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Abstract

This paper proposes Functional Analysis attacks on state of the art
Logic Locking algorithms (abbreviated as Fall attacks). Fall attacks
have two stages. The first stage identifies nodes involved in the locking
functionality and analyzes functional properties of these nodes to shortlist
a small number of candidate locking keys. In many cases, this shortlists
exactly one locking key, so no further analysis is needed. However, if
more than one key is shortlisted, the second stage introduces a SAT-based
algorithm to identify the correct locking key from a list of alternatives
using simulations on an unlocked circuit.

In comparison to past work, the Fall attack is more practical as it
can often succeed (90% of successful attempts in our experiments) by only
analyzing the locked netlist, without requiring oracle access to an unlocked
circuit. Further, Fall attacks successfully defeat Secure Function Logic
Locking (SFLL), the only locking algorithm that is resilient to known
attacks on logic locking. Our experimental evaluation shows that Fall is
able to defeat 65 out of 80 (81%) circuits locked using SFLL.

1 Introduction

Globalization and concomitant de-verticalization of the semiconductor supply
chain have resulted in IC design houses becoming increasingly reliant on po-
tentially untrustworthy offshore foundries. This reliance has raised concerns
of integrated circuit (IC) piracy, unauthorized overproduction, and malicious
design modifications by adversarial entities that may be part of these contract
foundries [7, 10, 19]. These issues have both financial [8] and national security
implications [16].

A potential solution to these problems is logic locking [2, 13]: a set of tech-
niques that introduce additional logic and new inputs to a digital circuit in order
to create a “locked” version of it. The locked circuit operates correctly if and
only if the new inputs, referred to as “key inputs” are set to the right values.
Typically, key inputs are connected to a tamper-proof memory. The circuit is
activated by the design house by programming the correct key values after man-
ufacturing and prior to sale. The security assumption underlying logic locking
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is that the adversary (untrusted foundry) does not know the correct values of
the key inputs and cannot compute it.

Initial proposals for logic locking did not satisfy this assumption and were
vulnerable to attack [11, 12, 17, 23, 26]. For example, Rajendran et al. [12]
used automatic test pattern generation (ATPG) tools to compute input values
that would allow an adversary to reveal the values of key bits. Subramanyan
et al. [17] developed the SAT attack which defeated all known logic encryption
techniques at the time. The SAT attack works by using a Boolean SATisfiability
solver to iteratively find inputs that distinguish between equivalence classes of
keys. For each such input, an activated IC (perhaps purchased from the market
by the adversary) is queried for the correct output and this information is fed
back to the SAT solver when computing the next distinguishing input. The
practicality of this attack depends on the number of equivalence classes of keys
present in the locked circuit.

Functionality Stripped Circuit

X = 〈x1, . . . , xm〉

Cube Stripper
strip(Kc)(X)

Functionality

Restoration Unit
K = 〈k1, . . . , km〉

Original Circuit

Y

Figure 1: Overview of SAT attack resilient locking algorithms like TTLock and
SFLL-HDh. We show a single output circuit for simplicity, additional outputs
are handled symmetrically.

Much subsequent work has focused on SAT attack resilient logic locking [20,
21, 24, 27, 28]. These proposals attempt to guarantee that the number of equiv-
alence classes of keys is exponential in the key length. Broadly speaking, they
have the structure shown in Figure 1. They introduce a circuit which “flips” the
output of the original circuit for a particular cube or set of cubes. We refer to
this component as the cube stripping unit. This flipped output is then inverted
by a key-dependent circuit that we refer to as the progammable functionality
restoration unit. This latter circuit is guaranteed to have an exponential num-
ber of equivalence classes of keys and ensures SAT attack resilience.1 Initial
proposals along these lines were Anti-SAT [20, 21] and SARLock [24]. How-
ever, Anti-SAT was vulnerable to the signal probability skew (SPS) [24] attack
while SARLock was vulnerable to the Double DIP [15] attack and the Approx-
imate SAT [14] attack. Both schemes are vulnerable to removal and bypass
attacks [22, 25]. Subsequently, Yasin et al. proposed TTLock [28] and Secure

1For these schemes to work as intended, the locking key has to be “hard coded” in the
cube stripping unit. We exploit this vulnerability.
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Function Logic Locking (SFLL) [27]. To the best of our knowledge, SFLL is the
only logic locking technique that is resilient to all of the above attacks.

