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In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new con-
structions of leakage-resilient signature schemes. The signature schemes proposed
remain unforgeable against an adversary leaking arbitrary information on the en-
tire state of the signer, including the random coins of the signing algorithm. The
main feature of their signature schemes is that they offer a graceful degradation
of security in situations where standard existential unforgeability is impossible.
The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines
a slack parameter γ which, roughly speaking, describes how gracefully the se-
curity degrades. Unfortunately, the standard-model signature scheme of Faonio,
Nielsen and Venturi has a slack parameter that depends on the number of sig-
natures queried by the adversary.

In this paper we show two new constructions in the standard model where
the above limitation is avoided. Specifically, the first scheme achieves slack pa-
rameter O(1/λ) where λ is the security parameter and it is based on standard
number theoretic assumptions, the second scheme achieves optimal slack param-
eter (i.e. γ = 1) and it is based on knowledge of the exponent assumptions. Our
constructions are efficient and have leakage rate 1− o(1), most notably our sec-
ond construction has signature size of only 8 group elements which makes it the
leakage-resilient signature scheme with the shortest signature size known to the
best of our knowledge.

Keywords: signature scheme; leakage resilience; efficient scheme; knowledge
assumptions.
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1 Introduction

In the last years a lot of effort has been put into constructing cryptographic
primitives that remain secure even in case the adversary obtains partial infor-
mation of the secrets used within the system. This effort is motivated by the
existence of the so-called side-channel attacks (see, e.g. [26,27,19]) which can
break provably secure cryptosystems exploiting physical characteristics of the
crypto-devices where such schemes are implemented.

A common way to model leakage attacks is to give to the adversary a leakage
oracle. Such oracle stores the current secret state of the cryptosystem under
attack (let it be α), takes as input leakage functions fi and returns fi(α).

The leakage functions need to belong to a restricted set of functions, as other-
wise there is no hope for security. In this paper we consider the bounded leakage
model where we assume that the total bit-length of the leakage obtained via
the leakage functions is smaller than some a priori determined leakage bound
`. Leakage-resilient schemes in this model include public-key, identity-based en-
cryption, signature schemes and identification schemes [29,3,2,8,10,7,28,4,13].

Graceful degradation. For any existentially unforgeable signature scheme in
the bounded leakage model, necessarily, the length of a signature is larger than
the leakage bound, as otherwise an adversary could simply leak a forgery. The
main consequence is that, if the goal is to tolerate large amount of leakage
then, the signature size needs to be very large but the latter makes the schemes
unpractical. Recently Nielsen, Venturi and Zottarel [30] addressed this issue



introducing a new notion of security for signature schemes which requires that
an adversary should not be able to produce more forgeries than what he could
have leaked via leakage queries.

In particular, if s is the length in bits of a signature of size and ` is the leakage
bound, to break unforgeability, an adversary must produce n forgeries where n ≈
`/(γ·s)+1, where γ ∈ (0, 1] is a value that we call the “slack parameter”. Roughly
speaking, the slack parameter measures how close to optimal security the scheme
is. When γ = 1 we say that the scheme has optimal graceful degradation of
security, as the number of forged signatures requested is exactly one more than
what an adversary could possibly leak. When γ is a constant smaller then 1 we
say that the scheme has almost-optimal graceful degradation, as in this case,
the number of forged signature requested is a constant factor more than what
an adversary could leak1. Notably, this new security notion enables to design
signature schemes where the size of the secret key (and the leakage bound) does
not depend on the signature size, leading to short signatures.

Subsequently, Faonio, Nielsen and Venturi [14] (journal version in [15]), ex-
tended the model to the fully-leakage resilient setting, where the adversary can
leak arbitrary information of the entire secret state, including all the random
coins of the signing algorithm.

Interestingly, while in the (not-fully) leakage-resilient regime the authors of
[30] showed a signature scheme with almost-optimal graceful degradation, in the
fully-leakage-resilient regime the best signature scheme known (in the standard
model) has slack parameter γ = O(1/q) where q is the number of signature
oracle queries performed by the adversary. While the latter result still allows for
some meaningful applications, in practice, the leakage security of the scheme is
hard to estimate as it degrades as function of the number of signatures which in
principle could be really big.

Our contributions. In this paper we solve the above problem by constructing
two new fully leakage-resilient signature schemes in the bounded leakage model
where the slack parameter does not depend on the number of signatures issued.

The first signature scheme has slack parameter O(1/λ). The construction
makes use of an All-but-Many Encryption scheme (Fujisaki [17]) and a Non-
Interactive Witness-Indistinguishable system and is instantiated under standard
number theoretic assumptions.

The second signature scheme has optimal graceful degradation. The construc-
tion is based on a specific extractable and perfectly hiding commitment scheme
(Abe and Fehr [1]) and on a quasi-adaptive NIZK for linear space (Jutla and
Roy [24]). For technical reason, we need a NIZK system with a weak form of
knowledge soundness. As minor contribution of independent interest, we show
how to modify the elegant construction of Kiltz and Wee [25] to get an efficient
quasi-adaptive NIZK system for linear-space relationship with (weak) knowledge
soundness. Both the components of the second schemes are instantiated under
the knowledge of the exponent assumption (see, e.g. [9,5,1,21]).

1 In [30], the authors show that the notion, even for small value of the slack parameter,
allows for interesting applications such as leakage-resilient identification schemes.
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A Technical Overview. We recall the scheme of [30], for future reference we
call it NVZ14. The secret key of NVZ14 is a polynomial δ in Zp[X] of degree d
and a signature for a message m ∈ Zp is composed by a commitment C∗ to the
evaluation of the polynomial δ on the point m together with a sim-extractable
NIZK that the commitment, indeed, commits to such evaluation. The polynomial
δ is published in the verification key using an homomorphic commitment scheme
(for example, the classical Pedersen’s commitment scheme [32]). The verification
of a signature works in two stages: first from the verification key it derives (using
the homomorphic property of the commitment scheme) a commitment Cm to the
evaluation of the polynomial δ on point m, second it verifies the NIZK for the
statement (C∗, Cm) which proves that the commitments Cm and C∗ open to the
same value, therefore proving that the commitment C∗ commits to an evaluation
of δ on the point m. The leakage bound of the scheme is roughly ` ≈ d log p and
the slack parameter is a constant. The key idea for the unforgeability is that
from n ≈ d+ 1 signatures we can extract d+ 1 evaluations of the polynomial δ,
however, because of the bound on the leakage performed, at most d evaluation
points could be possibly be uniquely defined. The latter implies that one of
the commitment produced by the adversary can be opened in two different way
therefore breaking the binding property of the commitment scheme.

The construction proposed by [14] follows the same blue print. Their main
idea is to convert leakage functions over the full state (namely, the secret key and
the randomness) to leakage functions of the secret key only. In this way, they
reduce the task of proving fully leakage resilient to the easier task of proving
(standard) leakage resilience.

We give a glimpse of their technique with a toy example. As in the scheme
NVZ14, in the construction of [14], a signature σ = (C∗, π) is composed by
a commitment C∗ and a proof of consistency for the commitment π. So the
randomness of a signature is equal to (r, t) where r is the randomness for the
commitment and t is the randomness for the NIZK. Their first idea is to use
an equivocable commitment scheme. Recall that a commitment scheme is equiv-
ocable if, roughly speaking, we can sample a fake commitment C such that,
given a trapdoor, for any message m we can produce randomness r′ such that
C = Com(vk,m, r′), namely, the fake commitment C opens to the message m.
For the sake of this toy example, let us consider a leakage function f(δ, r) that
does not depend on the randomness t of the NIZK. In [14], the authors show

that we can construct a new leakage function f̂(δ) that first computes r′ equivo-
cating the commitment C∗ to δ(m) and then it computes f(δ, r′). The function

f̂ converts the leakage on the randomness as leakage of the secret key only.

The main technical problem that [14] had to solve is that standard equivoca-
ble commitments scheme were not sufficient. In fact two contrasting requirements
are necessary: on one hand, both the commitment scheme and the NIZK need
to be equivocable (so that we can reduce fully-leakage resilience to standard
leakage resilience as shown in the toy example above), on the other hand, to
extract the n evaluations of the polynomial δ we need that either the commit-
ment scheme or the NIZK system is perfectly binding. To solve this problem
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the authors of [14] showed a construction of a commitment scheme where any
commitment created is perfectly binding with probability 1/q and equivocable
with probability 1 − 1/q. In this way, almost all the signatures queried by the
adversary will be perfectly hiding while over the n ≈ O(q · `) forged signatures
(so that γ = O(1/q)) strictly more than (`/ log p) + 1 signatures are perfectly
binding (with overwhelming probability). The unforgeability of the scheme fol-
lows because a winning adversary gets in input exactly ` bits of information
about δ and outputs strictly more than ` bits of information about δ: this ad-
versary cannot exist as otherwise a basic information-theoretic principle would
be violated.

New Ideas. We describe our two new signature schemes. For the first construc-
tion we substitute the commitment scheme of [14] with an All-But-Many En-
cryption (ABM-Enc) scheme. Roughly speaking, an ABM-Enc is an encryption
scheme where all the ciphertexts created by the adversary can be successfully de-
crypted (knowing the secret key) while, with the knowledge of a special trapdoor,
we can create an unbounded number of fake ciphertexts that are equivocable.
The proof of security is quite straight-forward (actually even easier than in [14]):
with the knowledge of the trapdoor all the signatures are equivocated and with
the knowledge of the secret key of the ABM-Enc all the forged signature are
extracted. Fujisaki [17], building over a paper of Hofheinz [23], showed two con-
structions of ABM-Enc. The first construction achieves constant overhead (the
ratio between ciphertext size and message size) and it is based on the decision
Composite Residuosity (DCR) assumption while the latter is based on DDH and
achieves λ/ log λ overhead (where λ is the security parameter). At first sight, by
plugging the constant-overhead ABM-Enc of Fujisaki in our signature scheme
we would get a fully-leakage resilient signature with almost-optimal slack para-
mater, the problem is that efficient NIZK [22] and the Fujisaki’s construction
over DCR groups do not quite match. In particular, a Groth-Sahai proof for the
needed statement would commit the witness bit-by-bit so that the total size of
the signature is O(λ2) groups elements. Since each forged signature carries only
log p bits of information this, unfortunately, implies that the slack parameter
is 1/poly(λ). Luckily, the ABM-Enc based on DDH of Fujisaki fits better with
the NIZK of Groth-Sahai, as to prove the necessary statement we need only a
costant number, in the size of the ciphertext, of pairing-product equations.

