
Stronger Leakage-Resilient and Non-Malleable Secret-Sharing

Schemes for General Access Structures

Divesh Aggarwal3, Ivan Damg̊ard1, Jesper Buus Nielsen1, Maciej Obremski3, Erick
Purwanto3, João Ribeiro2, and Mark Simkin1

1Aarhus University,
{ivan, jbn, simkin}@cs.au.dk

2Imperial College London,
j.lourenco-ribeiro17@imperial.ac.uk

3National University of Singapore,
{divesh, erickp}@comp.nus.edu.sg, obremski.math@gmail.com

Abstract

In this work we present a collection of compilers that take secret sharing schemes for an
arbitrary access structures as input and produce either leakage-resilient or non-malleable secret
sharing schemes for the same access structure. A leakage-resilient secret sharing scheme hides
the secret from an adversary, who has access to an unqualified set of shares, even if the adversary
additionally obtains some size-bounded leakage from all other secret shares. A non-malleable se-
cret sharing scheme guarantees that a secret that is reconstructed from a set of tampered shares
is either equal to the original secret or completely unrelated. To the best of our knowledge we
present the first generic compiler for leakage-resilient secret sharing for general access struc-
tures. In the case of non-malleable secret sharing, we strengthen previous definitions, provide
separations between them, and construct a non-malleable secret sharing scheme for general ac-
cess structures that fulfills the strongest definition with respect to independent share tampering
functions. More precisely, our scheme is secure against concurrent tampering : The adversary is
allowed to (non-adaptively) tamper the shares multiple times, and in each tampering attempt
can freely choose the qualified set of shares to be used by the reconstruction algorithm to re-
construct the tampered secret. This is a strong analogue of the multiple-tampering setting for
split-state non-malleable codes and extractors.

We show how to use leakage-resilient and non-malleable secret sharing schemes to construct
leakage-resilient and non-malleable threshold signatures. Classical threshold signatures allow to
distribute the secret key of a signature scheme among a set of parties, such that certain qualified
subsets can sign messages. We construct threshold signature schemes that remain secure even
if an adversary leaks from or tampers with all secret shares.

1 Introduction

In a secret sharing scheme, a dealer who holds a secret s chosen from a domain M can com-
pute a set of shares by evaluating a randomized function on s which we write as Share(s) =
(s1, . . . , sn).

A secret sharing comes with an access structure A, which is a family of subsets of the indices
1, . . . , , n, such that if one is given a subset of the shares of s corresponding to a set A ∈ A (a
qualified set), then one can compute s efficiently, whereas any subset of shares corresponding to
a set not in A (an unqualified set) contains no, or almost no information about the secret. An

1

important special case is threshold secret sharing, where the access structure contains all set of
size at least some threshold value.

Secret-sharing is one of the most basic and oldest primitives in cryptography, introduced by
Shamir and Blakely in the 70-ties. It allows to strike a meaningful balance between availability
and confidentiality of secret information. Namely, we can store the n shares in n different servers
and as long as a qualified set of servers is alive, the secret is available, but even if an unqualified
set of shares is stolen, the secret remains confidential.

After its introduction, several variants of secret sharing have been suggested that address
the problem of authenticity of the secret: we want to guarantee that we reconstruct the original
value, even if not all players are honest. One such variant is robust secret-sharing where the
dealer is honest, but some unqualified set of share holders are malicious and may return incorrect
shares. In verifiable secret-sharing the dealer may be dishonest as well, but via interaction in
the sharing phase we can enforce that a unique secret is still determined and that this is the
value that will be reconstructed later.

In all these older schemes, the adversary is of the classic type that completely corrupts a
certain subset of the players in the protocol, either to steal information or to corrupt data.
Whereas the players who are not corrupt are “completely honest”. In many scenarios, however,
this may not be the most realistic model of attacks. Instead, it may make more sense to assume
that the adversary will try to attack all share holders, and will have some partial success in all
or most of the cases.

For the case of attacks against confidentiality, we can model this as leakage resilient secret-
sharing, where the adversary is allowed to specify a leakage function Leak and will be told
the value Leak(s1, ..., sn). Then, under certain restrictions on Leak, we want that the adver-
sary learns essentially nothing about s. Typically, so called local leakage is considered, where
Leak(s1, ..., sn) = (Leak1(s1), ..., Leakn(sn)) for local leakage functions Leaki with bounded out-
put size. This makes sense in a scenario where shares are stored in physically separated lo-
cations. It is known that some secret-sharing schemes are naturally leakage-resilient against
local leakage whereas others are not [BDIR18]. Boyle et al. [BGK14] showed how to construct
(locally) leakage-resilient verifiable secret sharing for threshold access structures. Goyal and
Kumar [GK18a] construct a specific type of leakage-resilient 2-out-of-n secret sharing as part of
non-malleable secret sharing construction. To the best of our knowledge, it is not known how
to construct leakage-resilient schemes from regular secret sharing schemes in general.

The case of attacks that try to corrupt the secret has been considered only recently, and
for this purpose the notion of non-malleable secret-sharing was introduced by Goyal and Ku-
mar [GK18a]. In this model, the adversary specifies a tampering function f which acts on the
shares, and then the reconstruction algorithm is applied to a qualified subset of f(s1, ..., sn).
The demand, simplistically speaking, is that either the original secret is reconstructed or it is
destroyed, i.e., the reconstruction result is unrelated to the original secret. Note that since f is
allowed to touch all shares, we cannot avoid the case where an unrelated secret is reconstructed,
as f could always replace all shares by shares of a different secret. In line with all previous
works, we consider local tampering functions, that individually tamper with each share. This
is a sensible assumption if, for example, each share is stored in a different server. Of course,
such a tampering is closely related to the earlier notion of non-malleable codes against split-
state tampering [DPW10]. The main difference between non-malleable codes and secret-sharing
schemes is that, in addition to non-malleability, we also insist that the correctness and privacy
properties of the secret-sharing scheme are satisfied. Interestingly, some non-malleable codes
can also be seen as primitive versions of general non-malleable secret-sharing schemes. In fact,
non-malleable codes in the 2-split-state model (where each codeword is split into two halfs which
are tampered independently) are 2-out-of-2 non-malleable secret-sharing schemes [ADKO15].

The first non-malleable secret sharing schemes were constructed in [GK18a] for threshold
access structures, and, in a follow-up work [GK18b], for general access structures, where an
adversary is allowed to independently tamper with each share in a minimal reconstruction set.
In the latter work, a general compiler was given that builds a non-malleable secret sharing
scheme from a regular secret-sharing scheme.

2

An application of non-malleable secret-sharing to secure message transmission was given in
[GK18a], but another very natural application, which does not seem to have been considered
before, is to threshold cryptography. Let us consider, for instance, a threshold signature scheme.
In such an application, the secret key is secret-shared among n servers, who then collaborate to
generate a signature such that the signature itself is the only new information released.

Now, some threshold signature schemes have some “bult-in” protection against tampering.
Namely, they establish a public commitment to each share of the secret key, and when a server
contributes to a new signature, it must prove in zero-knowledge that it is behaving consistently
with the commitment. If the commitment cannot be tampered, this will imply that tampered
shares cannot contribute to a signature. However, in many protocols for signature generation,
one can avoid zero-knowledge proofs by optimistically generating a signature assuming that all
players behave correctly. The observation is that one can always verify the signature in the
end and take some alternative action if it fails. This will be very efficient if players behave
honestly almost always. Such a protocol is not secure if executed on tampered shares, and
adding zero-knowledge proofs does not make sense in this case.

It therefore seems natural to try to use a non-malleable secret-sharing scheme instead. This
of course raises the question of how we can generate signatures efficiently and securely – existing
threshold signatures assume regular secret sharing, and it is not clear how we can use existing
non-malleable schemes without resorting to generic multiparty computation.

However, suppose for a moment that we could solve this issue. Now, if the shares have in fact
been tampered with, this tampering will become clear once it is found out that the signature
does not verify, and one can then take action (e.g., stop the system and restore the secret key
from a back-up). The intuition now is that we have managed to make the tampering harmless,
because non-malleability implies that the faulty signature is generated from an unrelated secret.

Unfortunately, however, the original definition is unlikely to be sufficient to prove this intu-
ition for a realistic system. The problem is that a real-life system will most likely have to serve
many different signature requests that arrive in an uncoordinated fashion over an asynchronous
network like the Internet. Therefore, once the first faulty signature has been detected and action
has been taken, we should assume that in the mean time several other signature requests have
already been served, possibly by different qualified sets of servers.

The standard definition of non-malleable secret-sharing [GK18a, GK18b] is not sufficient
to prove security in this case because it only talks about one invocation of the reconstruction
algorithm. What we need is a stronger definition, namely non-malleability with concurrent
reconstruction. In this model, we consider an experiment where, after the tamperings have
been done, the reconstruction algorithm is run (in parallel) on several qualified subsets. We
require that all the instances of the reconstruction return either the original secret or something
unrelated. It is not known how to construct secret-sharing schemes with this stronger property.

Independent Work In the late stages of this work, it came to our knowledge that other
independent, concurrent works obtained results similar to ours:

• Srinivasan and Vasudevan [SV18] give a compiler that transforms a secret sharing scheme
for any access structure into a leakage-resilient secret-sharing schemes for the same ac-
cess structure. Their compiler is rate-preserving and has leakage rate approaching 1. In
comparison, if the underlying secret sharing scheme is constant rate, our leakage-resilient
secret sharing compiler achieves rate Ω(1/n) and leakage rate 1− c for an arbitrarily small
constant c > 0, and must be rate-0 if we require leakage rate 1− o(1). Srinivasan and Va-
sudevan also construct leakage resilient schemes in a stronger leakage model, where leakage
functions may be chosen adaptively.

Srinivasan and Vasudevan use the results obtained to construct positive rate non-malleable
threshold secret sharing schemes against a single tampering that modifies each share in-
dependently for 4-monotone access structures1. In comparison, the non-malleable secret
sharing compiler that we obtain for a single tampering works for all 3-monotone access

1An access structure A is said to be k-monotone if |T | ≥ k for all T ∈ A.

3

structures but has rate Θ(1
n logm) in the same setting, where m denotes the length of the

secret and n denotes the number of parties, and so converges to 0. Finally, they consider
applications to leakage-resilient secure multiparty computation.

• Badrinarayanan and Srinivasan [BS18] construct non-malleable secret sharing schemes
with respect to independent share tampering, both against a single tampering and against
multiple tamperings. They are able to realize all 4-monotone access structures. Moreover,
they optimize the rates of their constructions to obtain schemes with positive rate and a
concretely efficient scheme. However, their tampering model is weaker than ours: While in
our model, named concurrent reconstruction, the adversary is allowed to (non-adaptively)
tamper the shares multiple times and in each tampering can choose a potentially different
reconstruction set for the tampering experiment, the model studied in [BS18] forces the
adversary to always choose the same reconstruction set for all tamperings. Their schemes
are not secure in the stronger concurrent reconstruction model, and the authors explicitly
mention the concurrent reconstruction model as a natural strengthening of their tamper-
ing model. In contrast, our compiler transforms any secret sharing scheme realizing a
3-monotone access structure into a (rate-0) non-malleable secret sharing scheme secure
against multiple tamperings in the concurrent reconstruction model.

• Kumar, Meka, and Sahai [KMS18] also study leakage-resilient secret sharing. They con-
sider a stronger leakage model than ours, where each leaked bit may depend on up to
p shares which can be chosen adaptively by the adversary. They give a compiler that
transforms a standard secret sharing scheme into a leakage-resilient one in the model just
described, for p logarithmic in the number of parties. It is also shown that noticeably im-
proving the dependence of the share length on p obtained there would lead to non-trivial
progress on important open questions related to communication complexity. Finally, they
consider the notion of leakage-resilient non-malleable secret sharing with respect to inde-
pendent share tampering. Here, the adversary has access to leakage from the shares, which
he can then make use of to choose tampering functions. They construct schemes in this
model for the case of a single tampering. For comparison, our non-malleable secret sharing
schemes cannot withstand leakage, but, as already mentioned in the previous paragraph,
allow the adversary to tamper the shares multiple times, each time with a potentially
different reconstruction set in the associated tampering experiment.

1.1 Our Contributions

In this paper, we resolve all of the above open questions:

• We present a general compiler that transforms any secret sharing scheme into a leakage-
resilient one for the same access structure and preserves the efficiency of the original
scheme. The compiled scheme withstands bounded size local leakage from all shares.
The result extends to attacks that are strictly stronger than previously considered: the
adversary can be told complete information on an unqualified set of shares and can in
addition be given local leakage from all the other shares, and still will not learn the secret.
To the best of our knowledge, this is the first result of its kind.

If the share length of the underlying secret-sharing scheme is `, then the compiler can
yield a leakage-resilient scheme with shares of length O(`) and leakage rate 1 − c for an
arbitrarily small constant c > 0. Moreover, if we allow a blow-up of the share length in
the compiled scheme from ` to ω(`), then we can achieve a leakage rate of 1− o(1).

• We present another compiler that transforms any secret sharing scheme realizing an access
structure A where every qualified set T has size at least 3 into a scheme for the same access
structure that is non-malleable with concurrent reconstruction with respect to individual
share tampering. More precisely, the adversary chooses a polynomial (in the number of
parties) number of qualified sets T1, T2, . . . , where it may be the case that Ti = Tj for some
i and j, along with associated tampering functions f (1), f (2), . . . , where f (i) tampers each

4

share independently. We may think of this setting as a strong analogue of the multiple-
tampering paradigm for non-malleable codes and extractors: The adversary is allowed
to (non-adaptively) tamper the shares multiple times, and in each tampering attempt is
further allowed to freely choose the qualified set to be used by the reconstruction algorithm
in the tampering experiment.

• We present a compiler that turns any threshold signature scheme into one that is secure
against tampering, assuming the original scheme is secure in the standard sense. In partic-
ular, the compiled scheme is secure even if faulty signatures are constructed from several
qualified sets after tampering. We allow the adversary to either tamper with all shares
of the secret key, or to maliciously corrupt an unqualified subset of the signature servers.
The compiler adds two rounds to the signing protocol of the original scheme. The com-
putational complexity is essentially that of the original signature protocol plus that of the
reconstruction in a non-malleable secret-sharing scheme. The overhead is actually only
necessary each time the system is initialized from storage that may have been tampered,
and therefore its cost amortizes over all signatures generated while the system is on-line.

• We present a compiler that turns any threshold signature scheme into one that is secure in
the standard sense even if the adversary, additionally, obtains size-bounded leakage from
all secret key shares. The compiler follows the same blueprint and is as efficient as our
compiler for non-malleable threshold signatures.

1.2 Technical Overview

In this section, we give a high-level overview of the proof ideas and techniques used to construct
each one of our compilers.

All of our secret-sharing scheme compilers are based on the same key idea: Let s1, . . . , sn
denote the shares obtained via the underlying secret-sharing scheme. We encode each share si
using some (randomized) coding scheme (Enc,Dec) to obtain two values Li and Ri. Then, the
new compiled shares are obtained by, for each i = 1, . . . , n, giving Li to the i-th party, and Ri
to every other party. At the end of this procedure, the i-th party has a compiled share, denoted
Si, of the form

Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) .

Reconstruction of the underlying secret is possible from any qualified set of parties, as they will
learn the corresponding pairs (Li, Ri), and hence the underlying share si. The different compilers
arise by instantiating the idea above with coding schemes satisfying different properties. One
basic property that is required from all coding schemes is that one half of the codeword (Li, Ri)
reveals almost nothing about si.

