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Abstract

Formulating and designing unforgeable authentication of classical messages in the presence of quantum
adversaries has been a challenge, as the familiar classical notions of unforgeability do not directly translate
into meaningful notions in the quantum setting. A particular difficulty is how to fairly capture the notion
of “predicting an unqueried value” when the adversary can query in quantum superposition. In this work,
we uncover serious shortcomings in existing approaches, and propose a new definition. We then support
its viability by a number of constructions and characterizations.

Specifically, we demonstrate a function which is secure according to the existing definition by Boneh
and Zhandry, but is clearly vulnerable to a quantum forgery attack, whereby a query supported only
on inputs that start with 0 divulges the value of the function on an input that starts with 1. We then
propose a new definition, which we call “blind-unforgeability” (or BU.) This notion matches “intuitive
unpredictability” in all examples studied thus far. It defines a function to be predictable if there exists an
adversary which can use “partially blinded” oracle access to predict values in the blinded region. Our
definition (BU) coincides with standard unpredictability (EUF-CMA) in the classical-query setting. We
show that quantum-secure pseudorandom functions are BU-secure MACs. In addition, we show that
BU satisfies a composition property (Hash-and-MAC) using “Bernoulli-preserving” hash functions, a
new notion which may be of independent interest. Finally, we show that BU is amenable to security
reductions by giving a precise bound on the extent to which quantum algorithms can deviate from their
usual behavior due to the blinding in the BU security experiment.

1 Introduction

1.1 Background.

Large-scale quantum computers will break all widely-deployed public-key cryptography, and may even threaten
certain post-quantum candidates [19, 7, 8, 9, 4]. Basic symmetric-key constructions like Feistel ciphers and
CBC-MACs also become vulnerable in a quantum attack model [14, 15, 13, 18], where the adversary is
presumed to have quantum query access to some part of the cryptosystem. For example, the adversary
may gain access to the unitary operator |x〉|y〉 7→ |x〉|y ⊕ fk(x)〉 where fk is the encryption or decryption
function with the key k. While it is unclear if this model is directly relevant to physical implementations
of symmetric-key cryptography, it appears necessary in a number of generic settings, such as public-key
encryption and hashing with public hash functions. It could also be relevant when private-key primitives
are composed in larger protocols, e.g., by exposing circuits via obfuscation [17]. Setting down appropriate
security definitions in this quantum attack model is the subject of several threads of recent research [6, 10].
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In this article, we study authentication of classical information in this quantum-secure model. Here, the
adversary is granted quantum query access to the signing algorithm of a message authentication code (MAC)
or a digital signature scheme, and is tasked with producing valid forgeries. In the purely classical setting,
we insist that the forgeries are fresh, i.e., distinct from previous queries to the oracle, so that the security
definition does not become vacuous. When the function may be queried in superposition, however, it’s
unclear how to meaningfully reflect this constraint that a forgery was “unqueried” without ruling out natural,
intuitive attacks. For example, consider a uniform superposition query. Simply measuring the output state to
get a forgery—a feasible attack against any function—should not be considered a break. On the other hand,
an adversary who uses the same query to discover some structural property (e.g., a superpolynomial-size
period in the MAC) should be considered successful. Examples like these indicate the difficulty of the problem.
How do we correctly “price” the queries? How do we decide if a forgery is fresh? Furthermore, how do we
do this in a manner that is consistent with these examples, and many others? This problem has a natural
interpretation that goes well beyond cryptography: What does it mean for a classical function to appear
unpredictable to a quantum oracle algorithm? 1

Previous approaches. The first approach to this problem was suggested by Boneh and Zhandry [5]. They
define a MAC to be unforgeable, if no adversary can use q queries to the MAC to produce q + 1 valid
input-output pairs except with negligible probability. We will refer to this notion as “BZ security” (and k-BZ
for the case where the adversary is permitted a maximum of k queries). Boneh and Zhandry prove a number
of results about this notion, including that it can be realized by a quantum-secure pseudorandom function
(qPRF).

In an approach by Garg, Yuen and Zhandry [11], a MAC is considered one-time secure if only a trivial
“query, measure in computational basis, output result” attack is allowed; we call this notion GYZ. Unfortunately,
it is not clear how to extend GYZ beyond the single-query case. Zhandry recently gave a separation example
between BZ and GYZ by means of indistinguishability obfuscation [25].