The second construction is inspired by the following observation: if we used
a zk-SNARK [21,20,31] instead of Groth-Sahai then the construction sketched
above would have signature size O(λ) and therefore almost-optimal slack param-
eter. However, at second thought, employing a zk-SNARK is an over killing, as
what we need is the ability of simultaneously equivocate and extract the com-
mitments, and in particular, we do not need succinctness. Therefore, instead of
naively use zk-SNARKs, we “open the box” of zk-SNARKs. In particular, we
consider the commitment scheme of Abe and Fehr [1] based on the knowledge of
the exponent assumption (KEA3) of Bellare and Palacio [5] (see also Damgaard
[9]). Nicely, for this kind of commitments, we can reduce the relation that two
commitments open to the same message to the fact that a certain vector in G2
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lies in a specific subspace. The latter allows us to get faster and shorter signa-
tures, thanks to recent advances in efficiency of quasi-adaptive NIZK systems
for linear realations (see for example, [24,25]).

More in details, the proof technique for the second construction diverges sig-
nificantly to the proof technique of [14]. The main reason is that the commitment
scheme of Abe and Fehr is simultaneously extractable and perfect hiding but it is
not efficiently equivocable2. Our strategy is to first apply all the computational
steps and then use the fact that the commitment scheme is perfectly hiding.
Therefore we can “equivocate” a commitment by brute force it and open it to
the desired value.

Comparison. We compare our signature schemes with the signature schemes
of [30] and [14,15] (see Table 1). Four different signature schemes are pre-
sented in [15], we select the three most interesting3 and we denote them with
FNV151,FNV152 and FNV153. The third column in the Table 1 (namely, “No
Erasure”) refers to a weaker model of fully leakage resilient signature considered
in [14]. Specifically, the scheme FNV151 is proved secure under the assumption
that the cryptographic device can perfectly erase the random coins used in the
previous invocations. We call SS1 the signature scheme based on ABM-Enc
scheme and SS2 the scheme based on knowledge of the exponent assumption.
From an efficiency point of view we notice that SS1 is less efficient than FNV152

but achieves asymptotically better graceful degradation. On the other hand, SS1

is both less efficient and with worse graceful degradation respect to FNV151 and
FNV153, however, FNV151 needs perfect erasure of the randomness and FNV153

is only proved secure in the random oracle model. The signature scheme SS2 is
proved secure in a fully-leakage model where the key generation phase is leak
free. We consider this a reasonable assumption, in fact, in almost all practical
scenarios we could safely assume that the cryptographic devices are initialized
in a safe environment before being used in the wild. The technical reason behind
this limitation is that the commitment scheme based on the knowledge of the
exponent assumption does not admit oblivious sampling of the parameters. The
scheme SS2 achieves optimal graceful degradation, the signature size is indepen-
dent of the ε and, notably, more compact (both asymptotically and practically)
even than the signature scheme FNV153 in the random oracle model.

2 Notations and Preliminaries

Throughout the paper we let λ denote the security parameter. We say that a
function f is negligible in the security parameter λ, and we write f ∈ negl(λ),
if it vanishes asymptotically faster than the inverse of any polynomial. We use
the classic notion of probabilistic polynomial time (PPT) algorithms. We write
x ← $ D (resp. x ← $ A(y)) to denote that x is chosen at random from the

2 Intuitively, any trapdoor for equivocation would break the knowledge of the expo-
nent assumption.

3 As the forth scheme is a variation of FNV151 and it achieves worse efficiency param-
eters
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Scheme Fully No Erasure KGen G. D. Assumption Efficiency

leak signature size

NVZ14 7 - - O(1) DLIN 1
2
− o(1) O(1)

FNV151 3 7 3 O(1) DLIN 1− ε O(ε−1)
FNV152 3 3 3 O(1/q) DLIN 1− ε O(ε−1 · log λ)
FNV153 3 3 3 O(1) BDH∗ 1− ε O(ε−1 · log λ)
SS1 3 3 3 O(1/λ) SXDH 1− ε O(ε−1 · λ)
SS2 3 3 7 1 KerLin2+q-KE∗ 1− ε 8λ

Table 1: Comparison of known efficient leakage-resilient one-more signature schemes in the bounded
leakage model. The ∗ symbol means the scheme is in the random oracle model; G.D. stands for
graceful degradation. The signature size is computed in number of group elements. The value ε is
parameter set at initialization phase and it can be any inverse polynomial of the security param-
eter. DLIN stands for the decision linear assumption, BDH stands for the bilinear Diffie-Hellman
assumption, SXDH stands for the external decisional diffie-hellman assumption.

distribution D (resp. an PPT algorithm A run on input y), and we write x ←
A(y; r) to denote that we assign to x the output of A run with randomness r.
For two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote
that X and Y are identically distributed, and X ≈s Y (resp., X ≈c Y) to denote
that X and Y are statistically (resp., computationally) indistinguishable. Vectors
and matrices are typeset in boldface. Given an element m ∈ Z and a vector v
of length d, we denote v(m) := vT · (1,m1, . . . ,md−1)T , meaning the evaluation
of the polynomial with coefficients v at point m. We consider also the natural
extension of the notion to matrix, V (m) := V · (1,m1, . . . ,md−1)T . All the
algorithms take as input (group) parameters prm, for readability, whenever it is
clear from the context we consider them implicit. A (bilinear) group generator
SetupBG is an algorithm that upon input the security parameter 1λ outputs
the description (G1,G2,GT , p,G1, G2, GT , e) of three groups equipped with a
(non-degenerate) bilinear map e : G1 ×G2 → GT . We use additive notation for
the group operation, and we denote group elements using the bracket notation
introduced by Escala et al. in [12]. Namely, for a y ∈ Zp we let [y]X be the
element y ·GX ∈ GX for X ∈ {1, 2, T}. Given [x]1 and [y]2 we write [x · y]T as
shorthand for e([x]1, [y]2). We recall the standard notion of of collision-resistant
hash function (CRH). A tuple of PPT (GenCRH ,H) is a CRH where GenCRH
upon security parameter 1λ produces a hash key hk and the algorithm H upon
input the hash key hk and a message in {0, 1}∗ outputs a string in {0, 1}λ.
Collision resistance states that for a randomly sampled hk, it is hard to find
m0,m1 chosen as function of hk, such that H(hk,m0) = H(hk,m1).

Knowledge of the Exponent Assumption. Consider the experiment in Fig. 1
between an adversary A, a randomness sampler S, an extractor Ext and a bilinear
group generator SetupBG.

Definition 1. Given a bilinear group generator SetupBG and a value q ∈ N, we
say that the q-KE∗ assumption holds for SetupBG if for any deterministic PT A
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Experiment Expq−KE∗
A,S,Ext,SetupBG

(1λ):

1. Let prm = (G1,G2,GT , p,G1, G2, GT , e)← SetupBG(1λ);
2. Sample g ←$ Zqp, α←$ Zp and r ←$ {0, 1}λ, set M← (g · (1, α))T ∈ Z2,q

p ;
3. Let ω ← S([M]1, [α]2; r);
4. Let [y]1 ← A([M]1, [α]2, ω) and z ← Ext([M]1, [α]2, ω);
5. Output 1 iff y ∈ Span((1, α)T ) and [y]1 6= [M]1 · z.

Fig. 1: The experiment of the q-KE∗ assumption.

and any PPT sampler S there exists a PT Ext such that:

Adv
q−KE∗
A,Ext,SetupBG

(λ) := Pr
[
Exp

q−KE∗
A,Ext,SetupBG

(1λ) = 1
]
∈ negl(λ).

In constrast with the standard definition of the knowledge of the exponent as-
sumption, in our definition we additionally have a sampler S. The technical
reason is that we deal with adversaries with oracle access (for example, to the
signature oracle or the leakage oracle). In fact, in this setting, as shown by Fiore
and Nitulescu [16], we need to take particular care on how the adversary can
interact with its oracles. In particular, as we will show in the proof of security in
Sec. 5, with the help of the sampler, we can reduce the queries of the adversary to
be non adaptive. Notice, in bilinear groups the test [y]1 ∈ Span([1, α]T1 ) can be
efficiently performed using the bilinear map e([y0]1, [α]2) = e([y1]1, [1]2). Also,
we can naturally scale down the assumption to non bilinear groups, in this case,
the adversary does not get [α]2. Given a (non-bilinear) group generator SetupG
the assumption for q = 1 is not stronger than the KEA [9] for non-uniform PT
adversaries, while for q = 3 is not stronger than the KEA3 assumption [5] for
non-uniform PT adversaries. For a bilinear group SetupBG, and any polynomial
q, the q-KE∗ assumption is not stronger than the q-PKE assumption of [21],
indeed it is easy to show that if q-PKE holds than also q-KE∗ holds, however,
the reverse implication is not known. The extractability assumptions for non-
uniform adversaries consider an extractor that works for any auxiliary inputs.
As shown in [6] this sometimes can be dangerous. Notice that in our assumption
the only “auxiliary input” is generated by the random sampler S which does not
take the secret material g, α ∈ Zp on clear4.

Kernel Diffie-Hellman Assumptions. Given parameter prm, we call Dk a
matrix distribution if it outputs a matrix in Zk+1,k

p of full rank k in polynomial
time.

Definition 2 (Escala et al. [12]). Given a bilinear group generator SetupBG,
we say that the Dk-Kernel Diffie-Hellman assumption (Dk-KerMDH) holds for

4 Also notice that we quantify the extractor after the sampler, so to avoid pathological
situation where the adversary A simply forwards the output of the sampler S.
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SetupBG if for any PPT A:

AdvDk−KerMDH
A,SetupBG

(λ) := Pr
[
cT ·A = 0 ∧ c 6= 0 |[c]1 ← A(prm, [A]2)

]
∈ negl(λ).

where A←$ Dk and prm←$ SetupBG(1λ).

More specifically, in this paper we consider the KerLin2 assumption which is
equivalent to the D′k-KerMDH where D′λ outputs a matrix which columns are
(1, a1, 0)T and (1, 0, a2)T for a1, a2 uniformly chosen in Zp.