1.2.1 Leakage-Resilient Secret-Sharing Scheme

In order to obtain a leakage-resilient secret-sharing scheme via the idea above, we instantiate the
coding scheme (Enc,Dec) as follows: Let Ext be a strong seeded extractor. Roughly speaking,
a strong seeded extractor is a deterministic function that produces a close-to-uniform output
when given a sample from a source with high min-entropy along with a short, independent, and
uniform seed, even when the seed is known to the distinguisher. Then, Enc(m) samples (L,R)
from the preimage Ext−1(m) close to uniformly at random. Here, L corresponds to the weak
source, while R corresponds to the uniform, independent seed. To recover m from a codeword
c, we simply set Dec(L,R) := Ext(L,R). This coding scheme is efficient if Ext is itself efficient,
and furthermore Ext supports efficient close-to-uniform preimage sampling. More precisely, this
means that, given m, there exists an efficient algorithm that samples an element of Ext−1(m)
close to uniformly at random. The idea behind this coding scheme is the same as the one
used by Cheraghchi and Guruswami [CG14] in order to obtain split-state non-malleable codes
from non-malleable extractors (variations of these objects are defined in Section 2, but are not
important for this discussion).

5

We instantiate our compiler with linear strong seeded extractors coupled with a careful
choice of parameters in order to obtain a leakage-resilient scheme with good leakage rate. A
result of [CGL16] ensures that we can efficiently sample close to uniformly from the preimage
of any linear strong seeded extractor, provided the error of the extractor is small enough.

We now discuss why this construction is leakage-resilient. For simplicity, assume that Li and
Ri are independent and uniform for i = 1, . . . , n. This is not true in practice, and a little more
care is needed to show that leakage-resilience holds in Section 4. However, it lets us present the
main idea behind the proof in a clearer way.

Suppose the adversary holds shares from a set of unqualified parties T . Without loss of
generality, let T = {1, . . . , t}. Furthermore, we also assume the adversary learns some limited
information about all shares, i.e., he learns Leaki(Si) for some function Leaki and all i = 1, . . . , n.
Note that the adversary knows the pairs (Li, Ri) for i = 1, . . . , t, and hence the shares s1, . . . , st
obtained via the underlying secret-sharing scheme. Furthermore, he knows Ri (the seeds of the
extractor) for i = t+1, . . . , n. The goal of the adversary is now to obtain extra knowledge about
Lt+1,, . . . , Ln from the leaked information. Since, by hypothesis, the leaked information about
Li is only a small linear fraction of its length, and is independent of Ri, we can condition Li on
the output of Leaki(Si). As a result, Li conditioned on Leaki(Si) is still independent of Ri, and
still has high min-entropy. This means that the output of Ext(Li, Ri) still looks close-to-uniform
to the adversary, even when Ri is given (recall that we use a strong extractor). It follows that
the leaked information gives almost no information about the shares outside T , and hence we
can use the statistical privacy of the underlying secret-sharing scheme to conclude the proof.

1.2.2 Non-Malleable Secret-Sharing Scheme with Concurrent Reconstruc-
tion

In order to obtain a non-malleable scheme, we use the same basic idea as before, but with a few
modifications. To begin, we require the following primitives:

• A secret-sharing scheme (Share,Rec) for an access structure in which every qualified set
has size at least 3;

• A strong two-source non-malleable extractor nmExt secure against multiple tamperings
which supports efficient preimage sampling, in the sense that we can sample uniformly
from its preimages nmExt−1(z).

A non-malleable extractor is a stronger notion of an extractor introduced in [CG14]. More
precisely, its output must still be close to uniform even conditioned on the output of the extractor
on a tampered version of the original input. Similarly as before, such an extractor is said to be
strong if the property above still holds when the distinguisher is also given the value of one of the
input sources. Since their introduction, non-malleable extractors have received a lot of attention
due to their connection to split-state non-malleable codes [CG14, CZ14, CGL16, Li17]. We note
that constructions of such strong non-malleable extractors handling a sublinear (in the input
length) number of tamperings and supporting efficient preimage sampling are known [CGL16,
GKP+18].

The coding scheme (Enc,Dec) is obtained from nmExt analogously to the leakage-resilient
scheme. Namely, Enc(m) samples (L,R) uniformly at random from nmExt−1(m), and we set
Dec(L′, R′) := nmExt(L′, R′).

To encode the shares (s1, . . . , sn) into (S1, . . . , Sn), we proceed as follows:

1. Sample P ← {0, 1}p;
2. Set (Li, Ri)← Enc(P ||si) for i = 1, . . . , n, where || denotes string concatenation;

3. Set Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) for i = 1, . . . , n.

We will now briefly walk through the proof of statistical privacy and non-malleability for a
single reconstruction set. Statistical privacy follows from the statistical privacy properties of
the underlying secret-sharing scheme and the fact that (Enc,Dec) as defined above can be seen
as a 2-out-of-2 secret-sharing scheme.

6

In order to show statistical privacy, fix an unqualified set of parties T , which we may assume
is T = {1, . . . , t}. First, the fact that a split-state non-malleable code is also a 2-out-of-2 secret-
sharing scheme implies that we can replace the values Rt+1, . . . , Rn in all shares by independent
and uniformly random values. Second, the pairs (L1, R1), . . . , (Lt, Rt) encode shares s1, . . . , st,
respectively, belonging to an unqualified set of the underlying secret-sharing scheme. As a result,
the statistical privacy of that scheme implies we can replace these encodings by those induced
by a different secret.

In order to show non-malleability, fix a qualified set of parties T , with t = |T | ≥ 3. For
simplicity, assume again T = {1, . . . , t}. An adversary that wishes to tamper the shares in T
chooses tampering functions f1, . . . , ft, one per share. Write a tampered share S′i = fi(Si) as

S′i = (R
′(i)
1 , . . . , R

′(i)
i−1, L

′
i, R
′(i)
i+1, . . . , R

′(i)
n)

for i = 1, . . . , t. We now have the following reconstruction procedure, which may output a
special symbol ⊥ if it detects tampering:

1. For each i = 1, . . . , n, check that R
′(j1)
i = R

′(j2)
i for all j1, j2 6= i. If this is not the case,

then output ⊥;

2. If the check holds, set R′1 = R
′(2)
1 and R′i = R

′(1)
i for i = 2, . . . , t. Then, decode and parse

P ′i ||s′i ← Dec(L′i, R
′
i) for i = 1, . . . , t;

3. If P ′i 6= P ′j for some i, j ≤ t, output ⊥. Else, output RecT (s′1, . . . , s
′
t).

Note that the consistency checks in Steps 1 and 3 correspond to properties that must be satisfied
if (S′1, . . . , S

′
t) is a valid set of shares. Roughly speaking, in order to show non-malleability we

must be able to simulate the reconstruction of tampered shares without knowledge of the encoded
secret m (except if the adversary does not modify any share, in which case we may output m).

We prove non-malleability in two steps. First, we consider the following intermediate tam-
pering experiment on (S1, . . . , St):

• For each i = 1, . . . , n, check that R
′(j1)
i = R

′(j2)
i for all j1, j2 6= i. If this is not the case,

then output ⊥;

• If the check holds, set R′1 = R
′(2)
1 and R′i = R

′(1)
i for i = 2, . . . , t. For each i = 1, . . . , t, set

outputi = same∗ if L′i = Li and R′i = Ri. Otherwise, set outputi ← Dec(L′i, R
′
i);

• If outputi = same∗ for all i = 1, . . . , t, output same∗. Else, output (output1, . . . , outputt).

This is an intermediate tampering experiment in the sense that it corresponds to a stage of the
reconstruction procedure on the tampered shares where the values of the shares that remain the
same have not yet been revealed. A key result we show is that the output of the intermediate
tampering experiment described above has almost no correlation with the initial values P ||si
for i = 1, . . . , n. In particular, we can replace each such value by an independent and uniformly
random one, and hence by a set of uniform values independent of the secret m encoded by the
shares s1, . . . , sn. We leverage a novel property of strong non-malleable extractors (Lemma 36)
to prove this result, which may be of independent interest.

By the result just described, we now know how to simulate the intermediate tampering
experiment for any secret m without any knowledge of m itself. However, to be able to simulate
the behavior of the real reconstruction procedure on the tampered shares, we must know what
the simulator must output when outputi = same∗ and outputj 6= same∗ for some i, j ≤ t. In
the second step, we show that the reconstruction procedure will output ⊥ (i.e., tampering is
detected, and hence the procedure is aborted) with high probability in this situation. This is
because, with high probability, the decoded prefixes will not match among all parties in this
case. As a result, we can simply have our simulator output ⊥ in such a case, and it will coincide
with the output of the real reconstruction procedure with high probability.

The argument above implies that our secret-sharing scheme is non-malleable against a single
tampering of a reconstruction set. This result extends to the concurrent reconstruction setting,
where the adversary is allowed to tamper the shares multiple times with different tampering

7

functions and qualified sets. We refer to the later sections for details on the proof for the general
case.

1.2.3 Threshold Signature Scheme Secure Against Tampering

Finally, our threshold signature compiler starts from the assumption that the secret key is to
be secret-shared among a set of servers. We assume that we have protocols for generating
n signature shares as well as a protocol for computing the final signature from these shares.
Further, we assume that these protocols are secure even if an adversary maliciously corrupts an
unqualified subset of size t of the n ≥ 2t+ 1 servers.

To construct the compiled protocol, we first apply our second compiler from above, such
that we now share the secret key using non-malleable secret sharing. Recall that this scheme
involves encoding the original share si to get a pair (Li, Ri) where the i-th server holds Li and
all other servers hold Ri. If now the i-th server wants to generate a signature share, it requests
Ri from all other servers and waits until it gets back n− t responses. If all received Ri are the
same, it accepts the value and decodes (Li, Ri) to obtain key share si. Note that since n ≥ 2t+1
and the server gets n− t responses, we ensure that it gets back at least one honest response. At
this point the server generates a signature share as it would do in the original protocol.

A rough intuition on why this is secure follows: Recall that our model says that the adversary
can either tamper with the shares, or corrupt t of servers. If he tampers, he is not allowed to
corrupt anyone, and this means that the servers are executing the non-malleable reconstruction
protocol securely, and will either get the correct original shares (and thus create correct signa-
tures) or will get something unrelated, in which case the output cannot compromise any secret
key share. In the other case, the adversary has chosen to corrupt a set of servers. However, then
we know that the shares we start from are correct. This means that sending the required Ri’s
in the clear to i-th server does not leak any extra information than it should. In fact, it merely
enables the server to get his original share. The checks we enforce ensure that an honest player
get its correct original share, and hence security follows from the threshold signature scheme we
started with.

1.3 Open Questions

Several exciting questions remain open. The first natural direction is to improve the rates of our
constructions. This can be achieved indirectly by coming up with better explicit constructions
of strong seeded extractors and strong seedless non-malleable extractors. Another possibility is
to improve the relationship between the share length of the compiled scheme and the number
of parties. All of our constructions, as well as the constructions of Goyal and Kumar [GK18a,
GK18b], have share sizes which are at least linear in the number of parties, and it would be
interesting to see whether one can obtain a weaker dependence.

Our work introduces stronger definitions for non-malleable secret sharing schemes. However,
our new notions, as well as the previous ones, are fundamentally non-adaptive in the sense that
the tampering functions and reconstruction sets have to be chosen without seeing any of the
shares a priori. We believe it would be more in the spirit of secret sharing if the tampering
functions and reconstruction sets could be chosen after seeing some unqualified set of shares.
On a similar note, a logical next step would be to define and attempt to construct continuous
non-malleable secret-sharing schemes (in the spirit of [FMNV14]), where the adversary is allowed
to choose the tampering function and qualified set to be reconstructed adaptively.

Our definition of leakage-resilient secret sharing schemes is also non-adaptive. It would be
interesting to construct schemes which remain leakage resilient even if the adversary has access
to an unqualified set of shares prior to choosing the leakage functions. Moreover, we obtain
leakage rate 1−c for an arbitrarily small constant c > 0 while preserving the share length (up to
a multiplicative constant). However, our share length suffers a polynomial blow-up if we want
to achieve leakage rate 1−o(1). It would be interesting to give constructions of leakage-resilient

8

schemes (even in the non-adaptive setting) with an improved tradeoff between leakage rate and
share length.

1.4 Organization

The rest of the paper is organized as follows: We present notation, relevant definitions, and
known lemmas that will prove useful in Section 2. We present and study our compiler for non-
malleable secret-sharing in Section 3, along with separations between different definitions of
non-malleable secret-sharing introduced in Section 2. In Section 4, we present our compiler for
leakage-resilient secret-sharing. Finally, in Section 5, we discuss our compiler for non-malleable
and leakage-resilient threshold signatures.

2 Preliminaries and Definitions

We denote the set {1, . . . , n} by [n]. Random variables are usually denoted by uppercase letters
such as X, Y , and Z. We usually denote sets by calligraphic letters such as A and M. The
probability that a random variable X is in a set S is denoted by X(S). We use the notation
z ← Z to denote that z is sampled according to distribution Z. If instead we write, say, s← S,
this means that s is sampled uniformly at random from the set S. Given an n-tuple x and a set
S ⊆ [n] with S = {i1, . . . , is} and ij < ij+1 for j = 1, . . . , s − 1, we define xS = (xi1 , . . . , xis).
By an efficient algorithm, we mean an algorithm that runs in time polynomial in the length of
the input.

2.1 Statistical Distance and Entropy

In this section, we define the statistical distance between two distributions and the min-entropy
of a distribution, and we state some useful properties of these two quantities.

Definition 1 (Statistical Distance). Let X and Y be two distributions over a set S. The
statistical distance between X and Y , denoted by ∆(X;Y), is given by

∆(X;Y) := max
T⊆S

(|X(T)− Y (T)|) =
1

2

∑
s∈S
|X(s)− Y (s)| .

We say X is ε-close to Y , denoted X ≈ε Y , if ∆(X;Y) ≤ ε, and we write ∆(X;Y |Z) as
shorthand for ∆((X,Z); (Y, Z)).

The following known properties of the statistical distance will be useful throughout the paper.

Lemma 2. For any two random variables X and Y , and any randomized function f , we have
that

∆(f(X); f(Y)) ≤ ∆(X;Y) .

Lemma 3 ([CG14]). Fix random variables X and Y such that

X ≈ε Y .

Let X ′ and Y ′ denote X and Y conditioned on an event E, respectively. If X(E) = p (i.e., the
probability of event E under X is p), then

X ′ ≈ε/p Y ′.

Definition 4 (Min-Entropy and Conditional Min-Entropy). Fix a distribution X over X . The
min-entropy of X, denoted by H∞(X), is given by

H∞(X) := − log

(
max
x∈X

X(x)

)
.

9

Moreover, the conditional min-entropy of X given Z, denoted by H∞(X|Z), is given by

H∞(X|Z) := − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over Z.

The following property of the conditional min-entropy will be fundamental in later sections.

Lemma 5 ([DORS08]). Let (X,Z) be some joint probability distribution. Then, if Z is supported
on at most 2` values, we have

H∞(X|Z) ≥ H∞(X)− ` .

2.2 Extractors and Non-Malleable Codes

In order to enforce our compilers have the desired properties, we will need to use some variants
of extractors and non-malleable codes. We present the relevant definitions and results in this
section.

