminaries

For a set S, denote x
$←− S to mean choosing x uniformly at random from S. We write

return b′ ?
= b as shorthand for if b′ = b then return 1; else return 0, with an output of 1

indicating successful adversarial behavior.

2.1 Public-key encryption

A public-key encryption scheme PKE = (KGpke,Enc,Dec) with message space M is defined as
follows. KGpke takes as input some security parameter(s), if any, and outputs a public encryption
key pk and a secret decryption key sk . Enc takes a message m and produces a ciphertext c using
pk : c← Encpk (m). Dec decrypts a ciphertext c using sk to recover m or in the case of failure a
symbol ⊥: m/⊥ ← Decsk (c). Correctness requires that m← Decsk (Encpk (m)) for all m ∈M.

We denote the usual advantage of an adaptive chosen ciphertext adversary A against real-
or-random security for the public-key encryption scheme by Advror-cca2

PKE (A). In our protocol’s
security proof, it is actually convenient to use a generalization of this notion, which we discuss
in Appendix A.

2.2 Digital signatures

A signature scheme DS = (KGsig,Sign,Verify) with message spaceM is defined as follows. KGsig

takes as input some security parameter(s), if any, and outputs a signing key sk and a public
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verification key vk . Sign creates a signature σ on a message m: σ ← Signsk (m). Verify verifies
that the signature on the message is in fact valid: 0/1 ← Verifyvk (m,σ), with 1 indicating
successful verification. Correctness requires that Verifyvk (m,Signsk (m)) = 1 for all m ∈M.

Definition 1. Let DS = (KGsig,Sign,Verify) be a signature scheme. Then the suf-cma advantage
of an adversary A against DS is defined as

Advsuf-cma
DS (A) = Pr[Expsuf-cma

DS (A) = 1].

where the experiment Expsuf-cma
DS (A) is given in Fig. 2.

Expsuf-cma
DS (A) :

SLIST ← ∅
sk , vk ← KGsig

(m,σ)← AO.Sign(vk)
if Verifyvk (m,σ) and (m,σ) /∈ SLIST
return 1

else
return 0

O.Sign(m) :
if m 6∈ M then
return ⊥

σ ← Signsk (m)
SLIST ← SLIST ∪ (m,σ)
return σ

Figure 2: The experiment defining suf-cma security for signature schemes.

Note that in the existential unforgeability under chosen message attack (euf-cma) game the
list SLIST only keeps track of the messages queried by the adversary during the Sign queries
phase, so A is not allowed to output (m,σ2) if she sent m to O.Sign and received σ1.

2.3 Hardness assumptions

Definition 2. Fix a cyclic group G of prime order q with generator g. The advantage of an
algorithm A solving the Decision Diffie-Hellman (DDH) problem for G and g is

AdvDDH
G (A) = 2

∣∣∣Pr[ExpDDH
G (A) = 1]− 1

2

∣∣∣
where the experiment ExpDDH

G (A) is given in Fig. 3.

Definition 3. Let F be a family of functions. The collision resistance advantage of an adversary
A running in time t is

AdvCR
F (A) =

∣∣Pr[ExpCR
F (A) = 1]

∣∣
where the experiment ExpCR

F (A) is given in Fig. 4.

Note that in an abuse of notation, we sometimes write AdvCR
f (A), with the understanding

that the function family F exists and that the choice of a function f is done at some point.

ExpDDH
G (A) :

b
$←− {0, 1}

x, y, z
$←− Zq

if b = 1
c← gxy

else
c← gz

b′ ← A(gx, gy, c)
return b′ ?

= b

Figure 3: DDH experiment.

ExpCR
F (A) :

f
$←− F

x, y ← A(f)
if x 6= y ∧ f(x) = f(y) then
return 1

else
return 0

Figure 4: Collision resistance experiment.
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3 GKE protocol model

The model described in this section is based on previous models for group key exchange such as
those of Katz and Yung [18] and Bresson and Manulis [4]. This includes game-based security
definitions.

3.1 Communication Model

A GKE protocol P is a collection of probabilistic algorithms that determines how oracles of the
principals behave in response to signals (messages) from their environment.

Protocol participants and long-lived keys. Each principal V in the protocol is either a
user U or a server S. In every session, each user may act as either an initiator I or a responder
R. Each principal V holds long-term secret keys, and corresponding public keys of all principals
are known to all.

Session identifiers and partner identifiers. Protocol principals maintain multiple in-
stances, or sessions, that may be run simultaneously and we denote a session of principal
V by the oracle

∏α
V with α ∈ N.

Each oracle
∏α

V is associated with the variables statusαV, role
α
V, pid

α
V, sid

α
V, kαV as follows:

• statusαV takes a value from {unused , ready , accepted , rejected}.

• roleαV takes a value from: S, I, R.

• pidαV contains a set of principals.

• sidαV contains a string defined by the protocol.

• kαV the agreed session key (if any).

A session identifier, denoted sid , is a protocol-defined value stored at a principal intended to
provide a link to other sessions in the same protocol run. A set of partner identifiers, denoted
pid , contains the identities of all intended users in a session.

Each oracle
∏α

V is unused until initialization, by which it is told to act as a server or
a user together with the long term secret keys. During initialization all oracles begin with
statusαV = ready and roleαV, pid

α
V, sid

α
V and kαV all equal to ⊥.

Executing the protocol. After the protocol starts, each oracle
∏α

V learns its partner identifier
pidαV and sends, receives and processes messages.

If the protocol at oracle
∏α

V fails, for example if signature verification or key confirmation
fails, then the oracle changes its state to rejected and no longer responds to protocol messages.
Otherwise, if V is a user, after computing kαV oracle

∏α
V changes its state to accepted and no

longer responds to protocol messages, and if V is the server, oracle
∏α

V accepts after all responder
oracles get their messages or expiration.

