
Revisiting Non-Malleable Secret Sharing

Saikrishna Badrinarayanan
UCLA

saikrishna@cs.ucla.edu

Akshayaram Srinivasan
University of California, Berkeley

akshayaram@berkeley.edu

February 28, 2019

Abstract

A threshold secret sharing scheme (with threshold t) allows a dealer to share a secret among
a set of parties such that any group of t or more parties can recover the secret and no group of
at most t− 1 parties learn any information about the secret. A non-malleable threshold secret
sharing scheme, introduced in the recent work of Goyal and Kumar (STOC’18), additionally
protects a threshold secret sharing scheme when its shares are subject to tampering attacks.
Specifically, it guarantees that the reconstructed secret from the tampered shares is either the
original secret or something that is unrelated to the original secret.

In this work, we continue the study of threshold non-malleable secret sharing against the class
of tampering functions that tamper each share independently. We focus on achieving greater
efficiency and guaranteeing a stronger security property. We obtain the following results:

• Rate Improvement. We give the first construction of a threshold non-malleable secret
sharing scheme that has rate > 0. Specifically, for every n, t ≥ 4, we give a construction
of a t-out-of-n non-malleable secret sharing scheme with rate Θ(1

t log2 n
). In the prior

constructions, the rate was Θ(1
n logm) where m is the length of the secret and thus, the rate

tends to 0 as m→∞. Furthermore, we also optimize the parameters of our construction
and give a concretely efficient scheme.

• Multiple Tampering. We give the first construction of a threshold non-malleable secret
sharing scheme secure in the stronger setting of bounded tampering wherein the shares
are tampered by multiple (but bounded in number) possibly different tampering functions.
The rate of such a scheme is Θ(1

k3t log2 n
) where k is an apriori bound on the number of

tamperings. We complement this positive result by proving that it is impossible to have a
threshold non-malleable secret sharing scheme that is secure in the presence of an apriori
unbounded number of tamperings.

• General Access Structures. We extend our results beyond threshold secret sharing and
give constructions of rate-efficient, non-malleable secret sharing schemes for more general
monotone access structures that are secure against multiple (bounded) tampering attacks.

Contents

1 Introduction 3
1.1 Our Results . 5

1.1.1 Rate Improvement . 5
1.1.2 Multiple Tampering . 6
1.1.3 General Access Structures . 6

2 Our Techniques 7
2.1 Rate Improvement . 8
2.2 Multiple Tampering . 12
2.3 General Access Structures . 13

3 Preliminaries 14
3.1 Threshold Non-Malleable Secret Sharing Scheme . 15
3.2 Non-Malleable Codes . 17

4 k-out-of-n Leakage Resilient Secret Sharing Scheme 18
4.1 k-out-of-k Leakage Resilient Secret Sharing . 19
4.2 Perfect Hash Function Family . 20
4.3 Construction of k-out-n Leakage Resilient Secret Sharing 21

5 Non-Malleable Secret Sharing for Threshold Access Structures 24
5.1 Construction . 24
5.2 Proof of Theorem 5.1 . 25
5.3 Rate Analysis . 30
5.4 Concrete Optimization of Parameters . 31

6 Unbounded Tamperings: Impossibility Result 31
6.1 Proof . 31

7 NMSS for General Access Structures with Multiple Tampering 32
7.1 Definitions . 32
7.2 Construction . 34
7.3 Proof of Theorem 7.5 . 34
7.4 Rate Analysis . 40

A 3-Split-State Non-Malleable Code 46

B 3-split-state Non-malleable Code against Multiple Tampering 47
B.1 Instantiation . 53

2

1 Introduction

A t-out-of-n threshold secret sharing scheme [Sha79,Bla79] allows a dealer to share a secret among
n parties such that any subset of t or more parties can recover the secret but any subset of t − 1
parties learn no information about the secret. Threshold secret sharing schemes are central tools
in cryptography and have several applications such as constructing secure multiparty computation
protocols [GMW87,BGW88,CCD88], threshold cryptographic systems [DF90,Fra90,DDFY94] and
leakage resilient circuit compilers [ISW03,FRR+10,Rot12] to name a few.

Most of the threshold secret sharing schemes in literature are linear. This means that if we
multiply each share by a constant c, we get a set of shares that correspond to a new secret that is
c times the original secret. This property has in fact, been crucially leveraged in most of the ap-
plications including designing secure multiparty computation protocols and constructing threshold
cryptosystems. However, this highly desirable feature becomes undesirable if our primary goal is
to protect the shares against tampering attacks. More specifically, this linearity property allows
an adversary to tamper (or maul) each share independently and output a new set of shares that
reconstruct to a related secret (for example, two times the original secret). Indeed, if the shares of
the secret are stored on a device such as a smart card, an adversary could potentially tamper with
the smart card and change the value of the share that is being stored by overwriting it with a new
value or maybe flipping a few bits. Notice that in the above tampering attack, the adversary need
not learn the actual secret. However, the adversary is guaranteed to produce a set of shares that
reconstruct to a related secret. Such an attack could be devastating when the shares, for example,
correspond to a cryptographic secret key (such as a signing key) as it allows an adversary to mount
related-key attacks (see [BDL01]). In fact, most of the known constructions of threshold signatures
use Shamir’s secret sharing to distribute the signing key among the parties and hence they are all
susceptible to such attacks.

Non-Malleable Secret Sharing. To protect a secret sharing scheme against such share tam-
pering attacks, Goyal and Kumar [GK18a,GK18b] introduced the notion of Non-Malleable Secret
Sharing. Roughly, a secret sharing scheme (Share,Rec) is non-malleable against a tampering func-
tion class F if for every f ∈ F and every secret s, Rec(f(shares)) where shares← Share(s) is either
s or something that is unrelated to s.1 Of course, we cannot hope to protect against all possible
tampering functions as a function can first reconstruct the secret from the shares, multiply it by
2 and then share this value to obtain a valid sharing of a related secret. Thus, the prior works
placed restrictions on the set of functions that can tamper the shares. A natural restricted family
of tampering functions that we will consider in this work is Find which consists of the set of all
functions that tamper each share independently.

Connection to Non-Malleable Codes. Non-malleable secret sharing is related to another
cryptographic primitive called as Non-Malleable Codes which was introduced in an influential
work by Dziembowski, Pietrzak and Wichs [DPW10].2 A non-malleable code relaxes the usual
notion of error correction by requiring that the decoding procedure outputs either the original
message or something that is independent of the message when given a tampered codeword as

1See Section 3 for a precise definition.
2We refer the reader to [GK18a,GK18b] for a thorough discussion on the connection between non-malleable secret

sharing and related notions such as verifiable secret sharing [CGMA85] and AMD codes [CDF+08].

3

input. A beautiful line of work, starting from [DPW10], has given several constructions of non-
malleable codes with security against various tampering function classes [LL12,DKO13,FMNV14,
FMVW14,ADL14,AGM+15,FMNV15,JW15,CKR16,CGM+16,AAG+16,CGL16,BDKM16,Li17,
KOS17,CL17,KOS18,BDKM18,GMW17,OPVV18,KLT18,BDG+18].

We now elaborate on the connection between non-malleable codes and non-malleable secret
sharing. A tampering function family in the literature of non-malleable codes that is somewhat
similar to Find is the k-split-state function family. A k-split-state function compartmentalizes a
codeword into k-parts and applies a tampering function to each part, independent of the other
parts. Seeing the similarity between Find and k-split-state functions, it might be tempting to
conclude that a non-malleable code against a k-split-state function family is in fact a k-out-of-k
non-malleable secret sharing. However, as demonstrated in [GK18a], this might not be true in
general. In particular, [GK18a] showed that even a 3-split-state non-malleable code need not be a
3-out-of-3 non-malleable secret sharing as non-malleable codes may not always protect the secrecy
of the message. In particular, the first few bits of the codeword could reveal some bits of the
message and still, this coding scheme could be non-malleable. Nevertheless, for the special case
of 2, Aggarwal et al. [ADKO15] showed that any 2-split-state non-malleable code is indeed a 2-
out-of-2 non-malleable secret sharing scheme. In the other direction, we note that any k-out-of-k
non-malleable secret sharing scheme against Find is in fact a k-split-state non-malleable code.

Rate of Non-Malleable Secret Sharing. One of the main efficiency parameters in any secret
sharing scheme is its rate which is defined as the ratio between the length of the secret and the
maximum size of a share. In the prior work, Goyal and Kumar [GK18a] gave an elegant construction
of t-out-of-n non-malleable secret sharing from any 2-split-state non-malleable code. However, the
rate of this scheme is equal to O(1

n logm) where m is the length of the secret. The rate tends to 0
as the length of the secret m tends to ∞ and hence, a natural question to ask is:

Can we obtain a construction of threshold non-malleable secret sharing with rate > 0?

The problem of improving the rate was mentioned as an explicit open question in [GK18a].

Multiple Tamperings. In the real world, a tampering adversary could potentially mount more
than one tampering attack. In particular, if each share of a cryptographic secret key is stored on
a small device (such as smart cards), the adversary could potentially clone these devices to obtain
multiple copies of the shares. The adversary could then apply a different tampering function on each
copy and obtain information about related secrets. Thus, a more realistic security definition would
be to consider multiple tampering functions f1, . . . , fk ∈ F , and require that for every secret s,
the joint distribution (Rec(f1(shares)), . . . ,Rec(fk(shares))) where shares← Share(s) is independent
of s.3 For the case of non-malleable codes, security against multiple tamperings has already been
considered in [FMNV14, JW15, CGL16, OPVV18]. However, for the case of non-malleable secret
sharing, the prior work [GK18a] only considered a single tampering function and a natural question
would be:

Can we obtain a construction of threshold non-malleable secret sharing against multiple
tamperings?

3As in the case of single tampering, a tampering function could just output the same shares and in which the
reconstructed secret will be s. Our definition also captures this property and we refer to Section 3 for a precise
definition.

4

1.1 Our Results

In this work, we obtain the following results.

1.1.1 Rate Improvement

We give the first construction of a threshold non-malleable secret sharing scheme that has rate > 0.
Specifically, the rate of our construction is Θ(1

t log2 n
) where t is the threshold and n is the number

of parties. More formally,

Theorem 1.1 For any n, t ≥ 4 and any ρ > 0, there exists a construction of t-out-of-n non-
malleable secret sharing scheme against Find for sharing m-bit secrets for any m > log n with rate

Θ(1
t log2 n

) and simulation error 2
−Ω(m

log1+ρ m
)
. The running times of the sharing and reconstruction

algorithms are polynomial in n and m.

Local Leakage Resilient Secret Sharing. One of the main tools used in proving Theorem 1.1
(which may be of independent interest) is an efficient construction of local leakage-resilient threshold
secret sharing scheme [GK18a, BDIR18]. A t-out-of-n secret sharing scheme is said to be local
leakage-resilient (parameterized by a leakage bound µ and set size s), if the secrecy holds against
any adversary who might obtain at most t − 1 shares in the clear and additionally, for any set
S ⊆ [n] of size at most s, the adversary obtains µ bits from each share belonging to a party in the
set S. Goyal and Kumar [GK18a] gave a construction of a 2-out-of-n local leakage resilient secret
sharing scheme. In this work, we give an efficient construction of t-out-of-n local leakage resilient
secret sharing scheme when t is a constant. This result must be contrasted with a recent result by
Benhamouda et al. [BDIR18] who showed that the Shamir’s secret sharing scheme is local leakage
resilient when the field size is sufficiently large and the threshold t = n− o(log n). A more precise
statement of our construction of local leakage resilient secret sharing scheme appears below.

Theorem 1.2 For any ε > 0, t, n ∈ N, and parameters µ ∈ N, s ≤ n, there exists an efficient con-
struction of t-out-of-n secret sharing scheme for sharing m-bit secrets that is (µ, s)-local leakage re-
silient with privacy error ε. The size of each share when t is a constant is O ((m+ sµ+ log(log n/ε)) log n).

Concrete Efficiency. A major advantage of our result is its concrete efficiency. In the prior
work, the constant hidden inside the big-O notation was large and was not explicitly estimated.
We have optimized the parameters of our construction and we illustrate the size of shares for various
values of (n, t) in Table 1.4

Comparison with [GK18a]. When compared to the result of [GK18a] which could support
thresholds t ≥ 2, our construction can only support threshold t ≥ 4. However, getting a rate > 0
non-malleable secret sharing scheme for threshold t = 2 would imply a 2-split-state non-malleable
code with rate > 0 which is a major open problem. For the case of t = 3, though we know
constructions of 3-split-state non-malleable codes with rate > 0 [KOS18, GMW17], they do not
satisfy the privacy property of a 3-out-of-3 secret sharing scheme. In particular, given two states

4812 bits is the minimal message length that gives 80 bits of security.

5

(# of Parties, Threshold) Secret Length (in bits) Share Size (in KB)

(7, 4) 812 273.73
(9, 5) 812 399.85
(25, 13) 812 1757.53
(100, 51) 812 12.34 ×103

(7, 4) 1024 345.19
(9, 5) 1024 504.24
(25, 13) 1024 2216.40
(100, 51) 1024 15.56 ×103

Table 1: Share sizes for simulation error of at most 2−80.

of the codeword, some information about the message is leaked. Thus, getting a 3-out-of-n non-
malleable secret sharing scheme with rate > 0 seems out of reach of the current techniques and we
leave this as an open problem.

1.1.2 Multiple Tampering

We initiate the study of non-malleable secret sharing under multiple tampering. Here, the shares
can be subject to multiple (possibly different) tampering functions and we require that the joint
distribution of the reconstructed secrets to be independent of s. For this stronger security notion,
we first prove a negative result that states that a non-malleable secret sharing cannot exist when
the number of tamperings (also called as the tampering degree) is apriori unbounded. This result
generalizes a similar result for the case of a split-state non-malleable codes. Formally,

Theorem 1.3 For any n, t ∈ N, there does not exist a t-out-of-n non-malleable secret sharing
scheme against Find that can support an apriori unbounded tampering degree.

When the tampering degree is apriori bounded, we get constructions of threshold non-malleable
secret sharing scheme. Formally,

Theorem 1.4 For any n, t ≥ 4, and K ∈ N, there exists a t-out-of-n non-malleable secret sharing
scheme with tampering degree K for sharing m-bit secrets for a large enough5 m against Find with
rate = Θ(1

K3t log2 n
) and simulation error 2−m

Ω(1)
. The running time of the sharing and reconstruc-

tion algorithms are polynomial in n and m.

1.1.3 General Access Structures

We extend our techniques used in the proof of Theorems 1.1,1.4 to give constructions of non-
malleable secret sharing scheme for more general monotone access structures rather than just
threshold structures. Before we state our result, we give some definitions.

Definition 1.5 An access structure A is said to be monotone if for any set S ∈ A, any superset
of S is also in A. A monotone access structure A is said to be 4-monotone if for any set S ∈ A,
|S| ≥ 4.

5See the main body for the precise statement.

6

We also give the definition of a minimal authorized set.

Definition 1.6 For a monotone access structure A, a set S ∈ A is a minimal authorized set if
any strict subset of S is not in A. We denote tmax to be max |S| where S is a minimal authorized
set of A.

We now state our extension to general access structures.

Theorem 1.7 For any n,K ∈ N and 4-monotone access structure A, if there exists a statistically
private (with privacy error ε) secret sharing scheme for A that can share m-bit secrets for a large
enough m with rate R, there exists a non-malleable secret sharing scheme for sharing m-bit secrets
for the same access structure A with tampering degree K against Find with rate Θ(R

K3tmax log2 n
) and

simulation error ε+ 2−m
Ω(1)

.

Thus, starting with a secret sharing scheme for monotone span programs [KW93] or for more
general access structures [LV18], we get non-malleable secret sharing schemes for the same access
structures with comparable rate.

Comparison with [GK18b]. In the prior work [GK18b], the rate of the non-malleable secret
sharing for general access structures also depended on the length of the message and thus, even when
R is constant, their construction could only achieve a rate of 0. However, unlike our construction,
they could support all monotone access structures (and not just 4-monotone) and they could even
start with a computational secret sharing scheme for an access structure A and convert it to a
non-malleable secret sharing scheme for A.

Concurrent Work. In a concurrent and independent work, Aggarwal et al. [ADN+18] consider
the multiple tampering model and give constructions of non-malleable secret sharing for general
access structures in this model. There are three main differences between our work and their
work. Firstly, the rate of their construction asymptotically tends to 0 even for the threshold case.
However, the rate of our construction is greater than 0 when we instantiate the compiler with a rate
> 0 secret sharing scheme. Secondly, their work considers a stronger model wherein each tampering
function can choose a different reconstruction set. We prove the security of our construction in a
weaker model wherein the reconstruction set is the same for each tampering function. We note that
the impossibility result for unbounded tampering holds even if the reconstruction set is the same.
Thirdly, their construction can give non-malleable secret sharing scheme for any 3-monotone access
structure whereas our construction can only work for 4-monotone access structure. In another
concurrent and independent work, Kumar et al. [KMS18] gave a construction of non-malleable
secret sharing in a stronger model where the tampering functions might obtain bounded leakage
from the other shares.

2 Our Techniques

In this section, we give a high level overview of the techniques used to obtain our results.