Definition 6 (Coding Scheme). A tuple of functions (Enc,Dec), where Enc : M → C may
be randomized but Dec : C → M ∪ {⊥} is deterministic, is said to be a coding scheme if the
correctness property

Pr(Dec(Enc(m)) = m) = 1

holds for every m ∈M, where the probability is taken over the randomness of the encoder Enc.

Definition 7 (Non-Malleable Code [DPW10]). We say that a coding scheme (Enc : M →
X ×X , Dec : X ×X →M∪{⊥}) is ε-non-malleable in the split-state model if for all functions
F,G : X → X there exists a distribution SDF,G over M∪ {same∗,⊥} such that

TamperF,G
m ≈ε SimF,G

m

for all m ∈M, where

TamperF,G
m =

{
(L,R)← Enc(m)

Output Dec(F (L), G(R))

}
,

and

SimF,G
m =

d← SDF,G

If d = same∗, output m

Else, output d

 .

Additionally, SDF,G should be efficiently samplable given oracle access to F (·) and G(·).

We will also require a few variants of randomness extractors. We begin with the basic
definition.

Definition 8 (Extractor). An efficient function Ext : X × {0, 1}d → Z is a strong (k, ε)-
extractor if for all X,W such that X is distributed over X and H∞(X|W) ≥ k we have

Ext(X,Ud),W,Ud ≈ε UZ ,W,Ud .

Moreover, we say Ext supports efficient preimage sampling if, given z ∈ Z, there exists an
efficient algorithm that samples an element of Ext−1(z) uniformly at random. An extractor is
said to be linear if Ext(·, s) is a linear function for every s ∈ {0, 1}d.

We note that strong extractors as in Definition 8 are often called average-case strong in the
literature to distinguish from extractors where the side information W is not considered, which
are just called strong in that case. We opt to omit the average-case qualifier both for the sake
of brevity and because strong and average-case strong extractors are very closely connected: It

10

is well-known that every strong (k, ε)-extractor is an average-case strong (k + log(1/γ), ε+ γ)-
extractor for every γ > 0.

We proceed to describe some explicit linear strong extractors that will be used to instantiate
our compiler for leakage-resilient secret sharing. The most basic choice, which already leads to
good parameters in the compiler, is the improved version of Trevisan’s extractor [Tre01, RRV02]
(with the penalty to ensure it is average-case strong as per the previous paragraph).

Lemma 9 ([Tre01, RRV02]). For every ` ≤ k ≤ N and ε, γ > 0 there exists an explicit linear

strong (k + log(1/γ), ε+ γ)-extractor Ext : {0, 1}N × {0, 1}d → {0, 1}` with d = O
(

log2(N/ε)
log(k/`)

)
.

Setting k = N1−δ and γ = ε = 2−
√
k in Lemma 9, we obtain the following result.

Corollary 10. For every N and any constant 0 < δ < 1, there exists an explicit linear strong

(k = Θ(N1−δ), ε = 2−Ω(
√
k))-extractor Ext : {0, 1}N × {0, 1}d → {0, 1}` with d = O(k) = o(N)

and any ` ≤ k/2.

Constructing the next extractor requires a bit more background. We begin by defining
lossless condensers.

Definition 11 (Lossless Condenser). A function C : {0, 1}N × {0, 1}d → {0, 1}` is said to be a
strong (k, ε)-lossless condenser if for every k-source X we have that (Ud, C(X,Ud)) is ε-close to
a source with min-entropy at least d+ k over {0, 1}d × {0, 1}`. Moreover, C is said to be linear
if C(·, s) is a linear function for every s ∈ {0, 1}d.

The following lemma describes a linear version of the nearly-optimal GUV condenser [GUV09].

Lemma 12 ([Che10, Corollary 2.23, adapted with p = 2 and α = 1]). For every k ≤ N and
ε > 0 there exists an explicit linear strong (k, ε)-lossless condenser C : {0, 1}N×{0, 1}d → {0, 1}`
with d ≤ 2 log

(
Nk
ε

)
+O(1) and ` ≤ 2k + d.

We also require the following linear strong extractor arising from the Leftover Hash Lemma.

Lemma 13 ([Che10, Theorem 2.17 (1), adapted]). For every k ≤ N , ε > 0, and ` ≤ k −
2 log(1/ε) there exists an explicit linear strong (k, ε)-extractor Ext : {0, 1}N × {0, 1}d → {0, 1}`
with d = N .

The next corollary follows by composing the extractor from Lemma 13 with the lossless
condenser from Lemma 12 and setting parameters appropriately.

Corollary 14. For every N , constant δ > 0 small enough, and ` ≤ δN
5 there exists an explicit

linear strong (k = Θ(δN), ε = 3 · 2−0.4δN)-extractor Ext : {0, 1}N × {0, 1}d → {0, 1}` with
d = O(δN).

Proof. Fix the constant δ > 0. Let C : {0, 1}N × {0, 1}d1 → {0, 1}N ′ be the condenser from
Lemma 12 with k = δN and ε = 2−0.4k. Then, we can set d1 = C1δN andN ′ = 2k+d1 = O(δN).
Now, we consider Ext′ : {0, 1}N ′ × {0, 1}d2 → {0, 1}` from Lemma 13 with k and ε as before.
Then, we have d2 = N ′ = O(δN) and are allowed to choose any ` ≤ k − 2 log(1/ε) = δN

5 . The
result now follows by noting that Ext : {0, 1}N × {0, 1}d1+d2 → {0, 1}` satisfying

Ext(x, y1, y2) = Ext′(C(x, y1), y2)

is a linear strong (k + log(1/γ), 2ε + γ)-extractor with seed length d1 + d2 = O(δN) for every
γ > 0, and setting γ = ε.

The main reason why linear strong extractors are a good choice for instantiating our leakage-
resilient secret sharing compiler is that every such extractor supports efficient close-to-uniform
preimage sampling, provided the error of the extractor is small. More precisely, we have the
following result.

11

Lemma 15 ([CGL16, Claim 8.3]). Let Ext : {0, 1}N × {0, 1}d → {0, 1}` be a linear strong
(k, ε)-extractor, and suppose that ε < 2−1.5`. For every z ∈ {0, 1}`, let Dz denote the uniform
distribution over Ext−1(z). Then, there exists an efficient randomized algorithm S such that the
output of S on input z, denoted S(z), satisfies

S(z) ≈2−0.4` Dz

for every z ∈ {0, 1}`.

We will also need a stronger notion of an (independent-source) extractor, for which the output
still looks uniform even conditioned on the output of the extractor on a tampered version of the
original input.

Definition 16 (Strong Two-Source Non-Malleable Extractor). A function nmExt : X 2 →
Z is said to be a (k, ε, τ) strong two-source non-malleable extractor if the following prop-
erty holds: For independent distributions X,Y over X and W independent of Y such that
H∞(X|W),H∞(Y) ≥ k, and for all tampering functions (f1, g1), . . . , (fτ , gτ) it holds that

nmExt(X,Y),W, Y, {Dfi,gi(X,Y)}i∈[τ] ≈ε UZ ,W, Y, {Dfi,gi(X,Y)}i∈[τ] ,

where Df,g(X,Y) is defined as

Df,g(X,Y) :=

{
same∗, if f(X) = X and g(Y) = Y ,

nmExt(f(X), g(Y)), otherwise.

The function nmExt is said to support efficient preimage sampling if, given z ∈ Z, there is an
efficient algorithm that samples an element of the preimage nmExt−1(z) uniformly at random.

There exist explicit constructions of strong two-source non-malleable extractors with good
parameters, supporting efficient preimage sampling, both against single and multiple tamper-
ings [CGL16, Li17]. Although it is not stated in [CGL16] that the extractor found there is
strong, it is known that this property does hold [Kum18]. A statement and proof of this result
appears in [GKP+18]. We will use the following two explicit non-malleable extractors.

Lemma 17 ([Li17]). For any field F of cardinality 2N , there exists a constant δ ∈ (0, 1) and a
function nmExt : F2 → {0, 1}` such that nmExt is an efficient ((1−δ)N, ε, 1) strong two-source
non-malleable extractor with ` = Ω(N) and ε = 2−Ω(N/ logN).

Lemma 18 ([CGL16, GKP+18]). For any field F of cardinality 2N , there exists a constant
δ ∈ (0, 1) and a function nmExt : F2 → {0, 1}` such that nmExt is an efficient (N −Nδ, ε, τ)

strong two-source non-malleable extractor with ` = NΩ(1), τ = NΩ(1), and ε = 2−N
Ω(1)

.

The connection between non-malleable extractors with efficient preimage sampling and split-
state non-malleable codes is made clear by the following result.

Lemma 19 ([CG14]). Fix an explicit two-source (n, ε, 1)-non-malleable extractor nmExt :
F2 → {0, 1}` that supports efficient preimage sampling. The coding scheme (NMEnc,NMDec)
is defined as follows:

• NMEnc(m): Sample (L,R)← nmExt−1(m), and output (L,R);

• NMDec(L′, R′): Output nmExt(L′, R′).

Then, (NMEnc,NMDec) is an efficient split-state ε′-non-malleable code for ε′ = ε(2` + 1).

Combining Li’s non-malleable extractor [Li17] and Lemma 19 immediately leads to the fol-
lowing result, also found in [Li17].

Corollary 20 ([Li17]). For any field F of cardinality 2N , there exists an efficient split-state
ε-non-malleable code (NMEnc,NMDec) with NMEnc : {0, 1}` → F2, NMDec : F2 →
{0, 1}` ∪ {⊥}, ` = Θ(N/ logN), and ε = 2−Ω(N/ logN).

12

2.3 Secret-Sharing Schemes

In this section, we introduce our definitions of leakage-resilient and non-malleable secret-sharing
schemes. We begin with basic secret sharing concepts.

Definition 21 (Access Structure). We say A is an access structure for n parties if A is a
monotone class of subsets of [n], i.e., if A ∈ A and A ⊆ B, then B ∈ A. We call sets T ∈ A
authorized or qualified, and unauthorized or unqualified otherwise.

Definition 22 (Secret Sharing Scheme [Bei11]). LetM be a finite set of secrets, where |M| ≥ 2.
A (randomized) sharing function Share :M→ S1×· · ·×Sn is an (n, ε)-Secret Sharing Scheme
for secret space M realizing access structure A if the following two properties hold :

1. Correctness. The secret can be reconstructed by any authorized set of parties. That
is, for any set T ∈ A, where T = {i1, . . . , it}, there exists a deterministic reconstruction
function RecT : ⊗i∈TSi →M such that for every m ∈M,

Pr[RecT (Share(m)T) = m] = 1 ,

where the probability is taken over the randomness of Share.

2. Statistical Privacy. Any collusion of unauthorized parties should have “almost” no
information about the underlying secret. More formally, for all unauthorized sets T /∈ A
and for every pair of secrets a, b ∈M, we have

Share(a)T ≈ε Share(b)T .

We can additionally require that the unauthorized parties do not learn anything about the
underlying secret, even if given some leakage from all the shares. This leads to the notion of
leakage-resilient secret-sharing.

Definition 23 (Leakage-Resilient Secret-Sharing Scheme). A secret-sharing scheme (Share,Rec)
realizing access structure A is said to be an (n, ε, ρ)-leakage-resilient secret-sharing scheme if
the following property additionally holds:

• Leakage-Resilient Statistical Privacy. For all unauthorized sets T /∈ A, functions
Leaki : Si → {0, 1}bρ log |Si|c for i = 1, . . . , n, and for every pair of secrets a, b ∈ M, we
have

Share(a)T , {Leaki(Share(a)i)}i∈[n] ≈ε Share(b)T , {Leaki(Share(b)i)}i∈[n] .

Remark 24. Observe that it only makes sense to set ρ < 1 in Definition 23.

Alternatively, we can require some security against tampering attacks on the shares produced
by the secret-sharing scheme: Either the secret reconstructed from the tampered shares is the
same as the original secret, or it is almost independent of it. The notion of non-malleable secret-
sharing was first considered in [GK18a, GK18b], but only with respect to tampering attacks on
qualified sets belonging to the minimal access structure.

Definition 25 (Non-Malleable Secret Sharing Scheme). Let (Share,Rec) be an (n, ε)-secret
sharing scheme for secret space M realizing access structure A. Let F be some family of tam-
pering functions. For each f ∈ F , m ∈ M and authorized set T ∈ A, define the tampering
experiment

STamperf,Tm =

s← Share(m)

s̃← f(s)

m̃← Rec(s̃T)

Output m̃

 ,

which is a random variable over the randomness of the sharing function Share. We say that
(Share,Rec) is ε′-non-malleable with respect to F if for each f ∈ F and authorized set T ∈ A,

13

there exists a distribution SDf,T (corresponding to the simulator) over M∪ {same∗,⊥} such
that we have

STamperf,Tm ≈ε′ SSimf,T
m ,

for all m ∈M and authorized sets T ∈ A, where

SSimf,T
m =

m̃← SDf,T

If m̃ = same∗, output m

Else, output m̃

 .

Additionally, SDf,T should be efficiently samplable given oracle access to f(·).

We also consider a stronger notion of non-malleable secret-sharing, where the adversary is
allowed to tamper the shares multiple times, and in each tampering attempt is free to choose
the qualified set to be used by the reconstruction algorithm in the tampering experiment.

Definition 26 (Non-Malleable Secret Sharing Scheme with Concurrent Reconstruction). Let
(Share,Rec) be an (n, ε)-secret sharing scheme for secret space M realizing access structure
A. Let τ be a fixed constant. Let F be some family of tampering functions. For m ∈ M,
f = (f (1), . . . , f (τ)) ∈ Fτ , and T = (T1, . . . , Tτ) ∈ Aτ , define the tampering experiment

SCRTamperf ,Tm =
(
STamperf

(1),T1
m ,STamperf

(2),T2
m , . . . ,STamperf

(τ),Tτ
m

)
,

where each STamperf
(i),Ti

m is defined as in Definition 25. We say that (Share,Rec) is (ε′, τ)-
concurrent-reconstruction-non-malleable with respect to F if for each tuple f ∈ Fτ and tuple
of authorized sets T ∈ Aτ , there exists a distribution SDf ,T over (M∪ {⊥, same∗})τ such that

SCRTamperf ,Tm ≈ε′ SCRSimf ,T
m

for all m ∈M, where

SCRSimf ,T
m =

{
(m̃1, . . . , m̃τ)← SDf ,T

Output (m̃′1, . . . , m̃
′
τ), where m̃′i = m if m̃i = same∗, and m̃′i = m̃i otherwise

}
.

Additionally, SDf ,T should be efficiently samplable given oracle access to f (1)(·), . . . , f (τ)(·).

In this work, we will focus on the case where each share is tampered independently. With
this in mind, we define the family of so-called t-split-state tampering functions, which we denote
by F split

t .

Definition 27 (t-Split-State Tampering Functions). The family of t-split-state tampering func-

tions over a domain X , denoted by Fsplit
t (the domain is ommitted for brevity), consists of all

functions f : X t → X t for which there exist functions fi : X → X with i ∈ [t] such that

f(x) = (f1(x1), . . . , ft(xt)) ,

where x = (x1, . . . , xt) and xi ∈ X for i ∈ [t].

In particular, split-state tampering of non-malleable codes and extractors as in Definitions 7
and 16 corresponds to considering the family of tampering functions F split

2 .
The following result states that split-state non-malleable codes are 2-out-of-2 non-malleable

secret-sharing schemes.