Homomorphic Trapdoor Commitment Schemes. A trapdoor commitment
scheme COM = (Setup,Com,ECom,EOpen) is a tuple of algorithms where:
(1) Algorithm Setup takes as input the security parameter and outputs a veri-
fication key ϑ and a trapdoor ψ; (2) Algorithm Com takes as input a message
m ∈M, randomness r ∈ R, the verification key ϑ and outputs a value Com ∈ C.
To open a commitment Com we output (m, r); an opening is valid if and only if
Com = Com(ϑ,m; r). (3) Algorithm ECom takes as input ψ and outputs a pair
(Com, aux); (4) Algorithm EOpen takes as input (ψ,m, aux) and outputs r ∈ R.
We recall the standard security notions of trapdoor hiding and computationally
binding. Roughly speaking, the former says that given a trapdoor is possible to
create fake commitments using ECom which later on can be equivocated to open
to any message in a indistinguishable way. The latter instead says that no PPT
adversary can open the same commitment to two different messages without the
knowledge of the trapdoor ψ. We state the properties formally in Appendix B.
For simplicity in the exposition we set M and R to be Zp for a prime p. We
say that COM is linearly homomorphic if given commitments Com and Com′

(that commit to m and m′) and a ∈ Zp, one can compute the commitment
Com∗ := a · Com + Com′ that opens to a ·m + m′. We write the mappings as
Com∗ = Com(ϑ, a ·m+m′; a · r + r′).

Moreover, we require the following additional property. Let (ϑ, ψ)← Setup(1λ),
(Com1, aux1)← ECom(ϑ, ψ) and (Com2, aux2)← ECom(ϑ, ψ). We can use the
auxiliary information a · aux1 + aux2 to equivocate the commitment a ·Com1 +
Com2. Finally, we consider commitment schemes with an additional algorithm

˜Setup which samples the verification key obliviously.

Quasi-Adaptive NIZK and NIWI argument systems. Let R ⊆ {0, 1}∗ ×
{0, 1}∗ be an NP-relation, the language associated withR is LR := {x : ∃w s.t. (x,w) ∈
R}. We assume that (x,w) ∈ R is efficiently verifiable. An non-interactive ar-
gument system NIZK := (Init,P,V) for R is a tuple of PPT algorithms where:
(1) The initialization algorithm Init takes as input the security parameter 1λ, and
creates a common reference string (CRS) crs ∈ {0, 1}∗; (2) The prover algorithm
P takes as input the CRS crs, a pair (x,w) such that (x,w) ∈ R, and produces
a proof π ← $ P(crs, x, w); (3) The verifier algorithm V takes as input the CRS
crs, a pair (x, π), and outputs a decision bit V(crs, x, π). Additionally, we say
that an argument system is quasi-adaptive if the CRS generator algorithm Init
takes as additional input the NP-relation R (or more formally a description of
it). We consider distribution DR over NP-relation. As for all the algorithms in
this paper, the distribution can depends on the parameters prm (for example,
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prm could be the description of a bilinear group). We require the standard notion
of completeness, meaning that for any CRS crs output by Init(1λ) (or for any
R and any crs output by Init(1λ,R) in the quasi-adaptive case), and for any
pair (x,w) ∈ R, we have that V(crs, x,P(crs, x, w)) = 1 with all but a negligible
probability. We consider argument systems that admit oblivious sampling of the
CRS and we denote it with ˜Init. We require the following security properties (cf.
Appendix C) .

– Perfect zero-knowledge: Proofs do not reveal anything beyond the va-
lidity of the statement, meaning that they can be perfectly simulated given
only the statement itself and a trapdoor information.

– Perfect witness-indistinghuishability: Given two different witnesses valid
for the same instance, a proof generated with the first witness is equivalently
distributed to a proof generated with the second witness.

– Adaptive weak knowledge soundness: For any PPT adversary that on
input the CRS produces a valid NIZK proof for a statement x there exists a
PPT extractor that outputs a witness w such that (x,w) ∈ R.

– Adaptive soundness: No PPT adversary can forge a verifying proof for
an adaptively chosen invalid statement.

2.1 All-but-Many Encryption

An all-but-many encryption scheme (ABM-Enc) is a tupleABM = (Gen,Sample,
Enc,Dec,EquivEnc,FakeEnc) such that: (1) Gen upon input the security param-
eter 1λ outputs (pk, (sks, ske)). The public key pk defines an tag space that we
denote with U and a message space M. (2) Sample upon input (pk, ske) and
t ∈ {0, 1}λ outputs u ∈ Upk. (3) Enc upon input pk, (t, u) and a message µ ∈ M
outputs a ciphertext C. (4) Dec upon input ske, (t, u) and a ciphertext C outputs
a message µ. (5) FakeEnc upon input pk, (t, u), sks outputs a ciphertext C and
auxiliary information aux. (6) EquivEnc upon input (t, u) and aux and a message
µ outputs random coins r; Let Lspk = {(t, u) : t ∈ {0, 1}λ, u← Sample(pk, ske, t)}
and let Lepk = {0, 1}λ × Upk \ Lspk. (For simplicity we will omit the subscript pk
when it is clear from the context.) We require that an ABM-Enc satisfies the
following properties:

Pseudorandomness. For every PPT adversary A the following advantage is
negligible:

Adv
pprf
ABM(λ) :=

∣∣∣∣Pr

[
(pk, ske, sks)←$ Gen(1λ)
A(pk)Sample(pk,sks,·) = 1

]
− Pr

[
(pk, ske, sks)←$ Gen(1λ)

A(pk)Opk(·) = 1

]∣∣∣∣
Where the oracle Opk(·) samples at random from the distribution Upk

Unforgeability. For every PPT adversary A the following advantage is negli-
gible:

Adv
unf
ABM(λ) := Pr

[
(t∗, u∗) ∈ Le, t∗ 6∈ Q :

(pk, ske, sks)←$ Gen(1λ)
(t∗, u∗)← A(pk)Sample(pk,sks,·)

]
Where Q is the set of queries made by A to the oracle Sample.
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Dual Mode. The scheme can work in two different modes:

– Decryption Mode: For all λ ∈ N For a hybrid linearly homomorphic
commitment scheme all pk, ske, sks ∈ Gen(1λ) and all τ = (t, u) ∈ Le and
all µ ∈M it holds that Dec(ske, τ,Enc(pk, τ, µ)) = µ.

– Trapdoor Mode: For all kλ ∈ N all pk, ske, sks ∈ Gen(1λ) all τ =
(t, u) ∈ Ls and all µ ∈ M it holds that let C, aux← FakeEnc(pk, τ, sks)
and r ← EquivEnc(τ, aux, µ) then C = Enc(pk, τ, µ; r).

Moreover for all (pk, sks, ske) ∈ Gen(1λ) all t ∈ {0, 1}λ and µ ∈ M the
following ensembles are statistically indistinghuishable:(u,C, r) :

u←$ Sample(pk, ske, t),
r ←$ {0, 1}λ,

C ← Enc(pk, τ, µ; r)


λ∈N

,

(u, c, r) :
u←$ Sample(pk, ske, t),

C, aux← FakeEnc(pk, τ, sks),
r ← EquivEnc(τ, aux, µ)


λ∈N

Theorem 1 (Fujisaki, [18]). If DDH assumption holds in SetupG then there
exists an ABM-Enc scheme. Moreover, the scheme admits an algorithm G̃en that
obliviously samples the public parameter.

3 Fully-Leakage One-More Unforgeability

A signature scheme is a triple of algorithms SS = (Gen,Sign,Verify) where:
(1) The key generation algorithm takes as input the security parameter λ and
outputs a verification key/signing key pair (vk, sk) ← Gen(1λ); (2) The signing
algorithm takes as input a message m ∈ M and the signing key sk and outputs
a signature σ ← Sign(sk,m); (3) The verification algorithm takes as input the
verification key vk and a pair (m,σ) and outputs a bit Verify(vk, (m,σ)) ∈ {0, 1}.

Given a signature scheme SS, consider the experiments in Fig. 2 running
with a PPT adversary A and parametrized by the security parameter λ ∈ N, the
leakage parameter ` ∈ N, and the slack parameter γ := γ(λ).

Definition 3 (Fully-leakage one-more unforgeability). We say that SS =
(Gen,Sign,Verify) is (`, γ)-fully-leakage one-more unforgeable if for every PPT
adversary A we have that:

Advone-moreSS,A (λ, `, γ) := Pr
[
Expone-more

SS,A (λ, `, γ) = 1
]
∈ negl(λ).

Moreover, We say that SS is (`, γ)-fully-leakage one-more unforgeable with leak-
free keygen if for every PPT adversary A we have that:

Advone-more
∗

SS,A (λ, `, γ) := Pr
[
Expone-more∗

SS,A (λ, `, γ) = 1
]
∈ negl(λ).

11



Expone-more
SS,A (λ, `, γ) and Expone-more∗

SS,A (λ, `, γ) :

1. (vk, sk)←$ Gen(1λ; r0), return vk to A; let α = r0, let α = sk .
2. Run A(vk) with oracle access to Sign(sk, ·) and the leakage oracle.

– Upon query m ∈ M to the signature oracle, let σ := Sign(sk,m; r), r ←
$ {0, 1}λ and udpate the state α := α ∪ {r}.

– Upon query f to the leakage oracle, return f(α) where α is the current state.

3. Let Q be the set of signing queries issued by A, and let Λ ∈ {0, 1}∗ be the con-
catenation of all the leakage. A outputs n pairs (m∗1, σ

∗
1), . . . , (m∗n, σ

∗
n).

4. The experiment outputs 1 if and only if the following conditions are satisfied:
(a) Verify(vk, (m∗i , σ

∗
i )) = 1 and m∗i 6∈ Q, for all i ∈ [n].

(b) The messages m∗1, . . . ,m
∗
n are pairwise distinct.

(c) n ≥ d`/(γ · s)e+ 1, where s := |σ| and |Λ| ≤ `.

Fig. 2: The fully-leakage one-more unforgeability experiment and the fully-
leakage one-more unforgeability experiment with leak-free key gen. The second
experiment is equal to the first but it additionally executes the operations de-
scribed the box.

The number of signatures the adversary musts forge depends on the length
of the leakage. In particular (`, γ)-fully-leakage one-more unforgeability implies
standard unforgeability for any adversary asking no leakage. The slack parameter
γ specifies how close the signature scheme SS is to the optimal security SS. In
particular, in the case γ = 1 one-more unforgeability requires that the adversary
A cannot forge even a single signature more than what it could have (partially)
leaked via leakage queries. As γ decreases, so does the strength of the signature
scheme (the extreme case being γ = |M|−1, where we have no security).

4 Signature scheme based on ABM-Encryption

Our scheme SS = (Gen,Sign,Verify) has message space equal to Zp and is de-
scribed in Fig. 3. The scheme is based on a homomorphic commitment scheme
COM, an ABM-Enc scheme ABM, a NIWI argument system NIWI and a
CRH function (GenCRH ,H). The scheme follows the basic template described in
Sec. 1, however instead of using just one single polynomial δ ∈ Zp[X] of degree
d, we use µ ∈ N different polynomials arranged in the matrix ∆. The correct-
ness follows from the completeness of the NIWI argument system, and from the
linearly homomorphic property.