7

2.1 Rate Improvement

Goyal and Kumar [GK18a] approach. We first give a brief overview of the construction of
threshold non-malleable secret sharing of Goyal and Kumar [GK18a] and then explain why it could
achieve only a rate of 0. At a high level, Goyal and Kumar start with any 2-split-state non-malleable
code and convert it into a t-out-of-n non-malleable secret sharing scheme. We only explain their
construction for the case when t ≥ 3, and for the case of t = 2, they gave a slightly different
construction. For the case when t ≥ 3, the sharing procedure does the following. The secret is
first encoded using a 2-split-state non-malleable code to obtain the two states L and R. L is now
shared using any t-out-of-n secret sharing scheme, say Shamir’s secret sharing to get the shares
SL1, . . . ,SLn and R is shared using a 2-out-of-n local leakage resilient secret sharing scheme to get
the shares SR1, . . . ,SRn. The share corresponding to party i includes (SLi, SRi). To recover the
secret given at least t shares, the parties first use the recovery procedures of the threshold secret
sharing scheme and local leakage resilient secret sharing scheme to recover L and R respectively.
Later, the secret is obtained by decoding L and R using the decoding procedure of the non-malleable
code. The correctness of the construction is straightforward and to argue secrecy, it can been seen
that given any set of t−1 shares, L is perfectly hidden and this follows from the security of Shamir’s
secret sharing. Now, using the fact that any 2-split-state non-malleable code is a 2-out-of-2 secret
sharing scheme, it can be shown that the right state R statistically hides the secret.

To argue the non-malleability of this construction, Goyal and Kumar showed that any tampering
attack on the secret sharing scheme can be reduced to a tampering attack on the underlying
2-split-state non-malleable code. The main challenge in designing such a reduction is that the
tampering functions against the underlying non-malleable code must be split-state, meaning that
the tampering function against L (denoted by f) must be independent of R and the tampering
function against R (denoted by g) must be independent of L. To make the tampering function g
to be independent of L, [GK18a] made use of the fact that there is an inherent difference in the
parameters used for secret sharing L and R. Specifically, since R is shared using a 2-out-of-n secret
sharing scheme, the tampered right state R̃ can be recovered from any two tampered shares, say
S̃R1, S̃R2. Now, since L is shared using a t-out-of-n secret sharing scheme and t ≥ 3, the shares
SL1 and SL2 information theoretically provides no information about L. This, in particular means
that we can fix the shares SL1 and SL2 independent of L and the tampering function g could use
these fixed shares to output the tampered right state R̃. Now, when f is given the actual L, it
can sample SL3, . . . ,SLn as a valid secret sharing of L that is consistent with the fixed SL1, SL2.
This allowed them to argue one-sided independence i.e., g is independent of L. On the other hand,
making the tampering function f to be independent of R is a lot trickier. This is because any two
shares information theoretically fixes R and in order to recover L̃, we need at least t (≥ 3) shares.
Hence, we may not be able to argue that f is independent of R. To argue this independence, Goyal
and Kumar used the fact that R is shared using a local leakage resilient secret sharing scheme. In
particular, they made the size of SRi to be much larger than the size of SLi and showed that even
when we leak |SLi| bits from each share SRi, R is still statistically hidden. This allowed them to
define leakage functions leak1, . . . , leakn where leaki had SLi hardwired in its description, it applies
the tampering function on (SLi, SRi) and outputs the tampered S̃Li. Now, from the secrecy of

the local leakage resilient secret sharing scheme, the distribution S̃L1, . . . , S̃Ln (which completely
determines L̃) is independent of R and thus L̃ is independent of R. This allowed them to obtain
two-sided independence.

A drawback of this approach is that the rate of this scheme is at least as bad as that of the

8

underlying 2-split-state non-malleable code. As mentioned before, obtaining a 2-split-state non-
malleable code with rate > 0 is a major open problem. Thus, this construction could only achieve
a rate of 0.

Our Approach. While constructing 2-split-state non-malleable code with rate > 0 has been
notoriously hard, significant progress has been made for the case of 3-split-state non-malleable
codes. Very recently, independent works of Gupta et al. [GMW17] and Kanukurthi et al. [KOS18]
gave constructions of 3-split-state non-malleable codes with an explicit constant rate. The main
idea behind our rate-improved construction is to use a constant rate, 3-split-state non-malleable
code instead of a rate 0, 2-split-state non-malleable code. To be more precise, we first encode the
secret using a 3-split-state non-malleable code to get the three states (L,C,R). We then share the
first state L using a t-out-of-n secret sharing scheme to get (SL1, . . . ,SLn) as before. Then, we
share C using a t1-out-of-n secret sharing scheme to get (SC1, . . . ,SCn) and R using a t2-out-of-n
secret sharing scheme to get (SR1, . . . ,SRn). Here, t1, t2 are some parameters that we will fix later.
The share corresponding to party i includes (SLi,SCi,SRi). While the underlying intuition behind
this idea is natural, proving that this construction is a non-malleable secret sharing scheme faces
several barriers which we elaborate below.

First Challenge. The first barrier that we encounter is, unlike a 2-split-state non-malleable code
which is always a 2-out-of-2 secret sharing scheme, a 3-split-state non-malleable code may not be a
3-out-of-3 secret sharing scheme. In particular, we will not be able use the [GK18a] trick of sharing
the 3-states using secret sharing schemes with different thresholds to gain one-sided independence.
This is because given t − 1 shares, complete information about two states will be revealed, and
we could use these two states to gain some information about the underlying message. Thus, the
privacy of the scheme breaks down. Indeed, as mentioned in the introduction, the constructions of
Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] are not 3-out-of-3 secret sharing schemes.

The main trick that we use to solve this challenge is that, while these constructions [KOS18,
GMW17] are not 3-out-of-3 secret sharing schemes, we observe that there exist two states (let us
call them C and R) such that these two states statistically hide the message. This means that we
can potentially share these two states using secret sharing schemes with smaller thresholds and
may use it to argue one-sided independence.

Second Challenge. The second main challenge is in ensuring that the tampering functions we
design for the underlying 3-split-state non-malleable code are indeed split-state. Let us call the
tampering functions that tamper L,C, and R as f, g, and h respectively. To argue that f, g and
h are split-state, we must ensure f is independent of C and R and similarly, g is independent of
L and R and h is independent of L and C. For the case of 2-split-state used in the prior work,
this independence was achieved by using secret sharing with different thresholds and relying on the
leakage resilience property. For the case of 3-split-state, we need a more sophisticated approach of
stratifying the three secret sharing schemes so that we avoid circular dependence in the parameters.
We now elaborate more on this solution.

To make g and h to be independent of L, we choose the thresholds t1 and t2 to be less than t.
This allows us to fix a certain number of shares independent of L and use these shares to extract
C̃ and R̃. Similarly, to make h to be independent of C, we choose the threshold t2 < t1. This again
allows us to fix certain shares C and use them to extract R̃. Thus, by choosing t > t1 > t2, we could

9

achieve something analogous to one-sided independence. Specifically, we achieved independence
of g from L and independence of h from (L,C). For complete split-state property, we still need
to make sure that f is independent of (C,R) and g is independent of R. To make the tampering
function f to be independent of C, we rely on the local leakage resilience property of the t1-out-of-n
secret sharing scheme. That is, we make the size of the shares SCi to be much larger than SLi
such that, in spite of leaking |SLi| bits from each share SCi, the secrecy of C is maintained. We

can use this to show that the joint distribution (S̃L1, . . . , S̃Ln) (which completely determines L̃) is
independent of C. Now, to argue that both f and g are independent of R, we rely on the local
leakage resilience property of the t2-out-of-n secret sharing scheme. That is, we make the shares of
SRi to be much larger than (SLi, SCi) so that, in spite of leaking |SLi|+ |SCi| bits from each share
SRi, the secrecy of R is maintained. We then use this property to argue that the joint distribution
(S̃L1, S̃C1), . . . , (S̃Ln, S̃Cn) is independent of R. Thus, the idea of stratifying the three threshold
secret sharing schemes with different parameters as described above allows to argue that f , g and
h are split-state. As we will later see, this technique of stratification is very powerful and it allows
us to easily extend this construction to more general monotone access structures.

Third Challenge. The third and the more subtle challenge is the following. To reduce the
tampering attack on the secret sharing scheme to a tampering attack on the underlying non-
malleable code, we must additionally ensure consistency i.e., the tampered message output by the
split-state functions must be statistically close to the message output by the tampering experiment
of the underlying secret sharing scheme. To illustrate this issue in some more detail, let us consider
the tampering functions f and g in the construction of Goyal and Kumar [GK18a] for the simple
case when n = t = 3. Recall that the tampering function g samples SR1,SR2 such that it is a
valid 2-out-of-n secret sharing of R and uses the fixed SL1, SL2 (independent of L) to extract the

tampered R̃ from (S̃R1, S̃R2). However, note that g cannot use any valid secret sharing of SR1, SR2

of R. In particular, it must also satisfy the property that the tampering function applied on SL1,
SR1 gives the exact same S̃L1 that f uses in the reconstruction (a similar condition for position 2
must be satisfied). This is crucial, as otherwise there might be a difference in the distributions of
the tampered message output by the split-state functions and the message output in the tampering
experiment of the secret sharing scheme. In case there is a difference, we cannot hope to use the
adversary against the non-malleable secret sharing to break the underlying non-malleable code.
This example illustrates this issue for a simple case when t = n = 3. To ensure consistency for
larger values of n and t, Goyal and Kumar fixed (SL1, . . . ,SLt−1) (instead of just fixing SL1, SL2)

and the function g ensures consistency of each of the tampered shares S̃L1, . . . , S̃Lt−1. However,
this approach completely fails when we move to 3 states. For the case of 3-states, the tampering
function, say h, must sample SR1, . . . ,SRn such that it is consistent with S̃L1, . . . , S̃Lt−1 used by f .
However, even to check this consistency, h would need the shares SC1, . . . ,SCt−1 which completely
determines C. In this case, we cannot argue that h is independent of C.

To tackle this challenge, we deviate from the approach of Goyal and Kumar [GK18a] and have a
new proof strategy that ensures consistency and at the same time maintains the split-state property.
In this strategy, we only fix the values (SL1,SL2, SL3) for the first secret sharing scheme, (SC1,SC2)
for the second secret sharing scheme and fix SR3 for the third secret sharing scheme. Note that
we consider t ≥ 4, t1 ≥ 3 and t2 ≥ 2 and thus, the fixed shares are independent of L, C, and R
respectively.6 We design our split-state functions in such a way that the tampering function f need

6This is the reason why we could only achieve thresholds t ≥ 4.

10

not do any consistency checks, the tampering function g has to do the consistency check only on
S̃L3 (which it can do since SL3 and SR3 are fixed) and the function h needs to do a consistency

check only on {S̃Li, S̃Ci}i∈[1,2] (which it can do since SL1, SC1, SL2,SC2 are fixed). This approach of
reducing the number of checks to maintain consistency helps us in arguing independence between
the tampering functions. However, this approach creates additional problems in extracting L̃ as the
tampering function f needs to use the shares (SR4, . . . ,SRn) and (SC4, . . . ,SCn) (which completely
determines C and R respectively). We solve this by letting f extract L̃ using shares of some arbitrary
values of C and R and we then use the leakage resilience property to ensure that the outputs in
the split-state tampering experiment and the secret sharing tampering experiment are statistically
close.

Completing the Proof. This proof strategy helps us in getting a rate > 0 construction of a
t-out-of-n non-malleable secret sharing scheme for t ≥ 4. However, there is one crucial block that is
still missing. Goyal and Kumar [GK18a] only gave a construction of 2-out-of-n local leakage resilient
secret sharing scheme. And, for this strategy to work we also need a construction of t1-out-of-n
local leakage resilient secret sharing scheme for some t1 > 2. As mentioned in the introduction,
the recent work by Benhamouda et al. [BDIR18] only gives a construction of local leakage resilient
secret sharing when the threshold value is large (in particular, n− o(log n)). To solve this, we give
an efficient construction of a t-out-of-n local leakage resilient secret sharing scheme when t is a
constant. This is in fact sufficient to get a rate > 0 construction of non-malleable secret sharing
scheme. We now give details on the techniques used in this construction.

Local Leakage Resilient Secret Sharing Scheme. The starting point of our construction is
the 2-out-of-2 local leakage resilient secret sharing from the work of Goyal and Kumar [GK18a]
based on the inner product two-source extractor [CG88]. We first extend it to a k-out-of-k local
leakage resilient secret sharing scheme for any arbitrary k. Let us now illustrate this for the case
when k is even i.e., k = 2p. To share a secret s, we first additively secret share s into s1, . . . , sp and
we encode each si using the 2-out-of-2 leakage resilient secret sharing scheme to obtain the shares
(share2i−1, share2i). We then give sharei to party i for each i ∈ [k]. Note that given t − 1 shares,
at most p − 1 additive secret shares can be revealed. We now rely on the local leakage resilience
property of the 2-out-of-2 secret sharing to argue that the final additive share is hidden even when
given bounded leakage from the last share. This helps us in arguing the k-out-k local leakage
resilience property. The next goal is to extend this to a k-out-of-n secret sharing scheme. Since
we are interested in getting good rate, we should not increase the size of the shares substantially.
A näıve way of doing this would be to share the secret

(
n
k

)
times (one for each possible set of

k-parties) using the k-out-of-k secret sharing scheme and give the respective shares to the parties.
The size of each share in this construction would blow up by a factor

(
n
k−1

)
when compared to the

k-out-of-k secret sharing scheme. Though, this is polynomial in n when k is a constant, this is
clearly sub-optimal when n is large and would result in bad concrete parameters. We note that
Goyal and Kumar [GK18a] used a similar approach to obtain a 2-out-of-n local leakage resilient
secret sharing.

In this work, we use a very different approach to construct a k-out-of-n local leakage resilient
secret sharing from a k-out-of-k local leakage resilient secret sharing. The main advantage of
this transformation is that it is substantially more rate efficient than the näıve solution. Our

11

transformation makes use of combinatorial objects called as perfect hash functions [FK84].7 A
family of functions mapping {1, . . . , n} to {1, . . . , k} is said to be a perfect hash function family
if for every set S ⊆ [n] of size at most k, there exists at least one function in the family that is
injective on S. Let us now illustrate how this primitive is helpful in extending a k-out-of-k secret
sharing scheme to a k-out-of-n secret sharing scheme. Given a perfect hash function family {hi}i∈[`]

of size `, we share the secret s independently ` times using the k-out-of-k secret sharing scheme
to obtain (sharei1, . . . , share

i
k) for each i ∈ [`]. We now set the shares corresponding to party i as

(share1
h1(i), . . . , share

`
h`(i)

). To recover the secret from some set of k shares given by S = {s1, . . . , sk},
we use the following strategy. Given any subset S of size k, perfect hash function family guarantees
that there is at least one index i ∈ [`] such that hi is injective on S. We can now use {shareihi(s1),

. . . , shareihi(sk)} = {sharei1, . . . , shareik} to recover the secret using the reconstruction procedure of
the k-out-of-k secret sharing.

We show that this transformation additionally preserves local leakage resilience. In particular,
if we start with a k-out-of-k local leakage resilient secret sharing scheme then we obtain a k-out-of-n
local leakage resilient secret sharing. The size of each share in our k-out-of-n leakage resilient secret
sharing scheme is ` times the share size of k-out-of-k secret sharing scheme. Thus, to minimize
rate we must minimize the size of the perfect hash function family. Constructing perfect hash
function family of minimal size for all k ∈ N is an interesting and a well-known open problem
in combinatorics. In this work, we give an efficient randomized construction (with good concrete
parameters) of a perfect hash function family for a constant k with size O(log n+ log(1/ε)) where
ε is the error probability. Alternatively, we can also use the explicit construction (which is slightly
less efficient when compared to the randomized construction) of size O(log n) (when k is a constant)
given by Alon et al. [AYZ95]. Combining either the randomized/explicit construction of perfect
hash function family with a construction of k-out-of-k local leakage resilient secret sharing scheme,
we get an efficient construction of k-out-of-n local leakage resilient secret sharing scheme when k
is a constant.

2.2 Multiple Tampering

We also initiate the study of non-malleable secret sharing under multiple tamperings. As discussed
in the introduction, this is a much stronger model when compared to that of a single tampering.

Negative Result. We first show that when the number of tampering functions that can maul
the secret sharing scheme is apriori unbounded, there does not exist any threshold non-malleable
secret sharing scheme. This generalizes a similar result for the case of split-state non-malleable code
(see [GLM+04,FMNV14] for details) and the main idea is inspired by these works. The underlying
intuition behind the negative result is simple: we come up with a set of tampering functions such
that each tampering experiment leaks one bit of a share. Now, given the outcomes of t · s such
tampering experiments where s is the size of the share, the distinguisher can clearly learn every bit
of t shares and thus, learn full information about the underlying secret and break non-malleability.

For the tampering experiment to leak one bit of the share of party i, we use the following
simple strategy. Let us fix an authorized set of size t say, {1, . . . , t}. We choose two sets of shares:

7We note that using perfect hash function families for constructing threshold secret sharing scheme is not new
(see [Bla99,SNW01] for a comprehensive discussion). However, to the best of our knowledge, this is the first application
of this technique to construct local leakage resilient secret sharing scheme.

12

{share1, . . . , sharei, . . . , sharet} and {share1, . . . , share
′
i, . . . , sharet} such that they reconstruct to two

different secrets. Note that the privacy of a secret sharing scheme guarantees that such shares must
exist. Whenever the particular bit of the share of party i is 1, the tampering function fi outputs
share′i whereas the other tampering functions, say fj will output sharej . On the other hand, if the
particular bit is 0 then the tampering function fi outputs sharei and the other tampering functions
still output sharej . Observe that the reconstructed secret in the two cases reveals the particular
bit of the share of party i. We can use a similar strategy to leak every bit of all the t shares which
completely determine the secret.