Lemma 28 ([ADKO15]). Suppose (NMEnc,NMDec) is an ε-non-malleable code in the split-
state model. Fix messages m and m′, and let (L,R)← NMEnc(m) and (L′, R′)← NMEnc(m′).
Then, we have

L ≈2ε L
′ ,

and
R ≈2ε R

′ .

14

3 Non-Malleable Secret-Sharing

3.1 Separations between Notions of Non-Malleable Secret-Sharing

In this section, we show separations between the different notions of non-malleable secret sharing
introduced in Section 2 and in [GK18b]. We recall the definition of non-malleable secret sharing
for general access structures given in [GK18b].

Definition 29 (Minimal Access Structure). Given an access structure A, its minimal access
structure, denoted by Amin, consists of all T ∈ A such that if W (T , then W 6∈ A.

Definition 30 (Non-Malleable Secret-Sharing as in [GK18b]). Let (Share,Rec) be an (n, ε)-
secret sharing scheme for secret spaceM realizing access structure A with minimal access struc-
ture Amin. Let F be some family of tampering functions. For each f ∈ F , m ∈M and authorized
set T ∈ Amin, define the tampering experiment

STamperf,Tm =

s← Share(m)

s̃← f(s)

m̃← Rec(s̃T)

Output m̃

 ,

which is a random variable over the randomness of the sharing function Share. We say that
(Share,Rec) is ε-non-malleable with respect to F if for each f ∈ F and authorized set T ∈
Amin, there exists a distribution SDf,T (corresponding to the simulator) over M∪ {same∗,⊥}
such that we have

STamperf,Tm ≈ε SSimf,T
m ,

for all m ∈M and authorized sets T ∈ A, where

SSimf,T
m =

m̃← SDf,T

If m̃ = same∗, output m

Else, output m̃

 .

Additionally, SDf,T should be efficiently samplable given oracle access to f(·).

The difference between Definitions 25 and 30 is that in Definition 30 one only has to deal
with reconstruction from minimal qualified sets T ∈ Amin. Our first result in this section states
that there exist secret-sharing schemes for n parties which satisfy Definition 30 for F = F split

n ,
but do not satisfy the stronger Definition 25.

Lemma 31. There exists a secret-sharing scheme (AShare,ARec) for n parties satisfying
Definition 30 with respect to F = Fsplit

n , but which does not satisfy Definition 25.

Proof. Fix some secret-sharing scheme (AShare,ARec) for n parties satisfying Definition 30
with respect to F = F split

n . Suppose that the corresponding secrets lie in some field F0, while
shares lie in F1. Consider now the secret-sharing scheme (SHARE,REC), with secrets over
F0 and shares over F1 ∪ {�} for some special symbol �, defined as follows:

• For a secret m, set SHARE(m) = AShare(m).

• Given a possibly tampered set of shares s̃ = s̃1, . . . , s̃t corresponding to a qualified set of
parties T ∈ A, REC(s̃) proceeds as follows:

1. If s̃i 6= � for all i, output ARec(s̃);

2. Else, if there exist i such that s̃i = � and T ′ ⊆ T satisfying T ′ ∈ A and s̃j 6= � for
all j ∈ T ′, then output

ARec(s̃T ′) + |{i ∈ T : s̃i = �}| ;

3. Else, for each i ∈ [t], if s̃i = �, overwrite s̃i ← 0 ∈ F. Reconstruct as ARec(s̃).

15

It is clear that if (AShare,ARec) fullfills Definition 30, then so does (SHARE,REC).
The reason is that, if T ∈ Amin, then we do not land on the second case of the reconstruction
procedure REC(s̃) above.

However, (SHARE,REC) does not fullfill Definition 25. In fact, fix a qualified set T ∈ A
(again, for simplicity assume T = {1, . . . , t}) such that T 6= [n]. Let T ′ = T ∪ {t + 1} ∈ A.
Consider the tampering functions f1, . . . , ft, ft+1 such that f1, . . . , ft are identity, and ft+1(x) =
� for all x ∈ F1. Then,

REC(s̃1, . . . , s̃t, s̃t+1) = REC(s1, . . . , st,�)

= ARec(s1, . . . , st) + 1

= m+ 1 ,

which is clearly correlated with m.

We now show that there exists a secret-sharing scheme satisfying Definition 25 which does
not satisfy Definition 26, provided the number of parties is large enough. In words, such a
scheme is non-malleable with respect to the reconstruction of a single arbitrary qualified set
T ∈ A, but is not non-malleable if one allows concurrent reconstruction of several qualified sets.

Lemma 32. There exists a secret-sharing scheme (AShare,ARec) for n parties (with n large
enough) satisfying Definition 25 with respect to F = Fsplit

n , but which does not satisfy Defini-
tion 26.

Proof. Consider an access structure A over 2n parties such that T ∈ A if and only if i, j ∈ T
for some i ≤ n and j > n. In words, the set of parties is split into two halfs {1, . . . , n} and
{n + 1, . . . , 2n}, and the qualified sets in A are exactly those that contain at least a party
from each half of the parties. The secret-sharing scheme (AShare,ARec) requires a split-state
non-malleable code (NMEnc,NMDec), and proceeds as follows:

• AShare(m):

1. Set (L,R)← NMEnc(m);

2. Set si = L for all i ≤ n, and si = R for all i > n.

• ARec(s̃T) for a qualified set T ∈ A:

1. Find i, j ∈ T such that i ≤ n and j > n. This is possible because T ∈ A;

2. Set L̃← s̃i and R̃← s̃j ;

3. Set m̃← NMDec(L̃, R̃).

The fact that (AShare,ARec) satisfies Definition 25 follows directly from the non-malleability
of the underlying split-state code (NMEnc,NMDec).

To see that Definition 26 is not satisfied, consider an adversary that concurrently tam-
pers all sets of the form {i, n + i} for i = 1, . . . , n. Equivalently, the adversary can tamper
NMEnc(m) a total of n times in parallel. If n ≥ |L| + |R|, then we can perform the attack
described in [FMNV14, Section 3.1] in order to recover m, and thus break non-malleability.
For completeness, we describe the attack here: First, we note that for any split-state non-
malleable code, there exist L? and R?1 6= R?2 such that Dec(L?, R?1),Dec(L?, R?2) 6= ⊥, and
Dec(L?, R?1) 6= Dec(L?, R?2). An analogous property holds with the left encoding in place of
the right encoding and vice-versa. We now show how to fully recover R with |R| (non-adaptive)
tamperings. For i = 1, . . . , |R|, define the left tampering function Fi as Fi(L) = L? for all L.
Also, define the right tampering function Gi as

Gi(R) =

{
R?1, if Ri = 0,

R?2, if Ri = 1.

Then, we can recover Ri from the output of Dec(Fi(L), Gi(R)), and hence we recover R com-
pletely. A similar procedure can be undertaken to recover L with an additional |L| tamper-
ings.

16

3.2 Non-Malleable Secret-Sharing Scheme against Individual Tamper-
ings

Before proceeding to the more general case of non-malleability with concurrent reconstruction,
we describe our candidate secret-sharing scheme and prove it is non-malleable against a single
tampering with respect to functions which tamper the shares independently.

Theorem 33. Fix a number of parties n and an integer p. Furthermore, assume we have access
to the following primitives:

1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing an access
structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the corresponding shares lie
in {0, 1}r and the secrets in some set M;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be the ((1 − δ)N, ε2, 1) strong two-source non-
malleable extractor from Lemma 17, where ` = r + p. Hence, ` ≤ Ω(N) and ε2 =
2−Ω(N/ logN).

Then, there exists an (n, ε1 + 4nε2(2` + 1))-secret sharing scheme realizing access structure
A that is n(2`+1(ε2 + 2−δN/2+1) + 2−p)-non-malleable w.r.t. Fsplit

n . The resulting scheme
(NMShare,NMRec) shares an element of M into n shares, where each share contains n
elements of {0, 1}N . Finally, if the two primitives are efficient and the access structure A sup-
ports efficient membership queries, then the constructed scheme (NMShare,NMRec) is also
efficient.

We describe our construction of the non-malleable secret sharing scheme (NMShare,NMRec).

NMShare: Our sharing function takes as input a secret m ∈M and proceeds as follows:

1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);

2. Pick P ← {0, 1}p;
3. For each i ∈ [n], encode the share si to obtain (Li, Ri)← nmExt−1(P ||si);
4. For each i ∈ [n], construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);

5. Output (share1, . . . , sharen).

NMRec: Our reconstruction function takes as input shares {sharei : i ∈ T} corresponding to
an authorized set T ∈ A and proceeds as follows:

1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;

2. For each j ∈ [t], parse the shares in T to obtain (R
(ij)
1 , . . . , R

(ij)
ij−1, Lij , R

(ij)
ij+1, . . . , R

(ij)
n)←

shareij ;

3. For every ` ∈ [n], check that the R
(ij)
` have the same value for all j such that ij 6= `.

If this is not the case, output ⊥;

4. For every j ∈ [t], decode and parse Pij ||sij ← nmExt(Lij , R
(ik)
ij

), where ik is the

smallest element of T − {ij};
5. If there exist j, j′ ∈ [t] such that Pij 6= Pij′ , output ⊥;

6. Else, reconstruct m← ARec(si1 , . . . , sit), and output m.

Correctness and Efficiency: Follows in a straightforward manner from the construction.

Statistical Privacy: Fix two secrets a and b, and let T be an unauthorized set of size t.
Without loss of generality, we may assume that T = {1, 2, . . . , t}. Set

aST ← NMShare(a)T ,

bST ← NMShare(b)T .

Furthermore, let as1, . . . , asn and bs1, . . . , bsn be the shares obtained from AShare(a) and
AShare(b), respectively, in Step 1 of the NMShare procedure.

17

Our goal is to show that the distributions of these two sets of shares, aST and bST , are close
in statistical distance. More precisely, we will show that

aST ≈ε1+4nε2(2`+1) bST

for all unauthorized sets T and secrets a, b.
We have aST = (aS1, . . . , aSt) and bST = (bS1, . . . , bSt), with

aSi = (aR1, . . . , aRi−1, aLi, aRi+1, . . . , aRn) ,

bSi = (bR1, . . . , bRi−1, bLi, bRi+1, . . . , bRn) .

As a result, we can write

aST = [(aLi, aRi)i≤t, aRt+1, . . . , aRn] ,

bST = [(bLi, bRi)i≤t, bRt+1, . . . , bRn] .

Our first claim is that we can replace aRt+1, . . . , aRn by encodings of independent, uniformly
random messages with small penalty in statistical distance by invoking Lemma 28.

Lemma 34. Let R∗t+1, . . . , R
∗
n ∈ F be sampled as follows: For each j = t + 1, . . . , n, indepen-

dently sample a uniformly random message m∗, encode and parse (L∗, R∗) ← nmExt−1(m∗),
and set R∗j = R∗. Then,

(aLi, aRi)i≤t, aRt+1, . . . , aRn ≈2nε2(2`+1) (aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
n .

Proof. We prove the lemma via a hybrid argument. Consider the following hybrids:

Hybrid0 Sample aST ← NMShare(a). Recall we may write aST = [(aLi, aRi)i≤t, aRt+1, . . . , aRn].

Hybrid1 Sample aST as in the previous hybrid Hybrid0. Replace aRt+1 by R∗t+1 sampled as
in the lemma statement.

...

Hybridn−t Sample aST as in the previous hybrid Hybridn−t−1. Replace aRn by R∗n sampled
as in the lemma statement. Observe that the output of this hybrid is distributed exactly
as [(aLi, aRi)i≤t, R

∗
t+1, . . . , R

∗
n].

It suffices now to see that

Hybridj−1 ≈2ε2(2`+1) Hybridj

for j = 1, . . . , n − t. Observe that aRj is conditionally independent of (aLi, aRi)i 6=j given the
prefix P and the share asj . Therefore, we have

∆(Hybridj−1; Hybridj)

= ∆([(aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
t+j−1, aRt+j , . . . , aRn]; [(aLi, aRi)i≤t, R

∗
t+1, . . . , R

∗
t+j , aRt+j+1, . . . , aRn])

≤ ∆([(aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
t+j−1, aRt+j , . . . , aRn]; [(aLi, aRi)i≤t, R

∗
t+1, . . . , R

∗
t+j , aRt+j+1, . . . , aRn]|P, ast+j)

= ∆(aRt+j ;R
∗
t+j |P, ast+j) , (1)

where the first inequality follows from the triangle inequality, and the second equality follows
by conditional independence as previously stated. Now, note that aRt+j is the right part of
nmExt−1(P ||st+j). Thus, since the coding scheme (nmExt−1,nmExt) is an (ε2(2` + 1))-non-
malleable code by Lemma 19, it follows that Lemma 28 yields

aRt+j , P, ast+j ≈2ε2(2`+1) R
∗
t+j , P, ast+j . (2)

Combining (1) and (2) leads to

Hybridj−1 ≈2ε2(2`+1) Hybridj ,

as desired.

18

Observe that, by the statistical privacy of the underlying secret sharing scheme, we have

∆((aLi, aRi)i≤t; (bLi, bRi)i≤t)

≤ ∆((aLi, aRi)i≤t; (bLi, bRi)i≤t|P)

≤ ε1 , (3)

where P is the prefix used when encoding the shares with nmExt−1. This is because T is an
unauthorized set, and each (aLi, aRi) (resp. (bLi, bRi)) depends on (aLj , aRj) (resp. (bLj , bRj))
for j 6= i only through the share asi or bsi it encodes, when the prefix P is fixed. Combining
Lemma 34 with (3) and a repeated application of the triangle inequality yields

∆(aST ; bST) = ∆([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])

≤ ∆([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
n])

+ ∆([(aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
n]; [(bLi, bRi)i≤t, R

∗
t+1, . . . , R

∗
n])

+ ∆([(bLi, bRi)i≤t, R
∗
t+1, . . . , R

∗
n]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])

≤ 2nε2(2` + 1) + ε1 + 2nε2(2` + 1)

= ε1 + 4nε2(2` + 1) ,

which concludes the proof of statistical privacy.

Statistical Non-Malleability: Let T be an authorized set of size t ≥ 3. Without loss of
generality, we may assume that T = {1, 2, . . . , t}. Let f1, . . . , ft be the corresponding tampering
functions. Let s1, . . . , sn ∈ {0, 1}k+p be arbitrary strings, and let s = (s1, . . . , sn).

Definition 35. We define the following partial tampering experiment IntTampT,fs .

1. For each i ∈ [n], (Li, Ri)← nmExt−1(si).

2. For each i ∈ [n], let Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).

3. For each j ∈ [t], let fj be a function that maps Sj to R̃
(j)
1 , . . . , R̃

(j)
j−1, L̃j , R̃

(j)
j+1, . . . , R̃

(j)
n .

4. Check whether R̃
(j1)
i = R̃

(j2)
i for all distinct i, j1, j2 where i ∈ [n], and j1, j2 ∈ T . If any of

them is not true, then IntTampT,fs = ⊥.

5. For each i ≥ 2, let R̃i = R̃
(1)
i , and let R̃1 = R̃

(2)
1 .

6. For each i ∈ [t], if Li = L̃i and Ri = R̃i, then outputi = same∗, else outputi =

nmExt(L̃i, R̃i).

7. IntTampT,fs = (output1, output2, . . . , outputt).

We now show the following auxiliary lemma.