3.2 Security Notions

Adversarial model. An efficient adversaryA interacts with sessions by using the set of queries
defined below. This models the ability of A to completely control the network, deciding which
instances run and obtaining access to other useful information. The Test query can only be
asked once by A and is only used to measure adversary’s success; it does not correspond to any
actual adversary’s ability.
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• Execute(S): Input a set of unused oracles S which execute an honest run of the protocol.
The oracles compute what the protocol specifies and returns the output messages.

• Send(
∏α

V,m): Sends message m to oracle
∏α

V. The oracle computes what the protocol
defines, and sends back the output message (if any), together with the status of

∏α
V.

• Corrupt(V): Outputs principal V’s long-term secret key.

• Reveal(
∏α

V): Outputs session key kαV if oracle
∏α

V has accepted and holds some session key
kαV.

• Test(
∏α

V): If oracle
∏α

V has status accepted , holding a session key kαV, then a bit b is
randomly chosen and this query outputs the session key kαV if b = 1, or a random string
from the session key space if b = 0.

Partnering. A secure GKE protocol should ensure that the session key established in an oracle∏α
V is independent of session keys established in other sessions, except for the partners of

∏α
V.

This is modeled by allowing the adversary to reveal any session key except the one in the Test
session and its partners. Informally, partnering is defined in such a way that oracles who are
supposed to agree on the shared session key are partners.

Definition 4. Two oracles
∏α

V and
∏β

W are partners if pidαV = pidβW and sidαV = sidβW.

Freshness. The notion of freshness models the conditions on the adversary’s behaviour that
are required to prevent trivial wins.

Definition 5. An oracle
∏α

V is fresh if neither this oracle nor any of its partnered oracles have
been asked a Reveal query, and either

• no server player nor any player in pidαV was corrupted before every partnered oracle reached
status accepted ; or

• no player in pidαV is ever corrupted.

Security Game. Bringing together everything we have introduced so far, we can describe the
game that allows us to measure the advantage of an adversary against a GKE protocol.

Definition 6. Let P be a GKE protocol. The game Expake
P (A) consists of the following three

phases:

• Initialization. Each principal V runs the key generation algorithm to generate long-term
key pairs. The secret keys are only known to the principal, while public keys are revealed
to every principal and the adversary.

• Queries. The adversary A is allowed to make Execute, Send, Reveal, Corrupt, and Test
queries. During this phase, A is only allowed to ask only one Test query to a fresh oracle,
which should remain fresh until the end of this phase.

• Guessing. A outputs its guess b′.

The output of the game is 1 if b = b′, otherwise 0.
The advantage of the adversary A against the ake-security of P is

Advake
P (A) = 2

∣∣∣Pr[Expake
P (A) = 1]− 1/2

∣∣∣ .
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4 Blinded KEM

The concept of using public-key encryption to transport keys for use in symmetric encryption
is by now well studied [9, 10, 11, 19, 1, 17]. This primitive is known as a key encapsulation
mechanism (KEM) and is used in conjunction with a data encapsulation mechanism (DEM) that
models some symmetric encryption scheme. This KEM-DEM framework is widely deployed in
internet protocols, however – as we mentioned earlier – it does not provide any forward secrecy.
The cloud scenario allows the initiator to store the encapsulated key and the DEM ciphertext
in some repository for the recipient to later retreive, but we ask: can the (untrusted) cloud give
us some notion of forward secrecy of the key that the initator wishes to transport?

It is well known how to turn a KEM into a key exchange protocol. We shall introduce a new
primitive, which we call blinded KEM, and in the next section we will explain how to turn such
a primitive into a group key exchange protocol suitable for our purposes.

Compared to a traditional KEM, a blinded KEM has two additional algorithms: a blinding
algorithm takes some encapsulation2 and adds a blinding value, and an unblinding algorithm
(that requires an unblinding key created by the blinding algorithm) removes this blinding value
from the blinded key. Note that this construction does not generalize existing KEMs since our
decapsulation procedure works on blinded encapsulations rather than encapsulations.

The point of this new idealized primitive is to allow parties to safely outsource decapsulation
by creating a blinded encapsulation, having someone else decapsulate and then unblinding the
result. With careful key management, this idea will give us forward secrecy in our cloud scenario.
We will develop this idea into a group key exchange protocol in the next section.

The concept of blinding is best known in the context of blind signatures, but have been
used extensively in many areas of cryptography. It has also been used in the context of blind
decryption [15, 24], and some of the schemes are quite similar to our constructions, even though
they have very different applications in mind and also different security requirements.

After providing a definition of this primitive’s algorithms, we give two natural constructions
(based on DH and RSA).

Definition 7. A blinded key encapsulation mechanism (blinded KEM) BKEM consists of five
algorithms (KGBKEM,Encap,Blind,Decap,Unblind). The key generation algorithm KGBKEM out-
puts an encapsulation key ek and a decapsulation key dk . The encapsulation algorithm Encap
takes as input an encapsulation key and outputs an encapsulation C and a key k ∈ G. The
blinding algorithm takes as input an encapsulation key and an encapsulation and outputs a
blinded encapsulation C̃ and an unblinding key uk . The decapsulation algorithm Decap takes a
decapsulation key and a (blinded) encapsulation as input and outputs a (blinded) key k̃. The
unblinding algorithm takes as input an unblinding key and a blinded key and outputs a key.

The algorithms satisfy the correct decapsulation requirement: When (ek , dk) ← KGBKEM,
(C, k)← Encapek , (C̃, uk)← Blindek (C) and k̃ ← Decapdk (C̃), then

Unblinduk (k̃) = k.

Definition 8. Let BKEM = (KGBKEM,Encap,Blind,Decap,Unblind) be a blinded KEM. The
distinguishing advantage of any adversary A against BKEM getting r blinded decapsulation
samples is

Advind
BKEM(A, r) = 2

∣∣∣Pr[Expind
BKEM(A, r) = 1]− 1/2

∣∣∣,
where the experiment Expind

BKEM(A, r) is given in Fig. 5.