Positive Result. We complement the negative result by showing that when the number of tam-
perings is apriori bounded, we can obtain an efficient construction of a threshold non-malleable
secret sharing scheme. A natural approach would be to start with a split-state non-malleable
code that is secure against bounded tamperings and convert it into a non-malleable secret sharing
scheme. To the best of our knowledge, the only known construction of split-state non-malleable
code that is secure in the presence of bounded tampering is that of Chattopadhyay et al. [CGL16].
However, the rate of this code is 0 even when we restrict ourselves to just two tamperings. In order
to achieve a better rate, we modify the constructions of Kanukurthi et al. [KOS18] and Gupta et
al. [GMW17] such that we obtain a 3-split-state non-malleable code that secure in the setting of
bounded tampering. The rate of this construction is O(1

k) where k is the apriori bound on the
number of tamperings. Fortunately, even in this construction, we still maintain the property that
there exists two states that statistically hide the message. We then prove that the same construc-
tion described earlier is a secure non-malleable secret sharing under bounded tampering when we
instantiate the underlying code with a bounded tampering secure 3-split-state non-malleable codes.

2.3 General Access Structures

To obtain a secret sharing scheme for more general access structures, we start with any statistically
secure secret sharing scheme for that access structure, and use it to share L instead of using a
threshold secret sharing scheme. We require that the underlying access structure to be 4-monotone
so that we can argue the privacy of our scheme. Recall that a 4-monotone access structure is
one in which the size of every set in the access structure is at least 4. Even in this more general
case, the technique of stratifying the secret sharing schemes allows us to prove non-malleability
in almost an identical fashion to the case of threshold secret sharing. We remark that the work
of [GK18b] which gave constructions of non-malleable secret sharing scheme for general monotone
access structures additionally required their local leakage resilient secret sharing scheme to satisfy
a security property called as strong local leakage resilience. Our construction does not require this
property and we show that “plain” local leakage resilience is sufficient for extending to more general
monotone access structures.

Organization. We give the definitions of non-malleable secret sharing and non-malleable codes
in Section 3. In Section 4, we present the construction of the k-out-of-n leakage resilient secret
sharing scheme. In Section 5, we describe our rate-efficient threshold non-malleable secret sharing
scheme for the single tampering. We give the impossibility result for unbounded many tamperings
in Appendix 6. Finally, in Section 7, we describe our result on non-malleable secret sharing for
general access structures against multiple bounded tampering. Note that the result in Section 7

13

implicitly captures the result for threshold non-malleable secret sharing against bounded tampering.
We present this more general result for ease of exposition.

3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and corresponding
lowercase letters to denote a sample from the same. Let [n] denote the set {1, 2, . . . , n}, and Ur
denote the uniform distribution over {0, 1}r. For any i ∈ [n], let xi denote the symbol at the
i-th co-ordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the
co-ordinates indexed by T . We write ◦ to denote concatenation.

Standard definitions of min-entropy and statistical distance are given below.

Definition 3.1 (Min-entropy) The min-entropy of a source X is defined to be

H∞(X) = min
s∈support(X)

{log(1/Pr[X = s])}

A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

Definition 3.2 (Statistical distance) Let D1 and D2 be two distributions on a set S. The sta-
tistical distance between D1 and D2 is defined to be:

|D1 −D2| = max
T⊆S
|D1(T)−D2(T)| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

D1 is ε-close to D2 if |D1 −D2| ≤ ε.

We will use the notation D1 ≈ε D2 to denote that the statistical distance between D1 and D2

is at most ε.

Lemma 3.3 (Triangle Inequality) If D1 ≈ε1 D2 and D2 ≈ε2 D3 then D1 ≈ε1+ε2 D3.

We now recall the definition of (average) conditional min-entropy [DORS08].

Definition 3.4 ([DORS08]) The average conditional min-entropy is defined as

H̃∞(X|W) = log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − logE
[
2−H∞(X|W=w)

]
We recall some results on conditional min-entropy from [DORS08].

Lemma 3.5 ([DORS08]) If a random variable B can take at most ` values, then H̃∞(A|B) ≥
H∞(A)− log `.

14

Seeded Extractors. We now recall the definition of a strong seeded extractor.

Definition 3.6 (Strong seeded extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an
independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud.

An average case seeded extractor requires that if a source X has average case conditional min-
entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform even when Z is given. We
recall the following lemma from [DORS08] which states that every strong seeded extractor is also
an average-case strong extractor.

Lemma 3.7 ([DORS08]) For any δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is also
a (k + log

(
1
δ

)
, ε+ δ) average case strong extractor.

Guruswami et al. [GUV09] gave a construction of (strong) seeded extractor with near optimal
parameters and we recall the result below.

Theorem 3.8 ([GUV09]) For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1

ε)) and m = (1− α)k.

3.1 Threshold Non-Malleable Secret Sharing Scheme

We first give the definition of a sharing function, then define a threshold secret sharing scheme
and finally give the definition of a threshold non-malleable secret sharing. These three definitions
are taken verbatim from [GK18a]. In Section 7, we define non-malleable secret sharing for more
general monotone access structures.

Definition 3.9 (Sharing Function) Let [n] = {1, 2, . . . , n} be a set of identities of n parties.
Let M be the domain of secrets. A sharing function Share is a randomized mapping from M to
S1×S2×. . .×Sn, where Si is called the domain of shares of party with identity i. A dealer distributes
a secret m ∈ M by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a restriction of Share(m)
to its T entries.

Definition 3.10 ((t, n, εc, εs)-Secret Sharing Scheme) Let M be a finite set of secrets, where
|M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing function
Share with domain of secretsM is a (t, n, εc, εs)-secret sharing scheme if the following two properties
hold :

• Correctness: The secret can be reconstructed by any t-out-of-n parties. That is, for any set
T ⊆ [n] such that |T | ≥ t, there exists a deterministic reconstruction function Rec : ⊗i∈TSi →
M such that for every m ∈M,

Pr[Rec(Share(m)T) = m] = 1− εc
where the probability is over the randomness of the Share function. We will slightly abuse the
notation and denote Rec as the reconstruction procedure that takes in T and Share(m)T where
T is of size at least t and outputs the secret.

15

• Statistical Privacy: Any collusion of less than t parties should have “almost” no informa-
tion about the underlying secret. More formally, for any unauthorized set U ⊆ [n] such that
|U | < t, and for every pair of secrets m0,m1 ∈ M , for any distinguisher D with output in
{0, 1}, the following holds :

|Pr[D(Share(m0)U) = 1]− Pr[D(Share(m1)U) = 1]| ≤ εs

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Definition 3.11 (Threshold Non-Malleable Secret Sharing [GK18a]) Let (Share,Rec) be a
(t, n, εc, εs)-secret sharing scheme for message space M. Let F be some family of tampering func-
tions. For each f ∈ F , m ∈M and authorized set T ⊆ [n] containing t indices, define the tampered
distribution Tamperf,Tm as Rec(f(Share(m))T) where the randomness is over the sharing function
Share. We say that the (t, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable w.r.t. F
if for each f ∈ F and any authorized set T consisting of t indices, there exists a distribution Df,T

over M∪ {same?} such that:

|Tamperf,Tm − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
.

Many Tampering Extension. We now extend the above definition to capture multiple tam-
pering attacks. Informally, we say that a secret sharing scheme is non-malleable w.r.t. family F
with tampering degree K if for any set of K functions f1, . . . , fK ∈ F , the output of the following
tampering experiment is independent of the shared message m: (i) we first share a secret m to
obtain the corresponding shares, (ii) we tamper the shares using f1, . . . , fK, (iii) we finally, output
the K-reconstructed tampered secrets. Note that in the above experiment the message m is secret
shared only once but is subjected to K (possibly different) tamperings.

Definition 3.12 (Non-Malleable Secret Sharing against Multiple Tampering) Let (Share,
Rec) be a (t, n, εc, εs)-secret sharing scheme for message space M. Let F be some family of tam-

pering functions. For
−→
f = (f1, . . . , fK) ∈ FK, m ∈ M and authorized set T where T contains t

indices, we define the tampered distribution Tamper
−→
f ,T
m as (Rec(f1(shares)T), . . . ,Rec(ft(shares)T) :

shares ← Share(m)) where the randomness is over the sharing function Share. We say that the
(t, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable with tampering degree K w.r.t.

F if for each
−→
f ∈ FK and any authorized set T where each elements consists of t indices, there

exists a distribution D
−→
f ,T over (M∪ {same?})K such that:

|Tamper
−→
f ,T
m − c̃opy(D

−→
f ,T ,m)| ≤ ε′

where c̃opy is defined by c̃opy(−→x , y) = (z1, ..., zn) where zi =

{
xi if xi 6= same?

y if xi = same?
..

16

Remark 3.13 It is possible to further strengthen the above definition by requiring the output of
every tampering function fi to use a different authorized set Ti for reconstruction. Our construc-
tion does not satisfy this stronger definition. However, we note that the impossibility of apriori
unbounded number of tamperings holds even with respect to the weakened definition of using the
same authorized set for reconstruction in every tampering.

3.2 Non-Malleable Codes

We start with the definition of a coding scheme.

Definition 3.14 (Coding scheme) Let Enc : {0, 1}m → {0, 1}n be a randomized algorithm and
Dec : {0, 1}n → {0, 1}m ∪ {⊥} be a deterministic function. We say that (Enc,Dec) is a coding
scheme with code length n and message length m if for all s ∈ {0, 1}m, Pr[Dec(Enc(s)) = s] = 1,
where the probability is taken over the randomness of Enc. The rate of the coding scheme is m

n .

Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-malleable codes which
generalizes the usual notion of error correction. In particular, it guarantees that when a codeword
is subject to tampering attack, the reconstructed message is either the original one or something
that is independent of the original message.

Definition 3.15 (Non-Malleable Codes [DPW10]) Let Enc : {0, 1}m → {0, 1}n and Dec : {0,
1}n → {0, 1}m∪{⊥} be (possibly randomized) functions, such that Dec

(
Enc(s)

)
= s with probability

1 for all s ∈ {0, 1}m. Let F be a family of tampering functions and fix ε > 0. We say that
(Enc,Dec) is ε−non-malleable w.r.t. F if for every f ∈ F , there exists a random variable Df on
{0, 1}m ∪ {same?}, such that for all s ∈ {0, 1}m,

|Dec(f(Xs))− copy(Df , s)| ≤ ε

where Xs ← Enc(s) and copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
. We call n the length

of the code and m/n the rate.

Chattopadhyay, Goyal and Li [CGL16] defined a stronger notion of non-malleability against multiple
tampering and we now recall this definition.

Definition 3.16 (Non-Malleable Codes against Multiple Tampering [CGL16]) A coding
scheme (Enc,Dec) with code length n and message length m is a non-malleable code with tampering
degree t w.r.t. a family of tampering functions F ⊂ (Fn)t and error ε if for every (f1, . . . , ft) ∈ F ,
there exists a random variable D−→

f
on ({0, 1}m ∪ {same?})t such that for all messages s ∈ {0, 1}m,

it holds that
|(Dec(f1(X)), . . . ,Dec(ft(X)))− c̃opy(D−→

f
, s)| ≤ ε

where X = Enc(s). We refer to t as the tampering degree of the code.

Split-state Tampering Functions. We focus on the split-state tampering model where the
encoding scheme splits s into c states: Enc(s) = (S1, . . . ,Sc) ∈ S1 × S2 . . .× Sc and the tampering
family is Fsplit =

{
(f1, . . . , fc)

∣∣fi : Si → Si
}

. We will call such a code as c-split-state non-malleable
code.

17

Augmented Non-Malleable Codes. We recall the definition of augmented, 2-split-state non-
malleable codes [AAG+16].

Definition 3.17 (Augmented Non-Malleable Codes [AAG+16]) A coding scheme (Enc,Dec)
with code length 2n and message length m is an augmented 2-split-state non-malleable code with
error ε if for every function f, g : {0, 1}n → {0, 1}n, there exists a random variable D(f,g) on
{0, 1}n × ({0, 1}m ∪ {same?}) such that for all messages s ∈ {0, 1}m, it holds that

|(L,Dec(f(L), g(R)))− S(D(f,g), s)| ≤ ε

where (L,R) = Enc(s), (L, m̃) ← Df,g and S((L, m̃), s) outputs (L, s) if m̃ = same? and otherwise
outputs (L, m̃).

Explicit Constructions. We now recall the constructions of split-state non-malleable codes.

Theorem 3.18 ([Li17]) For any n ∈ N, there exists an explicit construction of 2-split-state non-

malleable code with efficient encoder/decoder, code length 2n, rate O(1
logn) and error 2

−Ω(n
logn

)
.

Theorem 3.19 ([KOS18,GMW17]) For every n ∈ N and ρ > 0, there exists an explicit con-
struction of 3-split-state non-malleable code with efficient encoder/decoder, code length (3 + o(1))n,

rate 1
3+o(1) and error 2−Ω(n/ log1+ρ(n)).

Theorem 3.20 ([CGL16]) There exists a constant γ > 0 such that for every n ∈ N and
t ≤ nγ, there exists an explicit construction of 2-split-state non-malleable code with an efficient
encoder/decoder, tampering degree t, code length 2n, rate 1

nΩ(1) and error 2−n
Ω(1)

.

Theorem 3.21 ([GKP+18]) There exists a constant γ > 0 such that for every n ∈ N and t ≤ nγ,
there exists an explicit construction of an augmented, split-state non-malleable code with an efficient
encoder/decoder, tampering degree t, code length 2n, rate 1

nΩ(1) and error 2−n
Ω(1)

.

Theorem 3.22 There exists a constant γ > 0 such that for every n ∈ N and t ≤ nγ, there exists an
explicit construction of 3-split-state non-malleable code with an efficient encoder/decoder, tampering

degree t, code length 3n, rate Θ(1
t) and error 2−n

Ω(1)
.

We give the proof of this theorem in Appendix B.

Additional Property. We show in Appendix A that the construction given in [KOS18,GMW17]
satisfies the property that given two particular states of the codeword, the message remains statis-
tically hidden.

4 k-out-of-n Leakage Resilient Secret Sharing Scheme

In this section, we give a new, rate-efficient construction of k-out-of-n leakage resilient secret sharing
scheme for a constant k. Later, in Section 5, we will use this primitive along with a 3-split-state
non-malleable code with explicit constant rate (see Theorem 3.19) from the works of Kanukurthi
et al. [KOS18] and Gupta et al. [GMW17] to construct a t-out-of-n non-malleable secret sharing
scheme with the above mentioned rate.

We first recall the definition of a leakage resilient secret sharing scheme from [GK18a].

18

Definition 4.1 (Leakage Resilient Secret Sharing [GK18a]) A (t, n, εc, εs) (for t ≥ 2) secret
sharing scheme (Share,Rec) for message space M is said to be ε-leakage resilient against a leakage
family F if for all functions f ∈ F and for any two messages m0,m1 ∈M:

|f(Share(m0))− f(Share(m1))| ≤ ε

Leakage Function Family. We are interested in constructing leakage resilient secret sharing
schemes against the specific function family Fk,k,−→µ = {fK,K,−→µ : K ⊆ [n], |K| = k,K ⊆ K, |K| ≤ k}
where fK,K,−→µ on input (share1, . . . , sharen) outputs sharei for each i ∈ K in the clear and outputs

fi(sharei) for every i ∈ K \K such that fi is an arbitrary function outputting µi bits. When we
just write µ (without the vector sign), we mean that every function fi outputs at most µ bits.

Organization. The rest of this section is organized as follows: we first construct a k-out-of-k
leakage resilient secret sharing scheme against Fk,k−1,µ (in other words, k − 1 shares are output in
the clear and µ bits are leaked from the k-th share) in Section 4.1. In Section 4.2, we recall the
definition of a combinatorial object called as perfect hash function family and give a randomized
construction of such a family. Next, in section 4.3, we combine the construction of k-out-of-k
leakage resilient secret sharing scheme and a perfect hash function family to give a construction of
k-out-of-n leakage resilient secret sharing scheme (for a constant k).

4.1 k-out-of-k Leakage Resilient Secret Sharing

In this subsection, we will construct a k-out-k leakage resilient secret sharing scheme against Fk,k−1,µ

for an arbitrary k ≥ 2 (and not just for a constant k). As a building block, we will use a 2-out-
of-2 leakage resilient secret sharing which was constructed in [GK18a]. We first recall the lemma
regarding this construction.

Lemma 4.2 ([GK18a]) For any ε > 0 and µ,m ∈ N, there exists a construction of (2, 2, 0, 0)
secret sharing scheme for sharing m-bit secrets that is ε-leakage resilient against F2,1,µ such that
the size of each share is O(m + µ + log 1

ε). The running time of the sharing and reconstruction
procedures are poly(m,µ, log(1/ε)).

Let us denote the secret sharing scheme guaranteed by Lemma 4.2 as (LRShare(2,2), LRRec(2,2)).
We will use this to construct a k-out-of-k leakage resilient secret sharing scheme for k > 2.

Lemma 4.3 For any ε > 0, k ≥ 2 and µ,m ∈ N, there exists a construction of (k, k, 0, 0) secret
sharing scheme for sharing m-bit secrets that is ε-leakage resilient against Fk,k−1,µ such that the
size of each share is O(m + µ + log 1

ε). The running time of the sharing and the reconstruction
procedures are poly(m,µ, k, log(1/ε)).

Proof We will use a ε/2-leakage resilient (LRShare(2,2), LRRec(2,2)) as the main building block.
We consider two cases depending on whether k is odd or k is even.

• Case-1: k is odd. Let k = 2k′ + 1. To share a secret s ∈ {0, 1}m, we first choose k′ + 1
strings s1, . . . , sk′+1 randomly from {0, 1}m such that s1 ⊕ s2 ⊕ . . . ⊕ sk′+1 = s. For each
i ∈ [k′ + 1], we share si using LRShare(2,2) to obtain (share2i−1, share2i). The k-shares are
given by (share1, share2, . . . , share2k′‖share2k′+1, share2k′+2). To reconstruct the secret from

19

the shares, we first reconstruct si from (share2i−1, share2i) for each i ∈ [k′+1] using LRRec(2,2)

and then reconstruct s as s1 ⊕ s2 . . .⊕ sk′+1. The fact that this is a (k, k, 0, 0) secret sharing
scheme follows directly from the fact that (LRShare(2,n), LRRec(2,n)) is a (2, 2, 0, 0) secret
sharing scheme. We now argue that this sharing scheme is ε-leakage resilient against Fk,k−1,µ.