Lemma 36. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be a (k, ε, τ) strong non-malleable two-
source extractor. Also, let h1 : {0, 1}N → Z, h2 : {0, 1}N → Z, and h3 : {0, 1}N → {0, 1} be
functions for some set Z. For functions F,G : {0, 1}N → {0, 1}N , let AF,G be an algorithm that
takes as input x, y ∈ {0, 1}N , and does the following: If h1(x) 6= h2(y), or if h3(y) = 1, then
output ⊥, else if F (x) = x, and Gj(y) = y, output same∗, else output nmExt(F (x), G(y)). For
X,Y uniform and independent in {0, 1}N , we have that

∆ := ∆(nmExt(X,Y) ; U` | Y, AF,G(X,Y)) ≤ ε+ 2−
N−k

2 +1 .

Proof. Let L be defined as follows:

L := {x ∈ {0, 1}N : |h−1
1 (h1(x))| ≥ 2k} .

19

Let L = {0, 1}N \ L. Let X? be uniform in L, and let X
?

be uniform in L. First we bound
the required statistical distance assuming X is restricted to being uniform in L. Notice that
H∞(X?|h1(X?)) ≥ k. Thus, by Lemma 18 we have that

∆(nmExt(X?, Y) ; U` | h1(X?), Y, DF,G(X?, Y)) ≤ ε .

Notice that AF,G(X?, Y) is a deterministic function of DF,G(X?, Y), h1(X?), Y . Thus, we have
that

∆1 := ∆(nmExt(X?, Y) ; U` | Y, AF,G(X?, Y)) ≤ ε .

We now proceed by cases.

CASE 1: |L| ≥ 2
N+k

2 . In this case, H∞(h1(X
?
)) = N−k

2 , which implies that

Pr[AF,G(X
?
, Y) 6= ⊥] ≤ Pr[h1(X

?
) = h2(Y)] ≤ 2−

N−k
2 .

Thus,

∆
(
AF,G(X

?
, Y) ; ⊥ | nmExt(X

?
, Y), Y

)
≤ 2−

N−k
2 ,

and
∆
(
AF,G(X

?
, Y) ; ⊥ | U`, Y

)
≤ 2−

N−k
2 ,

Since H∞(X
?
) ≥ N+k

2 ≥ k, by Lemma 18 we have that

∆
(
nmExt(X

?
, Y) ; U` | Y, ⊥

)
≤ ε .

Thus, by the triangle inequality, it follows that

∆2 := ∆
(
nmExt(X

?
, Y) ; U` | Y, AF,G(X

?
, Y)

)
≤ ε+ 2−

N−k
2 +1 .

Combining, we conclude that

∆ ≤ ∆1 · Pr[X ∈ L] + ∆2 · Pr[X ∈ L] ≤ ε+ 2−
N−k

2 +1 .

CASE 2: |L| < 2
N+k

2 . In this case, we have that

∆ ≤ ∆1 · Pr[X ∈ L] + ∆2 · Pr[X ∈ L] ≤ ε+ Pr[X ∈ L] ≤ ε+ 2−
N−k

2 ≤ ε+ 2−
N−k

2 +1 .

We now show the key component of our non-malleability proof.

Lemma 37. For any s, s′ ∈ {0, 1}n` we have that

IntTampT,fs ≈n2`+1γ IntTampT,fs′ ,

where γ = ε+ 2−δN/2+1.

Proof. We show that, for s = (s1, s2 . . . , sn), and s′ = (s′1, s2, . . . , sn), we have

IntTampT,fs ≈2`+1γ IntTampT,fs′ .

The general result then follows by a hybrid argument using an analogous reasoning.
For i = 2, . . . , n, let (Li, Ri) ← nmExt−1(si), and let L∗1, R

∗
1 be chosen independently and

uniformly at random from {0, 1}N . Fix L2, . . . , Ln, R2, . . . , Rn. Assume that we run Steps 3 to
7 of the IntTampT,fs experiment described above, with L1, R1 replaced by L∗1, R

∗
1. We replace

Step 5 by the following:

20

• For each i 6= 2, let R̃i = R̃
(2)
i , and let R̃2 = R̃

(3)
2 ,

i.e., we ensure that R̃2, . . . , R̃n are not a function of L∗1. Notice that due to the consistency
check in Step 4, the output of the tampering experiment remains the same. Then, recall-
ing the variables we have fixed, it follows that L′1 is a deterministic functions of L∗1, and

R̃1, . . . , R̃n, L̃2, . . . , L̃n are deterministic functions of R∗1. Define

h1(L∗1) := (R̃
(1)
2 , . . . , R̃(1)

n),

h2(R∗1) := (R̃
(3)
2 , R̃

(2)
3 , . . . , R̃(2)

n),

F (L∗1) := L̃1,

G(R∗1) := R̃
(2)
1 .

Also, let h3(R∗1) = 1 if and only if any of the checks in Step 4 with j1, j2 6= 1 (i.e., the checks
that are not dependent on L∗1) fail. We can now instantiate Lemma 36 with h1, h2, h3, F,G and
the strong two-source non-malleable extractor from Lemma 17 to obtain

∆(nmExt(L∗1, R
∗
1);U` | AF,G(L∗1, R

∗
1), L2, . . . , Ln, R2, . . . , Rn, R

∗
1) ≤ γ . (4)

We now apply Lemma 3 to (4) by conditioning the right hand side of the statistical distance term
in (4) on U` = s1. Since the remaining random variables on the right hand side are independent
of U`, they are unaffected by this conditioning. The corresponding conditioning on the left hand
side of the statistical distance term in (4) is nmExt(L∗1, R

∗
1) = s1. Under this fixing, the tuple

(L∗1, R
∗
1), (L2, R2), . . . , (Ln, Rn)

is jointly distributed exactly as (Li, Ri)i=1,...,n. Therefore, we can replace all occurrences of L∗1
and R∗1 by L1 and R1, respectively, on the left hand side of the statistical distance term in (4).
Combining these observations with (4), Lemma 3, and the fact that Pr[U` = s1] = 2−`, we
conclude that

AF,G(L1, R1), L2, . . . , Ln, R2, . . . , Rn, R1 ≈2`γ AF,G(L∗1, R
∗
1), L2, . . . , Ln, R2, . . . , Rn, R

∗
1.

Letting (L′1, R
′
1) ← nmExt−1(s′1), the same reasoning with s′1 in place of s1 and (L′1, R

′
1) in

place of (L1, R1) yields

AF,G(L′1, R
′
1), L2, . . . , Ln, R2, . . . , Rn, R

′
1 ≈2`γ AF,G(L∗1, R

∗
1), L2, . . . , Ln, R2, . . . , Rn, R

∗
1.

Applying the triangle inequality yields

AF,G(L1, R1), L2, . . . , Ln, R2, . . . , Rn, R1 ≈2`+1γ AF,G(L′1, R
′
1), L2, . . . , Lt, R2, . . . , Rt, R

′
1 . (5)

Observe that IntTampT,fs and IntTampT,fs′ are deterministic functions of the left hand side and
right hand side of (3.3), respectively. As a result, we conclude that

IntTampT,fs ≈2`+1γ IntTampT,fs′ ,

as desired.

We are now ready to prove statistical non-malleability of our proposed construction.

Theorem 38. The secret sharing scheme (NMShare,NMRec) is ε-non-malleable with respect
to Fsplitn for ε = n(2`+1γ + 2−p), where γ = ε2 + 2−δN/2+1.

Proof. Fix a tampering function f and an authorized set T ∈ A of size t ≥ 3. Without loss of
generality, suppose that T = {1, . . . , t}. Recall that our goal is to design a distribution SDf,T

over M∪ {same∗,⊥} such that

21

STamperf,Tm ≈ε SSimf,T
m (6)

for every secret m, where STamperf,Tm and SSimf,T
m are as in Definition 25.

We define SDf,T as

SDf,T =

s′ = (s′1, . . . , s
′
n)← {0, 1}n`

s̃′ = (s̃′1, . . . , s̃
′
t)← IntTampT,fs′

If s̃′i = same∗ for all i, output same∗

Else, if s̃′i 6= same∗ for all i, check if first p bits of s̃′1, . . . , s̃
′
t match:

If not, output ⊥. Otherwise, output ARecT (s̃′′T), where s̃′′i denotes the last k bits of s̃′i.

Else, output ⊥

.

We now prove (6) via a hybrid argument. Consider the following hybrids:

Hybrid0 We proceed as follows:

1. s = (s1, . . . , sn)← AShare(m);

2. Sample P ← {0, 1}p, and set si ← P ||si;
3. s̃ = (s̃1, . . . , s̃t)← IntTampT,fs ;

4. If s̃i = same∗, set s̃i ← si;

5. Let P̃i denote the first p bits of s̃i. If P̃i 6= P̃j for some i, j ≤ t, output ⊥. Else, let ŝi
denote the last k bits of s̃i, and output ARecT (ŝ1, . . . , ŝt).

Observe that the output of Hybrid0 is distributed exactly like STamperf,Tm .

Hybrid1 We proceed similarly to Hybrid0, but replace s by a random vector of shares s̃:

1. s = (s1, . . . , sn)← AShare(m);

2. Sample P ← {0, 1}p, and set si ← P ||si;
3. s′ = (s′1, . . . , s

′
n)← {0, 1}n`;

4. s̃′ = (s̃′1, . . . , s̃
′
t)← IntTampT,fs′ ;

5. If s̃′i = same∗, set s̃′i ← si;

6. Let P̃ ′i denote the first p bits of s̃′i. If P̃ ′i 6= P̃ ′j for some i, j ≤ t, output ⊥. Else, let

ŝ′i denote the last k bits of s̃′i, and output ARecT (ŝ′1, . . . , ŝ
′
t).

Hybrid2 We proceed similarly to Hybrid1, but modify the reconstruction procedure:

1. s′ = (s′1, . . . , s
′
n)← {0, 1}n`;

2. s̃′ = (s̃′1, . . . , s̃
′
t)← IntTampT,fs̃ ;

3. If s̃′i = same∗ for all i = 1, . . . , t, output m;

4. Else, if s̃′i 6= same∗ for all i = 1, . . . , t, proceed as follows: Let P̃ ′i denote the first p

bits of s̃′i. If P̃ ′i 6= P̃ ′j for some i, j ≤ t, output ⊥. Else, let ŝ′i denote the last k bits of

s̃′i, and output ARecT (ŝ′1, . . . , ŝ
′
t);

5. Else, output ⊥.

Observe that the output of Hybrid2 is distributed exactly like SSimf,T
m .

Lemma 37 implies that
Hybrid0 ≈n2`+1γ Hybrid1.

Therefore, it suffices to compare Hybrid1 and Hybrid2. Observe that Hybrid1 and Hybrid2

may only differ if Hybrid2 reaches Step 5 of the procedure. This happens exactly when there
exist i, j ≤ t such that s̃′i = same∗ and s̃′j 6= same∗. In this case, Hybrid2 always output ⊥.

However, Hybrid1 may not output ⊥ in such a case if all prefixes P̃ ′1, . . . , P̃
′
t match in Step 6

of its procedure. Say Hybrid1 is bad if this event holds. We have

Pr[Hybrid1 is bad] ≤ Pr[∃(i, j) : s̃′i = same∗, s̃′j 6= same∗, P̃ ′j = P]

22

≤ Pr[∃j : P̃ ′j = P]

≤
t∑

j=1

Pr[P̃ ′j = P]

≤ n2−p.

The third inequality follows via a union bound, while the fourth inequality holds because P̃ ′j
and P are independent for all j, and P is uniform over {0, 1}p. This implies that

Hybrid1 ≈n2−p Hybrid2,

and hence (6) holds, as desired.

We now instantiate Theorem 38 to obtain a compiler that transforms regular secret-sharing
schemes into non-malleable ones with concrete parameters.

Corollary 39. Let (AShare,ARec) be an efficient (n, ε)-secret-sharing scheme realizing access
structure A such that |T | ≥ 3 holds for all T ∈ A. Furthermore, suppose AShare maps m-
bit secrets to n binary shares of length r. Then, there exists an efficient (n, ε′1)-secret-sharing
scheme (NMShare,NMRec) realizing access structure A that is ε′2-non-malleable w.r.t. Fsplit

n ,
with

ε′1 = ε+ 4n2−Ω(r+p)

and
ε′2 = n(2−Ω(r+p) + 2−p).

Furthermore, it holds that NMShare maps m-bit secrets to n binary shares of length O(n(r +
p) log(r + p)). In particular:

• If we set p = r, we obtain

ε′1 = ε+ 4n2−Ω(r),

ε′2 = n2−Ω(r),

and shares of length O(nr log r);

• If we set p = r + n, we obtain

ε′1 = ε+ 4n2−Ω(r+n),

ε′2 = n2−Ω(r+n),

and shares of length O(n(r + n) log(r + n));

Proof. Let ` = r+ p, and recall that the ((1− δ)N, ε2) strong non-malleable extractor nmExt :
{0, 1}N × {0, 1}N → {0, 1}` from Lemma 17 handles ` = Ω(N) and ε2 = 2−Ω(N/ logN).

We set N = C0 · ` log `, for some sufficiently large constant C0 > 0. Then, we have

N/ logN ≥ C0 · `
2

,

for ` large enough. As a result, we have ε2 ≤ 2−C1` for some constant C1. We can choose C0

large enough so that C1 � 1. As a result, we conclude that

ε′1 = ε+ 4nε2(2` + 1) = ε+ 4n2−Ω(`).

Moreover, we also obtain

ε′2 = n(2`+1(ε2 + 2−δN/2+1) + 2−p) = n(2−Ω(`) + 2−p).

Recall that NMShare shares the secret into n shares of length n ·N = O(n` log `), as desired.
The statements in the lemma now follow by instantiating p.

23

3.3 Non-Malleability with Concurrent Reconstruction

In this section, we show that the secret-sharing scheme described in Section 3.2 also satisfies
the stronger notion of non-malleability with concurrent reconstruction as in Definition 26. Re-
call that in the concurrent reconstruction setting, the adversary is allowed to choose qualified
sets T1, . . . , Tτ along with associated tampering functions f (1), . . . , f (τ), and can observe the

outcomes of the experiments STamperf
(i),Ti

m for i ∈ [τ]. We have the following result.

Theorem 40. Fix a number of parties n and an integer p. Furthermore, assume we have access
to the following primitives:

1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing an access
structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the corresponding shares lie
in {0, 1}r and the secrets in some set M;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}` be the (N − Nδ, ε2, τ) strong two-source non-
malleable extractor from Lemma 18, where ` = r + p. Hence, τ = Nδ, ` ≤ NΩ(1), and

ε2 = 2−N
Ω(1)

.

Then, there exists an (n, ε1 + 4nε2(2` + 1))-secret sharing scheme realizing access structure A
that is (ε, τ)-concurrent-reconstruction-non-malleable w.r.t. Fsplit

n , where

ε = n(2`+1(ε2 + 4τ2τ2−N
δ/4τ) + τ · 2−p).

The resulting scheme (NMShare,NMRec) shares an element of M into n shares, where each
share contains n elements of {0, 1}N . Finally, if the two primitives are efficient and the access
structure A supports efficient membership queries, then the constructed scheme (NMShare,NMRec)
is also efficient.