2 We abuse nomenclature throughout the rest of the paper and use ‘encapsulation’ to refer to a key encapsu-
lation that is yet to be blinded.
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Expind
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk)← KGBKEM
(C, k1)← Encapek

k0
$←− G

for j ∈ {1, . . . , r} do
(C̃j , uk j)← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r )
return b′ ?

= b

Figure 5: Indistinguishability experiment Expind
BKEM(A, r) for a blinded KEM.

Definition 9. Let ek be any public key and let C0 and C1 be two encapsulations. Define X0

and X1 to be the statistical distribution of the blinded encapsulation output by Blindek (C0) and
Blindek (C1), respectively. We say that the blinded KEM is ε-blind if the statistical distance of
X0 and X1 is at most ε.

Definition 10. Let ek be any public key and let C be an encapsulation of the key k. Let C̃ be
a blinded encapsulation of C with corresponding unblinding key uk . We say that the blinded
KEM is rigid if there is exactly one k̃ such that Unblinduk (k̃) = k.

We now present two instantiations of blinded KEMs based on well-known hardness assump-
tions, namely DDH and the RSA problem.

4.1 Construction I: DH-based

We consider the following Diffie-Hellman-based blinded KEM (DH-BKEM). Let G be a group of
prime order q with generator g and define DH-BKEM in Fig. 6.

KGBKEM() :

s
$←− Z∗q

ek ← gs

dk ← s
return ek , dk

Encapek :

i
$←− Z∗q

C ← gi

k ← ek i

return C, k

Blindek (C) :

t
$←− Z∗q

C̃ ← Ct

uk ← t−1 mod q
return C̃, uk

Decapdk (C̃) :

k̃ ← C̃dk

return k̃

Unblinduk (k̃) :

k ← k̃uk

return k

Figure 6: Diffie-Hellman-based blinded KEM (DH-BKEM).

Theorem 1. DH-BKEM is a 0-blind BKEM and is rigid. Furthermore, let A be any adversary
against the above construction getting r blinded decapsulation samples. Then there exists an
adversary Br against DDH such that

Advind
DH-BKEM(A, r) ≤ AdvDDH

G (Br ).
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The running time of Br is essentially the same as the running time of A.

Proof. For any encapsulation, since t is a random number, the blinded encapsulation C̃ output
by Blind is uniformly distributed on G. It follows that the construction is 0-blind. In a similar
vein, the unblinding procedure is a permutation on the keyspace so the construction is rigid.

Next, consider a tuple (ek , C, k). The reduction Br is given in Fig. 7. In the event that
(ek , C, k) is a DDH tuple, then Br perfectly simulates the input of A in Expind

DH-BKEM(A, r)
when b = 1. Otherwise, Br perfectly simulates the input of A in Expind

DH-BKEM(A, r) when b = 0.
The claim follows.

Reduction Br .
for j ∈ {1, . . . , r} do
tj

$←− Z∗q
C̃j ← gtj

k̃j ← ek tj

b′ ← A(ek , C, k, {(C̃j , k̃j)}1≤j≤r )
return b′

Figure 7: DDH adversary Br playing ExpDDH
G (Br ), used in the proof of Theorem 1.

4.2 Construction II: RSA-based

We consider the following RSA-based blinded KEM (RSA-BKEM). Unlike the above DH-based
blinded KEM, this is less suitable for use in key exchange, since generating RSA keys is quite
expensive. The scheme needs a hash function HRSA-BKEM, and is detailed in Fig. 8.

KGBKEM() :
p, q, n, e, d← RSA.KG
ek ← (n, e)
dk ← (n, d)
return ek , dk

Encapek :

i
$←− {1, . . . , n− 1}

C ← ie mod n
k ← HRSA-BKEM(i)
return C, k

Blindek (C) :

t
$←− {1, . . . , n− 1}

C̃ ← (teC) mod n
uk ← t−1 mod n
return C̃, uk

Decapdk (C̃) :

k̃ ← C̃d mod n
return k̃

Unblinduk (k̃) :

k′ ← (k̃uk) mod n
k ← HRSA-BKEM(k′)
return k

Figure 8: RSA-based blinded KEM (RSA-BKEM).

Just like for the DH-based construction, this scheme is a blinded KEM, it is 0-blind and
any adversary against indistinguishability in the random oracle model can be turned into an
adversary against the RSA problem, in a straight-forward way. We omit the proof. Note that
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S

(ek , dk)← KGBKEM k̃ ← Decapdk (C̃)

I

(C, k)← Encapek

R

(C̃, uk)← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃
4. k̃

Figure 9: Diagram describing how the group key exchange protocol uses the blinded KEM to
do key exchange in the single responder case. For clarity, identities, nonces, session identifiers,
key confirmation, public key encryption and digital signatures are omitted. Fig. 10 contains a
more detailed message sequence chart for the single responder case.

this construction is not rigid since any hash collision provides two different values that map to
the same k. (Dealing with this would complicate the security proof for little gain.)

5 Offline Assisted Group Key Exchange Protocol

We now describe a generic protocol for cloud-assisted group key exchange using a blinded KEM,
and then give a concrete instantiation using our DH-based blinded KEM from Section 4.1. Our
scenario consists of the following participants:

• The initiator wants to establish a shared key k with a set of responders. First, the initiator
I interacts with the server, then the initiator generates a key and “invitation messages” for
the responders R1, ...,Rn.

• Each responder wants to allow the initiator to establish a shared key with him. When
responder Ri gets their “invitation message” from the initiator, they will interact with the
server to decrypt the shared key.

• The server temporarily stores information assisting in the computation of the shared secret
key k, until every responder has gotten the key.

A conceptual overview of our construction is given in Fig. 9: the numbering indicates the
order in which the phases of the protocol are done. A more diagrammatic overview is provided
for the single-responder case in Fig. 10, and the general case is presented in Fig. 11. In these
figures and for the rest of this section we will reduce notational overload by writing SignRj

instead of SignskRj
(and EncRj

instead of EncpkRj
etc.), and allow the reader to infer which type

of key is being used from the algorithm in use.