1.1 Contributions

In this paper, we introduce a novel class of Functional Analysis attacks on Logic
Locking (abbreviated as Fall attacks). Fall attacks defeat locking methods
which use cube stripping and programmable functionality restoration.

Our approach is to use structural and functional analyses of circuit
nodes to first identify the gates that are the output of the cube stripping module.
There are two challenges involved in this. First, the locked netlist is a sea of
gates, and examining every gate using computationally expensive functional
analyses is not feasible. Second, testing for whether a gate is equivalent to the
cube stripping function for some key value involves solving a quantified Boolean
formula (QBF). QBF is PSPACE-complete [1] in comparison to to SAT which is
“only” NP-complete [5], and therefore the näıve approach does not even scale to
small netlists. Our first contribution tackles these problems by the development
of a set of functional properties of the cube stripping function used in SFLL. We
then use SAT-based analyses to find nodes with these properties and determine
a shortlist of potential locking keys. These functional analyses are able to defeat
SFLL, which to the best of our knowledge, is the only locking method resilient
to all known attacks.

In about 90% of successful attempts in our experiments, the first stage of
the attack shortlists exactly one potential key. In such cases, the Fall attack
does not require input/output (I/O) oracle access to an unlocked circuit.
Any malicious foundry who can reconstruct gate-level structures from the masks
can use Fall without setting up logic analyzers, loading the scan chain, etc.
Our second contribution is evidence supporting the claim that attacking logic
locking may be much easier than previously believed.

Our third contribution is a novel SAT-based key confirmation algorithm.
Given a list of suspected key values and I/O oracle access, key confirmation can
be used to prove that one (or none) of these suspected key values is correct.
This has two important implications. Key confirmation can be used in isolation
and provides a powerful new tool in the hands of attackers: attacker need only
guess a key value through an arbitrary circuit analysis and key confirmation can
be used to verify this guess. Second, the key confirmation algorithm succeeds on
netlists that are resilient to the SAT attack, thus providing a new path toward
the use of powerful Boolean reasoning engines in the security analysis of logic
locking.

Our final contribution is a thorough experimental analysis of the Fall attack
which shows that our attacks succeed on 65 out of 80 benchmark circuits (81%)
in our evaluation. Among these 65, the functional analysis shortlists exactly
one key for 58 circuits (90% of successful attempts), supporting our claim that
Oracle-less attacks are indeed practical. Finally, we show experimentally that
our key confirmation attack succeeds on all the benchmark circuits we examine
and is orders of magnitude faster than the SAT attack [17].
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2 Attack Overview

This section first describes the adversary model for the Fall attack. It then
provides an overview of the attack itself and describes the notation used in the
rest of this paper.

2.1 Adversary Model

The adversary is assumed to be a malicious foundry with layout and mask
information. The gate level netlist can be reverse engineered from this [18].
The adversary knows the locking algorithm and its parameters (e.g., h in SFLL-
HDh) and can distinguish between key inputs and circuit inputs. We assume
that the adversary may have access to an activated circuit which can be used
to observe the output for a specific input. We follow [12, 17, 27] etc. and
restrict our attention to combinational circuits. Sequential circuits can viewed as
combinational by treating flip-flop inputs and outputs as combinational outputs
and inputs respectively.

2.2 Overview of Attack Stages

Figure 2 shows the three main stages of the Fall attack.

Comparator Analysis (§3.1)

Support Set Analysis (§3.2)

Functional Analyses (§4)

Equivalence Checking (§4)

Key Confirmation (§5)

comparators Comp

candidate cube stripping gates Cand

potential key values {K1c , K2c , . . . }

filtered potential key values {K1c , K2c , . . . }

key value Kc

Figure 2: Attack algorithm overview.