It is interesting to note that similar problems are present in defining unforgeability for authentication
of quantum data. A convincing solution was recently found [2]. This approach relies on the fact that, for
quantum messages, authentication implies secrecy ; this enables “tricking” the adversary by replacing their
queries with “trap” plaintexts to detect replays. As a result, the approach of [2] is inapplicable to the
setting of classical messages, where unforgeability and secrecy are orthogonal. Indeed, in situations where
unforgeability is required but secrecy is not, adversaries would easily recognize spoofed oracles.

Unresolved issues. BZ security, the only candidate definition of quantum-secure unforgeability in the
setting of more than one query, appears to be insufficient for several reasons. First, as observed in [11], it
is a-priori unclear if BZ security rules out adversaries who forge a message in region A after querying the
signing oracle on a disjoint message region B. Second, BZ may not capture the unique features of quantum
information, such as the destructiveness of measurement. Quantum algorithms must sometimes “consume”
(i.e., fully measure) a state to extract some useful information, such as a symmetry in the oracle. It’s plausible
that, for some MACs, there is an adversary who makes one or more quantum queries but then must consume
the post-query states completely in order to make a single convincing forgery.

Despite these philosophical criticisms, prior to this work no BZ-secure schemes have been shown to be
manifestly insecure. It is thus essential to gain a concrete understanding of these potential issues, and thereby
place the security of MACs and other primitives against quantum attacks on firmer foundations.

1.2 Summary of results

1.2.1 The problem with BZ.

Our first result is a construction of a MAC which is forgeable (in a strong intuitive sense) and yet is classified
by BZ as secure.

1The related notion of “appearing random” has a satisfying definition, which can be fulfilled efficiently [24].
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Construction 1. Given a triple k = (p, f, g) where p ∈ {0, 1}n and f, g : {0, 1}n → {0, 1}n, define
Mk : {0, 1}n+1 → {0, 1}2n by

Mk(x) =


02n x = 0‖p
0n‖f(x′) x = 0‖x′, x′ 6= p

g(x′ mod p)‖f(x′) x = 1‖x′ .

Consider an adversary that queries only on messages starting with 1, as follows:∑
x,y

|1, x〉X |0n〉Y1
|y〉Y2

7−→
∑
x,y

|1, x〉X |gp(x)〉Y1
|y ⊕ f(x)〉Y2

. (1)

Since
∑
y |y ⊕ f(x)〉Y2

=
∑
y |y〉Y2

, discarding the first qubit and Y2 yields
∑
x |x〉|gp(x)〉. One can then

recover p via period-finding and output (0‖p, 02n). We emphasize that the forgery was queried with zero
amplitude. One can interpret this attack as, e.g., querying only on messages starting with “From: Alice” and
then forging a message starting with “From: Bob”. Despite this, we can show that M is BZ-secure.

Theorem 1. The family Mk (for uniformly random k = (p, f, g)) is BZ-secure.

The BZ security of M relies on a dilemma the adversary faces at each query: either learn an output of f ,
or obtain a superposition of (x, g(x))-pairs for Fourier sampling. Our proof shows that, once the adversary
commits to one of these two choices, the other option is irrevocably lost. Our result can thus be understood as
a refinement of an observation of Aaronson: quantumly learning a property sometimes requires uncomputing
some information [1]. Note that, while Aaronson could rely on standard (asymptotic) query complexity
techniques, our problem is quite fragile: BZ security describes a task which should be hard with q queries, but
is completely trivial given q + 1 queries. Our proof is inspired by a new quantum random oracle technique of
Zhandry [26].

1.2.2 A new definition: Blind-unforgeability.

We then develop a new definition of unpredictability. Given the context of quantum-secure MACs and digital
signatures, we call our notion “blind-unforgeability” (or BU). In this approach, we examine the behavior
of adversaries in the following experiment. The adversary is granted quantum oracle access to the MAC,
“blinded” at a random region B. Specifically, we set B to be a random ε-fraction of the message space, and
declare that the oracle function will output ⊥ on all of B.

BεMack(x) :=

{
⊥ if x ∈ Bε,
Mack(x) otherwise.

Given a MAC (Mac,Ver), an adversary A, and adversary-selected parameter ε, the “blind forgery experiment”
is:

1. Generate key k and random blinding Bε;

2. Produce candidate forgery (m, t)← ABεMack(1n).

3. Output win if Verk(m, t) = acc and m ∈ Bε; otherwise output rej.

Definition 1. A MAC is blind-unforgeable (BU) if for every adversary (A, ε), the probability of winning the
blind forgery experiment is negligible.