Let us fix an arbitrary function fK,K,µ ∈ Fk,k−1,µ. Without loss of generality, we assume that

|K| = k−1 as the distinguisher sees strictly more information in this case. By a simple pigeon
hole argument, we infer that there exists an i ∈ [k′+ 1] such that either share2i−1 or share2i is
not in sharesK . Let us assume that share2i−1 6∈ sharesK and the case where share2i 6∈ sharesK
is identical. We now consider a hybrid distribution where si is replaced with a random and
independent string instead of fixing it as s ⊕ s1 ⊕ . . . si−1 ⊕ si+1 . . . ⊕ sk′+1. It now follows
from the leakage resilience of LRShare(2,2) that this hybrid is ε/2-close to the real hybrid
distribution where a secret s is shared. By the same argument, we can show that this hybrid
is ε/2-close to a hybrid where the secret s′ is shared. This completes the proof.

• Case-2: k is even. Let k = 2k′. To share a secret s ∈ {0, 1}m, we choose k′ strings s1, . . . , sk′

uniformly at random from {0, 1}n subject to s1 ⊕ . . .⊕ sk′ = s. For each i ∈ [k′], we share si
using LRShare(2,2) to obtain share2i−1, share2i. The k-shares are given by share1, . . . , share2k′ .
To reconstruct the secret from the shares, we first reconstruct si from share2i−1, share2i for
each i ∈ [k′] using LRRec(2,2) and then reconstruct s as s1 ⊕ s2 . . .⊕ sk′ . The fact that this is
a (k, k, 0, 0) secret sharing scheme again follows from the fact that (LRShare(2,n), LRRec(2,n))
is a (2, 2, 0, 0) secret sharing scheme. We now apply a similar argument as in Case-1 to show
that this is ε-leakage resilient against Fk,k−1,µ.

Let us fix an arbitrary function fK,K,µ ∈ Fk,k−1,µ. Without loss of generality, we assume that

|K| = k − 1 as the distinguisher sees strictly more information in this case. As in Case-1,
we infer that there exists an i ∈ [k′] such that either share2i−1 or share2i is not in sharesK .
Let us assume that share2i−1 6∈ sharesK and the case where share2i 6∈ sharesK is identical.
We now consider a hybrid distribution where si is replaced with a random and independent
string instead of fixing it as s⊕ s1 ⊕ . . . si−1 ⊕ si+1 . . .⊕ sk′ . It now follows from the leakage
resilience of LRShare(2,2) that this hybrid is ε/2-close to the real hybrid distribution where a
secret s is shared. By the same argument, we can show that the same hybrid is ε/2-close to
a hybrid where the secret s′ is shared. This completes the proof.

4.2 Perfect Hash Function Family

In this subsection, we recall the definition of the combinatorial objects called as perfect hash function
family and give an efficient randomized construction for constant k.

Definition 4.4 (Perfect Hash Function Family [FK84]) For every n, k ∈ N, a set of hash
functions {hi}i∈[`] where hi : [n] → [k] is said to be (n, k)-perfect hash function family if for each
subset S ⊆ [n] of size k there exists an i ∈ [`] such that hi is injective on S.

Before we give the randomized construction, we will state and prove the following useful lemma.

20

Lemma 4.5 For every ε > 0, n, k ∈ N, the set of functions {hi}i∈[`] where each hi is chosen
randomly from the set of all functions mapping [n] → [k] is a perfectly hash function family with

probability 1 − ε when ` =
log (nk)+log 1

ε

log 1

1− k!
kk

. Specifically, when k is constant, we can set ` = O(log n +

log 1
ε).

Proof Let us first fix a subset S ⊆ [n] of size k. Let us choose a function h uniformly at random
from the set of all functions mapping [n]→ [k].

Pr[h is not injective over S] = 1− k!

kk

Let us now choose h1, . . . , h` uniformly at random from the set of all functions mapping [n]→ [k].

Pr[∀ i ∈ [`], hi is not injective over S] = (1− k!

kk
)`

By union bound,

Pr[∃ S s.t.,∀ i ∈ [`], hi is not injective over S] =

(
n

k

)
(1− k!

kk
)`

We want
(
n
k

)
(1− k!

kk
)` = ε. We get the bound for ` by rearranging this equation.

Randomized Construction for constant k. For any k, n and some error parameter ε, set `
as in Lemma 4.5. Choose a function hi : [n] → [k] uniformly at random for each i ∈ [`]. From
Lemma 4.5, we infer that {hi}i∈[`] is a perfect hash function family except with probability ε. The
construction is efficient since the number of random bits needed for choosing each hi is n log k which
is polynomial in n when k is a constant.

Explicit Construction. Building on the work of Schmidt and Siegal [SS90], Alon et al. [AYZ95]
gave an explicit construction of (n, k)-perfect hash function family of size 2O(k) log n. We now recall
the lemma from [AYZ95].

Lemma 4.6 ([AYZ95,SS90]) For every n, k ∈ N, there exists an explicit and efficiently com-
putable construction of (n, k)-perfect hash function family {hi}i∈[`] where ` = 2O(k) log n.

The explicit construction is obtained by brute forcing over a small bias probability space [NN93]
and finding such a family is not as efficient as our randomized construction. On the positive side,
the explicit construction is error-free unlike our randomized construction.

4.3 Construction of k-out-n Leakage Resilient Secret Sharing

In this subsection, we will use a k-out-of-k leakage resilient secret sharing scheme from Section 4.1
and a perfect hash function family from Section 4.2 to construct a k-out-of-n leakage resilient
secret sharing scheme against Ft,k−1,−→µ for an arbitrary t ≤ n (recall the definition of Fk,k,−→µ from
Definition 4.1). We give the description in Figure 1.

21

Let (LRShare(k,k), LRRec(k,k)) be a k-out-of-k leakage resilient secret sharing scheme.

LRShare(k,n) : To share a secret s:

1. For each trial ∈ [1, log(1/εc)] do:

(a) Set ε = 1/2 and ` = O(log n). Sample a (candidate) (n, k)-perfect hash function
family {hi}i∈[`] as described in Section 4.2

(b) Check if {hi}i∈[`] is a family of (n, k)-perfect hash functions. That is, for each
set S ⊂ [n] and |S| = k, check if there exists an i ∈ [`] such that hi is injective
on S.

(c) If yes, exit the loop. Otherwise, go to the beginning.

2. If the above loop fails to find a perfect hash function family then abort.

3. For each i ∈ [`], sample sharei,1, . . . , sharei,k ← LRShare(k,k)(s).

4. For each j ∈ [n], set sharej = (h1(j), share1,h1(j)) ◦ (h2(j), share2,h2(j)) ◦ . . . ◦ (h`(j),

share`,h`(j)).

LRRec(k,n) : Given the shares sharej1 , sharej2 , . . . , sharejk do:

1. Choose an i ∈ [`], such that {hi(j1), hi(j2), . . . , hi(jk)} = {1, . . . , k}.
2. Recover s as LRRec(k,k)(sharei,1, . . . , sharei,k).

Figure 1: (k, n, εc, 0) Leakage Resilient Secret Sharing Scheme

Theorem 4.7 For every εc, εs > 0, n, k,m ∈ N and −→µ ∈ Nn, the construction given in Figure 1
is a (k, n, εc, 0) secret sharing scheme for sharing m-bit secrets that is εs-leakage resilient against
leakage functions Ft,k−1,−→µ for any t ≤ n. The running times of the sharing and reconstruction
algorithms are poly(n,m,

∑
i µi, log(1/εcεs)) when k is a constant. In particular, when εs = εc =

2−m, the running times are poly(n,m,
∑

i µi). The size of each share when k is a constant is
O((m+ maxT

∑
i∈T,T⊆[n],|T |=t µi + log(log n/εs)) log n).

Proof We first argue correctness. That is, we show that the reconstruction always succeeds
except with probability εc (over the randomness of the sharing procedure). We then prove perfect
privacy and the leakage resilience.

Correctness. We first note that if we set ` = O(log n) and ε = 1/2, then each trial of the for
loop (lines 1.(a)-(c) in Figure 1) fails to find a perfect hash function with probability 1/2. It now
follows that the probability that log(1/εc) independent trials fail to find a perfect hash function
family is at most εc. Thus, with probability at least 1− εc, we find a perfect hash function family
at the end of the for loop. It now follows from the definition of perfect hash function family that
for every set of k-shares sharej1 , . . . , sharejk , there exists an i ∈ [`] s.t. hi is injective on {j1, . . . , jk}.
In this case, we infer that sharej1 , . . . , sharejk contains sharei,1, sharei,2, . . . , sharei,k. The correctness
now follows from the correctness of k-out-of-k leakage resilient secret sharing scheme.

22

Perfect Privacy. We first observe that for any set of at most k−1 shares (sharej1 , . . . , sharejk−1
),

we have that for each i ∈ [`], |{hi(j1), . . . , hi(jk−1)}| ≤ k − 1. We can now use the perfect privacy
of LRShare(k,k) to argue the perfect privacy of our construction.

Leakage Resilience. We instantiate the k-out-of-k ε′-leakage resilient secret sharing scheme
against leak functions Fk,k−1,µ′ with µ′ = maxT

∑
i∈T,T⊆[n],|T |=t µi and ε′ = εs/`. We now show

the construction given in Figure 1 is ε-secure against leakage function family Ft,k−1,µ for t ≤ n.
Let us fix a function fK,K,µ ∈ Ft,k−1,µ. We assume without loss of generality that |K| = k − 1

as the distinguisher sees strictly more information in this case. Let K = {j1, . . . , jt} and K = {j1,
. . . , jk−1}.

Let us assume that the Share function samples a perfect hash function family {hi}i∈[`] as other-

wise, leakage resilience trivially holds. Let sharej = (h1(j), share1,h1(j)) ◦ (h2(j), share2,h2(j)) ◦ . . . ◦
(h`(j), share`,h`(j)) for every j ∈ K. We partition the set [`] into S1 and S2 defined as follows. S1

consists of the set of indices i ∈ [`] s.t., |{hi(j1), . . . , hi(jt)}| ≤ k − 1 and S2 = [`] \ S1. Intuitively,
for indexes in S1, the i-th component of {sharej}j∈K perfectly hides the secret since only at most
k − 1 shares are available. We argue that the secret s is hidden in indexes in S2 from the leakage
resilience of k-out-of-k secret sharing scheme. We now formalize this argument.

We define a sequence of hybrids Hybi where we use the modified sharing procedure LRShare′

described below.
LRShare′(i,k,n) :

1. For each i′ < i, sample sharei′,1, . . . , sharei′,k ← LRShare(k,k)(s
′). We will collectively call

sharei′,1, . . . , sharei′,k as sharei′ .

2. For all i ≤ i′ ≤ `, sample sharei′,1, . . . , sharei′,k ← LRShare(k,k)(s).

3. For each j ∈ [n], set sharej = (h1(j), share1,h1(j))◦ (h2(j), share2,h2(j))◦ . . .◦ (h`(j), share`,h`(j)).

The output of Hybi is fK,K,µ(share1, . . . , sharej). Notice that in Hyb1 the distribution of the
shares given as input to fK,K,µ is identical to a valid secret sharing of s and in Hyb`+1 is distribution
of the shares given as input to fK,K,µ is identical to a valid secret sharing of s′. In order to prove
the leakage resilience property, it is sufficient to show that Hyb1 ≈εs Hyb`+1. We now show the
following claim.

Claim 4.8 For every i ∈ [`], we have Hybi ≈ε′ Hybi+1 where ε′ = εs/`.

Proof We consider two cases whether i ∈ S1 or if i ∈ S2.

• Case-1: i ∈ S1. In this case, the number of shares of sharei present in {sharej}j∈K is at most
k − 1 and thus it follows from the perfect privacy of LRShare(k,k) that Hybi ≡ Hybi+1.

• Case-2: i ∈ S2. Assume for the sake of contradiction the statistical distance between Hybi
and Hybi+1 is greater than ε′. We will construct a leak function gU,U,µ′ ∈ Fk,k−1,µ′ against
LRShare(k,k). The leak function gU,U,µ′ is defined as follows:

– Let us define the set U to be {hi(j)}j∈K . By definition, |U | ≤ k − 1 since |K| = k − 1.

The leak function gU,U,µ′ leaks all the shares {sharei,j}j∈U in the clear.

23

– We define U = [k] \ U . For each index a ∈ U , we do the following. Let Ha be the set
of indices j ∈ K \K such that sharei,a appears in sharej . Formally, Ha := {j ∈ K \K :
hi(j) = a}. For every such j ∈ Ha, we leak the output of fj which is the leak function
that takes in sharej as input and outputs µj bits. Since |Ha| ≤ t, the amount of leakage
is limited to at most µ′ bits where µ′ = maxT

∑
i∈T,T⊆[n],|T |=t µi.

It follows from the definition of gU,U,µ′ that (i) gU,U,µ′ ∈ Fk,k−1,µ′ and, (ii) any distinguisher
between Hybi and Hybi+1 can be used in conjunction with gU,U,µ′ to break the security of
LRShare(k,n).

This completes the proof of the claim.

Thus, by repeated application of Claim 4.8, we infer that Hyb1 ≈`ε′ Hyb`+1. This completes the
proof of the statistical privacy.

Running time. Note that sampling a family of (n, k)-perfect hash functions and checking if
it is indeed a perfect hash function family can be done in time poly(n) if k is a constant. Since
LRShare(k,k), LRRec(k,k) are efficient procedures (i.e., their running times are poly(n,m,

∑
i µi, log(1/εs))),

the running time of LRShare(k,n) and LRRec(k,n) is poly(n,m,
∑

i µi, log(1/εcεs)) when k is a con-
stant.

Share Size. We set ` = O(log n), µ′ = maxT
∑

i∈T,T⊆[n],|T |=t µi and ε′ = εs/`. From Lemma 4.3,

we infer that the size of sharei,j for every i ∈ [`] and j ∈ [k] is O(m + µ′ + log(log n/ε)) and thus
the size of each share is O((m+ µ′ + log(log n/εs)) log n).

Remark 4.9 In Figure 1, we cannot directly set the size ` = O(log n+log 1
εc

) and perform a single
sampling to find a perfect hash function family. This is because when we want εc = 2−m, the size of
the function family grows with m and this affects the rate significantly. That is why, it is important
to set ε = 1/2 and do log 1

εc
independent repetitions in the LRShare(k,n) function to reduce the error

to εc.

5 Non-Malleable Secret Sharing for Threshold Access Structures

In this section, we give a construction of t-out-of-n (for any t ≥ 4) Non-Malleable Secret Shar-
ing scheme with rate Θ(1

t log2 n
) against tampering function family Find that tampers each share

independently. We first give the formal description of the tampering function family.

Individual Tampering Family Find. Let Share be the sharing function of the secret sharing
scheme that outputs n-shares in S1×S2 . . .×Sn. The function family Find is composed of functions
(f1, . . . , fn) where each fi : Si → Si.

5.1 Construction

Building Blocks. The construction uses the following building blocks. We instantiate them with
concrete schemes later:

24

• A 3-split-state non-malleable code (Enc,Dec) where Enc :M→ L×C×R and the simulation
error of the scheme is ε1. Furthermore, we assume that for any two messages m,m′ ∈ M,
(C,R) ≈ε2 (C′,R′) where (L,C,R)← Enc(m) and (L′,C′,R′)← Enc(m′).

• A (t, n, 0, 0) secret sharing scheme (SecShare(t,n),SecRec(t,n)) with perfect privacy for message
space L. We will assume that the size of each share is m1.

• A (3, n, ε′3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-leakage resilient against
leakage functions Ft,2,m1

8 for message space C. We assume that the size of each share is m2.

• A (2, n, ε′4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message space R that is
ε4-leakage resilient against leakage functions Ft,1,−→µ where maxT

∑
i∈T,T⊆[n],|T |=t µi = O(m2 +

tm1). We assume that the size of each share is m3.

Construction. We give the formal description of the construction in Figure 2 and give an informal
overview below. To share a secret s, we first encode s to (L,C,R) using the 3-split-state non-
malleable code. We first encode L to (SL1, . . . ,SLn) using the t-out-of-n threshold secret sharing
scheme. We then encode C into (SC1, . . . ,SCn) using the 3-out-of-n leakage resilience secret sharing
scheme LRShare(3,n). We finally encode R into (SR1, . . . ,SRn) using the 2-out-of-n leakage resilient
secret sharing scheme LRShare(2,n). We set the i-th share sharei to be the concatenation of SLi, SCi
and SRi. In order to reconstruct, we using the corresponding reconstruction procedures SecRec,
LRRec(3,n) and LRRec(2,n) to compute L, C and R respectively. We finally use the decoding procedure
of 3-split-state non-malleable code to reconstruct the secret s from L,C and R.

Theorem 5.1 For any arbitrary n ∈ N and threshold t ≥ 4, the construction given in Figure 2 is
a (t, n, ε′3 + ε′4, ε2) secret sharing scheme. Furthermore, it is (ε1 + ε3 + ε4)-non-malleable against
Find.

5.2 Proof of Theorem 5.1

We now argue correctness, statistical privacy and non-malleability to complete the proof of Theo-
rem 5.1.