The first stage uses largely structural analyses to identify candidate gates
that may be the output of a cube stripping module. This is described in Section 3

The second stage subjects these candidate nodes to functional analysis to
identify suspected key values. Algorithms for functional analysis exploit unate-
ness and Hamming distance properties of the cube stripping functions used in
SFLL and are described in Section 4.
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Given a shortlist of suspected key values, the third stage verifies whether one
of these key values is correct using the key confirmation algorithm described in
Section 5. This stage of the attack need not be carried out if only one key was
identified by the functional analyses or if the adversary does not have I/O oracle
access to an activated circuit.

2.3 Notation

B = {0, 1} is the Boolean domain. A combinational logic circuit is modeled as
a directed acyclic graph G = (V,E). Nodes in the graph correspond to logic
gates and input nodes. Edge (v1, v2) ∈ E if v2 is a fanin (input) of the gate v1.

Given a node v ∈ V , define fanins(v) = {v′ | (v, v′) ∈ E}. #fanins(v) is the
cardinality of fanins(v). For v ∈ V such that #fanins(v) = n, nodefn(v) is the
n-ary Boolean function associated with the node; nodefn(v) : V → (Bn → B).
For example, if v1 is a 2-input AND gate, nodefn(v1) = λab. a ∧ b. For input
nodes, nodefn(v) is an uninterpreted 0-ary Boolean function (or equivalently,
a propositional variable). The circuit function of node v, denoted cktfn(v)
is defined recursively as: cktfn(v) = nodefn(v)(cktfn(v1), . . . , cktfn(vn)) where
vi ∈ fanins(v). The transitive fanin cone of a node v, denoted Tfc(v), is the
set of all nodes vj such that (v, vj) ∈ E or there exists some vi ∈ V such that
(vi, vj) ∈ E and vi ∈ Tfc(v). The support of a node, denoted by Supp(v), is
the set of all nodes vj such that vj ∈ Tfc(v) and #fanins(vj) = 0.

In a locked netlist, some input nodes are specially distinguished key inputs.
Define the predicate isKey(v) such that isKey(v) = 1 iff and node v ∈ V is a
key input.

Given two bit vectors X1 = 〈x11, . . . , x1m〉 and X2 = 〈x21, . . . , x2m〉, define
HD(X1, X2)

.
=

∑m
i=1(x1i ⊕x2i ) to be their Hamming distance. ⊕ is the eXclusive

OR operator, and
∑

is bit vector sum.
Finally, given a Boolean function f : Bn → B, the function obtained by

setting xi = 1 in f , f(x1, . . . , 1, . . . , xn), denoted as fxi is called a positive
cofactor of f . f(x1, . . . , 0, . . . , xn) denoted f¬xi

, is a negative cofactor of f .

3 Structural Analyses

This section describes structural analyses to identify nodes that may be the
output of the cube stripping unit.

3.1 Comparator Identification

Comparator identification finds all nodes in the circuit which are the result of
comparing an input value with a key input. Such nodes are very likely to be
part of the functionality restoration unit. Stated precisely, we wish to identify
all gates whose circuit function is equivalent to (z ⊕ xi) ⇐⇒ ki for some z.
Here xi must be a circuit input, ki must be a key input and z captures whether
ki is being compared with xi or ¬xi.
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The result of comparator identification is the set Comp = {〈vi, xi, ki〉, . . . }
where each tuple 〈vi, xi, ki〉 is such that Supp(vi) = {xi, ki}, isKey(xi) = 0,
isKey(ki) = 1, and one of the following two formulas is valid: (i) cktfn(vi) ⇐⇒
xi ⊕ ki and (ii) cktfn(vi) ⇐⇒ ¬(xi ⊕ ki).

3.2 Support Set Matching

The set of all input nodes xi that appear in Comp should be the support of
the cube stripping unit. Support set matching finds all such nodes. Given
the set Comp = {〈vi, xi, ki, 〉, . . . }, define the projection Compx as Compx =
{xi | (vi, xi, ki) ∈ Comp}. The set Cand is set of all gates whose support is
identical to Compx. This set of gates must contain the output of the cube
stripping unit.