In this work, BU will typically refer to the case where A is an efficient quantum algorithm (QPT) and the
oracle is quantum, i.e., |x〉|y〉 7→ |x〉|y ⊕BεMack(x)〉. We will also consider q-BU, the information-theoretic
variant where the total number of queries is a-priori fixed to q. We remark that the above definition is also
easy to adapt to other settings, e.g., classical security against PPT adversaries, quantum or classical security
for digital signatures, etc.
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1.2.3 Results about blind-unforgeability.

Next, we collect a series of results which build up confidence in BU as a viable definition of unforgeability.
These results allow us to conclude that BU classifies a wide range of examples (in fact, all examples we have
examined) as either forgeable or unforgeable in a way that agrees with our intuition about the meaning of
unpredictability. First, we show that BU correctly classifies unforgeability in the classical-query setting.

Proposition 1. In the setting of classical queries, BU ⇔ EUF-CMA.

Next, we give a general simulation theorem which tightly controls the deviation in the adversary’s behavior
when subjected to the BU experiment.

Theorem 2. Let A be a quantum query algorithm making at most T queries. Let F : X → Y be a function,
Bε a random ε-blinding subset of X, and P any function with support Bε. Then

E
Bε

∥∥AF (1n)−AF⊕P (1n)
∥∥

1
≤ 2T

√
ε .

The above fact can be viewed as evidence that adversaries that produce “good forgeries” (in any reasonably
intuitive sense) will not be disturbed too much by blinding, and will thus in fact also win the BU experiment.
We can formulate and prove this intuition explicitly for a wide class of adversaries, as follows. Given an
oracle algorithm A, we let supp(A) denote the union of the supports of all the queries of A, taken over all
choices of oracle function.

Theorem 3 (informal). Let A be QPT and supp(A) ∩ R = ∅ for some R 6= ∅. Let Mac be a MAC, and
suppose AMack(1n) outputs a valid pair (m,Mack(m)) with m ∈ R with noticeable probability. Then Mac is
not BU secure.

A straightforward application of Theorem 3 shows that Construction 1 is BU-insecure. In particular, we
have the following.

Corollary 1. There exists a BZ-secure MAC which is BU-insecure.

1.2.4 Blind-unforgeable MACs.

Next, we show that several natural constructions satisfy BU. We first show that a random function is
blind-unforgeable.

Theorem 4. Let R : X → Y be a random function such that 1/|Y | is negligible. Then R is a blind-unforgeable
MAC.

By means of results of Zhandry [24] and Boneh and Zhandry [5], this leads to efficient BU-secure
constructions.

Corollary 2. Quantum-secure pseudorandom functions (qPRF) are BU-secure MACs, and (4q+1)-wise
independent functions are q-BU-secure MACs.

We can then invoke a recent result about the quantum-security of domain-extension schemes such as
NMAC and HMAC [20], and obtain variable-length BU-secure MACs from any qPRF.

Hash-and-MAC. Consider the following natural variation on the blind-forgery experiment. To blind
F : X → Y , we first select a hash function h : X → Z and a blinding set Bε ⊆ Z; we then declare that F will
be blinded on x ∈ X whenever h(x) ∈ Bε. We refer to this as “hash-blinding.” We say that a hash function
h is a Bernoulli-preserving hash if, for every oracle function F , no QPT can distinguish between an oracle
that has been hash-blinded with h, and an oracle that has been blinded in the usual sense.

Recall that the notion of collapsing hash [22] is a quantum analogue of classical collision-resistance, which
plays an important role in the construction of post-quantum digital signatures.
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Theorem 5. Let h : X → Y be a hash function. If h is a Bernoulli-preserving hash, then it is also collapsing.
Moreover, against adversaries with classical oracle access, h is a Bernoulli-preserving hash if and only if it is
collision-resistant.

We apply this new notion to show security of the Hash-and-MAC construction Πh = (Mach,Verh) with
Machk(m) := Mack(h(m)).

Theorem 6. Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y , and let h : Z → X a
Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

Finally, we show that the Bernoulli-preserving property can be satisfied by pseudorandom constructions, as
well as a (public-key) hash based on lossy functions from the Learning with Errors (LWE) assumption [16, 21].