Correctness. We notice that except with probability ε′3+ε′4, SecRec(t,n), LRRec(3,n) and LRRec(2,n)

will be able to reconstruct L,C, and R respectively. The correctness now follows directly from the
correctness of the decoder Dec of 3-split-state non-malleable codes.

Statistical Privacy. To argue statistical privacy, we consider a sequence of hybrids.

• Hyb1 : In this hybrid, the secret s is shared using Share(s).

• Hyb2 : This hybrid is same as Hyb1 except that we do the following. Let (L,C,R) ← Enc(s).
We reset L = ⊥ and encode this fake L using SecShare(t,n).

• Hyb3 : This hybrid is same as Hyb2 except that we sample (L′,C′,R′) ← Enc(s′) and encode
C′,R′ instead of C,R using LRShare(3,n) and LRShare(2,n) respectively.

8Recall that this denotes that the function can choose to leak at most m1 bits from each share in a set of size t−2
apart from the two that are completely leaked.

25

Share(m) : To share a secret s ∈M do:

1. Encode the secret s as (L,C,R)← Enc(s).

2. Compute the shares
(SL1, . . . ,SLn)← SecShare(t,n)(L)

(SC1, . . . ,SCn)← LRShare(3,n)(C)

(SR1, . . . ,SRn)← LRShare(2,n)(R)

3. For each i ∈ [n], set sharei as (SLi, SCi, SRi) and output (share1, . . . , sharen) as the
shares.

Rec(Share(m)T) : To reconstruct the secret from the shares in an authorized set T of size t do:

1. Let the shares corresponding to the set T be (sharei1 , . . . , shareit).

2. For each j ∈ {i1, . . . , it}, parse sharej as (SLj , SCj , SRj).

3. Reconstruct
L := SecRec(t,n)(SLi1 , . . . ,SLit)

C := LRRec(3,n)(SCi1 ,SCi2 ,SCi3)

R := LRRec(2,n)(SRi1 ,SRi2)

4. Output the secret s as Dec(L,C,R).

Figure 2: Construction of t-out-of-n Non-Malleable Secret Sharing Scheme

• Hyb4 : This hybrid is distributed identically to Share(s′).

We first claim that Hyb1 is distributed identically to Hyb2 and Hyb3 is distributed identically
to Hyb4. This actually follows directly from the security of SecShare(t,n) since at most t− 1 shares
perfectly hide L.

We now argue that Hyb2 ≈ε2 Hyb3. Note that in Hyb2, (C,R) is generated as part of an encoding
of s and in Hyb3 it is generated as part of an encoding of s′. From the property of our 3-state
non-malleable code, we know that (C,R) statistically hide the message, and hence we infer that
Hyb2 ≈ε2 Hyb3.

Non-Malleability. We show the non-malleability of our scheme by transforming a tampering
attack on the shares of our scheme to a tampering attack on the 3-state non-malleable code. In
particular, we will use the tampering functions (f1, . . . , fn) that attack the secret sharing scheme
to design a split state tampering function (f, g, h) against the underlying non-malleable code. Note
that the split-state functions f, g and h need not be efficiently computable. We then use the security
of the underlying non-malleable code to come up with the simulator for our scheme.

Let (f1, . . . , fn) ∈ Find be a set of tampering functions and T = {i1, . . . , it} be an authorized
set. The split state functions (f, g, h) that attack the underlying code are constructed as follows.

26

• Shared Randomness. Let s$ be an arbitrary secret and let (L$,C$,R$) ← Enc(s$). Run
the sharing function SecShare(t,n), LRShare(3,n) and LRShare(2,n) on (L$,C$,R$) respectively to

obtain (SL$
1, . . . ,SL

$
n), (SC$

1, . . . ,SC
$
n) and (SR$

1, . . . ,SR
$
n). For each i ∈ [n], set share$

i = (SL$
i ,

SC$
i , SR

$
i). For i ∈ {i1, i2, i3}, run the tampering function fi on input (SL$

i ,SC
$
i ,SR

$
i) to obtain

the tampered values (S̃L
$

i , S̃C
$

i , S̃R
$

i). The shared randomness between f, g and h comprises
of the following:

(SL$
i1
,SL$

i2
, SL$

i3
)

(S̃L
$

i1 , S̃L
$

i2 , S̃L
$

i3)

(SC$
i1
, SC$

i2
,SC$

i4
, . . . ,SC$

it)

(S̃C
$

i1 , S̃C
$

i2)

(SR$
i3
, . . . ,SR$

it)

• Function f . The tampering function f on input L does the following:

1. It chooses SLi4 , . . . ,SLit such that (SL$
i1
, SL$

i2
,SL$

i3
, SLi4 , . . . ,SLit) is a valid t-out-of-n

secret sharing of L.

2. For every i ∈ {i4, . . . , it}, it runs the tampering function fi on input (SLi,SC
$
i ,SR

$
i) to

obtain (S̃Li, S̃C
$

i , S̃R
$

i).

3. It runs SecRec(t,n) on inputs (S̃L
$

i1 , S̃L
$

i2 , S̃L
$

i3 , S̃Li4 , . . . , S̃Lit) to obtain L̃ and outputs it.

• Function g. The tampering function g on input C does the following:

1. Samples SCi3 , . . . ,SCit such that the following two conditions are satisfied:

(a) (SC$
i1
,SC$

i2
, SCi3 , . . . ,SCit) are valid shares of LRShare(3,n)(C).

(b) fi3(SL$
i3
,SCi3 ,SR

$
i3

) = (S̃L
$

i3 , ·, ·). That is, the first component of the output of fi3

on input SL$
i3
, SCi3 ,SR

$
i3

is equal to S̃L
$

i3 (which is part of the shared randomness).

2. In case such a sampling is not possible, it outputs the special symbol abort1 (it can be
thought as some specific symbol in C).

3. Else, it runs fi3 in input SL$
i3
, SCi3 , SR

$
i3

to obtain (S̃L
$

i3 , S̃Ci3 , S̃R
′$
i3).

4. Reconstructs C̃ by running LRRec(3,n)(S̃C
$

i1 , S̃C
$

i2 , S̃Ci3) and outputs it.

• Function h. The tampering function h on input R does the following:

1. Samples SRi1 , SRi2 , SRi4 , . . . ,SRit such that the following three conditions are satisfied:

(a) SRi1 , SRi2 , SR
$
i3
, SRi4 , . . . ,SRit are valid shares of LRShare(2,n)(R).

(b) fi1(SL$
i1
,SC$

i1
,SRi1) = (S̃L

$

i1 , S̃C
$

i1 , ·). In other words, the first two components of

the output of fi1 on input SL$
i1
,SC$

i1
,SRi1 is same as S̃L

$

i1 , S̃C
$

i1 (which are part of
shared randomness).

27

(c) fi2(SL$
i2
,SC$

i2
,SRi2) = (S̃L

$

i2 , S̃C
$

i2 , ·).
2. If such a sampling is not possible, it outputs the special symbol abort2 (again, it is some

specific symbol in R).

3. Otherwise, for i ∈ {i1, i2}, it runs fi(SL
$
i , SC

$
i , SRi) to obtain (S̃L

$

i , S̃C
$

i , S̃Ri).

4. Reconstructs R̃ by running LRRec(2,n)(S̃Ri1 , S̃Ri2) and outputs it.

The functions f, g, h described above constitute a split state tampering function family. In
order to reduce the tampering attack on the shares of our secret sharing scheme to the shares of the
underlying code, we need to show that the distribution of the shares given as inputs to find = (fi1 ,
. . . , fit) in the tampering experiment Tamperfind,Ts is statistically close to the distribution of the
shares that f, g, h give as input to these functions. We show this via a hybrid argument.

Hyb1 : This is same as the experiment where f, g, h are described as above and the output of

the experiment is Dec(L̃, C̃, R̃) where L̃, C̃, R̃ are the outputs of f, g, h respectively.

Hyb2 : In this hybrid, we generate the shared randomness between f, g, h differently. In particular,

instead of fixing the shares SL$
i1
,SL$

i2
, SL$

i3
as the respective shares of a t-out-of-n secret sharing of

L$, we will fix them to be the respective shares of a t-out-of-n secret sharing of L.

We now claim that Hyb1 is identically distributed to Hyb2 and we will show this by using the
perfect privacy of a t-out-of-n secret sharing scheme. We now give the formal reduction below.

Claim 5.2 Hyb1 ≡ Hyb2

Proof Since t ≥ 4, we query the challenger of the t-out-of-n secret sharing scheme for the shares
SLi1 , SLi2 ,SLi3 and use them to generate the shared randomness. The rest of the experiment pro-
ceeds exactly like in Hyb1. Note that if the shares correspond to the sharing of L$, then the output
corresponds to Hyb1 , otherwise, it is distributed identically to Hyb2.

Hyb3 : In this hybrid, we make the following changes with respect to Hyb2. In generating the
shared randomness between (f, g, h), we secret share the real C using LRShare(3,n) instead of the

fake C$. That is, the shares SC$
i1
, . . . ,SC$

it
now correspond to the secret sharing of C. We also let

the tampering function f to extract L̃ using the secret shares of C instead of C$.

We now show that Hyb2 ≈ε3 Hyb3 by giving a reduction to the leakage resilience property of
(LRShare(3,n), LRRec(3,n)).

Claim 5.3 Hyb2 ≈ε3 Hyb3.

Proof Assume for the sake of contradiction that the statistical distance between Hyb2 and Hyb3

is greater than ε3. We will use this to break the leakage resilience property of (LRShare(3,n),
LRRec(3,n)).

The reduction works as follows:

28

1. It generates (L,C,R)← Enc(s) and (L$,R$,C$)← Enc(s$).

2. It generates (SL1, . . . ,SLn) as a valid t-out-of-n secret sharing of L.

3. It generates (SR$
1, . . . ,SR

$
n) as the output of LRShare(2,n)(R$).

4. It gives C and C$ as the two messages to the leakage resilience challenger and defines the
leakage functions as follows:

• For i ∈ {i1, i2}, the function outputs SCi1 , SCi2 in the clear.

• For all i ∈ {i3, . . . , it}, the leakage function takes in SCi as input, and computes (S̃Li, ·,
·) := fi(SLi,SCi,SR

$
i). It outputs S̃Li.

5. For i ∈ {i1, i2}, using the values SCi from the leakage, it computes (S̃Li, S̃Ci, ·) := fi(SLi,SCi,
SR$

i).

6. It reconstructs L̃ using S̃Li1 , . . . , S̃Lit .

7. It runs the tampering functions g and h exactly as in Hyb2 to get C̃ and R̃.

8. It outputs Dec(L̃, C̃, R̃).

Note that since |S̃Li| = m1, the leakage functions defined by the reduction belongs to Ft,2,m1 . Note
that if the leakage was with respect to the sharing of C$ then the output of the reduction is identical
to Hyb2 and otherwise, it is distributed identically to Hyb3. Thus, we break the leakage resilience
property of (LRShare(3,n), LRRec(3,n)).

Hyb4 : In this hybrid, we make a syntactic change with respect to Hyb3. Instead of the tampering
function g sampling SCi3 , . . . ,SCit again such that it satisfies the two consistency conditions, we
let g to use the same shares SCi3 , . . . ,SCit that were used to generate the shared randomness. This
change is only syntactic and it can be easily seen that Hyb3 is identical to Hyb4.

Hyb5 : In this hybrid, we make the following changes with respect to Hyb4. In constructing the

shared randomness between (f, g, h), we set (SR$
i1
, . . . ,SR$

it
) as a valid secret sharing of the real R in-

stead of fake R$. Additionally, the tampering functions f, g, use these shares in order to extract L̃, C̃.

We now argue that Hyb4 ≈ε4 Hyb5 using the leakage resilience property of (LRShare(2,n), LRRec(2,n)).

Claim 5.4 Hyb4 ≈ε4 Hyb5.

Proof Assume for the sake of contradiction that the statistical distance between Hyb4 and Hyb5

is greater than ε4. We will use this to break the leakage resilience property of (LRShare(2,n),
LRRec(2,n)).

The reduction works as follows:

1. It generates (L,C,R)← Enc(s) and (L$,R$,C$)← Enc(s$).

2. It shares L using SecShare(t,n) and C using LRShare(3,n) to get the shares (SL1, . . . ,SLn) and
(SC1, . . . ,SCn) respectively.

29

3. It gives R and R$ as the challenge messages to the leakage resilience challenger and defines
the leakage functions as follows:

• The function outputs SRi3 in the clear.

• For i ∈ {i1, i2}, the leakage function takes in SRi as input and computes (S̃Li, S̃Ci,

·) := fi(SLi,SCi,SRi). It then outputs S̃Li, S̃Ci.

• For each i ∈ {i4, . . . , it}, the leakage function takes in SRi as input and computes (S̃Li,

·, ·) := fi(SLi,SCi,SRi). It then outputs S̃Li.

4. For i = i3, using the value SRi3 from the leakage, it computes (S̃Li, S̃Ci, ·) := fi(SLi, SCi, SRi).

5. Using the output of the leakage functions, the reduction reconstructs L̃ as SecRec(t,n)(S̃Li1 ,

. . . , S̃Lit) and C̃ as LRRec(3,n)(S̃Ci1 , S̃Ci2 , S̃Ci3).

6. It runs the tampering function h exactly as in Hyb4 to get R̃.

Notice that the leakage function defined by the above reduction belongs to the function family
Ft,1,−→µ since the total amount of leakage is restricted to O(m2 + tm1) bits. If the input to the
leakage functions where the secret shares of R$ then the distribution of the reduction’s output is
identical to Hyb4. Else, it is distributed identically to Hyb5. Thus, we break the leakage resilience
property of (LRShare(2,n), LRRec(2,n)).

Hyb6 : We again make a syntactic change with respect to Hyb5. In particular, we let the tampering
function h use the same shares (SRi1 , . . . ,SRit) that were used to generate the shared randomness.
Again, Hyb5 is identical to Hyb6.

Notice that the distribution of the experiment’s output in Hyb6 is identical to the value of the
tampering experiment Tamperfind,Ts . We know from the split state security of the underlying non-
malleable code that there exists a distribution Df,g,h such that the output of Hyb1 is ε1 close to
copy(Df,g,h, s). Thus, we infer that

copy(Df,g,h, s) ≈ε1+ε3+ε4 Tamperfind,Ts

which completes the proof of non-malleability.

5.3 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the works of [KOS18, GMW17]
(see Theorem 3.19). Using their construction, the |L| = |C| = |R| = O(m) bits and the error

ε1 = 2−Ω(m/ log1+ρ(m)) for any ρ > 0.

2. We use Shamir’s secret sharing [Sha79] as the t-out-of-n secret sharing scheme. We get
m1 = O(m) whenever m > log n.

3. We instantiate (LRShare(3,n), LRRec(3,n)) and (LRShare(2,n), LRRec(2,n)) from Theorem 4.7. We

get m2 = O(mt log n) and m3 = O(mt log2 n) by setting ε3 and ε4 to be 2−Ω(m/ logm).

Thus the rate of our construction is Θ(1
t log2 n

) and the error is 2−Ω(m/ log1+ρ(m)).

30

5.4 Concrete Optimization of Parameters

In this subsection, we will concretely optimize the rate of our construction.
Let us say that we want to share a secret that is m bits long. The construction of 3-split-state

non-malleable codes in [KOS18,GMW17] has a rate of 1
3 . Thus, the length of L,C,R is equal to m.

Since Shamir’s secret sharing has rate exactly 1, we deduce that |SLi| = m. Let us now calculate
the size of |SCi|. The first building block of SCi is (LRShare(2,2), LRRec(2,2)). The construction of
this primitive is based on the inner product two source extractor of Chor and Goldreich [CG88]. To
share a message of length m and to tolerate a leakage of µ bits, the size of each share is (4m+ µ)
bits (for an error of 2−m). We then used this to construct (LRShare(3,3), LRRec(3,3)) which has a
share size of 2 times the share size of LRShare(2,2) which is equal to (8m+ 2µ). We then extended
this to (LRShare(3,n), LRShare(3,n)) using perfect hash function family. From Lemma 4.5, the size of
a (n, 3) perfect hash function family turns out to be (8.27 log n+1) (when we set ε = 1−3!/33). We
set µ = (t−2)|SLi| = (t−2) ·m. Thus, the size of |SCi| is (2t+4)×m× (8.27 log n+1). Let us now
calculate the size of SRi. We know explicit (n, 2) perfect hash functions 9 of length log n. For the
case of SRi, we set µ = 3(m+ |SCi|)+(t−3)m = 3|SCi|+tm. Thus, |SRi| = (3|SCi|+(t+4)m) log n.

The error from the work of [KOS18] was 5 · 2−
m

log1+ρ m (see Section 4.5.2 and 5.3.1 in their paper).

Thus, the total error in our construction is 2−m+1 + 5 · 2−
m

log1+ρ m ≤ 6 · 2−
m

log1+ρ m .

6 Unbounded Tamperings: Impossibility Result

We now consider the stronger non-malleability requirement wherein multiple tampering functions
can tamper the shares of a secret and we require that the joint distribution of reconstructed tam-
pered shares to be independent of the original secret. In this section, we give an impossibility result
for the case of apriori-unbounded number of tamperings. Then, in Section 7, we give a matching
positive result for the bounded tampering setting and for any general access structure. This im-
possibility result generalizes a similar impossibility result for the case of split-state non-malleable
codes [GLM+04,FMNV14].

6.1 Proof

We now give the formal description of a set of tampering functions along with a distinguisher that
can break the non-malleability property for every t-out-of-n secret sharing scheme when the number
of tampering functions is allowed to grow with the threshold t and the size of each share.

Let us assume that we are given a t-out-of-n secret sharing scheme (Share,Rec). For an arbitrary
secret m ∈M, let (share1, . . . , sharen)← Share(m). We assume w.l.o.g. that the size of each sharei
is exactly the same and this is equal to s.