4 Functional Analyses

This section first develops functional properties of the cube stripping function
used in SFLL. It then describes three algorithms that exploit these properties
to find the “hidden” key input parameters of the cube stripping unit.

4.1 Functional Properties of Cube Stripping

Cube stripping involves the choice of a protected cube, represented by the tuple
Kc = 〈k1, . . . , km〉 where m = |Comp| and ki ∈ B. A stripping function strip :
Bm → (Bm → B) is parameterized by this protected cube. The output of the
functionality stripped circuit (the dashed box in Figure 1) is inverted for the
input X = 〈x1, . . . , xm〉 when strip(Kc)(X) = 1. For a given locked circuit and
associated key value, the value of Kc is “hard-coded” into the implementation
of strip, which is why we typeset Kc in a fixed width font. The attacker’s goal
is to learn this value of Kc.

In this paper we study functional properties of the following cube stripping
function: striph(Kc)(X)

.
= HD(Kc, X) = h. striph flips the output for all input

patterns exactly Hamming distance h from the protected cube 〈k1, . . . , km〉.
This is the cube stripping function for SFLL-HDh and the special case of h = 0
corresponds to the cube stripping function for TTLock. This function has three
specific properties that can be exploited to determine the value of Kc.

4.1.1 Unateness (TTLock/SFLL-HD0)

We say that a Boolean function f(x1, . . . , xm) : Bm → B is positive unate in
the variable xi if f(x1, . . . , xi−1, 0, xi+1, . . . ) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . ). We
say that f is negative unate in the variable xi if f(x1, . . . , xi−1, 1, xi+1, . . . ) ≤
f(x1, . . . , xi−1, 0, xi+1, . . . ). Function f is said to be unate in xi if it is either
positive or negative unate in xi.

2

2a ≤ b is defined as ¬a ∨ b.
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(Lemma 1) The cube stripping function for TTLock/SFLL-HD0 is unate
in every variable xi. Further, it is positive unate in xi if ki = 1 and negative
unate in xi if ki = 0.

For example, let 〈k1, k2, k3〉 = 〈1, 0, 1〉. Then strip0(k1, k2, k3)(x1, x2, x3) =
x1 ∧¬x2 ∧ x3. This is positive unate in x1 as 0 ≤ ¬x2 ∧ x3, and negative unate
in x2 as 0 ≤ x1 ∧ x3.

4.1.2 Non-Overlapping Errors Property (SFLL-HDh)

Consider the definition of striph, let Kc = 〈k1, . . . , k4〉 = 〈1, 1, 1, 1〉 and h = 1.
Consider the two input values X1 = 〈1, 1, 1, 0〉 and X2 = 〈0, 1, 1, 1〉. strip1(Kc)(X

1) =
1 = strip1(Kc)(X

2). X1 and X2 are Hamming distance 2 apart. Due to the defini-
tion of strip1 they are also Hamming distance 1 from Kc. This means that the
values of xi on which the two patterns agree – x2 and x3 – must be equal to k2
and k3 respectively. This is because the “errors” in X1 and X2 cannot overlap
as they are Hamming distance 2h apart. Generalizing this observation leads to
the following result.

(Lemma 2) Suppose X1 = 〈x11, . . . , x1m〉, X2 = 〈x21, . . . , x2m〉, Kc = 〈k1, . . . , km〉
and striph(Kc)(X

1) = 1 = striph(Kc)(X
2). If HD(X1, X2) = 2h, then for every j

such that x1j = x2j , we must have x1j = x2j = kj .

4.1.3 Sliding Window Property (SFLL-HDh)

Let us revisit the example from the non-overlapping errors property. Let Kc =
〈k1, . . . , k4〉 = 〈1, 1, 1, 1〉 and h = 1. For the input value X1 = 〈1, 1, 1, 0〉, we
have strip1(Kc)(X

1) = 1. Notice that there cannot exist another assignment
X2 = 〈x21, . . . , x24〉 with x24 = 0, HD(X1, X2) = 2 and strip1(Kc)(X

2) = 1. This
is because x24 6= k4, so the remaining bits in X2 must be equal to Kc so that
strip1(Kc)(X

2) = 1. But this forces the Hamming distance between X1 and X2 to
be 0 (and not 2 as desired). This observation leads to the following result.