2 Preliminaries

Basic notation, conventions. Given a finite set X, the notation x ∈R X will mean that x is a uniformly
random element of X. Given a subset B of a set X, let χB : X → {0, 1} denote the characteristic function
of B, i.e., χB(x) = 1 if x ∈ B and χB(x) = 0 else. When we say that a classical function F is efficiently
computable, we mean that there exists a uniform family of deterministic classical circuits which computes F .

We will consider three classes of algorithms: (i.) unrestricted algorithms, modeling computationally
unbounded adversaries, (ii.) probabilistic poly-time algorithms (PPTs), modeling classical adversaries, and
(iii.) quantum poly-time algorithms (QPTs), modeling quantum adversaries. We assume that the latter two
are given as polynomial-time uniform families of circuits. For PPTs, these are probabilistic circuits. For
QPTs, they are quantum circuits, which may contain both unitary gates and measurements. We will often
assume (without loss of generality) that the measurements are postponed to the end of the circuit, and that
they take place in the computational basis.

Given an algorithm A, we let A(x) denote the (in general, mixed) state output by A on input x. In
particular, if A has classical output, then A(x) denotes a probability distribution. Unless otherwise stated,
the probability is taken over all random coins and measurements of A, and any randomness used to select
the input x. If A is an oracle algorithm and F a classical function, then AF (x) is the mixed state output
by A equipped with oracle F and input x; the probability is now also taken over any randomness used to
generate F .

We will distinguish between two ways of presenting a function F : {0, 1}n → {0, 1}m as an oracle. First,
the usual “classical oracle access” simply means that each oracle call grants one classical invocation x 7→ F (x).
This will always be the oracle model for PPTs. Second, “quantum oracle access” will mean that each oracle
call grants an invocation of the (n+m)-qubit unitary gate |x〉|y〉 7→ |x〉|y ⊕ F (x)〉 . For us, this will always
be the oracle model for QPTs. Note that both QPTs and unrestricted algorithms could in principle receive
either oracle type.

We will need the following lemma. We use the formulation from [6, Lemma 2.1], which is a special case of
a more general “pinching lemma” of Hayashi [12].

Lemma 1. Let A be a quantum algorithm and x ∈ {0, 1}∗. Let A0 be another quantum algorithm obtained
from A by pausing A at an arbitrary stage of execution, performing a measurement that obtains one of k
outcomes, and then resuming A. Then Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.

We denote the trace distance between states ρ and σ by δ(ρ, σ). Recall that this is simply half the trace
norm of the difference, i.e., δ(ρ, σ) = 1

2‖ρ− σ‖1. When ρ and σ are classical probability distributions, the
trace distance is equal to the total variation distance.

Quantum-secure pseudorandomness. A quantum-secure pseudorandom function (qPRF) is a family
of classical, deterministic, efficiently-computable functions which appear random to QPT adversaries with
quantum oracle access.
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Definition 2. An efficiently computable function family f : K ×X → Y is a quantum-secure pseudorandom
function (qPRF) if, for all QPTs D,∣∣∣ Pr

k∈RK

[
Dfk(1n) = 1

]
− Pr
g∈RFYX

[
Dg(1n) = 1

]∣∣∣ ≤ negl(n) .

Here FYX denotes the set of all functions from X to Y . The standard “GGM+GL” construction of a PRF
yields a qPRF when instantiated with a quantum-secure one-way function [24]. One can also construct a qPRF
directly from LWE [24]. If we have an a-priori bound on the number of allowed queries, then a computational
assumption is not needed.

Theorem 7 (Lemma 6.4 in [5]). Let q, c ≥ 0 be integers, and f : K ×X → Y a (2q + c)-wise independent
family of functions. Let D be an algorithm making no more than q quantum oracle queries and c classical
oracle queries. Then

Pr
k∈RK

[
Dfk(1n) = 1

]
= Pr
g∈RFYX

[
Dg(1n) = 1

]
.

BZ-unforgeability. Boneh and Zhandry define unforgeability (against quantum queries) for classical MACs
as follows [5]. They also show that random functions satisfy this notion.

Definition 3. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Consider the following experiment
with an algorithm A:

1. Generate key: k ← KeyGen(1n).

2. Generate forgeries: A receives quantum oracle for Mack, makes q queries, and outputs a string s;

3. Outcome: output win if s contains q + 1 distinct input-output pairs of Mack, and fail otherwise.

We say that Π is BZ-secure if no adversary can succeed at the above experiment with better than negligible
probability.