Definition 11. An Offline Assisted Group Key Exchange Protocol (OAGK) is defined in Fig. 11
and is parameterized by the following components. Let

• BKEM = (KGBKEM,Encap,Blind,Decap,Unblind) be a blinded KEM,

• DS = (KGsig,Sign,Verify) be a signature scheme,

• PKE = (KGpke,Enc,Dec) be a public-key encryption scheme,

• H be a hash function,

• KDF be a key derivation function.
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I S R

Stage 1:
Choose nonce NI

σ1 ← SignI(NI, pid)
NI, pid , σ1−−−−−−−−−−−−−−−−−→

Verify σ1
(ek , dk)← KGBKEM

σ2 ← SignS(NI, pid , ek)

sid ← H(I,NI, pid , ek)

Verify σ2
(ek , σ2)←−−−−−−−−−−−−−−−−−

sid ← H(I,NI, pid , ek)

Stage 2:
(C, k)← Encapek
kI ← KDF(′′1′′, k, sid)
τI ← KDF(′′2′′, k, sid)
c← EncR(C, ek, τI, sid , pid)

σ3 ← SignI(c)
c, σ3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify σ3

Accept kI (C, ek, τI, sid , pid)← DecR(c)

Stage 3:
(C̃, uk)← Blindek (C)

σ4 ← SignR(sid , ek , C̃)

Verify σ4
(sid , C̃, σ4)←−−−−−−−−−−−−−−−−−

Verify R ∈ pid

k̃ ← Decapdk (C̃)

σ5 ← SignS(sid , k̃)

(sid , k̃, σ5)−−−−−−−−−−−−−−−−−→ Verify σ5
k ← Unblinduk (k̃)

kR ← KDF(′′1′′, k, sid)
τR ← KDF(′′2′′, k, sid)

τR
?
= τI

Accept kR

Figure 10: Message sequence chart for the OAGK protocol with a single responder R. Fig. 11
contains a complete protocol description for the multi-responder case.
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Note that in our model, we do not have a reveal state query, so there is no need to explicitly
erase state information. In a real implementation, making sure that ephemeral and medium-term
key material is erased at appropriate times is vital.

In order to break our protocol an adversary must compromise both the server and one of the
users. The server stores a medium-term key which is deleted after the protocol run is complete
(or after a time-out) after which compromise of the server is allowed. We note that it would not
be difficult to enhance our protocol with forward secure encryption [6] if receiver compromise is
deemed a likely risk.

5.1 Efficiency

There are different ways to measure the efficiency of group key exchange protocols, including
the number of protocol messages, the number of rounds of parallel messages, and the (average)
computation per user. There exist theoretically efficient examples [2, 3] but most practical
protocols employ a generalisation of the Diffie–Hellman protocol. One such generalisation is the
well-known scheme of Burmester and Desmedt [5] which requires 2 rounds of communication
and 3 exponentiations per user in its unauthenticated version.

An example of a modern optimised protocol is that of Gao et al. [13] which adds signatures
to all messages and requires users to verify the signature on broadcast messages from all other
users. In comparison our requirements are relatively modest. We require 3 rounds but do
not use broadcast messages at all. The protocol participants perform 5 public key operations
each, consisting of signature generation/verification, public key encryption/decryption and key
encapsulation/decapsulation. As mentioned, the non-interactive nature of our scenario means
that we wish for the initiator to be able to do all of their interaction during some initial phase.

5.2 Protocol Security

An adversary against the GKE protocol OAGK plays the game defined in Section 3.2. We need
to give a useful bound for its advantage.

Theorem 2. Consider an adversary A against the GKE protocol OAGK running with n users,
having at most s sessions, each involving at most r responders. Then adversaries B0, B1, B2,
B3 and B4 exist, running in essentially the same time as A, such that

Advake
OAGK(A) ≤ AdvCR

H (B0) + (n + 1)Advsuf-cma
DS (B1)

+ snrAdvror-cca2
PKE (B2) + sAdvCR

KDF(B3) + srε

+ sAdvind
BKEM(B4, r)

+ negligible terms.

We sketch the ideas used in the proof. We need to guess which session the adversary is
going to issue the Test query for. If we guess correctly, the game proceeds unchanged. If we
guess incorrectly, the game immediately stops, we flip a coin b′ and pretend that the adversary
output b′. It is clear that the adversary’s advantage in this game is now 1/s times the original
advantage.

We must also handle the situation where the adversary issues a corruption query that would
render our chosen session non-fresh. In this case, the game immediately stops, we flip a coin b′

and pretend that the adversary output b′. Observe that if we stop for this reason, the adversary
could not issue a test query (and our chosen session is now the only session a test query could
be issued for), so the adversary would have no information about b. The probability that the
adversary guesses b correctly is therefore unchanged.

Depending on when the server is corrupted (if it is corrupted at all), we need to bound the
adversary’s advantage in slightly different ways. An upper bound on the adversary’s advantage
will then be the sum of the two different bounds.
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I running oracle
∏α

I as initiator on input pid :

1. Choose random NI.

2. σ1 ← SignI(NI, pid).

3. Send (NI, pid , σ1) to S.

10. Get (ek , σ2) from S.

11. Verify that σ2 is S’s signature on
(NI, pid , ek).

12. sid ← H(I,NI, pid , ek).

13. (C, k)← Encapek .

14. Session key kαI ← KDF(′′1′′, k, sid)

15. Key confirmation:
ταI ← KDF(′′2′′, k, sid)

16. For every responder Rj in pid , do:

(a) cj ← EncRj
(C, ek, ταI , sid , pid).

(b) σ3,j ← SignI(cj).
(c) Send (cj , σ3,j) to Rj .

17. Output kαI .

Phase I of S running oracle
∏β

S as server on
message (NI, pid , σ1) from I:

4. Verify that σ1 is I’s signature on
(NI, pid).

5. (ek , dk)← KGBKEM.

6. σ2 ← SignS(NI, pid , ek).