We will set the authorized set T to be {1, . . . , t} and this will be the same for each tampering
function. We give a set of tampering functions f1,1, f1,2, . . . , ft,s ∈ Find that have the property
that the secret reconstructed from tampering by fi,j reveals the j-th bit of sharei. Thus, given
all the t · s reconstructed secrets, the distinguisher can trivially learn the message by running the
reconstructed algorithm on share1, . . . , sharet. We now give the description of fi,j in Figure 3.

9The family of logn functions where the i-th function in the family outputs the i-th bit of the binary representation
of the input is a perfect hash function family.

31

• fi,j is composed of individual tampering functions f1, . . . , fn where fi tampers the share
Xi. Since we have fixed the authorized set to be {1, . . . , t}, it is sufficient to consider the
tampering functions f1, . . . , ft.

• Shared Randomness. We choose (Y1, . . . , Yi−1, Yi, Yi+1, . . . , Yt) and (Y1, . . . , Yi−1, Y
′
i ,

Yi+1, . . . , Yt) such that Rec(Y1, . . . , Yi−1, Yi, Yi+1, . . . , Yt) 6= Rec(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . ,

Yt). Note that by statistical privacy of t-out-of-n secret sharing scheme such values must
exist. For all k 6= i, the function fk has Yk hardwired. fi has Yi and Y ′i hardwired.

• On input sharek for each k 6= i, fk outputs Yk. On input sharei, fi outputs Yi if the j-th
bit of sharei is 0 and otherwise, outputs Y ′i .

Figure 3: Description of the Tampering Function fi,j

It follows from the description of fi,j that if the j-th bit of sharei is 0 then the tampered
message is Rec(Y1, . . . , Yi−1, Yi, Yi+1, . . . , Yt) and otherwise the tampered message is Rec(Y1, . . . ,
Yi−1, Y

′
i , Yi+1, . . . , Yt). Since these two values are not equal, the distinguisher can infer the j-th bit

of sharei based on the tampered message.

7 NMSS for General Access Structures with Multiple Tampering

We first define the notion of non-malleable secret sharing for general access structures in the next
subsection. This is followed by the construction and proof in the subsequent subsections.

7.1 Definitions

First, we recall the definition of a secret sharing scheme for a general monotone access structure A
- a generalization of the one defined for threshold access structures in Definition 3.10.

Definition 7.1 ((A, n, εc, εs)-Secret Sharing Scheme) Let M be a finite set of secrets, where
|M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing function
Share with domain of secrets M is a (A, n, εc, εs)-secret sharing scheme with respect to monotone
access structure A if the following two properties hold :

• Correctness: The secret can be reconstructed by any set of parties that are part of the access
structure A. That is, for any set T ∈ A, there exists a deterministic reconstruction function
Rec : ⊗i∈TSi →M such that for every m ∈M,

Pr[Rec(Share(m)T) = m] = 1− εc

where the probability is over the randomness of the Share function. We will slightly abuse the
notation and denote Rec as the reconstruction procedure that takes in T ∈ A and Share(m)T
as input and outputs the secret.

32

• Statistical Privacy: Any collusion of parties not part of the access structure should have
“almost” no information about the underlying secret. More formally, for any unauthorized
set U ⊆ [n] such that U /∈ A, and for every pair of secrets m0,m1 ∈M , for any distinguisher
D with output in {0, 1}, the following holds :

|Pr[D(Share(m0)U) = 1]− Pr[D(Share(m1)U) = 1]| ≤ εs

We define the rate of the secret sharing scheme as lim|m|→∞
|m|

maxi∈[n] |Share(m)i|

We now define the notion of a non-malleable secret sharing scheme for general access structures
which is a generalization of the definition for threshold access structures given in Definition 3.11.

Definition 7.2 (Non-Malleable Secret Sharing for General Access Structures [GK18b])
Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme for message space M and access structure
A. Let F be a family of tampering functions. For each f ∈ F , m ∈ M and authorized set T ∈ A,
define the tampered distribution Tamperf,Tm as Rec(f(Share(m))T) where the randomness is over the
sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-
malleable w.r.t. F if for each f ∈ F and any authorized set T ∈ A, there exists a distribution Df,T

over M∪ {same?} such that:

|Tamperf,Tm − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
.

Many Tampering Extension. Similar to the threshold case, we now extend the above definition
to capture multiple tampering attacks.

Definition 7.3 Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme for message spaceM. Let

F be some family of tampering functions. For
−→
f = (f1, . . . , fK) ∈ FK, m ∈ M and authorized set

T ∈ A, we define the tampered distribution Tamper
−→
f ,T
m as

(
Rec(f1(shares)T), . . . ,Rec(ft(shares)T) :

shares ← Share(m)
)

where the randomness is over the sharing function Share. We say that the
(A, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable with tampering degree K w.r.t.

F if for each
−→
f ∈ FK and any authorized set T ∈ A, there exists a distribution D

−→
f ,T over

(M∪ {same?})K such that:

|Tamper
−→
f ,T
m − c̃opy(D

−→
f ,T ,m)| ≤ ε′

where c̃opy is defined by c̃opy(−→x , y) = (z1, ..., zn) where zi =

{
xi if xi 6= same?

y if xi = same?
..

Remark 7.4 As in the threshold case, it is possible to further strengthen the above definition
by requiring the output of every tampering function fi to use a different authorized set Ti for
reconstruction. We once again note that our construction does not satisfy this stronger definition.
However, recall that the impossibility of apriori unbounded number of tamperings holds even with
respect to the weakened definition of using the same authorized set for reconstruction in every
tampering and even in the case of just threshold access structures.

33

7.2 Construction

In this section, we show how to build a one-many non-malleable secret sharing scheme for general
access structures.

First, let (SecShare(A,n),SecRec(A,n)) be any statistically private secret sharing scheme with rate
R for a 4-monotone access structure A over n parties. We refer the reader to [KW93, LV18] for
explicit constructions.

Let tmax denote the maximum size of a minimal authorized set of A.10 We give a construction of
a Non-Malleable Secret Sharing scheme with tampering degree K for a 4-monotone access structure
A with rate O(R

K3tmax log2 n
) with respect to a individual tampering function family Find.

Building Blocks. The construction uses the following building blocks. We instantiate them with
concrete schemes later:

• A one-many 3-split-state non-malleable code (Enc,Dec) where Enc :M→ L×C×R, the sim-
ulation error of the scheme is ε1 and the scheme is secure against K tamperings. Furthermore,
we assume that for any two messages m,m′ ∈M, (C,R) ≈ε2 (C′,R′) where (L,C,R)← Enc(m)
and (L′,C′,R′)← Enc(m′).

• A (A, n, 0, 0) (where A is 4-monotone) secret sharing scheme (SecShare(A,n),SecRec(A,n)) with
perfect privacy for message space L.11 We will assume that the size of each share is m1.

• A (3, n, ε′3, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-leakage resilient against
leakage functions Ftmax,2,Km1 for message space C. We assume that the size of each share is
m2.

• A (2, n, ε′4, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message space R that is
ε4-leakage resilient against leakage functions Ftmax,1,

−→µ where maxT
∑

i∈T,T∈A,|T |=tmax
µi =

O(Km2 + Ktmaxm1). We assume that the size of each share is m3.

Construction. The construction is very similar to the construction of non-malleable secret shar-
ing for threshold access structures given in Section 5 with the only difference being that we now
use the (A, n, 0, 0) secret sharing scheme. Note that in the construction we additionally need a
procedure to find a minimal authorized set from any authorized set. This procedure is efficient if
we can efficiently test the membership in A. We point the reader to [GK18b] for details of this
procedure. We give the formal description of the construction in Figure 4 for completeness.

Theorem 7.5 There exists a constant γ > 0 such that, for any arbitrary n,K ∈ N and 4-monotone
access structure A, the construction given in Figure 4 is a (A, n, ε′3 + ε′4, ε2) secret sharing scheme
for messages of length m where m ≥ Kγ. Furthermore, it is (ε1 + ε3 + ε4) one-many non-malleable
with tampering degree K with respect to tampering function family Find.

7.3 Proof of Theorem 7.5

In this section, we argue correctness, statistical privacy and non-malleability to complete the proof
of Theorem 7.5.

10We refer the reader to Definition 1.5, Definition 1.6 for definitions of 4-monotone access structures and minimal
authorized set.

11We note that our proof of security goes through even if this secret sharing scheme only has statistical privacy.

34

Share(m) : To share a secret s ∈M do:

1. Encode the secret s as (L,C,R)← Enc(s).

2. Compute the shares
(SL1, . . . ,SLn)← SecShare(A,n)(L)

(SC1, . . . ,SCn)← LRShare(3,n)(C)

(SR1, . . . ,SRn)← LRShare(2,n)(R)

3. For each i ∈ [n], set sharei as (SLi, SCi, SRi) and output (share1, . . . , sharen) as the
set of shares.

Rec(Share(m)T) : Given a set of shares in an authorized set T ′ ∈ A, let T ⊆ T ′ denote a
minimal authorized set. To reconstruct the secret from the shares in set T , (of size at
most tmax) do:

1. Let the shares corresponding to the set T be (sharei1 , . . . , shareitmax
).

2. For each j ∈ {i1, . . . , itmax}, parse sharej as (SLj ,SCj , SRj).

3. Reconstruct
L := SecRec(A,n)(SLi1 , . . . ,SLitmax

)

C := LRRec(3,n)(SCi1 , SCi2 ,SCi3)

R := LRRec(2,n)(SRi1 ,SRi2)

4. Output the secret s as Dec(L,C,R).

Figure 4: Construction of Non-Malleable Secret Sharing Scheme for General Access Structures
against Multiple Tampering

Correctness. Similar to Section 5, we notice that except with probability ε′3 + ε′4, SecRec(A,n),
LRRec(3,n) and LRRec(2,n) will be able to reconstruct L,C, and R respectively. The correctness now
follows directly from the correctness of the decoder Dec of one-many 3-split-state non-malleable
codes.

Statistical Privacy. To argue statistical privacy, we consider a sequence of hybrids very similar
to Section 5.

• Hyb1 : In this hybrid, the secret s is shared using Share(s).

• Hyb2 : This hybrid is same as Hyb1 except that we do the following. Let (L,C,R) ← Enc(s).
We reset L = ⊥ and encode this fake L using SecShare(A,n).

• Hyb3 : This hybrid is same as Hyb2 except that we sample (L′,C′,R′) ← Enc(s′) and encode
C′,R′ instead of C,R using LRShare(3,n) and LRShare(2,n) respectively.

35

• Hyb4 : This hybrid is distributed identically to Share(s′).

We first claim that Hyb1 is distributed identically to Hyb2 and Hyb3 is distributed identically to
Hyb4. This actually follows directly from the security of SecShare(A,n) since a set of shares belonging
to an unauthorized set perfectly hide L.

We now argue that Hyb2 is statistically close to Hyb3. Note that in Hyb2, (C,R) is generated as
part of an encoding of s and in Hyb3 it is generated as part of an encoding of s′. From the property
of our one-many 3-state non-malleable code, we know that (C,R) statistically hide the message,
and hence we infer that Hyb2 is statistically close to Hyb3.

Non-Malleability. We show the non-malleability of our scheme by transforming a tampering
attack on the shares of our scheme to a tampering attack on the one-many 3-state non-malleable
code. In particular, we will use the set of K tampering functions that attack the secret sharing
scheme to design a set of K split state tampering functions against the underlying non-malleable
code. We then use the security of the underlying non-malleable code to come up with the simulator
for our scheme.

Let
−→
fun = (fun1, . . . , funK) ∈ FK

ind be a set of tampering functions where, for each k ∈ [K], funk
consists of a set (fk,1, . . . , fk,n) ∈ Find. Let T = {i1, . . . , itmax} be a minimal authorized set. The
split state functions {(fk, gk, hk)}k∈[K] that attack the underlying code are constructed as follows.

• Shared Randomness. Let s$ be an arbitrary secret and let (L$,C$,R$) ← Enc(s$). Run
the sharing function SecShare(A,n), LRShare(3,n) and LRShare(2,n) on (L$,C$,R$) respectively to

obtain (SL$
1, . . . ,SL

$
n), (SC$

1, . . . ,SC
$
n) and (SR$

1, . . . ,SR
$
n). For each i ∈ [n], set share$

i = (SL$
i ,

SC$
i , SR

$
i).

For each k ∈ [K], for i ∈ {i1, i2, i3}, run the tampering functions fk,i on input (SL$
i ,SC

$
i ,SR

$
i)

to obtain the tampered values (S̃L
$

k,i, S̃C
$

k,i, S̃R
$

k,i). The shared randomness between f, g and
h comprises of the following:

(SL$
i1
,SL$

i2
, SL$

i3
)

{(S̃L
$

k,i1 , S̃L
$

k,i2 , S̃L
$

k,i3)}k∈[K]

(SC$
i1
, SC$

i2
, SC$

i4
, . . . ,SC$

itmax
)

{(S̃C
$

k,i1 , S̃C
$

k,i2)}k∈[K]

(SR$
i3
, . . . ,SR$

itmax
)

• Functions {fk}k∈[K]. For each k ∈ [K], the tampering function fk on input L does the
following:

1. It chooses SLi4 , . . . ,SLitmax
such that (SL$

i1
, SL$

i2
,SL$

i3
, SLi4 , . . . ,SLitmax

) is a valid (A, n)
secret sharing of L.

2. For every i ∈ {i4, . . . , itmax}, it runs the tampering function fk,i on input (SLi,SC
$
i ,SR

$
i)

to obtain (S̃Lk,i, S̃C
$

k,i, S̃R
$

k,i).

36

3. It runs SecRec(A,n) on inputs (S̃L
$

k,i1 , S̃L
$

k,i2 , S̃L
$

k,i3 , S̃Lk,i4 , . . . , S̃Lk,itmax
) to obtain L̃k and

outputs it.

• Functions {gk}k∈[K]. For each k ∈ [K], the tampering function gk on input C does the
following:

1. Samples SCi3 , . . . ,SCitmax
such that the following two conditions are satisfied:

(a) (SC$
i1
,SC$

i2
,SCi3 , . . . ,SCitmax

) are valid shares of LRShare(3,n)(C).

(b) fk,i3(SL$
i3
, SCi3 ,SR

$
i3

) = (S̃L
$

k,i3 , ·, ·). That is, the first component of the output of

fk,i3 on input SL$
i3
, SCi3 ,SR

$
i3

is equal to S̃L
$

k,i3 (which is part of the shared random-
ness).

2. In case such a sampling is not possible, it outputs the special symbol abort1.

3. Else, it runs fk,i3 in input SL$
i3
,SCi3 ,SR

$
i3

to obtain (S̃L
$

k,i3 , S̃Ck,i3 , S̃R
′$
k,i3).

4. Reconstructs C̃k by running LRRec(3,n)(S̃C
$

k,i1 , S̃C
$

k,i2 , S̃Ck,i3) and outputs it.

• Functions {hk}k∈[K]. For each k ∈ [K], the tampering function hk on input R does the
following:

1. Samples SRi1 , SRi2 , SRi4 , . . . ,SRitmax
such that the following three conditions are satisfied:

(a) SRi1 , SRi2 , SR
$
i3
, SRi4 , . . . ,SRitmax

are valid shares of LRShare(2,n)(R).

(b) fk,i1(SL$
i1
,SC$

i1
,SRi1) = (S̃L

$

k,i1 , S̃C
$

k,i1 , ·). In other words, the first two components

of the output of fk,i1 on input SL$
i1
, SC$

i1
, SRi1 is same as S̃L

$

k,i1 , S̃C
$

k,i1 (which are
part of shared randomness).

(c) fk,i2(SL$
i2
,SC$

i2
,SRi2) = (S̃L

$

k,i2 , S̃C
$

k,i2 , ·).
2. If such a sampling is not possible, it outputs the special symbol abort2.

3. Otherwise, for i ∈ {i1, i2}, it runs fk,i(SL
$
i ,SC

$
i ,SRi) to obtain (S̃L

$

k,i, S̃C
$

k,i, S̃Rk,i).

4. Reconstructs R̃k by running LRRec(2,n)(S̃Rk,i1 , S̃Rk,i2) and outputs it.

The functions {fk, gk, hk}k∈[K] described above constitute a split state tampering function fam-
ily for the non-malleable code. In order to reduce the tampering attack on the shares of our secret
sharing scheme to the shares of the underlying code, we need to show that the distribution of the

shares given as inputs to (fun1, . . . , funK) in the tampering experiment Tamper
f(many,K),T
s is statisti-

cally close to the distribution of the shares that {fk, gk, hk}k∈[K] give as input to these functions.
We show this via a hybrid argument that is very similar to Section 5.

Hyb1 : This is same as the experiment where {fk, gk, hk}k∈[K] are described as above and the output

of the experiment is {Dec(L̃k, C̃k, R̃k)}k∈[K] where L̃k, C̃k, R̃k are the outputs of fk, gk, hk respectively.

Hyb2 : In this hybrid, we generate the shared randomness between {fk, gk, hk}k∈[K] differently.

37

In particular, instead of fixing the shares SL$
i1
,SL$

i2
, SL$

i3
as the respective shares of a (A, n, 0, 0)

secret sharing of L$, we will fix them to be the respective shares of a (A, n, 0, 0) secret sharing of L.

We now claim that Hyb1 is identically distributed to Hyb2 and we will show this by using the
perfect privacy of (A, n, 0, 0) secret sharing scheme. We now give the formal reduction below.