The Fourier Oracle. Our separation proof will make use of a new technique of Zhandry [26] for working
with random oracles. We now briefly describe this idea.

A random function f from n bits to m bits can be viewed as the outcome of a quantum measurement. More
precisely, let HF =

⊗
x∈{0,1}n HFx , where HFx ∼= C2m . Then set f(x)←MFx(ηF ) with ηF = |φ0〉〈φ0|⊗2n ,

|φ0〉 = 2−
m
2

∑
y∈{0,1}m |y〉, and where MFx denotes the measurement of the register Fx in the computational

basis. This measurement commutes with any CNOTA:B gate with control qubit A in Fx and target qubit
B outside Fx. It follows that, for any quantum algorithm making queries to a random oracle, the output
distribution is identical if the algorithm is instead run with the following oracle:

1. Setup: prepare the state ηF .

2. Upon a query with query registers X and Y , controlled on X being in state |x〉, apply (CNOT⊗m)Fx:Y .

3. After the algorithm has finished, measure F to determine the success of the computation.

We denote the oracle unitary defined in step 2 above by UO
XY F . Having defined this oracle representation,

we are free to apply any unitary UH to the oracle state, so long as we then also apply the conjugated query
unitary UH(CNOT⊗m)Fx:Y U

†
H in place of UO

XY F . We choose UH = H⊗m2n , which means that the oracle
register starts in the all-zero state now. Applying Hadamard to both qubits reverses the direction of CNOT,
i.e.

HA ⊗HBCNOTA:BHA ⊗HB = CNOTB:A,

so the adversary-oracle-state after a first query with query state |x〉X |φy〉Y is

|x〉X |φy〉Y |0m〉⊗2n 7−→ |x〉X |φy〉Y |0m〉⊗(lex(x)−1)|y〉Fx |0m〉⊗(2n−lex(x)), (2)
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where lex(x) denotes the position of x in the lexicographic ordering of {0, 1}n, and we defined the Fourier
basis state |φy〉 = H⊗m|y〉. In the rest of this section, we freely change the order in which tensor products
are written, and keep track of the tensor factors through the use of subscripts. This adjusted representation
is called the Fourier oracle (FO), and we denote its oracle unitary by

UFO
XY F =

(
H⊗m2n

)
F
UO
XY F

(
H⊗m2n

)
F
.

An essential fact about the FO is that each query can only change the number of non-zero entries in the
FO’s register by at most one. To formalize this idea, we define the “number operator”

NF =
∑

x∈{0,1}n
(1− |0〉〈0|)Fx ⊗ 1⊗(2n−1). (3)

The number operator can also be written in its spectral decomposition,

NF =

2n∑
l=0

lPl where Pl =
∑
r∈Sl

|r〉〈r| ,

Sl =
{
r ∈ ({0, 1}m)

2n
∣∣∣|{x ∈ {0, 1}n|rx 6= 0}| = l

}
.

Note that the initial joint state of a quantum query algorithm and the oracle (in the FO-oracle picture
described above) is in the image of P0. The following fact is essential for working with the Fourier Oracle;
the proof is given in Appendix A.

Lemma 2. The number operator satisfies ∥∥[NF , UFOXY F ]∥∥∞ = 1.

In particular, the joint state of a quantum query algorithm and the oracle after the q-th query is in the kernel
of Pl for all l > q.

3 The problem with BZ-unforgeability

3.1 Intuition, and some obstacles

We begin by motivating our search for a new definition of unforgeability for quantum-secure authentication.
We point out a significant security concern not addressed by the existing definition (BZ security) [5]. Before
getting to the specifics, we briefly discuss some intuition behind the problem with BZ security, as well as
some obstacles to making this intuition concrete.