7. sid ← H(I,NI, pid , ek).

8. Store (sid , I, pid , dk , ∅).
9. Send (ek , σ2) to I.

Rj running oracle
∏ν

Rj
as responder on

message (cj , σ3,j) from I:

18. Verify that cj is I’s signature on σ3,j .

19. (C, ek, ταI , sid , pid)← DecRj
(cj).

20. (C̃j , uk j)← Blindek (C).

21. σ4 ← SignRj
(sid , ek , C̃j).

22. Send (sid , C̃j , σ4) to S.

32. Get (sid , k̃j , σ5) from S.

33. Verify that σ5 is S’s signature on
(sid , k̃j).

34. kj ← Unblindukj
(k̃j).

35. Session key: kνRj
← KDF(′′1′′, kj , sid)

36. Key confirmation:
τνRj
← KDF(′′2′′, kj , sid)

If τνRj
= ταI then

Accept and output kνRj
.

else
Reject.

Phase II of S running oracle
∏β

S as server on
message (sid , C̃j , σ4) from Rj , with stored
state (sid , I, pid , dk , T ):

23. Lock the state (sid , . . . ) until done.

24. Verify that σ4 is Rj ’s signature on
(sid , ek , C̃j).

25. Verify that Rj ∈ pid .

26. Verify that Rj 6∈ T .
27. k̃j ← Decapdk (C̃j).

28. σ5 ← SignS(sid , k̃j).

29. Send (sid , k̃j , σ5) to Rj .

30. Let T ′ = T ∪ {Rj}.
31. Update the state (sid , . . . , T ) to

(sid , . . . , T ′).

Figure 11: The three roles of the group key exchange protocol. Suppose {Rj}j∈J are the identities
of users that I wishes to share a common session key with (pid = I|{Rj}j∈J). Note that the line
numbering indicates the order in which the lines of the various roles are reached during a protocol
execution.
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If we suppose that every partnered oracle in our session reached status accepted before
the server or any player running a partnered oracle is corrupted. In this case, thanks to the
signatures and the nonces, the adversary sees at most a blinded KEM public encapsulation key,
an encapsulation of a session key, at most r blinded encapsulations of the same session key with
corresponding blinded decapsulations. By indistinguishability for the blinded KEM, it follows
that the adversary cannot distinguish between the actual encapsulated key and a randomly
chosen key, so the adversary has no information about b.

Next, suppose no responder player is ever corrupted. In this case, the adversary (in the
worst case) chooses the keys for the blinded KEM, but the public key encryption ensures that
the adversary cannot see the actual encapsulation of the key. In other words, the adversary
only sees blinded encapsulations of an unknown encapsulation, which reveals little information
about the encapsulated key by ε-blindness of the blinded KEM. Furthermore, the rigidity of
the blinded KEM ensures that every responder can detect an incorrect server response, unless a
collision in the key derivation function occurs.

5.3 Proof of Theorem 2

The proof of the theorem consists of a sequence of games.

Game 0

The first game is the game from Def. 6, defining security for our protocol. Let E0 be the event
that the adversary’s guess b′ equals b from the Test oracle (and let Ei be the corresponding event
for Game i). Then

Advake
OAGK(A) =

∣∣∣Pr[E0]− 1/2
∣∣∣. (1)

Game 1

We modify the game so that if two server oracles or two initiator oracles ever arrive at the same
sid , the game stops.

For this to happen, either two different sessions at sid computing algorithm must choose
the same input values for hash function, or we have found a collision in H. The former event
is included inside the event that two server oracles choose the same values for ek and two
initiator oracles choose the same values for NI. Since there are at most s initiator oracles and
server oracles, and s2 must be small compared to the number of possible nonces and KEM
encapsulation keys, the only possible non-negligible term3 is the possibility of finding a collision
in H. We can easily construct a collision-finding algorithm B0 from A, which shows that∣∣∣Pr[E1]−Pr[E0]

∣∣∣ ≤ AdvCR
H (B0) + negligible terms. (2)

Game 2

We modify the game so that if any oracle ever verifies a signature from an uncorrupted principal
that was not created by another oracle, the game stops.

If this happens, our adversary has produced a forgery for DS. We can trivially produce a
forger B1 for the signature scheme using a standard hybrid argument. Since our n users and the
server all have a signing key, we get that∣∣∣Pr[E2]−Pr[E1]

∣∣∣ ≤ (n + 1)Advsuf-cma
DS (B1). (3)

3To be secure, the KEM key generation algorithm must provide sufficient min-entropy to allow us to ignore
the possibility that the KEM encapsulation keys collide.
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By inspection of the protocol, it is now apparent that in Game 2, the partnering relation on
oracles from Def. 4 is an equivalence relation on accepting oracles for which

• every equivalence class whose pid contains an uncorrupted initiator contains an initiator
oracle; and

• if the server is uncorrupted, every equivalence class contains exactly one server oracle.

Furthermore, this equivalence relation can be extended to an equivalence relation on all oracles,
where oracles are related if and only if they have the same sid .

Game 3

The next modification we make is to guess which session the adversary will query with the
Test query, by choosing a number uniformly at random from {1, 2, . . . , s}, identifying the cor-
responding initiator oracle and guessing that session. If the adversary sends the Test query to
this session, we proceed as usual. Otherwise, we stop when the adversary issues the Test query,
flip a coin b′ and pretend that the adversary output b′.

Since we choose the session randomly, the adversary cannot know anything about which
session we choose. It follows that∣∣∣Pr[E2]− 1/2

∣∣∣ = s
∣∣∣Pr[E3]− 1/2

∣∣∣. (4)

Game 4

The next modification we make is that if the adversary every issues a Corrupt query such that our
chosen session becomes unfresh, we stop the game, flip a coin b′ and pretend that the adversary
output b′.

If we never stop the game, this game proceeds exactly as Game 3.
If the adversary corrupts players so that our chosen session becomes unfresh, the adversary

cannot ask a Test query of our session. This means that in Game 3, the eventual Test query
would go to some other session, which would cause the game to stop and a coin b′ to be flipped.