Claim 7.6 Hyb1 ≡ Hyb2

Proof Since the access structure A is 4-monotone, we query the challenger of the (A, n, 0, 0) se-
cret sharing scheme for the shares SLi1 , SLi2 ,SLi3 and use them to generate the shared randomness.
The rest of the experiment proceeds exactly like in Hyb1. Note that if the shares correspond to
the sharing of L$, then the output corresponds to Hyb1. Otherwise, it is distributed identically to
Hyb2.

Hyb2.5 : In this hybrid, we make a syntactic change with respect to Hyb2. In particular, instead of
allowing each fk to sample its own shares SLi4 , . . . ,SLitmax

such that it is a valid secret sharing of
L, we will make them use the same shares SLi4 , . . . ,SLitmax

that were used to generate the shared

randomness. That is, each fk will use the same set of shares to extract L̃k. This change is only
syntactic and Hyb2.5 is identically distributed to Hyb3.

Hyb3 : In this hybrid, we make the following changes with respect to Hyb2.5. In generating the
shared randomness between {fk, gk, hk}k∈[K], we secret share the real C using LRShare(3,n) instead

of the fake C$. That is, the shares SC$
i1
, . . . ,SC$

itmax
now correspond to the secret sharing of C. We

also let the tampering function fk for each k ∈ [K] to extract L̃k using the secret shares of C instead
of C$.

We now show that Hyb2.5 ≈ε3 Hyb3 by giving a reduction to the leakage resilience property of
(LRShare(3,n), LRRec(3,n)).

Claim 7.7 Hyb2.5 ≈ε3 Hyb3.

Proof Assume for the sake of contradiction that the statistical distance between Hyb2.5 and
Hyb3 is greater than ε3. We will use this to break the leakage resilience property of (LRShare(3,n),
LRRec(3,n)).

The reduction works as follows:

1. It generates (L,C,R)← Enc(s) and (L$,R$,C$)← Enc(s$).

2. It generates (SL1, . . . ,SLn) as a valid (A, n, 0, 0) secret sharing of L.

3. It generates (SR$
1, . . . ,SR

$
n) as the output of LRShare(2,n)(R$).

4. It gives C and C$ as the two messages to the leakage resilience challenger and defines the
leakage functions as follows:

• For i ∈ {i1, i2}, the function outputs SCi1 , SCi2 in the clear.

38

• For all i ∈ {i3, . . . , itmax}: The leakage function takes in SCi as input, computes {(S̃Lk,i,
·, ·) := fk,i(SLi,SCi,SR

$
i)}k∈[K] and outputs {S̃Lk,i}k∈[K].

5. For i ∈ {i1, i2}, using the values SCi from the leakage, for each k ∈ [K], it computes (S̃Lk,i,

S̃Ck,i, ·) := fk,i(SLi,SCi,SR
$
i).

6. For each k ∈ [K], it reconstructs L̃k using S̃Lk,i1 , . . . , S̃Lk,itmax
.

7. For each k ∈ [K], it runs the tampering functions gk and hk exactly as in Hyb2 to get C̃k and
R̃k.

8. It outputs {Dec(L̃k, C̃k, R̃k)}k∈[K].

Note that since |S̃Lk,i| = m1, the leakage functions defined by the reduction belongs to Ft,2,Km1 .
Note that if the leakage was with respect to the sharing of C$ then the output of the reduction is
identical to Hyb2.5 and otherwise, it is distributed identically to Hyb3. Thus, we break the leakage
resilience property of (LRShare(3,n), LRRec(3,n)).

Hyb4 : In this hybrid, we make a syntactic change with respect to Hyb3. Instead of the tam-
pering functions gk, for each k ∈ [K], sampling SCi3 , . . . ,SCitmax

again such that it satisfies the two
consistency conditions, we let gk to use the same shares SCi3 , . . . ,SCitmax

that were used to generate
the shared randomness. This change is only syntactic and it can be easily seen that Hyb3 is identical
to Hyb4.

Hyb5 : In this hybrid, we make the following changes with respect to Hyb4. In constructing the

shared randomness between {fk, gk, hk}k∈[K], we set (SR$
i1
, . . . ,SR$

itmax
) as a valid secret sharing of

the real R instead of fake R$. Additionally, the tampering functions fk, gk for each k ∈ [K], use
these shares in order to extract L̃k, C̃k.

We now argue that Hyb4 ≈ε4 Hyb5 using the leakage resilience property of (LRShare(2,n), LRRec(2,n)).

Claim 7.8 Hyb4 ≈ε4 Hyb5.

Proof Assume for the sake of contradiction that the statistical distance between Hyb4 and Hyb5

is greater than ε4. We will use this to break the leakage resilience property of (LRShare(2,n),
LRRec(2,n)). The reduction works as follows:

1. It generates (L,C,R)← Enc(s) and (L$,R$,C$)← Enc(s$).

2. It shares L using SecShare(A,n) and C using LRShare(3,n) to get the shares (SL1, . . . ,SLn) and
(SC1, . . . ,SCn) respectively.

3. It gives R and R$ as the challenge messages to the leakage resilience challenger and defines
the leakage functions as follows:

• The function outputs SRi3 in the clear.

• For i ∈ {i1, i2}, the leakage function takes in SRi as input and computes {(S̃Lk,i, S̃Ck,i,
·) := fk,i(SLi,SCi,SRi)}k∈[K]. It then outputs {S̃Lk,i, S̃Ck,i}k∈[K].

39

• For each i ∈ {i4, . . . , itmax}, the leakage function takes in SRi as input and computes

{(S̃Lk,i, ·, ·) := fk,i(SLi,SCi,SRi)}k∈[K]. It then outputs {S̃Lk,i}k∈[K].

4. For i = i3, using the value SRi3 from the leakage, it computes {(S̃Lk,i, S̃Ck,i, ·) := fk,i(SLi,
SCi, SRi)}k∈[K].

5. For each k ∈ [K], using the output of the leakage functions, the reduction reconstructs L̃k as

SecRec(A,n)(S̃Lk,i1 , . . . , S̃Lk,itmax
) and C̃k as LRRec(3,n)(S̃Ck,i1 , S̃Ck,i2 , S̃Ck,i3).

6. For each k ∈ [K], it runs the tampering function hk exactly as in Hyb4 to get R̃k.

Notice that the leakage function defined by the above reduction belongs to the function family
Ft,1,−→µ since the total amount of leakage is restricted to O(Km2 +Ktmaxm1) bits. If the input to the
leakage functions where the secret shares of R$ then the distribution of the reduction’s output is
identical to Hyb4. Else, it is distributed identically to Hyb5. Thus, we break the leakage resilience
property of (LRShare(2,n), LRRec(2, n)).

Hyb6 : We again make a syntactic change with respect to Hyb5. In particular, we let the tam-
pering function hk, for each k ∈ [K], use the same shares (SRi1 , . . . ,SRitmax

) that were used to
generate the shared randomness. Again, Hyb5 is identical to Hyb6.

Notice that the distribution of the experiment’s output in Hyb6 is identical to the value of the

tampering experiment Tamper
−→
fun,T
s . We know from the one-many split state security of the un-

derlying non-malleable code that there exists a distribution D{fk,gk,hk}k∈[K]
such that the output of

Hyb1 is ε1 close to copy(D{fk,gk,hk}k∈[K]
, s). Thus, we infer that

c̃opy(D{fk,gk,hk}k∈[K]
, s) ≈ε1+ε3+ε4 Tamper

−→
fun,T
s

which completes the proof of non-malleability.

7.4 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the construction in Appendix B
with rate O(1

K). Using that construction, the |L| = |C| = |R| = O(Km) bits and the error

ε1 = 2−m
Ω(1)

. Further, from Theorem 3.22, there exists a constant 1 > γ′ > 0 such that the
scheme only works for mγ′ ≥ K(1−γ′). We will set γ = (1− γ′)/γ′.

2. We use a secret sharing scheme for access structure A with rate R. We get m1 = O(KmR).

3. We instantiate LRShare(3,n) from Theorem 4.7 to getm2 = O(Km1tmax log n) = O(K2mtmax log n)

by setting ε2 to be 2−Ω(m/ logm).

4. Similarly, we instantiate LRShare(3,n) from Theorem 4.7 to get m3 = O(K3mtmax log2 n) by

setting ε3 to be 2−Ω(m/ logm).

40

Thus the rate of our construction is Θ(R
K3tmax log2 n

).

Acknowledgements. The first author’s research supported in part by the IBM PhD Fellowship.
The first author’s research also supported in part from a DARPA /ARL SAFEWARE award, NSF
Frontier Award 1413955, and NSF grant1619348, BSF grant 2012378, a Xerox Faculty Research
Award, a Google Faculty Research Award, an equipment grant from Intel, an Okawa Foundation
Research Grant, NSF-BSF grant 1619348, DARPA SafeWare subcontract to Galois Inc., DARPA
SPAWAR contract N66001-15-1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award,Teradata Research Award, and Lockheed-Martin Corporation Research Award.
This material is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C- 0205. The second author’s research supported
in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-15-1-
0274, AFOSR YIP Award, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman
Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cyber-
security (CLTC, UC Berkeley) of Sanjam Garg. The views expressed are those of the authors and
do not reflect the official policy or position of the funding agencies.
The authors thank Pasin Manurangsi for pointing to the work of Alon et al. [AYZ95] for the explicit
construction of perfect hash function family. The authors also thank Sanjam Garg, Peihan Miao
and Prashant Vasudevan for useful comments on the write-up.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta Maji, Omkant Pandey,
and Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In
TCC, 2016.

[ADKO15] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In STOC, pages 459–468, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In STOC, pages 774–783, 2014.

[ADN+18] Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski, Erick Pur-
wanto, Jo ao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable
secret-sharing schemes for general access structures. Cryptology ePrint Archive, Report
2018/1147, 2018. https://eprint.iacr.org/2018/1147.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. Explicit non-malleable codes against bit-wise tampering and permutations.
In CRYPTO, pages 538–557, 2015.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856,
1995.

[BDG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-
malleable codes for small-depth circuits. To appear in FOCS, 2018.

41

https://eprint.iacr.org/2018/1147

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, volume 10991
of Lecture Notes in Computer Science, pages 531–561. Springer, Heidelberg, August
2018.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In EUROCRYPT, 2016.

[BDKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes from average-case hardness: Ac0, decision trees, and streaming space-bounded
tampering. In EUROCRYPT, 2018.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of elim-
inating errors in cryptographic computations. Journal of Cryptology, 14(2):101–119,
2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[Bla79] GR Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 National Com-
puter Conf., volume 48, pages 313–317, 1979.

[Bla99] Simon R Blackburn. Combinatorics and threshold cryptography. CHAPMAN AND
HALL CRC RESEARCH NOTES IN MATHEMATICS, pages 49–70, 1999.

[CCD88] David Chaum, Claude Crepeau, and Ivan Damgaard. Multiparty unconditionally se-
cure protocols (extended abstract). In STOC, pages 11–19. ACM, 1988.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-
tection of algebraic manipulation with applications to robust secret sharing and fuzzy
extractors. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 471–488. Springer, Heidel-
berg, April 2008.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 285–298, 2016.

[CGM+16] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. In ICALP, 2016.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In
26th Annual Symposium on Foundations of Computer Science, pages 383–395. IEEE
Computer Society Press, October 1985.

42

[CKR16] Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-
theoretic local non-malleable codes and their applications. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part II, vol-
ume 9563 of Lecture Notes in Computer Science, pages 367–392. Springer, Heidelberg,
January 2016.

[CL17] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth
circuits, and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King,
editors, 49th Annual ACM Symposium on Theory of Computing, pages 1171–1184.
ACM Press, June 2017.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function
securely. In 26th Annual ACM Symposium on Theory of Computing, pages 522–533.
ACM Press, May 1994.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 307–315. Springer, Heidelberg, August 1990.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 239–257. Springer, Heidelberg, August 2013.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–
139, 2008.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 434–452, 2010.

[FK84] Michael L. Fredman and János Komlós. On the size of separating systems and families
of perfect hash functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68,
1984.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Con-
tinuous non-malleable codes. In Yehuda Lindell, editor, TCC, volume 8349 of Lecture
Notes in Computer Science, pages 465–488. Springer, 2014.

[FMNV15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A
tamper and leakage resilient von neumann architecture. In Jonathan Katz, editor,
PKC 2015: 18th International Conference on Theory and Practice of Public Key Cryp-
tography, volume 9020 of Lecture Notes in Computer Science, pages 579–603. Springer,
Heidelberg, March / April 2015.

[FMVW14] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient
non-malleable codes and key-derivation for poly-size tampering circuits. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,

43

volume 8441 of Lecture Notes in Computer Science, pages 111–128. Springer, Heidel-
berg, May 2014.

[Fra90] Yair Frankel. A practical protocol for large group oriented networks. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89,
volume 434 of Lecture Notes in Computer Science, pages 56–61. Springer, Heidelberg,
April 1990.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 135–156. Springer, Heidelberg, May / June
2010.

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In STOC, pages
685–698, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access
structures. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 501–530. Springer, Heidelberg, August 2018.

[GKP+18] Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richelson, and Akshayaram Srini-
vasan. Non-malleable commitments from non-malleable extractors. Manuscript, ac-
cessed via personal communication, 2018.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Al-
gorithmic tamper-proof (atp) security: Theoretical foundations for security against
hardware tampering. In Theory of Cryptography Conference, pages 258–277. Springer,
2004.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229. ACM Press, May
1987.

[GMW17] Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate non-malleable
codes in the split-state model. Cryptology ePrint Archive, Report 2017/1048, 2017.
https://eprint.iacr.org/2017/1048.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4), 2009.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 463–481.
Springer, Heidelberg, August 2003.

44

https://eprint.iacr.org/2017/1048

[JKS93] Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On the relation
between a-codes and codes correcting independent errors. In EUROCRYPT, pages
1–11, 1993.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable
codes. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of
Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer Science,
pages 451–480. Springer, Heidelberg, March 2015.

[KLT18] Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis. Non-malleable codes for
partial functions with manipulation detection. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 577–607. Springer, Heidelberg, August
2018.

[KMS18] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing. Cryp-
tology ePrint Archive, Report 2018/1138, 2018. https://eprint.iacr.org/2018/

1138.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state
non-malleable codes with explicit constant rate. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678
of Lecture Notes in Computer Science, pages 344–375. Springer, Heidelberg, November
2017.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In EUROCRYPT, pages 589–617, 2018.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the
Eigth Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May
18-21, 1993, pages 102–111, 1993.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. STOC, 2017.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 517–532.
Springer, Heidelberg, August 2012.

[LV18] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret
sharing. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th
Annual ACM Symposium on Theory of Computing, pages 699–708. ACM Press, June
2018.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

45

https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1138

[OPVV18] Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Continuously
non-malleable codes in the split-state model from minimal assumptions. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 608–639. Springer,
Heidelberg, August 2018.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hard-
ware. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 552–569.
Springer, Heidelberg, August 2012.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SNW01] Rei Safavi-Naini and Huaxiong Wang. Robust additive secret sharing schemes over
zm. In Kwok-Yan Lam, Igor Shparlinski, Huaxiong Wang, and Chaoping Xing, ed-
itors, Cryptography and Computational Number Theory, pages 357–368, Basel, 2001.
Birkhäuser Basel.

[SS90] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput., 19(5):775–786, 1990.

A 3-Split-State Non-Malleable Code

In this section, we recall the construction of 3-split-state non-malleable codes from the work of
Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] and show that it satisfies the additional
property that given the second and third state, the message is statistically hidden. We first recall
their encoding scheme. The encoding procedure uses the following tools (we don’t specify the
relations between the parameters and we refer the reader to [KOS18] for the details):

• (Tag,Verify) and (Tag′,Verify′) be two message authentication codes. The key length, mes-
sage length and the tag length of (Tag,Verify) and (Tag′,Verify′) are (τ, `, δ) and (τ1, n, δ1)
respectively.

• Ext : {0, 1}n × {0, 1}d → {0, 1}m be an average-case strong seeded extractor.

• (Enc+,Dec+) be an augmented 2-split-state non-malleable code (see Definition 3.17).

We describe the encoding and decoding procedure in Figure 5.
We now argue that the second state c‖t2 and the third state R statistically hide the message

m. It is known from [ADKO15] that any 2-split-state non-malleable code is a 2-out-of-2 secret
sharing scheme. Hence, given R, the message k1, t1, s is statistically hidden. This implies that both
the source w and the seed s are statistically hidden given R. It now follows from the property of
extractor Ext that m⊕ ke is statistically close to random and hence the message m is statistically
hidden. We formally argue this via a hybrid argument given below.

• Hyb1 : This corresponds to the distribution of (R, c‖t2) when a message m is encoded.

46

• Enc(m): To encode a message m,

1. Sample s← Ud, w ← Un, k1 ← Uτ1 .

2. Compute ke‖k2 = Ext(w, s) and set c := m⊕ ke.
3. Compute t2 = Tagk2

(c) and t1 = Tag′k1
(w).

4. Compute (L,R)← Enc+(k1, t1, s).

5. Output the three states as ((w,L), R, c‖t2).

• Dec(S1,S2, S3): To decode a codeword S1, S2,S3:

1. Parse S1 as (w,L), S2 as R and S3 as c‖t2.

2. Compute (k1, t1, s) := Dec+(L,R). If (k1, t1, s) = ⊥ then output ⊥.

3. Compute ke‖k2 = Ext(w, s).

4. If, Verifyk1
(t1, w) = 0 or Verify′k2

(t2, c) = 0, output ⊥.

5. Else, output c⊕ ke.

Figure 5: Encoding and Decoding of 3-split-state Non-Malleable Code from the work of
Kanukurthi et al. [KOS18]

• Hyb2 : This corresponds to a distribution of (R, c‖t2) where c is generated honestly as given
in Figure 5 but R is generated as a right state that encodes (k1, t1,⊥d) where ⊥d denotes a
fixed string of length d. It follows from the fact that any 2-split-state non-malleable code is
a 2-out-of-2 secret sharing scheme that Hyb1 is statistically close to Hyb2.