One intuitive concern about BZ is that it might rule out adversaries who have to measure and thereby “fully
destroy” one or more post-query states before they can produce an interesting forgery. At first, constructing
such an example does not seem difficult. For instance, let us look at one-time BZ, and construct a MAC from
a qPRF f by sampling a key k for f and a superpolynomially-large prime p, and setting

Mack,p(m) =

{
0n if m = p

fk(m mod p) otherwise.
(4)

This MAC is forgeable: a quantum adversary can use a single query to perform period-finding on the MAC,
and then forge at 0n. Intuitively, it seems plausible that the MAC might be 1-BZ secure, since period-finding
uses a full measurement, and the outputs of the MAC are random everywhere else. As it turns out, this
is incorrect, and for a somewhat subtle reason: identifying the hidden symmetry does not fully consume
the post-query state. On the contrary, the fact that the period-finding measurement succeeds with high
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probability implies that the measured post-query state is not too different from the unmeasured post-query
state. In particular, one can still extract an input-output pair of fk from the measured post-query state.

More generally, let Af be an algorithm that makes a uniform-superposition query to some function f and
then outputs a property p(f) with non-negligible probability δ. Let |ψ〉 =

∑
x |x〉|f(x)〉 denote the post-query

state, and consider applying to |ψ〉 the POVM {Ep}p which identifies the property (but measures nothing
else.) By assumption, there exists a particular POVM element (i.e., Ep(f)) that is observed with probability

δ. This implies that |ψ〉〈ψ| has roughly
√
δ overlap with the post-measurement state ρ := Ep(f)|ψ〉〈ψ|E†p(f).

This means that, even after extracting p(f), measuring ρ in the computational basis will result in a random
input-output pair of f with probability δ = 1/poly(n).

One can also try an idea similar to (4) but with Simon’s problem rather than period-finding, with the aim
of requiring the adversary to consume O(n) queries in order to produce a single good forgery (e.g., whose tag
is the nontrivial element k of the hidden subgroup.) This again fails by similar reasoning: we can make all
the queries in parallel, postpone the measurement which identifies k until the end of the algorithm, and then
observe that each post-query state is not disturbed too much by this measurement. This allows us to extract
input-output pairs from every query, with non-negligible success probability overall.

These rather general features of quantum algorithms make it difficult to instantiate the above intuition
about the problems with BZ security with a concrete scheme. We formalize these somewhat surprising
observations in Lemma 8 in Appendix B.4.

3.2 A counterexample to BZ

In order to construct an explicit function which exemplifies the issues with BZ, we will make use of both
the intuition described above, and the well-known (but only partially understood) necessity of uncomputing
certain registers when attempting to extract some data from an oracle [1]. Consider the following MAC
construction.

Construction 2. Select a uniformly random string p ∈R {0, 1}n and two random functions f, g : {0, 1}n →
{0, 1}n, and define a MAC for n+ 1 bit messages by

Mack(x) =


02n x = 0‖p
0n‖f(x′) x = 0‖x′, x′ 6= p

g(x′ mod p)‖f(x′) x = 1‖x′
(5)

with k = (p, f, g).

Consider an adversary that queries as follows∑
x,y

|1, x〉X |0n〉Y1
|y〉Y2

7−→
∑
x,y

|1, x〉X |gp(x)〉Y1
|y ⊕ f(x)〉Y2

, (6)

and then discards the first qubit and the Y2 register; this yields
∑
x |x〉|gp(x)〉. The adversary can extract p

via period-finding from polynomially-many such states, and then output (0‖p, 02n). This attack only queries
the MAC on messages starting with 1 (e.g., “from Alice”), and then forges at a message which starts with 0
(e.g., “from Bob.”) We emphasize that the forgery was never queried, not even with negligible amplitude. It
is thus intuitively clear that this MAC does not provide secure authentication. And yet, despite this obvious
and intuitive vulnerability, this MAC is in fact BZ-secure.

Theorem 8. The MAC from Construction 2 is BZ-secure.

Proof. Let A be an adversary that makes q quantum queries and outputs q + 1 distinct candidate forgeries
(where q is selected by A at runtime.) We let this adversary interact with a mixed oracle, where g and p
are treated as random variables, and f is represented as a Fourier Oracle as in Section 2. We denote the
relevant quantum registers as follows. First, the quantum oracle for Mack is a unitary operator on three

8



registers: (i.) the (n+ 1)-qubit input register X, (ii.) the n-qubit output register Y1 into which gp : x 7→ g(x
mod p) is computed, and (iii.) the n-qubit output register Y2 which interacts with the Fourier Oracle. We set
Y = Y1Y2. The Fourier Oracle is an (n · 2n)-qubit register denoted by F , with the subregister corresponding
to input x ∈ {0, 1}n denoted by Fx. Finally, the workspace of A is a poly(n)-qubit register denoted by E.