Theorem 2. Let µ ∈ N. Assume that: (i) the commitment scheme COM is
trapdoor hiding and linearly homomorphic with message space Zµp ; (ii) the ABM
is a secure ABME-Enc scheme with message space Zµp and ciphertexts of length
s1 bits; (iii) NIWI is a perfect NIWI argument system for the relation R de-
scribed in Fig. 3 with proofs of length s2 bits. Then, let s = s1 + s2 and let
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Key Generation. Let d, µ ∈ N be parameters. Let NIWI = (Init,P,V) be a NIWI
argument system for the following polynomial-time relation:

R :=

{
(ϑ, pk, τ, Com,C); (m∗, r∗, s)

∣∣∣∣Com = Com(ϑ,m∗; r∗)
C = Enc(pk, τ,m∗; s)

}
.

Run hk ←$ GenCRH(1λ) crs← ˜Init(1λ), ϑ← ˜Setup(1λ) and pk←$ G̃en(1λ).
Sample ∆ ← $ Zµ,d+1

p and r = (r0, . . . , rd) ← $ Rd+1, and compute Comi ←
Com(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Zµp is the j-th column of ∆. Let Com =
(Com0, . . . , Comd)
Output

sk = (∆, r) vk = (crs, ϑ, pk,Com).

Signature. To sign a message m ∈ Zp compute m∗ ← ∆(m) and r∗ ← r(m). Pick
u ← Upk and set τ = (H(hk,m), u) and compute C ← Enc(pk, τ,m∗; s) where
s←$R. Generate a NIWI argument π for (ϑ, pk, τ,Com(m), C), using the witness
(m∗, r∗, s). Output σ = (C, τ, π).

Verification. Given a pair (m,σ) and vk, parse σ as (C, τ = (t, u), π) and
parse vk as (crs, ϑ, pk,Com). Output 1 if and only if H(hk,m) = t and
V(crs, π, (ϑ, pk, τ,Com(m), C)).

Fig. 3: The signature scheme SS1.

γ = µ log p/s, for any 0 ≤ ` ≤ ((d+ 1)µ log p)− λ, the signature scheme SS1 is
(`, γ)-fully-leakage one-more unforgeable.

We first provide a sketch, the formal proof follows below. The proof is similar
to the proof of [14], the following proof sketch highlights the main differences.

Proof Sketch. We denote with (r0,∆, r, (sj , tj)j∈[q]) the full secret state. Notice
that, because of the oblivious sampling of the parameters, the randomness r0

such that vk, sk = KGen(1λ; r0) can be computed efficiently as function of both
vk and sk, we therefore omit r0 from the state α. The first hybrid H0 is the
fully-leakage one-more unforgeability game but we additionally condition on the
validity of the forged proofs. By the adaptive soundness of the NIWI the real
experiment and H0 are indistinguishable. In the next hybrid H1 we switch the
way the parameters are sampled, so that we gets the secret keys sks, ske of the
ABM-Enc and the equivocation trapdoor ψ of the commitment scheme. The
hybrids H0 and H1 are indistinguishable because of the dual mode property of
the ABM-Enc and the equivocability of the commitment scheme.

In the hybrid H2 we equivocate the commitments Com in the public key.
Notice that the full secret state α can be written as ((∆, r(∆)), (sj , zj)i∈[q])
where r(∆) is a function of the secret key computed by EOpen.

In the hybrid H3 for each signature oracle query we sample the tag τ =
(t, u) such that u = Sample(pk, sks, t). The indistinguishability comes from the
pseudorandomness property of the ABM-Enc scheme.

Thanks to the last change, in the hybrid H4, for each signature oracle query
we can sample the encryption C using the trapdoor mode FakeEnc. Notice that
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the full secret state α can be written as ((∆, r(∆)), (sj(∆), zj)i∈[q]) where for
any j, the value sj(∆) is a function of the secret key ∆ computed using the
algorithm EquivEnc. The dual mode property of the ABM-Enc scheme assures
that the two hybrids are indistinguishable.

In the hybrid H5 we compute the NIWI proof using the witness (0, r′, s′)
where r′ is an opening of the equivocated commitment Com(m) to 0 and s′ is
an opening of the fake encryption to 0. This step follows exactly as in the proof
of security in [14].

In this last hybrid the full secret state α can be written as ((∆, r(∆)), (sj(∆),
zj(∆))i∈[q]), namely, all the state can be written as a deterministic function of
the secret polynomials ∆. In particular, any function f(α) could be rephrased
as a function f ′(∆).

The last part of the proof proceeds similarly as in [14] so here we give just
an intuition. Informally, an adversary A that wins the fully-leakage one-more
unforgeability game with probability ε will wins with probability negligibly close
to ε in the hybrid H5. Recall that a winning adversary returns n := d`/µ log pe+1
valid signatures. By the unforgeability of the ABM Encryption and the change
introduced in H0, from the forged signatures (m∗i , σ

∗ = (C∗i , τ
∗
i , π

∗
i ))i∈[n], by

decrypting the ciphertext C∗i , we can extract the values∆(m∗i ). Notice that each
∆(m∗i ) gives us µ log p bits of information about ∆. Putting all together, with
probability negligibly close to ε from the adversary we can extract n·(µ log p) > `
bits of information about ∆. On the other hand, in H5, the adversary gets at
most ` bits of information about ∆, the latter implies that ε must be negligible.

Formal Proof.

Proof. Let A be an adversary such that Advone-moreA,SS1
(λ, `, γ) = ε for parame-

ter `, γ as described in the statement of the theorem. Let H0(λ) be the ex-
periment Expone−more

SS,A (λ). Denote with ((m∗1, σ
∗
1 = (C∗1 , τ

∗
1 , π

∗
1)), . . . , (m∗n, σ

∗
n =

(C∗n, τ
∗
n, π

∗
n))) the list of forgeries of A. Let Forge0 be the event that H0 returns

1, so that P[Forge0] = ε. Define False0 to be the event that at least one of the
proofs contained in the adversary’s forgeries is relative to a false statement, i.e.,
False0 is verified if in H0 there exists i ∈ [n] for which Dec(ske, τ∗i , C

∗
i ) = m′i

and m′i 6= ∆(m∗i ). Define Collision0 to be the event that there exists i ∈ [n]
and j ∈ [q], for which H(hk,m∗i ) = H(hk,mj) where mj is the j-th signature
oracle’s query made by the adversary.

Let ε0 := P[Forge0 ∧ ¬False0 ∧ ¬Collision0].

Claim. ε− ε0 ∈ negl(λ).

Proof. The claim is proved in two steps, first we prove |ε−P[Forge0∧¬False0]| ∈
negl(λ) and then we prove |P[Forge0∧¬False0]−P[Forge0∧¬False0∧¬Collision0]| ∈
negl(λ). By adaptive computational soundness of the NIWI argument system,
we must have that P[False0] ∈ negl(λ). In fact, from an adversary A provoking
False0, we can easily construct an adversary breaking adaptive soundness by
simply emulating the entire experiment for A and outputing the proof for which
the statement of the event holds (we can do this efficiently as we know ske).

The second part of the proof follows easily by collision resistance of H.
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We now define a series of hybrid experiments. For each hybrid Hi, we write εi
for the probability of the event Forgei ∧ ¬Falsei ∧ ¬Collisioni. During the
experiment the adversary has leakage oracle access to α = (∆, r, (sj , zj)j∈[q])
where sj is the randomness used by Enc and zj is the randomness used by
P (the proving algorithm of the NIWI). Notice that, because of the oblivious
sampling of the parameters, the randomness r0 such that vk = KGen(1λ; r0)
can be computed efficiently as function of the verification key vk. To keep the
exposition lighter, we therefore omit r0 from the secret state α.

Hybrid 1. The experiment H1 is the same as H0, expect that the parameters are
not sampled by the oblivious algorithms but instead we sample (pk, (sks, ske))←
$ Gen(1λ) and ϑ, ψ ←$ Setup(1λ) and crs←$ Init(1λ).

Claim. ε1 − ε0 ∈ negl(λ).

The claim follows by the oblivious sampling properties of ˜Setup, G̃en and ˜Init.
Details omitted.

Hybrid 2. The experiment H2 is the same as H1, except that now the commit-
ments {Comi}di=0 to the columns δi are replaced by equivocable commitments,
i.e. (Comi, r

′
i)←$ ECom1(ϑ, ψ) for all i ∈ [0, d]. Notice that the actual random-

ness ri, used to produce Comi in H0, can be recovered efficiently as a function
of the coefficients δi and the fake randomness r′i, as ri(∆) := EOpen(ψ, δi, r

′
i).

Given ri the signature computation is identical. We write r(∆) = (r0(∆), . . . , rd(∆))
the vector of randomness r computed as function of ∆ (with the help of ψ and
(r′0, . . . , r

′
d)).

Claim. ε2 − ε1 ∈ negl(λ).

Proof. The trapdoor hiding property of the commitment scheme implies that
the distribution of each pair (Comi, ri) in the two hybrids are statistically close.
The claim follows by a standard hybrid argument.

Hybrid 3. The experiment H2 is the same as H1, except that now the signa-
ture are computed differently. Specifically, for all j upon the j-th query with
message m the signature oracle compute the signature by computing uj ←
$ Sample(pk, sks, tj) where tj = H(hk,m).

Claim. ε3 − ε2 ∈ negl(λ).

Proof. The trapdoor pseudorandomness property of the ABM-Enc scheme im-
plies that, for any tj the distribution Sample(pk, sks, tj) and uj ← $ Upk are
computationally close. The claim follows by a standard hybrid argument over
all the signature queries.

Let ForgeTagi be the event that there exists a forgery (m∗, σ∗) of the adver-
sary such that σ∗ = (C∗, (t∗, u∗), π∗) and (t∗, u∗) ∈ Le.

Let ε′i be the probability of the event Goodi defined as follow:

Goodi := Forgei ∧ ¬Falsei ∧ ¬Collisioni ∧ ¬ForgeTagi.
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Claim. ε′3 − ε3 ∈ negl(λ).

Proof. Notice that ε′3− ε3 ≤ Pr [ForgeTagi], so we bound the probability of this
event. Consider the adversary B of the unforgeability experiment of ABM-Enc
scheme that runs the experiment H2 but instead of computing uj by its own it
uses its oracle access to Sample(pk, sks, ·). Eventually, the adversary A outputs n
forgeries and if all of them are valid and for different messages then the adversary
B picks an index i←$ [n] and outputs t∗i , u

∗
i as its own forgery. It is easy to see

that the adversary B wins with probability Pr [ForgeTagi] /n the unforgeability
experiment of the AMB-Enc scheme.