(Lemma 3) Consider the assignments X1 = 〈x11, . . . , x1m〉 and X2 = 〈x21, . . . , x2m〉.
Let Kc = 〈k1, . . . , km〉 as before. The formula striph(Kc)(X

1) = 1∧striph(Kc)(X
2) =

1 ∧HD(X1, X2) = 2h ∧ x1j = x2j ∧ x1j = b is satisfiable iff b = kj .

4.2 Functional Analysis Algorithms

In this subsection, we describe three attack algorithms on SFLL that are based
on Lemmas 1, 2 and 3. Each algorithm takes as input a candidate node c in
the circuit DAG. Let X = Supp(c). The functional analyses described in this
subsection determine whether the circuit function of this node cktfn(c)(X) is
equivalent to strip(Kc)(X) for some assignment to Kc. In other words, we are try-
ing to solve the quantified Boolean formula (QBF): ∃Kc. ∀X. cktfn(c)(X) ⇐⇒
strip(Kc)(X). However, solving this QBF instance is computationally hard. So
instead we exploit Lemmas 1, 2 and 3 to determine potential values of Kc and
verify this “guess” using combinational equivalence checking.
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4.2.1 AnalyzeUnateness

This is shown in Algorithm 1 and can be used to attack SFLL-HD0.

Algorithm 1 Algorithm AnalyzeUnateness

1: procedure AnalyzeUnateness(c)
2: keys← ∅
3: for xi ∈ Supp(c) do
4: if isPositiveUnate(c, xi) then
5: keys← keys ∪ (xi 7→ 1)
6: else if isNegativeUnate(c, xi) then
7: keys← keys ∪ (xi 7→ 0)
8: else return ⊥
9: end if

10: end for
11: return keys
12: end procedure

It takes as input a circuit node c and outputs an assignment to each node
in the support set of c if the function represented by c is unate, otherwise it
returns ⊥. This assignment is the protected cube in TTLock/SFLL-HD0.

4.2.2 SlidingWindow

This is shown in Algorithm 2 and can be used to attack SFLL-HDh for h <
bm/2c; m is the number of key inputs.

Again, the input is circuit node c and the algorithm checks if c behaves
as a Hamming distance calculator in the cube stripping unit of SFLL-HDh.
It works by asking if there are two distinct satisfying assignments to cktfn(c)
which are Hamming distance of 2h apart. If no such assignment exists then ⊥
is returned. Otherwise, by Lemma 2, bits which are equal in both satisfying
assignments must also be equal to the corresponding key bits. The remaining
bits are obtained by iterating through each remaining bit and applying the SAT
query in Lemma 3. If any query is inconsistent with Lemma 3 during this
process then ⊥ is returned. If successful, the return value is again the protected
cube.

4.2.3 Distance2H

This is shown in Algorithm 3. It is based on Lemma 2 and is applicable when
4h ≤ m; m is the number of key inputs.

This procedure is similar to SlidingWindow in that it computes two sat-
isfying assignments to c that are distance of 2h apart. Any bits that are equal
between the two assignments must be equal to the key bits. The remaining bits
are computed by asking if there are two more satisfying assignments such that
the bits which were not equal in the first pair of assignments are now equal.
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Algorithm 2 Algorithm SlidingWindow

1: procedure SlidingWindow(c)
2: keys← ∅
3: S ← Supp(c)
4: c′ ← subsitute(c, {(xi, x′i) | x ∈ S})
5: F ← c ∧ c′ ∧HD(Supp(c),Supp(c′)) = 2h
6: if solve(F ) = UNSAT then return ⊥
7: end if
8: for xi ∈ S do
9: (mi, m

′
i)← (modelxi(F ), modelx′

i
(F ))

10: if mi = m′i then
11: keys← keys ∪ (xi 7→ mi)
12: else
13: ri ← solve(F ∧ (xi = x′i ∧ x′i = mi))
14: r′i ← solve(F ∧ (xi = x′i ∧ x′i = m′i))
15: if ri = SAT ∧ r′i = UNSAT then
16: keys← keys ∪ (xi 7→ mi)
17: else if ri = UNSAT ∧ r′i = SAT then
18: keys← keys ∪ (xi 7→ m′i)
19: else
20: return ⊥
21: end if
22: end if
23: end for
24: return keys
25: end procedure

These new assignments must also be Hamming distance of 2h apart. The sec-
ond query, if successful, determines the remaining key bits by Lemma 3. Note
that Distance2H is not applicable when 4h > m, where h is the parameter in
SFLL-HDh and m is the number of key inputs.