Let |ψ〉XYEF denote the final state of A and the Fourier Oracle, after the q + 1 candidate forgeries have
been measured, but prior to any other measurements. Recall that each “number projector” Pl from Section 2
projects F to the subspace spanned by basis states with exactly l non-zero entries. We apply to |ψ〉 the

two-outcome measurement defined by P<q =
∑q−1
l=0 Pl and its complementary projector P≥q = 1 − P<q,

effectively measuring whether F contains fewer than q non-zero entries (i.e., registers Fx containing a state
other than 0n); note that it cannot contain more than q by Lemma 2. By Lemma 1, applying this measurement
decreases the success probability of A at any particular task by a factor 1/2. We handle the two possible
outcomes (< q and q) separately.

Case < q: Let |ψ<q〉XYEF := P<q|ψ〉XYEF be the post-measurement state. Note that Pl|ψ<q〉 = 0 for
all l ≥ q, i.e., each basis component of |ψ<q〉 has fewer than q non-zero entries in F . On the other hand,
the output of A contains at least q candidate input-output pairs (xi, yi) of f (since (0‖p, 02n) is the only
input-output pair of Mack that does not also contain an input-output pair of f .) We apply the q-outcome
measurement to F which asks: “among the registers {Fxi}

q
i=1, which is the first one to contain 0n?” This

measurement is defined by projectors

Πj :=

j⊗
i=1

(1− |0n〉〈0n|)Fxi ⊗ |0
n〉〈0n|Fxj .

Adding this measurement to A ensures that Fxj is in the state 0n for some j, at the cost of multiplying A’s
success probability by 1/q (by Lemma 1.) Recalling that, in the Fourier Oracle picture, f(xj) is the result of
QFT-ing and then fully measuring Fxj , we see that f(xj) is now uniformly random and independent of yj .
The original A (i.e., without the measurement {Πj}j) thus succeeded with probability at most q · 2−n. 2

Case q: We will denote the post-measurement state in this case by |ψqgp〉 := Pq|ψ〉, emphasizing that the
state was produced by interacting with the oracle gp. By the BZ-security of f (Theorem 19) it suffices to
show that the correct period p is output by A (by measuring, say, some designated subregister of E of the
state |ψqgp〉) with at most negligible probability. Since testing success at outputting p does not involve the
register F , we are free to apply any quantum channel to the F register of |ψqgp〉. We choose to measure which
q subregisters of F are in a non-zero state. This PVM is defined by projectors

PK =
⊗
x∈K

(1− |0n〉〈0n|)Fx ⊗
⊗
x/∈K

|0n〉〈0n|Fx and Prest = 1−
∑
K

PK , (7)

where K ⊂ {0, 1}n with |K| = q. Note that Prest = 1− Pq, so the outcome “rest” never occurs for |ψqgp〉. In
the following we denote by K the random variable obtained from this measurement. We also set some other
random variables in boldface to better distinguish them from particular values they can take.

Now consider the preparation of the state |ψq〉 (by A and the Fourier Oracle) with an arbitrary choice of
oracle function h : {0, 1}n → {0, 1}n in place of gp. We will denote this state by |ψqh〉. We now show that,
conditioned on a particular measurement outcome K, we can arbitrarily relabel the values of h outside K,
without affecting the output state of the algorithm.

Lemma 3. Let K ⊂ {0, 1}n with |K| = q and h, h′ : {0, 1}n → {0, 1}n a pair of functions satisfying
h(x) = h′(x) for all x ∈ K. Then PK |ψqh〉 = PK |ψqh′〉.

Proof. Let W
(j)
XYEF := V

(j)
XYEU

(h)
XY1

UFO
XY2F

, where V (j) is A’s j-th internal unitary, U (h) is the standard oracle

unitary for h, and UFO is the Fourier Oracle unitary as described in Section 2. The intermediate states are

|ϕh,k〉XYEF := W (k) · · ·W (1)V (0)|0〉XYEF , (8)

2This argument amounts to an alternative proof that random functions are BZ-secure.
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and the final state is |ψh〉 := |ϕh,q〉. By Lemma 2, Pl|ϕk,h〉 = 0 for all l > k, so

|ψqh〉 = Pq|ψh〉 = PqW
(q) · · ·W (k+1)|ϕk,h〉 =

k∑
l=0

PqW
(q) · · ·W (k+1)Pl|ϕk,h〉 .