• Hyb3 : This corresponds to a distribution of (R, c‖t2) where R is generated as in the previous
hybrid but c is chosen randomly from U`. It follows from the property of the extractor Ext
that Hyb2 and Hyb3 are statistically close. Notice that Hyb3 is independent of the message.

B 3-split-state Non-malleable Code against Multiple Tampering

In this section, we give a construction of one-many 3-split-state Non-Malleable Code with tampering
degree k and rate = O(1/k). This is obtained by replacing the one-one augmented non-malleable
code in the construction of Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] with an one-many
augmented non-malleable code of [CGL16, GKP+18]. We detail the construction and the proof of
security below.

Building Blocks. We use the following building blocks:

• (Tag,Verify) and (Tag′,Verify′) be two message authentication codes. The key length, message
length and the tag length of (Tag,Verify) and (Tag′,Verify′) are (τ ′, `, δ′) and (τ, n, δ) respec-
tively. The MACs (Tag,Verify) and (Tag′,Verify′) are unforgeable except with probability ε1

and ε′1 respectively.

47

• Ext : {0, 1}n × {0, 1}d → {0, 1}`+τ be a strong average-case seeded extractor for average-case
min-entropy t+ log(1/µ) and error ε2 + µ.

• (Enc+,Dec+) be an augmented, one-many 2-split-state non-malleable code with tampering
degree k and simulation error ε3.

• We will set n− (`+ τ + 3)k ≥ t+ log(1/µ).

Construction. The construction is exactly same as Figure 5 except that we use an augmented,
one-many 2-split state non-malleable code.

Proof of Non-Malleability. The correctness of the construction is easy to verify and we also
note that via the same argument given in Appendix A, it can be shown that given the second
and the third state of the codeword, the message is statistically hidden. We now give the proof of
one-many non-malleability. For every i ∈ [k], let (fi, gi, hi) be a function belonging to the 3-split
state tampering family. We give the description of the simulator D(f1,g1,h1),...,(fk,gk,hk) in Figure 6
and this uses the simulator S(f ′1,g

′
1),...,(f ′k,g

′
k) (for some split state functions (f ′i , g

′
i) for every i ∈ [k])

of the underlying 2-split state non-malleable code.
Recall that Tamperm(f1,g1,h1),...,(fk,gk,hk) be the outcome of the experiment wherein the message m

is encoded, the codeword is tampered with the functions (fi, gi, hi) for every i ∈ [k] and the output
corresponds decoding of the tampered codewords. For convenience, we give the description of this
experiment in Figure 7. In order to prove non-malleability, we need to show that

Tamperm(f1,g1,h1),...,(fk,gk,hk) ≈ c̃opy(D(f1,g1,h1),...,(fk,gk,hk),m)

We show this through a sequence of hybrids.

Hyb1 : In this hybrid, we change the function Tamper′(f1,g1),...,(fk,gk) in Figure 7 as follows.

1. Compute t1 = Tag′k1
(w).

2. (L, α̃1, . . . , α̃k)← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) and f
(1)
i [w] is equal to fi(w, ·)

except that it only outputs the last |L| bits of the output of fi and S denotes the simulated
distribution for the underlying augmented, 2-split-state non-malleable code.

3. For each i ∈ [k], if α̃i = same?, reset α̃i = k1‖t1‖s.

4. The rest of the steps are same as in Figure 7.

Note that the only change between Tamperm(f1,g1,h1),...,(fk,gk,hk) and Hyb1 is that we use the simula-
tor of the underlying augmented 2-split-state non-malleable code. It now follows directly from the
security of the non-malleable code that Hyb1 is ε3 close to Tamperm(f1,g1,h1),...,(fk,gk,hk).

Hyb2 : In thus hybrid, we make some changes to the function Tamper′(f1,g1),...,(fk,gk) from the

previous hybrid. The new function Tamper′
(2)
(f1,g1),...,(fk,gk) takes as input s, w and is defined as

follows:

48

The simulator D(f1,g1,h1),...,(fk,gk,hk) works as follows:

1. Sample ke‖k2 ← U`+τ .

2. (β̃1, . . . , β̃k)← S ′ where S ′ is described below.

3. Set c = ke ⊕ 0 and compute t2 = Tagk2
(c).

4. For each i ∈ [k],

(a) Define (c̃i, t̃i) := hi(c‖t2).

(b) If β̃i = same? then:

i. If c̃i = c, set γ̃i = same?. Else, set γ̃i = ⊥.

(c) Else, parse β̃i as k̃ie, k̃
i
2.

(d) If Verify
k̃i2

(c̃i, t̃i2) = 1, set γ̃i = c̃i ⊕ k̃ie. Else, set γ̃i = ⊥.

5. Output (γ̃1, . . . , γ̃k).

The function S ′

1. Sample w ← Un.

2. (L, α̃1, . . . , α̃k)← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) or α̃i = same? and f
(1)
i [w]

is equal to fi(w, ·) except that it only outputs the last |L| bits of the output of fi.

3. For each i ∈ [k], define w̃i = f
(2)
i [L](w) where f

(2)
i [L] is equal to fi(·, L) except that it only

outputs the first |w| bits of the output of fi.

4. For each i ∈ [k],

(a) If α̃i = same?

i. If w̃i = w: set β̃i = same?.

ii. Else, set β̃i = ⊥.

(b) Else if, Verify′(t̃i1, w̃
i) = 1, set βi = Ext(w̃i, s̃i). Else, set β̃i = ⊥.

5. Output (β̃1, . . . , β̃k).

Figure 6: Description of the simulator D(f1,g1,h1),...,(fk,gk,hk)

1. (L, α̃1, . . . , α̃k)← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) and f
(1)
i [w] is equal to fi(w, ·)

except that it only outputs the last |L| bits of the output of fi and S denotes the simulated

49

1. Sample s← Ud, w ← Un, k1 ← Uτ1 .

2. Sample (ke‖k2, β̃1, . . . , β̃k)← Tamper′(f1,g1),...,(fk,gk)(s, w, k1) where Tamper′(f1,g1),...,(fk,gk)

is described below.

3. Set c = ke ⊕m and compute t2 = Tagk2
(c).

4. For each i ∈ [k],

(a) Define (c̃i, t̃i) := hi(c‖t2).

(b) Parse β̃i as k̃ie, k̃
i
2.

(c) If Verify
k̃i2

(c̃i, t̃i2) = 1, set γ̃i = c̃i ⊕ k̃ie. Else, set γ̃i = ⊥.

5. Output (γ̃1, . . . , γ̃k).

Tamper′(f1,g1),...,(fk,gk)

On input s, w, k1 do:

1. Compute t1 = Tag′k1
(w).

2. (L, α̃1, . . . , α̃k)← Tamper
k1‖t1‖s
(f

(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) and f
(1)
i [w] is equal

to fi(w, ·) except that it only outputs the last |L| bits of the output of fi and Tamper
denotes the tampering experiment for the underlying 2-split-state non-malleable code.

3. For each i ∈ [k], define w̃i = f
(2)
i [L](w) where f

(2)
i [L] is equal to fi(·, L) except that it only

outputs the first |w| bits of the output of fi..

4. Set ke‖k2 := Ext(w, s).

5. For each i ∈ [k],

(a) If, Verify′(t̃i1, w̃
i) = 1, set βi = Ext(w̃i, s̃i). Else, set β̃i = ⊥.

6. Output (ke‖k2, β̃1, . . . , β̃k).

Figure 7: Description of the tampering Experiment Tamperm(f1,g1,h1),...,(fk,gk,hk)

distribution for the underlying 2-split-state non-malleable code.

2. For each i ∈ [k], define w̃i = f
(2)
i [L](w) where f

(2)
i [L] is equal to fi(·, L) except that it only

outputs the first |w| bits of the output of fi.

50

3. Set ke‖k2 := Ext(w, s).

4. For each i ∈ [k],

(a) If α̃i = same?

i. If w̃i = w: set β̃i = ke‖k2.

ii. Else, set β̃i = ⊥.

(b) Else If, Verify′(t̃i1, w̃
i) = 1, set βi = Ext(w̃i, s̃i). Else, set β̃i = ⊥.

5. Output (ke‖k2, β̃1, . . . , β̃k).

Note that the only change between Hyb1 and Hyb2 is that when α̃i = same?, we will check if w̃i = w
instead of running the MAC verification. It now follows from the security of MAC unforgeability
that Hyb1 ≈kε′1 Hyb2. The formal reduction follows directly from Claim 2 in [KOS18].

Hyb3 : In this hybrid, we make some changes to the function Tamper′
(2)
(f1,g1),...,(fk,gk). The new

function Tamper′
(3)
(f1,g1),...,(fk,gk) takes w as input and is defined as follows:

1. (L, α̃1, . . . , α̃k)← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) and fi[w] is same as f
(1)
i with

w being hardwired that outputs the last |L| bits of fi and S denotes the simulated distribution
for the underlying 2-split-state non-malleable code.

2. For each i ∈ [k], define w̃i = f
(2)
i [L](w) where f

(2)
i [L] is same as fi except that it has L

hardwired and outputs the last |w| bits of fi.

3. Sample ke‖k2 ← U`+τ .

4. For each i ∈ [k],

(a) If α̃i = same?

i. If w̃i = w: set β̃i = ke‖k2.

ii. Else, set β̃i = ⊥.

(b) Else If, Verify′(t̃i1, w̃
i) = 1, set βi = Ext(w̃i, s̃i). Else, set β̃i = ⊥.

5. Output (ke‖k2, β̃1, . . . , β̃k).

We now show that Hyb2 is statistically close to Hyb3 by a straightforward generalization of Claim 3
from [KOS18].

Claim B.1 Hyb2 ≈ε2 Hyb3

Proof Most parts of this proof is taken verbatim from [KOS18] and we only make relevant changes
so that it works in the many tampering setting. We start by defining a few random variables that
capture the auxiliary information. We will then invoke the extractor security to show that Hyb2 is
statistically close to Hyb3.

We fix the output (L, α̃1, . . . , α̃k)← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

and define

bisame? :=

{
1 if α̃i = same?

0 otherwise

51

bi⊥ :=

{
1 if α̃i = ⊥
0 otherwise

eqi(w) :=

{
1 if f

(2)
i [L](w) = w

0 otherwise

V i(w) = Verify′
k̃i1

(f
(2)
i [L](w), t̃i1)

Finally, we define:

Y i(w, b1, b2) :=

eqi(w) if b1 = 1

(V i(w),Ext(w̃i, s̃i)) if b1 = 0 ∧ b2 = 0

⊥ otherwise

We define the auxiliary information by Ê = (bisame? , b
i
⊥, Y

i(w, bisame? , b
i
⊥))i∈[k]. We now define

the new function G that takes Ê and a string k ∈ {0, 1}`+τ and works as follows:

• Parse Ê as (bisame? , b
i
⊥, y

i)i∈[k].

• For each i ∈ [k]

1. If bisame? = 1:

(a) If yi = 1, output (k, k).

(b) Else, output (k,⊥).

2. Else,

(a) If b⊥ = 1, output (k,⊥).

(b) Else, parse yi as V i(w),Ext(w̃i, s̃i).

i. If V i(w) = 1, output (k,Ext(w̃i, s̃i).

ii. Else, output (k,⊥)

Note that G on input Ê, Ext(W ;S) is distributed identically to Tamper′
(2)
(f1,g1),...,(fk,gk) on input

S,W and G on input Ê, U`+τ is distributed identically to Tamper′
(3)
(f1,g1),...,(fk,gk) on input W . Thus,

to prove that Hyb2 ≈ε2 Hyb3 it is sufficient to prove that

Ê, Ext(W ;S) ≈ε2 Ê, U`+τ

Notice that Ê depends only on the string W is is independent of the seed S. Further, Ê takes at
most 2(3+`+τ)k values. Hence, H̃∞(W |Ê) ≥ n− (3+ `+τ)k. By our choice of parameters, it follows
from the average-case strong extractor property of Ext that Ê, Ext(W ;S) ≈ε2 Ê, U`+τ .

Hyb4 : In this hybrid, we make a syntactic change with respect to Hyb3. The formal descrip-
tion of Hyb4 is given in Figure 8. Notice that the change is only syntactic and Hyb3 is identical to
Hyb4.

Hyb5 : In this hybrid, we make the following changes with respect to Hyb4.

52

1. Sample ke‖k2 ← U`+τ .

2. Sample (β̃1, . . . , β̃k)← Tamper′
(4)
(f1,g1),...,(fk,gk).

3. Set c = ke ⊕m and compute t2 = Tagk2
(c).

4. For each i ∈ [k],

(a) Define (c̃i, t̃i) := hi(c‖t2).

(b) If β̃i = same?

i. If c̃i = c, set γ̃i = m.

ii. Else, output ⊥.

(c) Else if, parse β̃i as k̃ie, k̃
i
2. If Verify

k̃i2
(c̃i, t̃i2) = 1, set γ̃i = c̃i ⊕ k̃ie. Else, set γ̃i = ⊥.

5. Output (γ̃1, . . . , γ̃k).

The statistical closeness between Hyb4 and Hyb5 follows from the unforgeability of (Tag,Verify) and
follows identically to the proof of closeness between Hyb1 and Hyb2. We infer that Hyb4 ≈kε1 Hyb5.

Hyb6 : In this hybrid, we replace c = ke ⊕ m with c = ke ⊕ 0. We infer from the security of
one-time pad that Hyb5 is identically distributed to Hyb6. Note that Hyb6 is distributed identically
to c̃opy(D(f1,g1,h1),...,(fk,gk,hk),m).

B.1 Instantiation

We now instantiate the building blocks and give bounds on the rate of our construction.

1. We set the error rate µ = ε1 = ε′1 = ε2 = ε3 = 2−λ.

2. We will instantiate the MAC from the work of Johansson et al. [JKS93] (see also [GMW17]
for a construction). For authenticating n bit strings, the tag length and the key length are
respectively (log n+ λ) and 2(log n+ λ).

3. We will instantiate the strong average case extractor from the work of Guruswami et al. [GUV09]
(see Theorem 3.8). Fixing the output length of the extractor to be ` + τ and the average
min-entropy t < n− k(3 + τ + `)− log(1/µ), we get the length n = O(k(λ+ `)).

4. We instantiate the underlying non-malleable code from [GKP+18]. Let 2β be the length of
the codeword. The length of the message that is encoded is O(log `+λ). By Theorem 3.21, we
get that there exists a constant δ > 0 such that 2β = O(λ1+δ + log1+δ `). For some constant
γ > 0 and γ < δ, we can set the tampering degree to be λγ .

We now calculate the rate R.

R =
`

2β + n+ `+ log `+ λ

=
`

O(k`+ λ1+δ)

We set λ1+δ = O(`) and we get the rate to be Θ(1
k). The error of our scheme is 2−O(λ) = 2−`

Ω(1)
.

53

1. Sample ke‖k2 ← U`+τ .

2. Sample (β̃1, . . . , β̃k) ← Tamper′
(4)
(f1,g1),...,(fk,gk) where Tamper′

(4)
(f1,g1),...,(fk,gk) is described

below.

3. For each i ∈ [k], if β̃i = same? then reset β̃i = ke‖k2.

4. Set c = ke ⊕m and compute t2 = Tagk2
(c).

5. For each i ∈ [k],

(a) Define (c̃i, t̃i) := hi(c‖t2).

(b) Parse β̃i as k̃ie, k̃
i
2.

(c) If Verify
k̃i2

(c̃i, t̃i2) = 1, set γ̃i = c̃i ⊕ k̃ie. Else, set γ̃i = ⊥.

6. Output (γ̃1, . . . , γ̃k).

Tamper′
(4)
(f1,g1),...,(fk,gk)

1. Sample w ← Un.

2. (L, α̃1, . . . , α̃k) ← S(f
(1)
1 [w],g1),...,(f

(1)
k [w],gk)

where α̃i := (k̃i1, t̃
i
1, s̃

i) and fi[w] is same as f
(1)
i

with w being hardwired that outputs the last |L| bits of fi and S denotes the simulated
distribution for the underlying 2-split-state non-malleable code.

3. For each i ∈ [k], define w̃i = f
(2)
i [L](w) where f

(2)
i [L] is same as fi except that it has L

hardwired and outputs the last |w| bits of fi.

4. For each i ∈ [k],

(a) If α̃i = same?

i. If w̃i = w: set β̃i = same?.

ii. Else, set β̃i = ⊥.

(b) Else If, Verify′(t̃i1, w̃
i) = 1, set βi = Ext(w̃i, s̃i). Else, set β̃i = ⊥.

5. Output (β̃1, . . . , β̃k).

Figure 8: Description of Hyb4

54

	Introduction
	Our Results
	Rate Improvement
	Multiple Tampering
	General Access Structures

	Our Techniques
	Rate Improvement
	Multiple Tampering
	General Access Structures

	Preliminaries
	Threshold Non-Malleable Secret Sharing Scheme
	Non-Malleable Codes

	k-out-of-n Leakage Resilient Secret Sharing Scheme
	k-out-of-k Leakage Resilient Secret Sharing
	Perfect Hash Function Family
	Construction of k-out-n Leakage Resilient Secret Sharing

	Non-Malleable Secret Sharing for Threshold Access Structures
	Construction
	Proof of Theorem 5.1
	Rate Analysis
	Concrete Optimization of Parameters

	Unbounded Tamperings: Impossibility Result
	Proof

	NMSS for General Access Structures with Multiple Tampering
	Definitions
	Construction
	Proof of Theorem 7.5
	Rate Analysis

	3-Split-State Non-Malleable Code
	3-split-state Non-malleable Code against Multiple Tampering
	Instantiation