5 Key Confirmation

The key confirmation algorithm takes as input a circuit described by the charac-
teristic function of its input/output relation C, a predicate over the key values
ϕ : K → B, and an I/O oracle. The algorithm either returns a key value Kc s.t.
Kc |= ϕ or ⊥ if no key value is consistent with ϕ and the oracle. The predicate ϕ
is a Boolean formula over the key variables that constrains the search space of
the algorithm. For example, suppose the circuit analyses have shortlisted two
keys 〈1, 1, 0, 1〉 and 〈0, 0, 1, 0〉. The ϕ(K)

.
= (k1 = 1 ∧ k2 = 1 ∧ k3 = 0 ∧ k4 =

1) ∨ (k1 = 0 ∧ k2 = 0 ∧ k3 = 1 ∧ k4 = 0).
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Algorithm 3 Algorithm Distance2H

1: procedure Distance2H(c)
2: S ← Supp(c)
3: c′ ← subsitute(c, {(xi, x′i) | x ∈ S})
4: F ← c ∧ c′ ∧HD(Supp(c),Supp(c′)) = 2h
5: if solve(F ) = UNSAT then return ⊥
6: end if
7: MF ← {(xi, modelxi

(F ), modelx′
i
(F )) | xi ∈ S}

8: keysA ← {(xi 7→ mi) | (xi, mi, m
′
i) ∈MF ∧ mi = m′i}

9: Cnst ← {(xi = x′i) | (xi, mi, m
′
i) ∈MF ∧ mi 6= m′i}

10: G← F ∧ (
∧

pi∈Cnst pi)
11: if solve(G) = UNSAT then return ⊥
12: end if
13: MG ← {(xi, modelxi

(G), modelx′
i
(G)) | xi ∈ S}

14: keysB ← {(xi 7→ mi) | (xi, mi, m
′
i) ∈MG ∧ mi = m′i}

15: return keysA ∪ keysB
16: end procedure

5.1 Algorithm Description

Key confirmation is shown in Algorithm 4. The two main components of the
algorithm are the sequences of formulas Pi and Qi, which we implemented using
two SAT solver objects. Pi are used to produce candidate key values that are
consistent with ϕ. Note that since P1 is ϕ, all subsequent Pi =⇒ ϕ. Qi is
used to generate distinguishing inputs. When Pi becomes UNSAT, it means no
key value is consistent with ϕ and the oracle. Or equivalently, this means that
the initial “guess” encoded in ϕ was incorrect. The algorithm terminates with
a correct key when Qi becomes UNSAT, i.e. no more distinguishing inputs can
be found.

The two significant differences from the SAT attack [17] are: (i) the two
solver objects corresponding to Pi and Qi which helps separate the generation
of candidate keys from the generation of distinguishing inputs, and (ii) the
restriction that Pi =⇒ ϕ. The former allows us to differentiate between no
key value being consistent with ϕ (line 6) from no distinguishing inputs being
found (line 10) – this would not be possible in the SAT attack formulation. The
latter ensures that instead of searching over the entire space of distinguishing
inputs, we restrict the search to keys which satisfy ϕ.

5.2 Correctness of Key Confirmation

Correctness of key confirmation is captured by the following lemma.
(Lemma 4) Algorithm 4 terminates and returns either (i) the key Kc or (ii)

⊥. The former occurs iff Kc |= ϕ and ∀X. C(X, Kc, Y ) ⇐⇒ Y = oracle(X).
The latter occurs iff no such Kc exists.