We get that
Pr[E4] = Pr[E3]. (5)

Let F be the event that the server is corrupted before our chosen session has completed.
Referring to the two clauses in Def. 5, if F is false, the first clause applies, otherwise the second
clause applies.

It is easy to show that∣∣∣Pr[E4]− 1/2
∣∣∣ ≤ ∣∣∣Pr[E4|F ]− 1/2

∣∣∣+ ∣∣∣Pr[E4|¬F ]− 1/2
∣∣∣. (6)

We can therefore analyse the two cases separately, which we shall proceed to do, using two
sequences of games, each beginning with Game 4.

Game 5

We begin by assuming that the server is corrupted, which by the freshness requirements means
that the adversary will never get to corrupt the players in our chosen session. We modify the
game by having our initiator oracle encrypt random messages instead the real messages. Any
responder oracle that receives this exact ciphertext will use values directly from our initiator
oracle, instead of decrypting the (nonsense) ciphertext.

We shall now use A and any difference in Pr[E4|F ] and Pr[E5] to construct an adversary
B2 against multi-user security of public key encryption, as defined in Appendix A.

Our adversary B2 works as follows:
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• It gets encryption keys for the users as input.

• When B2 must simulate a responder oracle that gets input from a corrupted initiator, it
uses its decryption oracle to get the decryption of the ciphertexts.

• When B2 simulates responders that get input from an uncorrupted initiator, then because
we have forbidden signature forgeries, the ciphertext was created by an initiator oracle, so
B2 knows what is inside the ciphertext and does not need to decrypt that ciphertext.

• When the adversary corrupts a principal, B2 gets the decryption key from its oracle.

• When simulating the initiator oracle of our chosen session, B2 uses its encryption oracle
to encrypt the messages.

We see that if B2’s encryption oracle encrypts the real messages, B2 perfectly simulates the
situation in Game 4 given F . If B2’s encryption oracle encrypts random messages, B2 perfectly
simulates the situation in Game 5 given F .

We get that ∣∣∣Pr[E5|F ]−Pr[E4|F ]
∣∣∣ ≤ nrAdvror-cca2

PKE (B2). (7)

Game 6

Next, we modify the responder oracles in our chosen session so that they reject if the unblinded
decapsulated key kj computed in Step 34 does not match the key k computed by the initiator
oracle in Step 13.

If a responder oracle rejects in this game, but would not have rejected in the previous game,
it has found a collision in KDF. We can therefore construct a collision finder B3 such that∣∣∣Pr[E6|F ]−Pr[E5|F ]

∣∣∣ ≤ AdvCR
KDF(B3). (8)

Game 7

In this game, we modify the responder oracles of our chosen session so that instead of using
the encapsulation sent by the initiatior oracle, they create their own encapsulation of a random,
independent key using the corrupt server’s encapsulation key, blind it and compare the unblinded
decapsulation with this key. Instead of computing the key to be output, they simply output the
one output by the initiator oracle.

By rigidity, there is exactly one server response that a responder oracle will accept, and this
answer depends only on the blinding sent by the responder, not on which encapsulation was
used to create the blinding.

It follows by ε-blindness that ∣∣∣Pr[E7|F ]−Pr[E6|F ]
∣∣∣ ≤ rε. (9)

Furthermore, we see that in this game, the adversary has no information about the key
chosen by the initiator oracle and later output by the responder oracles. This means that if the
adversary asks a Test query for this session the response will be a random key, regardless of the
value of b. It follows that

Pr[E7|F ] = 1/2. (10)

By equations (7)–(10) we get that∣∣∣Pr[E4|F ]− 1/2
∣∣∣ ≤ nrAdvror-cca2

PKE (B2) +AdvCR
KDF(B3) + rε. (11)
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Game 5’

Now we assume that the server is not corrupted until every responder has accepted. We modify
the game so that in our chosen session, the initiator oracle ignores the encapsulated key and
instead outputs a randomly chosen key. The responder oracles also ignore the key they compute
and instead output the key chosen by the initiator oracle.

We can now construct an adversary B4 against indistinguishability for our blinded KEM. The
adversary B4 gets an encapsulation key, an encapsulation, a key and r pairs of blindings and
blinded decapsulations as input. It uses the encapsulation key to simulate the server message
to the initiator oracle. It uses the encapsulation to simulate the messages to the responders.
And it uses the blindings and blinded decapsulations to simulate the conversations between the
responders and the server. Finally, it has the oracles of our chosen session output its input key.

We see that if the key input to B4 is the real encapsulated key, then B4 perfectly simulates
the situation in Game 4 given ¬F . If the key input to B4 is a random key, then B4 perfectly
simulates the situation in this game given ¬F .

We get that ∣∣∣Pr[E5′ |¬F ]−Pr[E4|¬F ]
∣∣∣ = Advind

BKEM(B4, r). (12)

Furthermore, if the adversary asks a Test query for our chosen session in this game, the
response will be a random key regardless of the value of b. It follows that

Pr[E5′ |¬F ] = 1/2. (13)

By equations (12) and (13) we get that∣∣∣Pr[E4|¬F ]− 1/2
∣∣∣ ≤ Advind

BKEM(B4, r). (14)

The claim now follows by equations (1)–(6), (11) and (14).

5.4 Instantiating the protocol with the DH blinded KEM

We instantiate the above offline assisted group key exchange protocol OAGK with the DH-based
blinded KEM from Section 4.1, the protocol denoted by DH-OAGK. In this instantiation, we
choose the nonce NI from the group G.

In Fig. 12, we present the core of the resulting protocol (without identities, nonces, session
identifiers, key confirmation, authentication and encryption) similar to Fig. 9. We only show
one responder.

Thm. 1 and Thm. 2 show that this instantiation is secure.