The candidate scheme for Theorem 40 has been defined in Section 3.2, and statistical pri-
vacy is already proved there. We now proceed to state and prove an auxiliary lemma, which
generalizes Lemma 36 to the case of multiple tamperings.

Lemma 41. Let nmExt : {0, 1}N×{0, 1}N → {0, 1}` be an (N−Nδ, ε, τ) strong non-malleable
two-source extractor. Also, let h1j : {0, 1}N → Z, h2j : {0, 1}N → Z, and h3j : {0, 1}N → {0, 1}
for 1 ≤ j ≤ τ be functions mapping to some set Z. For functions F1, . . . , Fτ , G1, . . . , Gτ :
{0, 1}N → {0, 1}N , let AFj ,Gj be an algorithm that takes as input x, y ∈ {0, 1}N and does the
following: If h1j(x) 6= h2j(y), or if h3j(y) = 1, then output ⊥, else if Fj(x) = x, and Gj(y) = y,
output same∗, else output nmExt(Fj(x), Gj(y)). For X,Y uniform and independent in {0, 1}N ,
we have that

∆ := ∆(nmExt(X,Y) ; U` | Y, AF1,G1
(X,Y), . . . ,AFτ ,Gτ (X,Y)) ≤ ε+ 4τ2τ2−N

δ/4τ .

Proof. We begin by observing that, for any partition P of {0, 1}N , we have

∆ ≤
∑
P∈P

∆|X∈P · Pr[X ∈ P],

where ∆|X∈P denotes the statistical distance between the two distributions in the lemma state-
ment conditioned on X being uniform in P .

We will now consider a relevant partition P of {0, 1}N , and analyze ∆|X∈P for each set
P ∈ P separately. First, we focus on the set

P1 := {x ∈ {0, 1}N : |h−1
11 (h11(x)) ∩ · · · ∩ h−1

1τ (h1τ (x))| ≥ 2N−N
δ

}.

Let X? be uniform in P1. Then, by the definition of P1, we have

H∞(X?|h11(X?), . . . , h1τ (X?)) ≥ N −Nδ.

24

As a result, by Lemma 18 it follows that

∆(nmExt(X?, Y) ; U` | h11(X?), . . . , h1τ (X?), Y, DF1,G1(X?, Y), . . . ,DFτ ,Gτ (X?, Y)) ≤ ε.

Since AFj ,Gj (X?, Y) is a deterministic function of h1j(X
?), Y , and DFj ,Gj (X?, Y), we also have

∆(nmExt(X?, Y) ; U` | Y, AF1,G1
(X?, Y), . . . ,AFτ ,Gτ (X?, Y)) ≤ ε.

Hence, it holds that ∆|X∈P1 ≤ ε.
For a set I ⊆ [τ], define PI as

PI :=

x ∈ {0, 1}N
∣∣∣∣∣∣∣∣
|h−1

11 (h11(x)) ∩ · · · ∩ h−1
1τ (h1τ (x))| < 2N−N

δ

,

|h−1
1i (h1i(x))| < 2N−N

δ/2τ for i ∈ I,

|h−1
1j (h1j(x))| ≥ 2N−N

δ/2τ for j 6∈ I

 .

Observe that P1 and the sets (PI)I⊆[τ] are all pairwise disjoint and their union is {0, 1}N .
Therefore, these sets form a partition of {0, 1}N , as desired. We now proceed to bound the
terms ∆|X∈PI ·Pr[X ∈ PI] by partitioning PI into two disjoint subsets and analyzing each one
separately:

1. PI1 := {x ∈ PI : |
⋂
j 6∈I h

−1
1j (h1j(x)) ∩ PI | ≥ 2N−N

δ}
We distinguish two cases:

(a) |PI1| ≤ 2N−N
δ/4τ :

Then, we have

∆|X∈PI1
· Pr[X ∈ PI1] ≤ Pr[X ∈ PI1] ≤ 2−N

δ/4τ .

(b) |PI1| ≥ 2N−N
δ/4τ :

Let X?
1 be uniform over PI1. Then, we have

H∞(h1i(X
?
1)) ≥ (N −Nδ/4τ)− (N −Nδ/2τ) = Nδ/4τ

for all i ∈ I. Therefore,

Pr[h1i(X
?
1) = h2i(Y)] ≤ 2−N

δ/4τ ,

and so
Pr[AFi,Gi(X?

1 , Y) 6= ⊥] ≤ 2−N
δ/4τ . (7)

Combining (7) with a union bound yields

∆((AFi,Gi(X?
1 , Y))i∈I ;⊥I |nmExt(X?

1 , Y), Y, (AFj ,Gj (X?
1 , Y))j 6∈I) ≤ τ2−N

δ/4τ , (8)

and
∆((AFi,Gi(X?

1 , Y))i∈I ;⊥I |U`, Y, (AFj ,Gj (X?
1 , Y))j 6∈I) ≤ τ2−N

δ/4τ , (9)

where U` is uniform over {0, 1}` and independent of the rest. Moreover, by definition
of PI1, we have

H∞(X?
1 |(h1j(X

?
1))j 6∈I) ≥ N −Nδ,

and so, with an analogous reasoning to that used for P1, by Lemma 18 it follows that

∆
(
nmExt(X?

1 , Y) ; U` | Y, ⊥I , (AFj ,Gj (X?
1 , Y))j 6∈I

)
≤ ε. (10)

Combining (10) with (8) and (9) via a repeated application of the triangle inequality
yields

∆(nmExt(X?
1 , Y) ; U` | Y, AF1,G1

(X?
1 , Y), . . . ,AFτ ,Gτ (X?

1 , Y)) ≤ ε+ 2τ2−N
δ/4τ .

25

2. PI2 := {x ∈ PI : |
⋂
j 6∈I h

−1
1j (h1j(x)) ∩ PI | < 2N−N

δ}

We claim that |PI2| ≤ 2N−N
δ/2. In fact, note that h1j(x) takes on at most 2N

δ/2τ distinct

values for j 6∈ I and x ∈ PI . As a result, there are at most (2N
δ/2τ)τ = 2N

δ/2 sets of the
form ⋂

j 6∈I

h−1
1j (h1j(x)) ∩ PI

with x ∈ PI . By definition of PI2, each such set contributes at most 2N−N
δ

elements to
PI2. Therefore, we have

|PI2| ≤ 2N
δ/2 · 2N−N

δ

= 2N−N
δ/2,

as desired. We thus conclude that Pr[X ∈ PI2] ≤ 2−N
δ/2.

Observing that there are 2τ choices for I, we can combine the bounds above to conclude
that

∆ ≤ ∆|X∈P1 · Pr[X ∈ P1] +
∑
I

(∆|PI1
· Pr[X ∈ PI1] + ∆|PI2

· Pr[X ∈ PI2])

≤ ε+ 4τ2τ2−N
δ/4τ .

Given a tuple of qualified sets T = (T1, . . . , Tτ) and a tuple of associated tampering functions
f = (f (1), . . . , f (τ)), we define the intermediate tampering experiment for T as follows:

IntTampT,fs := IntTampT1,f
(1)

s , . . . , IntTampTτ ,f
(τ)

s .

We may also denote the tampering function f associated to a reconstruction set T ∈ T by f (T).
The following lemma is the main component of our proof of non-malleability with concurrent
reconstruction.

Lemma 42. For any s, s′ ∈ {0, 1}n` we have that

IntTampT,fs ≈n2`+1γ IntTampT,fs′ ,

where γ = ε2 + 4τ2τ2−N
δ/4τ .

Proof. We show that for s = (s1, s2 . . . , sn), and s′ = (s′1, s2, . . . , sn), we have

IntTampT,fs ≈2`+1γ IntTampT,fs̃ .

The general result then follows by a hybrid argument using an analogous reasoning.
For a given reconstruction set T ∈ T and associated tampering function f (T), we denote the

tampered version of the j-th share (R1, . . . , Rj−1, Lj , Rj+1, . . . , Rn) under f (T) by

(R̃
(j)
1,T , . . . , R̃

(j)
j−1,T , L̃j,T , R̃

(j)
j+1,T , . . . , R̃

(j)
n,T).

For i = 2, . . . , n, let (Li, Ri) ← nmExt−1(si), and let L∗1, R
∗
1 be chosen independently and

uniformly at random from {0, 1}N . Fix L2, . . . , Ln, R2, . . . , Rn. Assume that we run Steps 3
to 7 of the IntTampT,fs experiment in Definition 35 with L1, R1 replaced by L∗1, R

∗
1 for each set

T ∈ T. Also, we replace Step 5 by the following:

• For each i, let R̃i,T = R̃
(ji)
i,T ,

26

for the smallest index ji ∈ T \ {1, i}, i.e., we ensure that R̃2,T , . . . , R̃n,T do not depend on L∗1.
There always exists a valid choice of ji since we assume |T | ≥ 3 for all T ∈ T. Notice that due
to the consistency check in Step 4, the output of the tampering experiment remains the same.
Then, recalling the variables we have fixed, it follows that L′1,T is a deterministic function of L∗1,

and R̃1,T , . . . , R̃n,T , L̃2,T , . . . , L̃n,T for every T ∈ T are deterministic functions of R∗1. Without
loss of generality, suppose T1, . . . , Tm are exactly those reconstructions sets in T that contain 1.
Notice that IntTampT,fs is a deterministic function of

R∗1, IntTampT1,f
(1)

s , . . . , IntTampTm,f
(m)

s ,

since for all other reconstruction sets Ti with i > m we have that IntTampTi,f
(i)

s is a deterministic
function of R∗1. For 1 ≤ j ≤ m, define

h1j(L
∗
1) := (R̃

(1)
2,Tj

, . . . , R̃
(1)
n,Tj

),

h2j(R
∗
1) := (R̃2,Tj , R̃3,Tj , . . . , R̃n,Tj),

Fj(L
∗
1) := L̃1,Tj ,

Gj(R
∗
1) := R̃1,Tj .

Also, let h3j(R
∗
1) = 1 if and only if any of the checks in Step 4 with j1, j2 6= 1 (i.e., the checks that

are not dependent on L∗1) fail for the reconstruction set Tj . We can now instantiate Lemma 41
with these choices to obtain

∆(nmExt(L∗1, R
∗
1);U` | AF1,G1

(L∗1, R
∗
1), . . . ,AFm,Gm(L∗1, R

∗
1), L2, . . . , Ln, R2, . . . , Rn, R

∗
1) ≤ γ .

(11)
Let (L′1, R

′
1) ← nmExt−1(s′1), and observe that Pr[U` = s] = 2−` for all s. We can condi-

tion (11) on U` = s1 (resp. U` = s′1) and invoke Lemma 3 to obtain

R∗1,AF1,G1(L∗1, R
∗
1), . . . ,AFm,Gm(L∗1, R

∗
1), L2, . . . , Ln, R2, . . . , Rn

≈2`γ

R1,AF1,G1(L1, R1), . . . ,AFm,Gm(L1, R1), , L2, . . . , Ln, R2, . . . , Rn,

and
R∗1,AF1,G1(L∗1, R

∗
1), . . . ,AFm,Gm(L∗1, R

∗
1), L2, . . . , Ln, R2, . . . , Rn

≈2`γ

R′1,AF1,G1(L′1, R
′
1), . . . ,AFm,Gm(L′1, R

′
1), L2, . . . , Ln, R2, . . . , Rn,

respectively. Applying the triangle inequality yields

R1,AF1,G1
(L1, R1), . . . ,AFm,Gm(L1, R1), , L2, . . . , Ln, R2, . . . , Rn

≈2`+1γ

R′1,AF1,G1
(L′1, R

′
1), . . . ,AFm,Gm(L′1, R

′
1), L2, . . . , Ln, R2, . . . , Rn.

Observe that the left hand side completely determines IntTampT,fs , while the right hand side

completely determines IntTampT,fs′ . As a result, we conclude that

IntTampT,fs ≈2`+1γ IntTampT,fs′ ,

as desired.

We are now ready to prove statistical non-malleability of our proposed construction.

Theorem 43. The secret sharing scheme (NMShare,NMRec) is (ε, τ)-concurrent recon-
struction non-malleable with respect to Fsplitn for ε = n(2`+1γ + τ2−p), where γ = ε2 +

4τ2τ2−N
δ/4τ .

27

Proof. Fix authorized sets T = (T1, . . . , Tτ), with |Ti| = ti ≥ 3 for all i ∈ [τ], and associated
tampering functions f = (f (1), . . . , f (τ)). Recall that our goal is to design a distribution SDf ,T

over (M∪ {same∗,⊥})τ such that

SCRTamperf ,Tm ≈ε SCRSimf ,T
m (12)

for every secret m, where SCRTamperf ,Tm and SCRSimf ,T
m are as in Definition 26.

We define SDf ,T as follows:

SDf ,T =

s′ = (s′1, . . . , s
′
n)← {0, 1}n`

For each i ∈ [τ], set s̃(i) = (s̃
′(i)
1 , . . . , s̃

′(i)
ti)← IntTampTi,f

(i)

s′

For each i ∈ [τ], do the following:

If s̃
′(i)
j = same∗ for all j ∈ [n], output same∗

Else, if s̃
′(i)
j 6= same∗ for all j, check if first p bits of s̃′1, . . . , s̃

′
ti match:

If not, output ⊥. Otherwise, output ARecT (ŝ
′(i)
Ti

), where ŝ
′(i)
j denotes the last k bits of s̃

′(i)
j .

Else, output ⊥

.

We now prove (6) via a hybrid argument. Consider the following hybrids:

Hybrid0 We proceed as follows:

1. s = (s1, . . . , sn)← AShare(m);

2. Sample P ← {0, 1}p, and set si ← P ||si;
3. For each i ∈ [τ], do the following:

(a) s̃(i) = (s̃
(i)
1 , . . . , s̃

(i)
ti)← IntTampTi,f

(i)

s ;

(b) If s̃
(i)
j = same∗, set s̃

(i)
j ← sj ;

(c) Let P̃
(i)
j denote the first p bits of s̃

(i)
j . If P̃

(i)
j1
6= P̃

(i)
j2

for some j1, j2 ≤ ti, output

⊥. Else, let ŝ
(i)
j denote the last k bits of s̃

(i)
j , and output ARecTi(ŝ

(i)
1 , . . . , ŝ

(i)
ti).

Observe that the output of Hybrid0 is distributed exactly like SCRTamperf ,Tm .

Hybrid1 We proceed similarly to Hybrid0, but replace s by a random vector of shares s′:

1. s = (s1, . . . , sn)← AShare(m);

2. Sample P ← {0, 1}p, and set si ← P ||si;
3. s′ = (s′1, . . . , s

′
n)← {0, 1}n`;

4. For each i ∈ [τ], do the following:

(a) s̃′(i) = (s̃
′(i)
1 , . . . , s̃

′(i)
ti)← IntTampTi,f

(i)

s′ ;

(b) If s̃
′(i)
j = same∗, set s̃

′(i)
j ← sj ;

(c) Let P̃
′(i)
j denote the first p bits of s̃

′(i)
j . If P̃

′(i)
j1
6= P̃

′(i)
j2

for some j1, j2 ≤ ti, output

⊥. Else, let ŝ
′(i)
j denote the last k bits of s̃

′(i)
j , and output ARecTi(ŝ

′(i)
1 , . . . , ŝ

′(i)
ti).