The second clause of Lemma 4 is important to emphasize. Key confirmation
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Algorithm 4 Key Confirmation Algorithm

1: procedure KeyConfirmation(C,ϕ, oracle)
2: i← 1
3: P1 ← ϕ
4: Q1 ← C(X,K1, Y2) ∧ C(X,K2, Y2) ∧ Y1 6= Y2
5: while true do
6: if solve[Pi] = UNSAT then
7: return ⊥
8: end if
9: K1i ← modelK1(Pi)

10: if solve[Qi ∧ (K1 = K1i )] = UNSAT then
11: return K1i
12: end if
13: Xdi ← modelX(Qi)
14: Ydi ← oracle(Xdi )
15: Pi+1 ← Pi ∧ C(Xdi ,K1, Y

d
i )

16: Qi+1 ← Qi ∧ C(Xdi ,K2, Y
d
i )

17: i← i+ 1
18: end while
19: end procedure

terminates with the result ⊥ iff no key value Kc s.t. Kc |= ϕ is correct for the
given oracle. This implies key confirmation can be safely used even if the key
value was “incorrectly” guessed – the algorithm will detect this.

6 Evaluation
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Figure 3: Circuit analyses: execution time vs number of benchmarks solved in
that time.

This section describes our experimental evaluation of Fall attacks. We
describe the evaluation methodology, then present the results of the functional
analyses, after which we present our evaluation of the key confirmation attack.
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6.1 Methodology

We evaluated the effectiveness of Fall attacks on a set of ISCAS’85 benchmark
circuits and combinational circuits from the Microelectronics Center of North
Carolina (MCNC). Details of these circuits are shown in Table 1. These bench-
mark circuits remain reflective of contemporary combinational circuits and have
been used extensively in prior work on logic locking, e.g. [15, 17, 21]. We im-
plemented the TTLock and SFLL locking algorithms for varying values of the
Hamming distance parameter h and maximum key size of 128 bits. Due to
space limitations, we only show graphs/tables for the maximum key size of 64
bits. Results for the larger key size are discussed in the text in subsection 6.2.
Locked netlists were optimized using ABC v1.01 [9] to minimize any structural
bias introduced by our locking implementation.

ckt #in #out #keys
# of gates

Original SFLL
min max

ex1010 10 10 10 2754 2783 2899
apex4 10 19 10 2886 2938 3058
c1908 33 25 33 414 1322 1376
c432 36 7 36 209 1119 1155
apex2 39 3 39 345 1367 1407
c1355 41 32 41 504 1729 1746
seq 41 35 41 1964 3177 3187
c499 41 32 41 400 1729 1750
k2 46 45 46 1474 2890 2903
c3540 50 22 50 1038 2591 2595
c880 60 26 60 327 2338 2368
dalu 75 16 64 1202 3284 3312
i9 88 63 64 591 2981 3015
i8 133 81 64 1725 3609 3637
c5315 178 123 64 1773 4076 4108
i4 192 6 64 246 2261 2289
i7 199 67 64 663 3038 3066
c7552 207 108 64 2074 4076 4105
c2670 233 140 64 717 2733 2775
des 256 245 64 3839 7229 7257

Table 1: Benchmark circuits. #in, #out and #key refer to the number of
inputs, outputs and keys respectively.

6.1.1 Implementation

The circuit analyses were implemented in Python and use the Lingeling SAT
Solver [4]. The key confirmation algorithm was implemented in C++ as a
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modification to the open source SAT attack tool [6].

6.1.2 Execution Platform

Our experiments were conducted on the CentOS Linux distribution version 7.2
running on 28-core Intel R© Xeon R© Platinum 8180 (“SkyLake”) Server CPUs.
Although many opportunities for parallelization exist, our prototype implemen-
tation is single threaded. All algorithms were run with a time limit of 1000
seconds.

6.2 Circuit Analysis Results

Figure 3 show the performance of the circuit analyses attacks on the benchmarks
in our experimental framework. Four graphs are shown: the left most of which
is for SFLL-HD0 while the remaining are for SFLL-HDh with varying values
of the Hamming Distance h. For each graph, the x-axis shows execution time
while the y-axis shows the number of benchmark circuits decrypted within that
time.