Hybrid 4. The experiment H4 is the same as H3, except that now the signa-
ture are computed differently. Specifically, for all j upon the j-th query with
message m the signature oracle compute the signature by computing Cj , aux←
FakeEnc(pk, (tj , uj), sk

s) and compute the randomness for the leakage oracle as
sj ← EquivEnc(τ, aux,∆(m)). To stress that the randomness sj can be com-
puted as function of ∆, we write sj(∆) := EquivEnc(τ, auxj ,∆(mj)) where mj

is the message queried at the j-th signature oracle call.

Claim. ε′4 − ε′3 ∈ negl(λ).

Proof. The dual mode property of the ABM-Enc scheme implies that, for any
tj ∈ {0, 1}λ and uj ← $ Sample(pk, sks, tj) the distribution that computes the
ciphertext Cj using Enc and the distribution that compute it with FakeEnc even
given the equivocated randomness are statistically indistinguishable. The claim
follows by a standard hybrid argument.

Hybrid 5. This experiment is identical to the previous hybrid, except that it
uses a different witness w′ to compute the NIWI arguments. In particular, given
the j-th query m, the experiment generates the argument π by running

P(crs, (ϑ, pk, τj ,Com(m), Cj)︸ ︷︷ ︸
x

, (0,EOpen(ψ, 0µ, r′(m)),EquivEnc(τ, auxj ,0)︸ ︷︷ ︸
w′

; z′j),

where r′(m) =
∑d
i=0 r

′
i · mi is computed using the randomness {r′i}di=0. No-

tice that the randomness z used to generate the NIWI argument in the previ-
ous experiment can be sampled (inefficiently) as a function of the (real) wit-
ness w := (∆(m),EOpen(ψ,∆(m), r′(m)),EquivEnc(τ, aux,∆(m))) and z′j . In
particular, zj(∆) := z′j where z′j is sampled from the distribution {z : πj =
P(crs, (ϑ, pk, τj ,Com(m), Cj), (0, r′j , s

′
j)}. The state used to answer the leak-

age query f is set to:

α(∆) = ((∆, r(∆)), (sj(∆), zj(∆))i∈[q]).

Notice that the function α(∆) needs the values (r′i)i∈[d], (mj , τj , auxj , z
′
j)j∈[n] to

be computed. We hardwire such values in the definition of the function α(·).

Claim. ε′4 − ε′3 ∈ negl(λ).
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Proof. The linear homomorphic property of the hybrid commitment scheme en-
sures that the value r′(m) is the right randomness to equivocate Com(m). The
claim follows by a simply hybrid argument over all the signature queries. For a
specific query j, by perfect witness indistinguishability, the distributions of the
proof πj in the two hybrids are the same.

Moreover, for any (x,w) ∈ R, and for any crs←$ Init(1λ), let Πw := {π| π =
P(crs, x, w; z)}. The perfect witness indistinguishability property implies:

Pr
π←$ P(crs,x,w)

[π 6∈ Πw′ ] = 0.

This is because otherwise the event π ∈ Πw′ can be used to distinguish the
ensembles Πw and Πw′ . In case the above condition is satisfied, we can sample
z′ from the distribution {z| π = P(crs, x, w′; z)} as the distribution is not empty.

The next experiment we define has no direct access to the matrix ∆, but
instead depends on a leakage oracle O∆(·) which takes as input a function f
and returns f(∆).

The Predictor PO∆(·). The predictor runs the same as the previous hybrid,
with the difference that ∆ is not sampled by the predictor as part of the signing
key, but can instead be accessed via O∆(·). In particular, all signature queries
are handled as in H4. Moreover, whenever the adversary A queries with a leakage
oracle query f the predictor define f ′(·) := f(α(·)) and forwards it to its own
leakage oracle. Finally the predictors receives from A the n forgeries (m∗i , σ

∗
i )

and does as follow:

1. Check that all the forgeries are valid and that the messages are different,
otherwise return ⊥;

2. Parse σ∗i as C∗i , τ
∗
i , π

∗
i and compute y∗i = Dec(ske, τ∗i , C

∗
i );

3. For j ∈ [µ] sample a polynomial δ∗j in Zp[X] of degree d such that δj(m
∗
i ) =

y∗i,j for all i ∈ [n];
4. Outputs ∆∗ = (δ1, . . . , δ

∗
µ).

Lemma 1. Pr
[
PO∆(·) = ∆

]
≤ exp((d+ 1)µ log p− `).

Proof. Notice that |∆| = ((d+ 1)µ) log p so, without any extra information, the
guessing probability of P is bound to exp−(d+ 1)µ log p. On the other hand,
the size of the leakage is ` bits so, by Lemma 5, the guessing probability of P
can increase at most of a multiplicative factor of 2`.

Lemma 2. If there exists a PPT adversary A such that Adv
SS,A
one−more(λ) = ε

then Pr
[
PO∆(·) = ∆

]
≥ exp(−((d− n) · µ) log p) · ε′4.

Proof. Conditioning on the event Good4 and by the correctness of the ABM-Enc
scheme we have that for all i ∈ [0, q] and j ∈ [µ] the equation y∗i,j = δj(m

∗
i )

holds. The predictor P in this case sample uniformly at random µ polynomials
that evaluates as ∆ in those positions. Therefore, for any j ∈ [µ], the predictor
guesses the right polynomial with probability exp(−((d − n))|Zp|) (because it
has to guess only d− n coefficients) in this conditional space.
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We finish the proof by noticing that ε′4 is equal to ε−negl(λ) moreover, putting
together the bounds of Lemma 1 and Lemma 2, and by taking the logarithms:

(n− d)µ log p+ log(ε− negl(λ)) ≤ −(d+ 1)µ log p+ `.

By easy calculation we can derive that the following equation holds:

nµ log p+ log(ε− negl(λ)) ≤ `

By setting the slack parameter γ = s/(2µλ) and noticing that n ≥ b `
γ·sc+ 1 and

log p = λ then it must be ε ∈ negl(λ) for the equation above to hold.

Concrete Instantiation. We instantiate the ABM-Scheme with the construc-
tion ABMDDH of [18] based on DDH assumption, the NIWI argument system
with Groth-Sahai [22] and the trapdoor commitment with the Pedersen’s com-
mitment scheme. A ciphertext C of ABMDDH is composed by 5λ/ log(λ) groups
elements and the encryption procedure can be described by 5λ log(λ) pairing-

product equations. The message space can be parsed as Zλ/ log λ
n where n =

poly(λ) and its “encoded in the exponent”. We additionally need O(λ/ log λ)
equations to describe that the plaintext and the opening of the commitment
match. Summing up, the value s in the theorem is equal to O(λ/ log λ). Finally,
we notice that since we use the same groups for NIWI and ABMDDH we need
to use the external Diffie-Hellman (SXDH) assumption.

Let COM := (Setup,Com) be the following commitment scheme:

Setup. The algorithm Setup parses prm as (G1,G2,GT , p,G1, G2, GT ), picks at a ran-
dom [g]1 ← $ Gµ1 , α ← $ Zp and [h]1 ← $ G1, sets [M]1 ← (1, α)T · [gT , h]1,
sets [h]1 = [h, α · h]T1 be the last column of [M]1, and sets [α]2. It outputs the
verification key ϑ = ([M]1, [α]2) ∈ (G2,µ+1

1 ×G2).
Commit. The algorithm Com on input [M]1, [α]2 and a message m ∈ Zµp , samples

r ← $ Zp and sets Com = [M] · (mT , r)T ∈ G2
1. The opening of the commitment

is the r.

Fig. 4: The commitment scheme COM

5 A Signature Scheme based on KEA

Before describing the signature scheme we give more details on the building
blocks. Consider the commitment scheme COM := (Setup,Com) (with implicit
parameters an integer µ and a group generator SetupBG) described in Fig 4.
Notice that for any two messages m0,m1 and randomness r0 there exists an
unique assignment for r1 such that [M]1 · (mT

0 , r0)T = [M]1 · (mT
0 , r1)T holds,

therefore COM is perfectly hiding.
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The second building block is a quasi-adaptive non-interactive perfect zero-
knowledge argument of knowledge NIZKext. The argument system is adaptive
weak knowledge sound5. Roughly speaking, the NIZK is a two-fold version of the
scheme of Kiltz and Wee. For space reason we defer the details of the NIZK in
Appendix C where we define also the Dk-KerMDH and the KerLin2 assumptions
(see Escala et al. [12]), here we state the following theorem:

Theorem 3. The scheme NIZKext is a quasi-adaptive perfect zero-knowledge
argument system and if both the Dk-KerMDH assumption and the 1-KE∗ as-
sumption hold for SetupBG then it is adaptive weak knowledge sound.

The Signature Scheme. The signature scheme SS2 is described in Fig. 5. We

Let SS2 = (KGen, Sign,Verify) with message space Zp be defined as follow:

Key Generation. Let d, µ ∈ N be parameters. Let prm←$ SetupBG(1λ) be parame-
ter describing an asymmetric bilinear group , let ϑ = ([M]1, [α]2) ← $ Setup(prm)
and let [h]1 be the last column of [M]1. Consider the NP relation R defined as
follow:

R = {([y]1, r) : [y]1 = r · [h]1}
Run crs, tp← Init(1λ,R), sample ∆←$ Zµ,d+1

p and r = (r0, . . . , rd)←$ Zd+1
p , and

compute commitments Comi ← Com(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Zµp is the
j-th column of ∆. Let Com = (Comi)

d
i=0 and output

sk = (∆, r) vk = (crs, ϑ,Com).

Signature. To sign a message m ∈ Zp compute m∗ = ∆(m) and let C ←
Com(ϑ,m∗, s) where s←$ Zp, and compute π ← P(crs, (r(m)− s) · [h], r(m)− s).
Output σ = (C, π).

Verification. Given a pair (m,σ) and the verification key vk, parse σ as (C, π) and
parse vk as (crs, ϑ,Com). Output 1 if and only if V(crs,Com(m) − C, π) and
e(C0, [1]2) = e(C1, [α]2).

Fig. 5: The signature scheme SS2.

show that the scheme is correct. For any tuple m,σ where σ is a valid signature
for m with the verification key vk = (crs, ϑ,Com), let parse σ as (C, π), we
have:

Com(m)− C =
∑
i Comi ·mi − C =

∑
i[M]1 · (δTi , ri)T ·mi − [M]1 · (∆(m)T , s)T =

= [M]1 ·
∑
i(δ

T
i , ri)

T ·mi − [M]1 · (∆(m)T , s)T =

= [M]1 · ((∆(m)T , r(m))T − (∆(m)T , s)T ) = [h]1 · (r(m)− s).
5 We reverse the order of the quantifiers in the usual definition of knowledge sound-

ness. Namely, for each adversary A there exists an extractor Ext. See more details in
Appendix C.
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The last equation follows because [h]1 is the last column on [M]1. The correct-
ness of the signature scheme follows by the equation above and the correctness
of the quasi-adaptive NIZK scheme.