S

1. dk $←− Z∗q , ek ← gdk 4. k̃ ← C̃dk

I

2. i $←− Z∗q
C ← gi

k ← eki

R

3. t $←− Z∗q
C̃ ← Ct

uk ← t−1

5. k = k̃uk

1. ek

2. {C}

3. C̃
4. k̃

Figure 12: Running protocol DH-OAGK with one responder, where {C} = EncR(C, · · · ).
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A Multi-user Public-Key Encryption Security

In the proof of the main theorems, it is convenient to consider a multi-user variant of public key
encryption. The security notion we consider is equivalent to the usual real-or-random security
notion for public key encryption. We first explain and define the notion and then prove the
relevant theorem.

We consider a multi-user setting with n users. All users use PKE, each user Ui keeps their
own secret decryption key sk i and all public encryption keys are assumed to be known to the
public (and thus all algorithms).

For our security analysis we define the adversary’s capacity. The adversary is given all
public keys and can ask for challenge encryptions of any (valid) message under different public
keys. In a chosen-ciphertext attack the adversary is allowed to ask for decryptions of arbitrary
ciphertexts, except for those that would allow a trivial win.

We also give the adversary the ability to corrupt a user, that is, obtain the secret key of
the corrupted user. In order to prevent trivial wins, we must restrict this capability to users
for which the adversary has not yet asked for challenge encryptions. (This is a fundamental
restriction for ordinary public-key encryption. For other notions such as puncturable encryption
or non-committing encryption, this restriction could be somewhat relaxed.)

We now define real-or-random indistinguishability for a multi-user public-key encryption
scheme under chosen-ciphertext attack and corruption attack (mu-ror-cca2): an adversary cannot
distinguish encryptions of chosen plaintexts, possibly encrypted under different public keys, from
the encryptions of equal-length random strings, encrypted under the same public keys.

In the definition of the security experiment we employ a list FLIST of of forbidden ciphertext,
a list ULIST, and a corrupted user CLIST to prevent trivial wins.

Remark 1. We now describe the restrictions on our adversaries that we enforce by using FLIST,
ULIST and CLIST. If the adversary asks its real-or-random (O.RoR) challenge oracle for some
corrupted user (that belongs to CLIST), the oracle will return encryptions of real messages. If
the adversary asks for decryptions of some ciphertext that it received from its O.RoR oracle, the
adversary will obtain nothing (to stop trivial wins). In a Corrupt query, the adversary cannot
reveal the secret key of some user in ULIST, since the challenge oracle has returned encryptions
under their key (which means that revealing the key would allow the adversary to win trivially
by decrypting the challenge ciphertext).

Definition 12. Let PKE = (KGpke,Enc,Dec) be a public-key encryption scheme. Then the
mu-ror-cca2 advantage of an adversary A against PKE is defined as

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) = 2

∣∣∣∣Pr[Exp
(t ,n, c)-mu-ror-cca2
PKE (A) = 1]− 1

2

∣∣∣∣.
where n is the number of users, c the maximal number of corrupted users and t the maxi-
mal number of challenge ciphertexts the adversary can receive, respectively. The experiment
Exp

(t ,n, c)-mu-ror-cca2
PKE (A) is given in Fig. 13.

The following result describes the relationship between the mu-ror-cca2 notion and the usual
ror-cca2 notion.

Theorem 3. Let PKE = (KGpke,Enc,Dec) be a public-key encryption scheme. Let A be an
adversary against PKE under adaptive chosen ciphertext attack and corruption attack in the
multi user setting, running with n users. Suppose c is the maximal number of corrupted users,
t is the maximal number of challenge ciphertexts the adversary can receive. Then there exists
an adversary B against PKE under adaptive chosen ciphertext attack in the single user setting,
such that

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) ≤ ntAdvror-cca2

PKE (B).
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Exp
(t ,n, c)-mu-ror-cca2
PKE (A) :

b
$←− {0, 1}

FLIST,ULIST,CLIST ← ∅
for j ∈ {1, . . . , r} do

(sk j , pk j)← KGpke−→
pk ←

−→
pk ∪ pk j

b′ ← AO.RoRb,O.Dec,O.Corrupt(
−→
pk)

return b′ ?
= b

O.Corrupt(pk)
if pk ∈ ULIST then
return ⊥

CLIST ← CLIST ∪ {pk}
return sk

O.RoRb(pk ,m) :
if pk ∈ CLIST then
return c← Encpk (m)

m1 ← m

m0
$←−Mpk

c← Encpk (mb)
ULIST ← ULIST ∪ {pk}
FLIST ← FLIST ∪ {c}
return c

O.Dec(pk , c)
if c ∈ FLIST then
return ⊥

m← Decsk (c)
return m

Figure 13: The experiment defining (t ,n, c)-mu-ror-cca2 security for a public-key encryption
scheme PKE = (KGpke,Enc,Dec).

A.1 Proof of Theorem 3

The proof is in three parts. The first part is a straight-forward hybrid argument, reducing the
number of key pairs to one. The second part shows that when we only consider a single key
pair, we can disregard the corruption oracle. And finally, the third part is again a straight-
forward hybrid argument reducing the number of challenge encryptions to one. This completes
the argument, since (1, 1, 0)-mu-ror-cca2 is the same as ror-cca2.

Part 1. We first prove that there exists an adversary A1 against PKE under adaptive chosen
ciphertext attack and corruption attack in the single user setting, such that

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) ≤ nAdv

(t , 1, 1)-mu-ror-cca2
PKE (A1). (15)

Proof. We use a hybrid argument with n + 1 hybrid games, counting from 0. For corrupted
users, O.RoR will always encrypt real messages. In the ith hybrid game the challenge oracle
O.RoR will encrypt real messages for the ith first public keys. For the remaining n − i public
keys, the challenge oracle will encrypt random messages.

An adversary’s advantage is bounded by n times the average distinguishing advantage for
the same adversary against two consecutive hybrid games.

Now we use a (t ,n, c)-adversary A to create a (t , 1, 1)-adversary A1 against the scheme, and
prove that this new adversary has the same advantage as the average distinguishing advantage
for A against two consecutive hybrid games. The adversary A1 is given in Fig. 14.