The Distance2H attack defeats all SFLL-HDh locked circuits for h =
bm/8c and h = bm/4c. We repeated this experiment for the seven largest
circuits with a key size of 128 bits and the Distance2H attack defeated
all of these locked circuits. Recall that Distance2H is not applicable when
4h > m. AnalyzeUnateness is able to defeat 18 out of 20 SFLL-HD0/TTLock
circuits. SlidingWindow is able to defeat all locked circuits for h = bm/8c,
but does not perform as well for larger values of h. This is because the SAT
calls for larger values of h are computationally harder as they involve more
adder gates in the Hamming Distance computation. In summary, 65 out of 80
circuits (81%) are defeated by at least one of our attack algorithms.

Among these 65 circuits for which the attack is successful, a unique key
is identified for 58 circuits (90%). This means 58 out of 80 circuits
were defeated without oracle access (I/O access to an unlocked IC) —
only functional analysis of the netlist was required. Among the seven circuits
for which multiple keys were shortlisted, the attack shortlists two keys which are
bitwise complements of each other for four circuits, three keys are shortlisted
for two other circuits. One corner cases occurs for c432: 36 keys are shortlisted,
this is still a huge reduction from the initial space of 236 possible keys.

6.3 Key Confirmation Results

Figure 4 shows the execution time of the key confirmation algorithm and com-
pares and contrasts this with the “vanilla” SAT attack. Note that the y-axis is
shown on a log scale. The bars represent the mean execution time of key confir-
mation for a particular circuit encoded with the various locking algorithms and
parameters discussed above. Key values are obtained from the results of the ex-
periments described in the previous subsection. The thin black line shows error
bars corresponding to one standard deviation. We note that key confirmation
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Figure 4: Mean exec. times of key confirmation and SAT attacks.

is orders of magnitude faster than the SAT attack while providing the
same correctness guarantees.

Key confirmation provides a powerful new tool for attackers analyzing a
locked netlist. Attackers can use some arbitrary circuit analysis to guess a few
likely keys, and then use key confirmation to determine which (if any) of these is
the correct key. Key confirmation is applicable even if the locked netlist
is SAT attack resilient. Indeed, the SAT attack fails on most of these locked
circuits as shown in Figure 3.

6.4 Discussion

Our results reinforce the observation that all logic locking schemes appear to
be vulnerable to attack. We assert this is because the logic locking community
has not adopted notions of provable security from cryptography. For instance,
consider an adaptation of indistinguishability under chosen plaintext attacks
(IND-CPA) [3] to logic locking. In this game, the defender initially picks two
keys K1c and K2c , and a bit b ∈ {0, 1}. The game now proceeds in rounds. Each
round consists of the adversary providing two different circuits to the defender.
The defender encrypts one of them with Kbc. The adversary wins if they can
guess which of the two circuits was encrypted with a non-negligible advantage
over guessing. For SFLL-HDh as the original circuit is largely unchanged by
locking, so the adversary can win the game easily using any algorithm for circuit
equivalence. In fact, to the best of our knowledge, the adversary would win
the game described above for all logic locking schemes proposed so far. Truly
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secure logic locking will need the development of a methodology that can win
this game.

7 Conclusion

This paper proposed a set of Functional Analysis attacks on Logic Locking
(Fall attacks). We developed structural and functional analyses to determine
potential key values of a locked logic circuit. We then showed how these potential
key values could be verified using our key confirmation algorithm.

Our work has three important implications. First, we showed how arbitrary
structural and functional analyses can be synergistically combined with pow-
erful Boolean reasoning engines using the key confirmation algorithm. Second,
our attack was shown to often succeed (90% of successful attempts in our ex-
periments) without requiring oracle access to an unlocked circuit. This suggests
that logic locking attacks may be much more easily carried out than was pre-
vious assumed. Finally, the Fall attack successfully defeated secure function
logic locking (SFLL), the only locking algorithm resilient to known attacks on
logic locking. Experiments showed that Fall defeated 65 out of 80 benchmark
circuits locked using SFLL.
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