Hybrid2 We proceed similarly to Hybrid1, but modify the reconstruction procedure:

1. s′ = (s′1, . . . , s
′
n)← {0, 1}n`;

2. For each i ∈ [τ], do the following:

(a) s̃′(i) = (s̃
′(i)
1 , . . . , s̃

′(i)
ti)← IntTampTi,f

(i)

s′ ;

(b) If s̃
′(i)
j = same∗ for all j ∈ [ti], output m;

(c) Else, if s̃
′(i)
j 6= same∗ for all j ∈ [ti], proceed as follows: Let P̃

′(i)
j denote the first

p bits of s̃
′(i)
j . If P̃

′(i)
j1
6= P̃

′(i)
j2

for some j1, j2 ≤ ti, output ⊥. Else, let ŝ
′(i)
j denote

the last k bits of s̃
′(i)
j , and output ARecTi(ŝ

′(i)
1 , . . . , ŝ

′(i)
ti).

28

(d) Else, output ⊥.

Observe that the output of Hybrid2 is distributed exactly like SCRSimf ,T
m .

Since the only difference between Hybrid0 and Hybrid1 is in the IntTamp experiment to be
used for all i ∈ [τ] (Steps 3.a and 4.a, respectively), Lemma 42 implies that

Hybrid0 ≈n2`+1γ Hybrid1.

Therefore, it suffices to compare Hybrid1 and Hybrid2. Observe that Hybrid1 and Hybrid2

may only differ if Hybrid2 reaches Step 2.d of the procedure for some i ∈ [τ]. This happens

exactly when there exist j1, j2 ≤ ti such that s̃
′(i)
j1

= same∗ and s̃
′(i)
j2
6= same∗. In this case,

Hybrid2 always output ⊥. However, Hybrid1 may not output ⊥ in such a case if all prefixes

P̃
′(i)
1 , . . . , P̃

′(i)
ti match in Step 6 of its procedure. The reasoning in the proof of Theorem 38

shows that this happens for a fixed i ∈ [τ] with probability at most n2−p. By a union bound, it
follows that the probability that this happens for some i ∈ [τ] is at most τn2−p. This implies
that

Hybrid1 ≈τn2−p Hybrid2,

and hence (12) holds, as desired.

We now instantiate our compiler with concrete parameters.

Corollary 44. Let (AShare,ARec) be an efficient (n, ε)-secret-sharing scheme realizing access
structure A such that |T | ≥ 3 holds for all T ∈ A. Furthermore, suppose AShare maps m-
bit secrets to n binary shares of length r. Then, there exists an efficient (n, ε′1)-secret-sharing
scheme (NMShare,NMRec) realizing access structure A that is (ε′2,poly(r+ n))-concurrent-
reconstruction-non-malleable w.r.t. Fsplit

n , with

ε′1 = ε+ 4n2−poly(r+n)

and
ε′2 = n2−Ω(r+n).

Furthermore, it holds that NMShare maps m-bit secrets to n binary shares of length poly(r+n).

Proof. Let ` = r+p, and recall that the (N−Nδ, ε2, τ) strong non-malleable extractor nmExt :

{0, 1}N × {0, 1}N → {0, 1}` from Lemma 17 handles ` = NΩ(1), τ = NΩ(1), and ε2 = 2−N
Ω(1)

.
We set N = `C0 , for some sufficiently large constant C0 > 1. As a result, we can have

ε2 ≤ 2−`
C1

and τ = `C2 for some constants C1, C2. We can choose C0 large enough so that
C1 � 1. As a result, we conclude that

ε′1 = ε+ 4nε2(2` + 1) = ε+ 4n2−poly(`).

Moreover, by setting p = (r + n)2 and C0 large enough so that δC0 � C2, we also obtain

ε′2 = n(2`+1(ε2 + 4τ2τ2−`
δC0

) + τ2−p)

≤ n(2−poly(`) + `C22−(r+n)2

)

≤ n2−Ω(r+n).

Recall that NMShare shares the secret into n shares of length n·N = poly(r+n), as desired.

4 Leakage-Resilient Secret-Sharing Scheme

In this section, we give a construction of a compiler that turns any secret-sharing scheme into
a leakage-resilient one. More precisely, we have the following result.

29

Theorem 45. Fix a number of parties n and ρ ∈ (0, 1). Furthermore, suppose we have access
to the following primitives:

1. For any ε1 ≥ 0, let (AShare,ARec) be any (n, ε1)-secret sharing scheme realizing an
access structure A which shares an element of the set M into n shares of length `, and

2. Let Ext : {0, 1}N × {0, 1}d → {0, 1}` be a strong (k, ε2)-extractor such that

ρ ≤ N − k
(n− 1)d+N

. (13)

Moreover, assume that Ext supports close-to-uniform preimage sampling, i.e., there is an
efficient algorithm S such that the output of S on input z, denoted S(z), satisfies

S(z) ≈ε3 Dz (14)

for every z ∈ {0, 1}`, where Dz is uniformly distributed over Ext−1(z).

Then, there exists an (n, ε1 + 2ε2 · n · 2`n + 2n · ε3, ρ)-leakage resilient secret sharing scheme
realizing access structure A.

Remark 46. Note that, in general, the preimage sampling algorithm S considered in Theo-
rem 45 may fail to return an element of Ext−1(z). In such a case, we say that S fails.

We describe our construction of the leakage-resilient secret sharing scheme (LRShare,LRRec).

LRShare: Our sharing function takes as input a secret m ∈M and proceeds as follows:

1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);

2. For each i ∈ [n], sample (Li, Ri)← S(si);

3. If S(si) fails for some i, set sharei = (⊥, si) for all i ∈ [n];

4. Else, for each i ∈ [n] construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);

5. Output (share1, . . . , sharen).

LRRec: Our reconstruction function takes as input shares {sharei : i ∈ T} corresponding to
an authorized set T ∈ A and proceeds as follows:

1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;

2. If sharei contains ⊥, then recover si1 , . . . , sit directly from sharei1 , . . . , shareit and
reconstruct m← ARec(si1 , . . . , sit);

3. Else, for each j ∈ [t] obtain Lj from sharej and Rj from sharek for some k ∈ T \{j},
and compute sj = Ext(Lj , Rj). Reconstruct m← ARec(si1 , . . . , sit);

4. Output m.

Correctness and Efficiency: Follows in a straightforward manner from the construction.

Leakage-Resilient Statistical Privacy: Fix two secrets a and b, and let T be an unau-
thorized set of size t. Without loss of generality, we may assume that T = {1, 2, . . . , t}. Set

aST ← LRShare(a)T , {Leaki(LRShare(a)i) : 1 ≤ i ≤ n},
bST ← LRShare(b)T , {Leaki(LRShare(b)i) : 1 ≤ i ≤ n}.

Furthermore, let as1, . . . , asn and bs1, . . . , bsn be the shares obtained from AShare(a) and
AShare(b), respectively, in Step 1 of the LRShare procedure.

Our goal is to show that the distributions of these two sets of shares, aST and bST , are close
in statistical distance, even given a ρ fraction leakage from the other shares.

We have aST = (aS1, . . . , aSt) and bST = (bS1, . . . , bSt), with

aSi = (aR1, . . . , aRi−1, aLi, aRi+1, . . . , aRn, {Leaki(LRShare(a)i)}i∈[n]),

30

bSi = (bR1, . . . , bRi−1, bLi, bRi+1, . . . , bRn, {Leaki(LRShare(b)i)}i∈[n]).

As a result, we can write

aST = [(aLi, aRi)i≤t, aRt+1, . . . , aRn, {Leaki(LRShare(a)i)}i∈[n]],

bST = [(bLi, bRi)i≤t, bRt+1, . . . , bRn, {Leaki(LRShare(b)i)}i∈[n]].

First, because of (14) we may assume that the pairs (aLi, aRi) (resp. (bLi, bRi)) are sampled
uniformly at random from Ext−1(asi) (resp. Ext−1(bsi)) in Step 2 of LRShare by paying a
penalty of 2n · ε3 in the final statistical distance upper bound (in particular, this implies S does
not fail in any sampling). Therefore, we assume that the (aLi, aRi) and (bLi, bRi) are sampled
uniformly at random from the respective preimages of Ext throughout the rest of this section.

Let L∗t+1, . . . , L
∗
n be independent and uniform in {0, 1}N , and let R∗t+1, . . . , R

∗
n be indepen-

dent and uniform in {0, 1}d, and also independent of L∗t+1, . . . , L
∗
n. Let aS∗T be obtained by

replacing aLt+1, . . . , aLn, aRt+1, . . . , aRn by L∗t+1, . . . , L
∗
n, R

∗
t+1, . . . , R

∗
n. Define bS∗T similarly.

By the constraint (13) on the leakage rate ρ, the extractor property, and a hybrid argument
similar to the one used for the proof of statistical privacy in Section 3.2, we have that

∆(Ext(L∗t+1, R
∗
t+1), . . . ,Ext(L∗n, R

∗
n) ;Un−t` | aS∗T) ≤ ε2 · n . (15)

We proceed to show how (15) implies the desired result. We apply Lemma 3 to (15) by
conditioning the right hand side of the statistical distance term (i.e., the tuple (Un−t` , aS∗T)) on
the event

Un−t` = (ast+1, . . . , asn),

which occurs with probability 2−`(n−t) ≥ 2−`n. Note that Un−t` is independent of aS∗T , and so
aS∗T is unaffected by this conditioning. The corresponding fixing on the left hand side of the
statistical distance term in (15) is

(Ext(L∗t+1, R
∗
t+1), . . . ,Ext(L∗n, R

∗
n)) = (ast+1, . . . , asn).

Under this fixing, it holds that the random variables

(aL1, aR1), . . . , (aLt, aRt), (L
∗
t+1, R

∗
t+1), . . . , (L∗n, R

∗
n)

are jointly distributed exactly as (aLi, aRi)i=1,...,n. As a result, under this conditioning it holds
that aS∗T is distributed like aST . Therefore, from (15) and Lemma 3 we conclude that

∆(aST ; aS∗T) ≤ ε2 · n · 2`n .

Similarly, it holds that
∆(bST ; bS∗T) ≤ ε2 · n · 2`n .

Also, by Lemma 2, we have that
∆(aS∗T ; bS∗T) ≤ ε1 .

By applying the triangle inequality, we get the desired result.

Leakage rate: We now proceed to study the tradeoff between share-length and leakage
rate that we can achieve via the compiler. Combining Theorem 45 with the extractors from
Corollaries 10 and 14, we obtain the following result.

Corollary 47. Let (AShare,ARec) be an efficient (n, ε)-secret-sharing scheme realizing access
structure A with no singletons. Furthermore, suppose AShare maps m-bit secrets to n binary
shares of length `. Then, there exist efficient (n, ε′, ρ)-leakage resilient secret-sharing schemes
(LRShare,LRRec) realizing access structure A with ε′ = ε + n2−Ω(`), and, assuming the
number of parties n is constant,

• Shares of length O(`) and leakage rate ρ = 1− c for an arbitrarily small constant c > 0, or

31

• Shares of length O(`2+γ) and leakage rate ρ = 1 − o(1) for an arbitrarily small constant
γ > 0.

Proof. We begin by focusing on the first bullet point. Let Ext : {0, 1}N × {0, 1}d → {0, 1}` be
the linear strong extractor from Corollary 14 for an arbitrarily small fixed constant δ > 0 and
` = δN

5n . This means that N = O(`), and thus the compiled share length is

(n− 1)d+N = O(`),

provided n is a constant. Moreover, observe that ε2 = 3 ·2−0.4δN < 2−0.3δN ≤ 2−1.5`. Therefore,
Lemma 15 applies to Ext, and hence (14) holds with ε3 = 2−0.4`. As a result, by Theorem 45
the error ε′ of the leakage-resilient secret sharing scheme satisfies ε′ = ε + n2−Ω(`), as desired.
It remains to compute the allowed leakage rate ρ. We may choose ρ satisfying

ρ =
N − k

(n− 1)d+N
=

N −Θ(δN)

(n− 1) ·O(δN) +N
≥ 1− c,

provided n is constant, where c depends only on δ and n, and approaches 0 when δ → 0 and n
is kept constant.

For the second result, we use the linear strong extractor Ext : {0, 1}N × {0, 1}d → {0, 1}`
from Corollary 10 with δ > 0 arbitrarily small constant and ` = k1/2−β for some arbitrarily
small constant β > 0. Since k = Θ(N1−δ), this means N = O(`2+γ) for some arbitrarily small

constant γ > 0. Furthermore, since ε2 = 2−Ω(
√
k) < 2−1.5`, Lemma 15 applies to Ext, and

so (14) holds with ε3 = 2−0.4`. Therefore, we obtain the desired final error ε′. To see that we
can set ρ = 1− o(1), note that we may choose

ρ =
N − k

(n− 1)d+N
=

N −Θ(N1−δ)

(n− 1) · o(N) +N
= 1− o(1),

provided n is kept constant.

5 Threshold Signatures

(n, t)-Threshold signatures, introduced by Desmedt [Des87], allows to distribute the secret key
of a signature scheme among n players such that any subset of t players can sign messages.
Threshold signatures exist based on the RSA [Sho00] and discrete logarithm [Bol03] based
problems.

Definition 48 (Threshold Signature Scheme [Sho00]). A (n, t)-threshold signatures scheme is
defined by a tuple of algorithms (TGen,TSign,TRec,TVerify). The key generation algorithm
TGen takes the security parameter 1λ as input and outputs a verification key vk and secret keys
sk1, . . . , skn. The (possibly interactive) signing algorithm TSign takes a secret key ski and a
message m ∈ M as input and after potentially interacting with the other parties it outputs
a signature share σi. The reconstruction algorithm TRec takes the verification key vk, any
t signature shares, and outputs a signature σ. The verification algorithm TVerify takes a
signature σ, a message m, and a verification key vk as input and outputs a bit b ∈ {0, 1}. We
call a threshold signature scheme secure if the following holds:

1. Correctness. Any authorized set of parties can generate a valid signature. That is, for
any set T = {i1, . . . , it} of size at least t and for any m ∈M, it holds that

Pr[TVerify(vk,TRec(vk, σi1 , . . . , σit),m) = 1] = 1 ,

where σi ← TSign(ski,m) and (vk, sk1, . . . , skn)← TGen(1λ).

32

2. Unforgeability. No collusion of unauthorized parties can forge a signature. More
formally, we consider a probabilistic polynomial time adversary A, who can corrupt up
to t − 1 parties to learn their secret keys. The adversary may, on behalf of the corrupt
parties, engage in a polynomial number of (possibly interactive) signature share generations
with the honest parties for messages of its choice. Let Q be the set of messages that the
adversary signs in this fashion. We require that the probability of A outputting a valid
message signature pair (m∗, σ∗) with m∗ 6∈ Q is negligible in λ.

In this work we extend the notion of threshold signatures in two directions. We propose non-
malleable as well as leakage-resilient threshold signatures. These two separate notions require
that a threshold signature scheme remains secure even if tampering or leakage on the secret
keys of each player occurs. Throughout this section we assume a asynchronous communication
network with eventual delivery. In such a network each message can be delayed arbitrarily, but
it is guaranteed that any sent message eventually arrives at its destination. We also assume
that any pair of parties is connected by a secure point-to-point channel.