Theorem 4. Let µ, d ∈ N and µ > 8. If the (µ + 1)-KE∗ assumption and the
KerLin2 assumption hold over SetupBG then, for any 0 ≤ ` ≤ ((d + 1) log λ) −
λ, the signature scheme SS2 described Fig. 5 is (`, 1)-fully-leakage one-more
unforgeable with leak-free key generation.

We give an intuition of the proof. In particular, we explain how to use the
knowledge of the exponent assumption of Def. 1. The main idea is to define
a sampler that, roughly speaking, executes the fully-leakage one-more unforge-
ability experiment. More in details, the sampler S samples all the randomness
needed, including the secret key, the randomness for the signatures and the ran-
dom tape of the adversary, with the only exception of the parameters of the
KEA∗ assumption. The sampler proceeds with executing the experiment up to
the moment before the adversary outputs its forgeries. Eventually the sampler
outputs the full view of the adversary including the queried signatures, the leak-
age and the random tape of the adversary, let View be such value.

At this point we can deterministically execute the adversary feeding it with
the view produced by the sampler. This adversary produces n commitment val-
ues (one for each forgery) for which, thanks to the knowledge of the exponent
assumption he must know the opening.

Notice we do not incur in any problem of recursive composition of extractors.
In fact the adversary outputs all its commitments at once. More in details, given
the adversary code, for any i ∈ [n], we can define the adversary Ai which outputs
only the i-th commitment of A. Using the knowledge of the exponent assumption,
for any index i, there musts exist an extractor Exti for the adversary Ai. Crucially,
the computational complexity of the extractor Exti depends only on Ai and not
on Extj for an index j 6= i.

The proof continues showing that the extracted values are indeed evaluations
of the polynomial ∆ sampled by the sampler. To argue this we use the adaptive
weak knowledge soundness of the NIZK. We give more details about this step in
the formal proof.

Now, consider the predictor that on input the random variable View first
runs the extractors Ext1, . . . ,Extn obtaining n evaluation points of the polyno-
mial ∆ and then guesses a random polynomial that interpolates the evaluation
points. The probability that this predictor guesses the polynomial ∆ is roughly
εp−(d−n)µ where ε is the winning probability of the adversary A. On the other
hand, we prove that, thanks to perfect hiding and perfect zero-knowledge, no
predictor can guess the polynomial ∆ with probability more than 2`p−(d+1)µ We
complete the proof by noticing that the two bounds are in contradiction when ε
is noticeable in the security parameter.

Proof (of Thm. 4). Let A be an adversary such that Advone-more
∗

A,SS2
(λ, `, 1) = ε for

parameter ` as described in the statement of the theorem. Let H0(λ) be the ex-

periment Expone−more∗
SS,A (λ). Denote with ((m∗1, (C

∗
1 , π
∗
1)), . . . , (m∗n, (C

∗
n, π

∗
n))) the
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list of forgeries of A. During the experiment the adversary has oracle access to
α = (∆, r, (sj , zj)j∈[q]) where sj is the randomness used by Com and zj is the
randomness used by P (the prover of the NIZK proof system). The proof pro-
ceeds with an hybrid argument. In particular, the proof has seven main hybrid
experiments named H0, . . . ,H7 and other sub-hybrids that we name with Hi,j

for i ∈ {2, 3} and j ∈ [n]. Let Forgei (resp. Forgei,j) be the event that Hi (resp.
Hi,j) returns 1, so that P[Forge0] = ε.

Hybrid 1. The hybrid H1 runs the same as the hybrid H0 but with a slightly
different syntax. More in details, consider the following sampler S:

Sampler S([M]1, [α]2):

1. Sample rA ← {0, 1}λ and ∆ ← $ Zµ,d+1
p , r ← Zd+1

p , set sk = (∆, r)
and compute the verification key vk as described in KGen using [M]1;
Sample the randomness (sj , zj)j∈[q] and set α = (sk, r, (sj , zj)j∈[q]).

2. Run A(vk; rA) and answer all the signature oracle queries using Sign(sk, ·)
and the leakage oracle queries with the state α. Let View = (σ1, . . . , σq, Leak)
be the full transcript of the interactions between A and the oracles;

3. Output (vk,View, rA).

The hybrid H1 executes three steps: (1) it creates the parameters (prmBG, [M]1, [α]2),
(2) it executes the sampler (vk,View, rA)←$ S([M]1, [α]2), (3) it runs A(vk; rA)
and answers all the oracle queries using the information in View. The change
between the two hybrids is only syntactical, therefore ε0 = ε1.

Hybrid 2.i. The hybrid H2.i takes as parameters i different extractors Ext1, . . . ,Exti
and runs the same as the hybrid H1 but, also, it runs the extractors and outputs
1 if and only if the extracted values match the commitments C∗1 , . . . , C

∗
i . More

in details, the hybrid H2.i first creates the parameters (prmBG, [M]1, [α]2), then
it executes the sampler (vk,View, rA)← S([M]1, [α]2), then it runs A(vk; rA) and
answers all the oracle queries using the information in View. Eventually, A out-
puts its forgeries (m∗1, σ

∗
1), . . . , (m∗n, σ

∗
n) where σ∗i = (C∗i , π

∗
i ), and for j = 1, . . . , i

the hybrid H1.i computes xi ← Exti(([M]1, [α]2), (vk,View, rA)) and outputs 1
if and only if:

(a) all the forged signatures verify correctly for vk and all the messages are
different and,

(b) for any j = 1, . . . , i we have C∗j = [M]1 · xj .

Claim. There exist PPT extractors Ext1, . . . ,Extn such that for any i > 1,
|ε1.i−1 − ε1.i| ∈ negl(λ). Moreover, ε1 = ε2.0.

Proof. First we prove second sentence of the claim. The change between H1 and
H2.0 is only syntactical. In fact, the winning condition is the same in both hy-
brids, as H2.0 does not check the condition (b). Now we prove the first sentence.
We define an adversary A′i for the (µ+ 1)-KE∗ assumption:

Adversary A′i([M]1; r′):

1. Parse r′ as (vk,View, rA);
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2. Run A(vk; rA) and answers all the oracle queries using the informa-
tion in View;

3. Eventually, A outputs its forgeries (m∗1, σ
∗
1), . . . , (m∗n, σ

∗
n);

4. If all the forged signatures verify correctly for vk and all the messages
are different parse σ∗i as (C∗i , π

∗
i ) and output [y]1 := C∗i .

For any PPT Exti the two hybrids diverge when [M]1 · xi 6= [y]1, where xi
is the output of the extractor, but the signature σ∗i verifies correctly. Notice
that the verification algorithm checks that e([y0]1, [α]2) = e([y1]1, [1]2), where
y = (y0, y1) and so [y]1 ∈ Span([1, α]1). Therefore:

|ε1.i−1 − ε1.i| ≤ Pr [[M]1 · xi 6= Y ∧ Y ∈ Span([1, α]1)]

We can apply the security of the µ + 1-KE∗ assumption. In particular, there
musts exist an extractor Exti such that the difference above is negligible.

Hybrid 3.i. The hybrid H3.i takes as parameters n different PPT extractors
Ext1, . . . ,Extn plus i different PPT extractors Ext′1, . . . ,Ext

′
i and runs the same

as the hybrid H2.n but also for any j = 1, . . . , i it computes wi ← Ext′i(crs, tp, r
′)

where r′ = (∆, r, [g, h], α) and the winning conditions are changed as follow:

(a) All the forged signatures verify correctly for vk and all the messages are
different,

(b) for any j = 1, . . . , n we have C∗j = [M]1 · xj and,
(c) for any j = 1, . . . , i check Com(m∗i )− C∗i = wi · [h, αh].

Claim. For any PPT Ext1, . . . ,Extn there exist PPT extractors Ext′1, . . . ,Ext
′
n

such that for any i > 1, |ε1.i−1 = ε2.i| ∈ negl(λ). Moreover, ε3.0 = ε2.n.

The claim follows by the weak knowledge soundness of NIZKext.

Proof. Clearly ε3.0 = ε2.n, as the point (c) is not checked in H3.0. We define
an adversary A′i for the adaptive weak knowledge soundness of the QANIZK
NIZKext:

Adversary A′i(crs; r
′):

1. Parse r′ as (∆, r, [gT , h], α), define ϑ as described in Setup, compute
Com using ∆ and r, and set the verification key vk = (crs, ϑ,Com)
and sk = (∆, r);

2. Run A(vk; rA) and answer all the signature oracle queries using Sign(sk, ·)
and the leakage oracle queries with α;

3. Eventually, A outputs its forgeries (m∗1, σ
∗
1), . . . , (m∗n, σ

∗
n);

4. If all the forged signatures verify correctly for vk and all the mes-
sages are different parse σ∗i as C∗i , π

∗
i and output the statement

(Com(m∗i )− C∗i ) and the proof π∗i .
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For any PPT Ext′i the two hybrids diverge when conditions (a) and (b) holds
but Com(m∗i ) − C∗i 6= wi · [h, αh] happens. Clearly, condition (a) implies that
Com(m∗i )−C∗i ∈ Span([h, αh]) as the signature verification check it explicitly.
Let Ext′i be the extractor prescribed by the QA-NIZK adaptive weak knowledge
soundness property, if the above event happens with noticeable probability, then
the adversary A′i breaks adaptive weak knowledge soundness of the NIZKext.

Hybrid 4. The hybrid H4 is the same as H3.n but the winning conditions are
changed as follow:

(a) All the forged signatures verify correctly for vk and all the messages are
different,

(b) for any j = 1, . . . , n we have C∗j = [M]1 · xj ,
(c) for any j = 1, . . . , n check Com(m∗i )− C∗i = wi · [h, αh]1 and,
(d) for any j = 1, . . . , n, let x′j be the projection of xj to the first µ coordinates,

check x′j = ∆(m∗j ).

Claim. |ε3.n = ε4| ∈ negl(spar).

The claim follows by a simple reduction to the DLOG problem.