If A1’s challenge oracle always encrypts the real message, then A1 perfectly simulates the ith
hybrid game for A. Likewise, if A1’s challenge oracle always encrypts random messages, then
A1 perfectly simulates the i− 1th hybrid game for A.

When A1 has chosen i, and thereby the two hybrid games to potentially simulate, its advan-
tage is exactly equal to the distinguishing advantage of A for the two consecutive hybrid games
chosen. Since A1 chooses i uniformly at random, the advantage of A1 is exactly equal to the
average distinguishing advantage of A against two consecutive hybrid games.

The claim follows.
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Reduction A1.

i
$←− {1, 2, . . . ,n}

FLIST,ULIST,CLIST ← ∅
receive pk i
for j ∈ {1, . . . ,n} \ {i} do

(sk j , pk j)← KGpke−→
pk ← (pk1, pk2, . . . , pkn)

b′ ← AO.RoRb,O.Dec,O.Corrupt(
−→
pk)

return b′

O.Corrupt(pk j)
if pk j ∈ ULIST then
return ⊥

if pk j = pk i then
sk ← O.Corrupt(pk i)

else
sk ← sk j

CLIST ← CLIST ∪ {pk j}
return sk

O.RoRb(pk j ,m) :
if pk j ∈ CLIST then
return c← Encpkj

(m)

m$ $←−Mpk

if pk j = pk i then
c← O.RoR(pk i,m)

if j < i then
c← Encpkj

(m)
if j > i then
c← Encpkj

(m$)
ULIST ← ULIST ∪ {pk j}
FLIST ← FLIST ∪ {c}
return c

O.Dec(pk j , c)
if c ∈ FLIST then
return ⊥

if pk j = pk i then
m← O.Dec(pk i, c)

if j 6= i then
m← Decskj

(c)
return m

Figure 14: Reduction A1 playing Exp
(t , 1, 1)-mu-ror-cca2
PKE (A1), used in proof of (15).

Part 2. We now prove that there exists an (t , 1, 0)-mu-ror-cca2 adversary A2 against PKE such
that

Adv
(t , 1, 1)-mu-ror-cca2
PKE (A1) = Adv

(t , 1, 0)-mu-ror-cca2
PKE (A2). (16)

Proof. We first note that if A1 calls its corruption oracle on its single public key, it has no way
to get any information about b, so its advantage is 0.

The adversary A2 runs A1. It forwards any O.RoR and O.Dec queries from A1 to its own
oracles. If A1 queries its corruption oracle, A2 stops, flips a fair coin b′ and outputs b′.

If A1 does not query its corruption oracle, A2 proceeds exactly as A1 and wins with exactly
the same probability. Furthermore, if A1 does query its corruption oracle, A2 does not proceed
exactly as A1, but it wins with exactly the same probability.

Let E be the event that A1 wins, E′ the event that A2 wins, and let F be the event
that A1 queries its corruption oracle, while F ′ is the probability that A2 flips a fair coin to
determine its result. Note that Pr[F ] = Pr[F ′] by definition, and Pr[E|F ] = Pr[E′|F ′] and
Pr[E|¬F ] = Pr[E′|¬F ] by the above paragraphs. Then we have

Pr[E] = Pr[E|F ]Pr[F ] +Pr[E|¬F ]Pr[¬F ]
= Pr[E′|F ′]Pr[F ′] +Pr[E′|¬F ′]Pr[¬F ′]
= Pr[E′].

The claim follows.

Part 3. We now prove, again using a standard hybrid argument, that there exists an (1, 1, 0)-mu-ror-cca2
adversary A3 such that

Adv
(t , 1, 0)-mu-ror-cca2
PKE (A2) ≤ tAdv

(1, 1, 0)-mu-ror-cca2
PKE (A3). (17)

22



Proof. Again, we have a hybrid argument with t + 1 hybrid games, counting from 0. In the ith
hybrid game, the challenge oracle O.RoR will encrypt the real message for the first i queries,
and then encrypt random messages for the remaining t − i queries.

An adversary’s advantage is bounded by t times the average distinguishing advantage for
the same adversary against two consecutive hybrid games.

Now we use a (t , 1, 0)-mu-ror-cca2 adversary A2 to create a (1, 1, 0)-mu-ror-cca2 adversary A3

against the scheme, and prove that this new adversary has the same advantage as the average
distinguishing advantage for A2 against two consecutive hybrid games. The adversary A3 is
given in Fig. 15

If A3’s challenge oracle encrypts the real message, then A3 perfectly simulates the ith hybrid
game for A2. Likewise, if A3’s challenge oracle encrypts a random message, then A3 perfectly
simulates the i− 1th hybrid game for A2.

When A3 has chosen i, and thereby two hybrid games to potentially simulate, its advantage
is exactly equal to the distinguishing advantage of A2 for the two consecutive hybrid games
chosen. Since A3 chooses i uniformly at random, the advantage of A3 is exactly equal to the
average distinguishing advantage of A2 against two consecutive hybrid games.

The claim follows.

Reduction A3.
receive pk
FLIST ← ∅
b′ ← AO.RoRb,O.Dec,O.Corrupt

2 (pk)
return b′

O.Dec(pk , c)
if c ∈ FLIST then
return ⊥

m← O.Dec(c)
return m

O.RoRb(pk ,mj) :

m$ $←−Mpk

if j = i then
c← O.RoR(mi)

if j < i then
c← Encpk (mj)

if j > i then
c← Encpk (m

$)
FLIST ← FLIST ∪ {c}
return c

Figure 15: The reduction A3 from (t , 1, 0)-mu-ror-cca2 to (1, 1, 0)-mu-ror-cca2 used to prove (17).

Now we observe that a (1, 1, 0)-mu-ror-cca2 adversary against the scheme is simply an ror-cca2
adversary, and the theorem follows from equations (15)–(17).
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