5.1 Non-Malleable Threshold Signatures

A non-malleable threshold signature scheme requires that even an adversary, who obtains a
polynomial number of signature shares under tampered keys for messages of its choice, may not
produce a valid forgery. We model this security guarantee as follows:

Definition 49 (Non-Malleable Threshold Signature Scheme). Let S = (NMTGen,NMTSign,
NMTRec,NMTVerify) be a secure threshold signature scheme according to Definition 48. Let
F be some family of tampering functions. For each f ∈ F , and any probabilistic polynomial
time adversary A, define the tampering experiment

SigTamperfλ =

(vk, sk1, . . . , skn)← NMTGen(1λ)

(s̃k1, . . . , s̃kn)← f(sk1, . . . , skn)

(i1, . . . , it−1)← A(1λ)

(m∗, σ∗)← AÕ(vk, s̃ki1 , . . . , s̃kit−1
)

Output (m∗, σ∗)

,

where the oracle Õ(·) = (NMTSign(s̃k1, ·), . . . ,NMTSign(s̃kn, ·)) allows the adversary to
obtain a polynomial number of (honestly generated) signature shares generation for messages of

its choice. Let Q be the set of messages that A queries to Õ. We say S is non-malleable w.r.t.
F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ 6∈ Q] ≤ negl(λ) .

Our construction follows the same blueprint as our non-malleable secret sharing schemes.

Theorem 50. For any number of parties n ≥ 2t + 1 and threshold t, if we have the following
primitives :

1. A non-interactive2 secure (n, t)-threshold signatures scheme (TGen,TSign,TRec,TVerify).

2. A coding scheme (NMEnc,NMDec) that is ε-non-malleable w.r.t Fsplit
2 , where ε ≤

negl(λ).

then there exists a non-malleable threshold signature scheme w.r.t. Fsplitn .

We construct a non-malleable threshold signature scheme S = (NMTGen,NMTSign,
NMTRec,NMTVerify) as follows.

2We call a threshold signature scheme non-interactive if every party can generate a signature share without
interacting with the other parties. Many existing schemes are of this form, see for example [Sho00, Bol03]

33

NMTGen: Our key generation function takes the security parameter 1λ as its input and pro-
ceeds as follows:

1. (vk, sk′1, . . . , sk
′
n)← TGen(1λ)

2. For each i ∈ [n], encode the key sk′i to obtain (Li, Ri)← NMEnc(sk′i);

3. For each i ∈ [n], construct ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);

4. Output (vk, sk1, . . . , skn).

NMTSign: Party i with secret ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) constructs its signature
share as follows:

1. Request Ri from all other parties and wait for the first n−t responses (R1
i , . . . , R

n−t
i).

2. Check whether R1
i = · · · = Rn−ti and output ⊥ if not.

3. Reconstruct the secret key sk′ ← NMDec(Li, R
1
i) and output ⊥ if sk′ = ⊥.

4. Compute signature share σi ← TSign(sk′i,m).

5. Output σi.

NMTRec: Given verification key vk and signature shares σi1 , . . . , σit , we construct a signature
as follows:

1. σ ← TRec(vk, σi1 , . . . , σit).

2. Output σ.

NMTVerify: Given verification key vk, signature σ, and message m, we do the following:

1. b← TVerify(vk, σ,m).

2. Output b.

Notice that the way NMTSign is formulated now, a single tampered share can make the
protocol output ⊥. If this is undesirable, the two first steps in NMTSign: can be replaced by

1. Request Ri from all other parties and collect responses R1
i , R

2
i ,

2. If and when a subset of the responses of size n− t are all identical to some Ri, use this Ri
in the following steps.

In an asynchronous network with eventual delivery, all n − t honest parties will eventually get
the request for Ri and send their value. Therefore party i eventually receive all these n−t shares
(and possibly some corrupted shares too). Therefore, if there is no tampering, then party i will
eventually receive n − t copies of the correct share. In all cases party i will hear from at least
one honest party as in the original scheme, so security follows along the lines of the security for
the original scheme. Below we will only analyse the original scheme.

Unforgeability: We show that S is a secure threshold signature scheme according to defi-
nition 48. Let SuccForgery be the event that adversary A successfully outputs a valid forgery in
the unforgeability game from Definition 48. We have

Pr[SuccForgery] = Pr[SuccForgery|SuccCheat] + Pr[SuccForgery|¬SuccCheat],

where SuccCheat denotes the event that during any of the signature share generations a corrupt
party sends a tampered value R∗i , such that R∗i 6= Ri, to honest party i and this party does
not output ⊥. Recall that any party i waits for n− t responses in step 1 of NMTSign. Since
n ≥ 2t + 1, it holds that at least one of the n − t parties is honest and thus sends the correct
Ri. From step 2 it follows that Pr[SuccCheat] = 0.

Let us now consider Pr[SuccForgery|¬SuccCheat]. We first observe that each party holds
one share of each signing key. This means that the adversary can see one share of each of the
n− (t− 1) honest party’s secret keys. Now consider a hybrid game, which is almost identical to
the original unforgeability game with the only difference being that we slightly change the keys of
the corrupted parties. Rather than letting them hold one share of each honest party’s secret key,
we let them hold shares of a random values. By lemma 28 we know that (NMEnc,NMDec) is

34

a (2, 2ε)-secret sharing scheme and thus any adversary can distinguish the security games with
probability at most 2(n− t)ε. Since no tampering happens, and since the corrupted parties now
hold no information about the honest parties keys, we can conclude that the resulting game is
basically identical to the original unforgeability game and thus by the security of the underlying
threshold signature scheme we get that

Pr[SuccForgery] = Pr[SuccForgery|¬SuccCheat] ≤ negl(λ) + 2ε(n− t+ 1) ≤ (2n− 2t+ 3)negl(λ).

Non-Malleability: Assume towards contradiction that the construction described above
is not non-malleable according to Definition 49. This means that for some fixed f ∈ Fsplitn ,

there exists an adversary A that successfully outputs a forgery in the experiment SigTamperfλ
with non-negligible probability. We will use A to construct an adversary B that breaks the
unforgeability of the underlying threshold signature scheme. Our reduction works as follows:

1. B internally initializes A with fresh random coins.

2. According to SigTamperfλ , the adversary A outputs indices T = (i1, . . . , it−1).

3. B forwards these indices in his unforgeability game to obtain secret keys (vk, sk′i1 , . . . , sk
′
it−1

).

4. B picks P ← {0, 1}λ and for each i ∈ [n], if i 6∈ T , then B sets sk′i = P .

5. For each i ∈ [n], encode the key sk′i to obtain (Li, Ri)← NMEnc(sk′i).

6. For each i ∈ [n], B constructs ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).

7. B computes (s̃k1, . . . , s̃kn)← f(sk1, . . . , skn) and sends (vk, s̃ki1 , . . . , s̃kit−1
) to A.

8. B simulates A’s queries to oracle Õ. Whenever A sends message m, B returns (σ1, . . . , σn),
which is computed as follows:

(a) For each i ∈ [n], B reconstructs s̃k′i as is done in the first three steps of NMTSign.

(b) For each i ∈ T , if s̃k′i = ⊥, then set σi = ⊥, otherwise set σi = TSign(s̃k′i,m).

(c) For each i 6∈ T , if s̃k′i = ⊥, then set σi = ⊥, otherwise if s̃k′i 6= P , then σi =

TSign(s̃k′i,m), otherwise if s̃k′i = P , then B queries his oracle to obtain signature
share σi.

9. At some point A outputs (m∗, σ∗) and B outputs the same.

From the perspective of A, the only difference between our reduction and a real execution
SigTamperfλ is the construction of each Ri where i 6∈ T . For this observation we use (in step 8
(c) of the reduction) the fact that the underlying threshold signature scheme is non-interactive,

which means that correctness of a signature share σi only depends on the correctness of s̃ki. By
lemma 28, we know that (NMEnc,NMDec) is a (2, 2ε)-secret sharing scheme and therefore
the adversary’s success probability can at most differ by an additive factor of 2ε(n− t+ 1). It
follows that

Pr[B wins] ≥ Pr[A wins]− 2ε(n− t+ 1) ≥= Pr[A wins]− (2n− 2t+ 3)negl(λ),

which by assumption on A’s success probability is non-negligible.

5.2 Leakage-Resilient Threshold Signatures

In a leakage-resilient threshold signature scheme, the adversary may obtain an unqualified subset
of secret keys and a bounded amount of leakage from all other secret keys. Even given this
information, we require that the adversary may not be able to output a valid forgery.

35

Definition 51 (Leakage-Resilient Threshold Signature Scheme). Let S = (LTGen,LTSign,
LTRec,LTVerify) be a tuple of probabilistic polynomial time algorithms. Let F be a family of
leakage functions. For each f ∈ F , and any probabilistic polynomial time adversary A, define
the following experiment

SigLeakfλ =

(vk, sk1, . . . , skn)← LTGen(1λ)

(i1, . . . , it−1)← A(1λ)

(`1, . . . , `n)← f(sk1, . . . , skn)

(m∗, σ∗)← AO(vk, (ski1 , . . . , skit−1
), (`1, . . . , `n))

Output (m∗, σ∗)

,

where the oracle O(·) allows the adversary, on behalf of the corrupted parties, to engage in
a polynomial number of (possibly interactive) signature shares generation for messages of its
choice. Let Q be the set of messages that A queries to O. We say S is leakage-resilient w.r.t.
F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ 6∈ Q] ≤ negl(λ) .

Theorem 52. For any number of parties n ≥ 2t + 1 and threshold t, if we have the following
primitives :

1. A non-interactive secure (n, t)-threshold signatures scheme (TGen,TSign,TRec,TVerify).

2. A two-source (n− `− log 1/ε, 2ε)-extractor nmExt with efficient preimage sampling from
the space X = {0, 1}n, where ε ≤ negl(λ).

then the construction from Theorem 50, where we replace each call to NMEnc with nmExt−1

and each call to NMDec with nmExt, is a leakage-resilient threshold signature scheme w.r.t.
Fsplit`,n , where Fsplit`,n is the set of leakage functions that tamper with each share independently
and the output of each tampering function is bounded in size by ` bits.

Assume towards contradiction that it is not. This means that for some fixed f ∈ Fsplit`,n ,

there exists an adversary A that successfully outputs a forgery in the experiment SigLeakfλ
with non-negligible probability. We will use A to construct an adversary B that breaks the
unforgeability of the underlying threshold signature scheme. Our reduction works as follows:

1. B internally initializes A with fresh random coins.

2. The adversary A outputs indices T = (i1, . . . , it−1).

3. B forwards these indices in his unforgeability game to obtain secret keys (vk, sk′i1 , . . . , sk
′
it−1

).

4. For each i ∈ [n], if i 6∈ T , then B sets sk′i = 0.

5. For each i ∈ [n], encode the key sk′i to obtain (Li, Ri)← nmExt−1(sk′i).

6. For each i ∈ [n], B constructs ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).

7. B computes (`1, . . . , `n) ← f(sk1, . . . , skn) and sends (vk, (ski1 , . . . , skit−1
), (`1, . . . , `n))

to A.

8. Whenever A initiates a signature share generation for honest party i on message m, the
honest party would request Ri from A and so does B. A outputs a value R∗i and we
consider two cases here:

• If R∗i = Ri, where Ri is known to B, then B requests a signature share generation on
m from honest party i in his game and returns the result σi to A.

• If R∗i 6= Ri, then we request a scheduler entity3 to specify an order in which messages
at honest party i should arrive. If A’s message is among the first n− t, then we return
⊥ to A. If not, then B queries m in his game and again returns σi to A.

3Recall that we consider a asynchronous network with eventual delivery. This means that we cannot assume a
specific order in which messages arrive. Therefore a (potentially malicious) scheduler can specify any order for us.

36

9. At some point A outputs (m∗, σ∗) and B outputs the same.

From the perspective of A, the only difference between our reduction and a real execution
SigLeakfλ is the construction of each Ri as well as the corresponding leakage `i, where i 6∈ T .
Since each honest party’s secret sk′i is encoded with a two-source (n−`−log 1/ε, 2ε)-extractor, the
adversary can distinguish a real execution of the experiment and the reduction with probability
at most 4ε(n− t+ 1). It follows that

Pr[B wins] ≥ Pr[A wins]− 4ε(n− t+ 1) ≥= Pr[A wins]− (4n− 4t+ 3)negl(λ),

which by assumption on A is non-negligible.

References

[ADKO15] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Theory of Cryptography, volume 9014
of Lecture Notes in Computer Science, pages 398–426. Springer Berlin Heidelberg,
2015.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Annual International Cryptol-
ogy Conference, pages 531–561. Springer, 2018.

[Bei11] Amos Beimel. Secret-sharing schemes: a survey. In International Conference on
Coding and Cryptology, pages 11–46. Springer, 2011.

[BGK14] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin
tossing. Distributed Computing, 27(3):147–164, 2014.

[Bol03] Alexandra Boldyreva. Efficient threshold signatures, multisignatures and blind sig-
natures based on the Gap-Diffie-Hellman-group signature scheme. In PKC 2003,
6th International Workshop on Theory and Practice in Public Key Cryptography,
volume 2567 of LNCS. Springer-Verlag, 2003.

[BS18] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable
secret sharing. Cryptology ePrint Archive, Report 2018/1144, 2018. https://

eprint.iacr.org/2018/1144.

[CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In TCC, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and
codes, with their many tampered extensions. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 285–298. ACM, 2016.

[Che10] Mahdi Cheraghchi. Applications of derandomization theory in coding. PhD Thesis,
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, 2010.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in the constant
split-state model. FOCS, 2014.

[Des87] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl
Pomerance, editor, Advances in Cryptology—CRYPTO ’87, volume 293 of LNCS,
pages 120–127. Springer-Verlag, 1988, 16–20 August 1987.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM
Journal on Computing, 38(1):97–139, 2008.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434–452. Tsinghua University Press, 2010.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes.
In Theory of Cryptography Conference - TCC. Springer, 2014.

37

https://eprint.iacr.org/2018/1144
https://eprint.iacr.org/2018/1144

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 685–
698. ACM, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access
structures. In Annual International Cryptology Conference, pages 501–530. Springer,
2018.

[GKP+18] Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richelson, and Akshayaram Srini-
vasan. Non-malleable commitments from non-malleable extractors. 2018. unpub-
lished.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4),
2009.

[KMS18] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing.
Cryptology ePrint Archive, Report 2018/1138, 2018. https://eprint.iacr.org/

2018/1138.

[Kum18] Ashutosh Kumar. personal communication, 2018.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1144–1156. ACM, 2017.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and re-
ducing the error in Trevisan’s extractors. Journal of Computer and System Sciences,
65(1):97–128, 2002.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer-
Verlag, 2000.

[SV18] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret
sharing and applications. Cryptology ePrint Archive, Report 2018/1154, 2018.
https://eprint.iacr.org/2018/1154.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

38

https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1154

	Introduction
	Our Contributions
	Technical Overview
	Leakage-Resilient Secret-Sharing Scheme
	Non-Malleable Secret-Sharing Scheme with Concurrent Reconstruction
	Threshold Signature Scheme Secure Against Tampering

	Open Questions
	Organization

	Preliminaries and Definitions
	Statistical Distance and Entropy
	Extractors and Non-Malleable Codes
	Secret-Sharing Schemes

	Non-Malleable Secret-Sharing
	Separations between Notions of Non-Malleable Secret-Sharing
	Non-Malleable Secret-Sharing Scheme against Individual Tamperings
	Non-Malleability with Concurrent Reconstruction

	Leakage-Resilient Secret-Sharing Scheme
	Threshold Signatures
	Non-Malleable Threshold Signatures
	Leakage-Resilient Threshold Signatures