Proof. The two hybrids diverge when conditions (a),(b),(c) hold but one of the
extracted values xi is such that x′i 6= ∆(m∗i ). We show that the probability of
this event is negligible. To do so we reduce to the representation problem over
(G1, p, [g]1). The representation problem asks to find two vector x,y such that
x 6= y but [g]T1 ·x = [g]T1 ·y. It is well known that if DLOG problem over (G1, p)
is hard then representation problem over (G1, p, [g]1) for random [g]1 is hard
too. Consider the following adversary for the representation problem:

Adversary B([g]1):

1. Run the hybrid H4 with the parameter set to [g]1, in particular
sample [h]1 ← β · [gj∗ ]1 where β ← $ Zp, the index j ← $ [µ], the
secret key ∆←$ Zµ,d+1

p and r← Zd+1
p .

2. If the winning conditions (a),(b),(c) are met but not condition (d),
then let i be the index such that x′i 6= ∆(m∗i ).

3. Parse xi as (xi,1, . . . , xi,µ+1) and ∆(m∗i ) as (y1, . . . , yµ), output the
vectors

x̄ = (xi,1, . . . , xi,j∗+β·(xi,µ+1+w−yµ+1), . . . , xi,µ) and ȳ = (y1, . . . , yµ).

Let k be an index such that x′i,k 6= ∆(m∗i )k then with probability 1 − 1/µ the
index k 6= j∗ (because j∗ is information theoretically hidden), and when this
happens then x̄ and ȳ are different.

Moreover, notice that, because Com(m∗i ) = C∗i + wi · [h, αh] and h = β · gj∗
we have that [g]T1 · x̄ = [g]T1 · ȳ. So the adversary B breaks the representation
problem for (G1, p, [g]1).
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Hybrid 5. The hybrid H5 is the same as H4 but we revert the changes intro-
duced in the hybrids H2,i for all i ∈ [n]. The winning conditions are changed
and in particular they are less stringent as do not consider the condition (c).
As the condition is not checked then the hybrid does not need to execute the
extractors Ext′i for i ∈ [n]. Notice that the set of conditions are relaxed, so the

probability of the event cannot decrease, namely ε5 ≥ ε4.

The Predictor P. The predictor runs the same as the hybrid H5 but the sampler
S is run externally. In particular, the parameters for S are sampled, then first the
sampler is executed and then the predictor P is executed with input the output
produced by S. Eventually, the predictors (which runs internally A) receives
n forgeries (m∗1, σ

∗
1), . . . , (m∗n, σ

∗
n). The predictor checks the winning conditions

(a),(b),(d) of the hybrid H4 and does as follow:

– If one of the conditions is invalid then output ⊥,
– else for j ∈ [µ] sample a polynomial δ∗j in Zp[X] of degree d such that
δj(m

∗
i ) = x′i,j for i ∈ [n],

– outputs ∆∗ = (δ∗1, . . . , δ
∗
µ).

Recall that the advantage of A in the one-more unforgeability game is ε.

Lemma 3. Pr [P(S([M]1, [α]2)) = ∆] ≥ exp(((n− d) · µ) log p) · (ε− negl(λ)).

Proof. By the triangular inequality and the claims above we have that ε5 ≥
ε − negl(λ). When the event Forge5 happens then ∆(m∗i ) = x′i for i ∈ [n] so
the event that ∆∗ = ∆ is equivalent to the event that the predictor P correctly
guesses the remaining d−n zeros of the polynomials δi for i ∈ [µ] which is equal
to 1/pµ(d−n) = exp(((n− d) · µ) log p).

Lemma 4. For any prm←$ SetupBG(1λ), any ([M]1, [α]2) ∈ G2,µ+1
1 ×G2 and

any predictor P′ we have Pr [P′(S([M]1, [α]2)) = ∆] ≤ exp(−(d+ 1)µ log p+ `).

Proof. We define two samplers S1 and S2, we prove that their output distri-
butions (vk, (σ1, . . . , σq, Leak), rA) are equivalent to the distribution of S, and
moreover, the components vk, σ1, . . . , σq, rA are independent of ∆ as sampled by
S. Both the sampler S1 and S2 are not efficiently computable, however, this is not
a problem as we are proving that their distributions are identically distributed
to the distribution of S.

The sampler S1 executes the same of S but the elements Com, the signature
queries, and the leakage oracle queries are computed in the following way:

– The elements Com are sampled as uniformly element from Span([g, αg]).
– At the j-th signature oracle query with message m the element Cj is sampled

as uniformly element from Span([g, αg]).
– Define the function r(∆) that outputs the vector (r0, . . . , rd) computing ri

such that Comi = [M]1 ·(δTi , ri)T . Similarly, define the functions sj(∆) that

output the vector sj such that Cj = [M]1 · (δTi , sj)T . For each leakage oracle
query f the answer of f is computed as f(∆, r(∆), (si(∆), zi)i≤q).
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Claim. For any parameter prm←$ SetupBG(1λ) and any ([M]1, [α]2) ∈ G2,µ+1
1 ×

G2 the outputs of the samplers S and S1 are identically distributed.

Proof. We notice that for any m the commitment to m is uniformly distributed
over Span([1, α]). Therefore, for any Comi (resp. Ci), it always exists such ri
(resp. si), and moreover, once ∆ and Com (resp. Ci) are fixed its value is
uniquely defined.

The sampler S2 executes the same of S1 but, for all the signatures, the NIZK
proofs πi are computed using the simulator S of NIZK and, moreover, the ran-
domness zi is uniformly sampled over the set6

{zi : πi = P(crs, (r(∆)(mi)− s(∆)) · [h], (r(∆)(mi)− s(∆)))}

where r(∆) is the vector of the randomness as computed by S1.

Claim. For any parameter prm←$ SetupBG(1λ) and any ([M]1, [α]2) ∈ G2,µ+1
1 ×

G2 the outputs of the samplers S1 and S2 are identically distributed, S1([M]1, [α]2) ≡
S2([M]1, [α]2).

Proof. By the perfect zero-knowledge property of the quasi-adaptive NIZK, the
proofs πi are distributed equivalently to the real proofs. Notice that perfect zero-
knowledge implies that the set of the simulated proofs and the set of real proofs
(for any instance and witness) is exactly the same. Moreover, for all i, we sample
s′i uniformly at random from the set of possible randomness that match with
the proof πi, therefore s′i is equivalently distributed to si, the randomness used
to compute the proofs in S1. We write zi(∆) to stress that zi is computed as
function of ∆, for each leakage oracle query f the answer of f is computed as
f(∆, r(∆), (si(∆), zi(∆))i≤q).

Claim. For any P′ we have Pr [P′(S2([M]1, [α]2)) = ∆] ≤ exp(−(d+1)µ log p+`).

Proof. Let q be the number of signature queries made by A and let Leak the
concatenation of all the leakage performed by A. For any predictor P′

Pr
[
P′(S2([M]1, [α]2)) = ∆

]
= Pr [P′(Leak) = ∆] (1)

=
∑
L

Pr [P′(L) = ∆ | Leak = L] Pr [Leak = L]

≤ 2` max
D

Pr [∆ = D] . (2)

Where Eq. 1 holds because vk, rA and the signatures σ1, . . . , σq are sampled
independently from ∆, while Eq. 2 holds applying the chain rule (Lemma 5).
Finally we notice that ∆ is sampled uniformly at random so the statement of
the claim follows.

6 Namely, the set of assignment for the randomness zi for for which the execution of
P with randomness zi and the appropriate tuple instance and witness does compute
exactly the proof πi.
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By putting together the first two claims we have that the probability of guessing
∆ by a predictor given in input the output produced by S2 is the same as it
gets in input the output produced by S1, by the last claim, therefore, the lemma
follows.

Returning to the proof of the theorem, we can put together the inequalities of
Lemma 3 and Lemma 4, and by taking the logarithms we have:

−dµ log p+ ` ≥ −(d− n)µ log p+ log(ε− negl(λ))

By adding dµ log p to both sides we derive that ` ≥ nµ log p+ log(ε− negl(λ)),
and by the fact that n > `

s·γ + 1 and γ = 1 we derive that − log(ε− negl(λ)) >
s ≥ λ. For the equation above to hold, necessarily, ε is negligible in λ.
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A Information-Theoretic Lemmas

We state a lemma from Dodis et al. [11]. In their paper the lemma is stated in
terms of the conditional average min-entropy of a random variable X given an-
other random variable Y . To keep the notation lighter, we instead give a (weaker)
version of the chain rule for the average conditional min-entropy (Lemma 2.2 in
[11]) which is sufficient for our purpose.

Lemma 5. Let X,Y be random variables. If Y has at most 2` possible values,
then

Ey←Y
[
max
P

Pr [P(y) = X]

]
≤ 2` max

x
Pr [X = x] .

In a successive work, Alwen et al. [3] generalized the notion of average conditional
min-entropy to predictor participating in interactive experiments (instead of
predictors that gets on input the random variable Y ).

Lemma 6. Let X be a random variable and OX(·) be a leakage oracle instan-
tiated with X which outputs at most ` bits, then for any predictor P with oracle
access to OX :

Pr
[
POX(·) = X

]
≤ 2` max

x
Pr [X = x] .

B Commitment Schemes

B.1 Security properties

A trapdoor commitment COM = (Setup,Com,ECom,EOpen) scheme has three
properties, known a binding, extractability and trapdoor hiding.

Binding Property. Consider the following probability:

P[Com(ϑ,m0; r0) = Com(ϑ,m1; r1) : ϑ← Setup(1λ); ((m0, r0), (m1, r1))← A(ϑ)].

A commitment scheme is computationally binding in case the above is neg-
ligible for all PPT adversaries A. In case the probability is zero, for all even
unbounded A, the commitment scheme is called perfectly binding.

Trapdoor Hiding Property. For all (ϑ, ψ) ← Setup(1λ) and for all m ∈ M
the following probability distributions are indistinguishable:{

(Com, r)

∣∣∣∣ r ←$ R,
Com := Com(ϑ,m; r)

}
and

{
(Com, r)

∣∣∣∣ (Com, aux)←$ ECom(ϑ, ψ),
r := EOpen(ψ,m, aux)

}
.

Trapdoor hiding implies the less stringent notion of perfect hiding where for
any two messages m0,m1 adaptively chosen as function of the verification
key the distribution Com(ϑ,m0) and Com(ϑ,m1) are indistinghuishable.
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C Quasi-Adaptive NIZK and NIWI argument systems

C.1 NIWI argument systems

A non-interactive witness indistinguishable argument system satisfies two prop-
erties known as adaptive soundness and statistical witness indistinguishability.

Definition 4 (Adaptive soundness). Let NIWI be a non-interactive argu-
ment system for a language L. We say that NIWI satisfies adaptive soundness,
if for all PPT adversaries A we have

Pr
[
V(crs, x, π) = 1 ∧ x 6∈ L : crs← Init(1λ), (x, π)← A(1λ, crs)

]
∈ negl(λ).

Definition 5 (Perfect witness indistinguishability). Let NIWI be a non-
interactive argument system for a relation R. We say that NIWI satisfies per-
fect witness indistinguishability if for any triplet (x,w,w′) such that (x,w) ∈ R
and (x,w′) ∈ R, the distributions {(crs, π)|crs ← Init(1λ), π ← P(crs, x, w)} and{

(crs, π)| crs← Init(1λ), π ← P(crs, x, w′)
}

are identically distributed.

C.2 Quasi-Adaptive NIZK argument systems

Experiment Expsnd−QANIZK
A,NIZK,DR

(λ):

1. prm←$ SetupBG(λ), ρ←$ DR(prm)
crs, tp←$ Init(prm, ρ);

2. (x, π)← A(crs);
3. Output (x 6∈ Lρ ∧ V(crs, x, π) = 1).

Experiment Expknw−QANIZK
A,Ext,NIZK,DR

(λ):

1. prm←$ SetupBG(λ), ρ←$ DR(prm),
crs, tp←$ Init(prm, ρ);

2. (x, π) ← A(crs; r), w ← Ext(crs; r) and
r ←$ {0, 1}λ;

3. Output ((x,w) 6∈ Rρ∧V(crs, x, π) = 1).

We define both standard soundness and weak knowledge soundness for QA-
NIZK argument systems.

Definition 6. For any A,NIZK and DR define the following advantage:

Advsnd−QANIZKA,NIZK,DR
(λ) := Pr

[
Expsnd−QANIZK

A,Ext,DR
(λ) = 1

]
.

We say that NIZK is adaptive sound if for every PPT adversary A and for any
distribution DR Advsnd−QANIZKA,Ext,NIZK,DR

(λ) ∈ negl(λ).

Definition 7. For any A,Ext,NIZK and DR define the following advantage:

Advknw−QANIZKA,Ext,NIZK,DR
(λ) := Pr

[
Expknw−QANIZK

A,Ext,DR
(λ) = 1

]
.

We say that NIZK is adaptive weak knowledge soundness if for every PPT
adversary A there exist a PPT extractor Ext such that for any distribution DR:
Advknw−QANIZKA,Ext,NIZK,DR

(λ) ∈ negl(λ).
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Let NIZKKW := (Init,P,V) be the defined as follow:

Init. Let prm be the parameters defining a bilinear group, the algorithm Init upon
input a matrix [H]1 ∈ Gn,t1 where n > t (and the parameter prm) samples A ←
$ Dk and K ← $ Zn,kq , it computes P ← HT ·K, C ← K · A and it outputs
crs = ([P ]1, [C]2, [A]2).

Prove. The algorithm P upon input crs and a tuple [y]1,x such that [y]1 = [H]1 · x
outputs π = xT · [P ]1.

Verify. The algorithm V upon input crs and a tuple [y]1, π output 1 iff e(π, [A]2) =
e([yT ]1, [C]2).

Let NIZKext = (Init,P,V) be the following QA-NIZK argument system:

Init. Let prm be the parameters defining a bilinear group, the algorithm Init upon
input a matrix [H]1 ∈ Gn,t1 (and the parameter prm) samples β ←$ Zp, A←$ Dk
andK ←$ Zn,kq , it computes P ←HT ·K, C ←K ·A and P ′ ← β ·P , C′ ← β ·C
and it outputs crs = ([P ]1, [P

′]1, [C]2, [C
′]2, [A]2).

Prove. The algorithm P upon input crs and a tuple [y]1,x such that [y]1 = [H]1 · x
outputs (π, π′) such that:

π = xT · [P ]1 and π′ = xT · [P ′]1.

Verify. The algorithm V upon input crs and a tuple [y]1, π output 1 iff:

e(π, [A]2) = e([yT ]1, [C]2) and e(π′, [A]2) = e([yT ]1, [C
′]2).

Fig. 6: The QA-NIZK with adaptive soundness of Kiltz and Wee and the QA-NIZK
with adaptive weak knowledge soundness.

We define zero-knowledge:

Definition 8. There exists a PPT simulator S such that for any λ, any prm

output by SetupBG(1λ) any ρ output by DR any crs, tp output by Init(prm, ρ) any
(x,w) ∈ Rρ the distributions

P(crs, x, w) and S(crs, tp, x)

are the same (where the coin tosses are taken over P and Sim).

C.3 Constructions

We describe below the scheme of Kiltz and Wee in Fig. 6.

Theorem 5 (Kiltz and Wee, [25]). The argument system NIZKKW is a
QA-NIZK argument. Furthermore, under Dk-KerMDH Assumption for SetupBG,
it has adaptive soundness.
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In the following we prove that our scheme is adaptive weak knowledge sound.
The quasi-adaptive NIZK argument system in Fig 6 is a variation of [25]. For

technical reason, our scheme is secure only for distribution DR that are witness
sampleable. Given a distributionDR (with parameter the description of a bilinear
group) over matrices [H]1 ∈ Gn,t we say that the distribution DR is witness
sampleable if there exists another efficiently sampleable distribution D′R over
matrices H ′ ∈ Zn,tp such that [H]1 ≡ [H ′]1. When proving knowledge soundness
for witness sampleable distributions we additionally give to the extractor the
matrix H ′ as extra auxiliary input. We restate the theorm 3 from Sec. 5:

Theorem 6. The quasi-adaptive argument system NIZKext in Fig. 6 is perfect
zero-knowledge and if both the Dk-KerMDH assumption and the 1-KE∗ assump-
tion hold for SetupBG and, moreover, the distribution DR is witness-sampleable
and k + 1 > t, then the argument system is adaptive weak knowledge sound.

Proof. We first prove that the argument system is adaptive soundness. This
easily come from Theorem 5. In fact, given a PPT adversary A for NIZKext we
can create an adversary A′ for NIZKKW . The adversary A′ upon input a CRS
of NIZKKW and a matrix [H] samples β ←$ Zq and computes [P ′]1 ← β · [P ]1
and [C ′]← β · [C]1 to create a CRS for NIZKext. Eventually, A outputs a tuple
statement [y] and a proof π, π′ and A′ outputs [y], π. It is easy to check that if
A breaks soundness then A′ does too.

Let A be an adversary for the adaptive (standard) soundness experiment,
let Win := Expsnd−QANIZK

A,Ext,DR
and let ε := Pr [Win]. Let Sound be the event that

the the element [y]1 output by A is indeed in the column span of [H] and let
Forge be the event that Win ∧ Sound, meaning that the proof verify and [y]1
is a valid instance. Let H0 be the hybrid experiment that it is equivalent to
Expsnd−QANIZK

A,Ext,DR
. We define εi := Pr [Forge] where the probability is taken

over the experiment Hi. By the argument given above we know that |ε− ε1| ≤
Pr [¬Sound] ≤ negl(λ).

Let H1 be the same as H0 but the verification of the argument system addi-
tionally check that e(π′, [1]2) = e(π, [β]2).

Claim. |ε1 − ε0| ≤ negl(λ).

Proof. The two hybrids diverge when the proof (π, π′) verify, the instance [y]1 is
in the language but e(π, [1]2) 6= e(π′, [β]2). We prove that, if the event happens
with noticeable probability then we can break the Dk−KerMDH Assumption in
G2. Assuming that e(π, [β]2) 6= e(π′, [1]2) then it means that π·β−π′ 6= 0. On the
other hand, the two verification equations tell us that e(π, [A]2) = e([y]1, [C]2)
and e(π′, [A]2) = e([y]1, [β ·C]2), and therefore e(π ·β, [A]2) = e(π′, [A]2). Now,
let [z]1 ← π · β − π′ we have that e([z]1, [A]2) = 0 but [z]1 6= 0, so we clearly
break the Dk−KerMDH assumption. (Notice that in the reduction we can sample
β ←$ Zp).

Recall that the proof π is a vector in Gk+1
1 , so we can parse π as (π1, . . . , πk+1).

In the next part of the proof we show that it is possible to extract, one by one,
all the discrete logarithms of the components of π.
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Let H2,i be an hybrid that takes as parameter and extractor Ext1, . . . ,Exti,
which runs the same as H1 but where at the end if all the conditions of H1 are
met additionally runs x̃i ← Ext([1, β]1, [β]2, r) where r is all the randomness of
the experiment excluded the sampling of [1, β]1, [β]2 and the winning condition
modified to be valid only for all j ≤ i we have πj = [x̃j ].

Claim. There exists PPT Ext1, . . . ,Extk+1 such that |ε2,k+1 − ε2,0| ≤ negl(λ).

Proof. For any index i ∈ [1, k+ 1] the hybrids H2,i−1 and H2,i diverge when the
extractor Exti does not output x̃i such that πi = [x̃i]1. We define an adversary
for the KE assumption on bilinear group.

Adversary A′i([β]1, [β]2):

1. Create all the parameters of the crs, in particular, since DR is witness
sampleable, first sample H ← Zn,tq , A ← $ Dk and K ← Zn,kq and

set [P ]1 = [MT ·K], [P ′]1 = [β]1 · (MT ·K) and similarly [C]2 and
[C ′]2 = [β]2 · (K ·A).

2. Run the adversary A on the common reference string created and
receive π, π′.

3. Outputs πi, π
′
i (the i-element of the vector π, resp. π′).

Notice that the distribution of the CRS created by A′i is exactly the same as
the real CRS. Moreover, for this adversary there exists an extractor Exti such
that the outputs x̃i of Exti is πi = [x̃i]1, as otherwise we would break the KE
assumption over bilinear groups.

Lastly we define an extractor for the knowledge soundness of NIZKext. Notice
that, with witness-sampleable distribution

Extractor Ext([β]1, [β]2,K; r):

– If K has rank strictly less than t then abort, else find T such let
(HT ·K) · T is equal to It (the identity matrix).

– For i = 1, . . . k + 1 executes x̃i ← Exti([β]1, [β]2; (r,K));
– let x̃ = (x̃1, . . . , x̃k+1) then output x̃ ·K−1.

Claim. |Advknw−QANIZKA,Ext,DR
(λ)− ε2,n| ≤ negl(λ).

Proof. The only difference between the two experiments is that additionally Ext
checks that the matrix K has rank n. However, if we assume k+1 > t then with
overwhelming probability K has at least rank t. Moreover, since H has rank t
then we can always find the matrix T . Finally we need to check that what the
extractor outputs is a valid witness, but notice that [x̃] = [xT ·HT ·K], and so
the output x̃ · T = xT · (HT ·K · T ) = xT .

We can conclude the proof by noticing that the adaptive weak knowledge sound-
ness of the argument system NIZKext and its adaptive (standard) soundness
are negligibly close.
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