For the l term in the sum above, the unitary applies q − k queries to Pl|ϕk,h〉; by Lemma 2 this term is thus
zero unless l = k. We can therefore insert a Pk after the k-th query for free when projecting with Pq in the
end. Explicitly,

|ψqh〉 = PqW
(q)Pq−1W

(q−1)Pq−2 · · ·P1W
(1)V (0)|0〉XYEF . (9)

We first show that we can apply

P̃K :=
⊗
x∈K

1Fx ⊗
⊗
x∈Kc

|0n〉〈0n|Fx

after every query of A.
We are interested in the state PK |ψ〉XYEF = PKPq|ψ〉XYEF . We can make a similar argument as above

to show that we can project with P̃K after every query as well. As the FO-unitary is the only one that acts
on F , and because P̃K |0〉⊗n2n = |0〉⊗n2n , we can even apply the projector P̃K before and after each query.
We write N = NK +NKc , where

NK =
∑
x∈K

(1− |0〉〈0|)Fx ⊗ 1⊗(2n−1), (10)

i.e. NK and NKc measure the number of non-zero entries inside and outside K, respectively. Lemma 2
applies to NK and NKc separately, and PKNK |ψ〉XYEF = NKPK |ψ〉XYEF = qPK |ψ〉XYEF . Therefore we
have, defining

U>k = V
(q)
XYEU

(h)
XY1

UFO
XY2FV

(q−1)
XYE U

(h)
XY1

UFO
XY2F ...V

(k+1)
XYE U

(h)
XY1

UFO
XY2FV

(k)
XYE (11)

and using the same argument as above, that

PKU>kN |ψk〉 = PKU>kNK |ψk〉 = kPKU>k|ψk〉, (12)

and hence
PKU>kNKc |ψk〉 = PKU>kN |ψk〉 − PKU>kNK |ψk〉 = 0, (13)

implying NKc |ψk〉 = 0. But the projector onto the zero-eigenspace of NKc is P̃K , so P̃K |ψk〉 = |ψk〉.
With an even simpler argument we can insert a projector P 6=0

Y2
= (1− |0〉〈0|)Y2

before every query. This

is because UFO|0〉Y2
|γ〉XF = |0〉Y2

|γ〉XF , and therefore the number operator eignenvalue does not increase.

To show that U (h)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
is independent of the values outside K, we observe that for all

x /∈ K, y ∈ {0, 1}n \ {0n} and for all states |γ〉Y1EF , we have

U (g,p)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
|x〉X ⊗ |φy〉Y2 ⊗ |γ〉Y1EF

= U (g,p)|x〉X ⊗
(
P̃K
(
H⊗n

)
Y2

CNOTY2:Fx |y〉Y2 ⊗ P̃K |γ〉Y1EF

)
= U (g,p)|x〉X ⊗

(
P̃K |0〉〈0|Fx

(
H⊗n

)
Y2

CNOTY2:Fx |0〉〈0|Fx |y〉Y2 ⊗ P̃K |γ〉Y1EF

)
= U (g,p)|x〉X ⊗

(
P̃K |0〉〈0|Fx |y〉〈0|Fx ⊗ |φy〉Y2 ⊗ P̃K |γ〉Y1EF

)
= 0, (14)

where we have used that for all x /∈ K it holds that |0〉〈0|Fx P̃K = P̃K . This implies that our artificial

oracle U (g,p)P̃KU
FO
(
P 6=0
Y2
⊗ (P̃K)F

)
(together with a renormalization) only gives A access to g(x mod p)

for inputs x ∈ K.
This concludes the proof of Lemma 3.
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We now continue with the “case q” proof of Theorem 8. We bound A’s success probability separately for
each outcome K. Indeed, it suffices to show that for all K ⊂ {0, 1}n, |K| = q the probability that the output
contains a pair (0‖p, 02n) is negligible if A continues with

|ψq,K〉 :=
PK |ψq〉
‖PK |ψq〉‖2

(15)

in place of |ψ〉.
We show that the periodic oracle can be replaced by a non-periodic one, except with negligible probability.

More precisely, if p′ is A’s output, there exists an event E such that Pr[E] = 1−negl(n) and Pr[p′ = p0|E, p =
p0] = Pr[p′ = p0|E, p = 0] for all p0 ∈ {0, 1}n. In the following, let us denote the oracle for the MAC of
Construction 2 with functions f and g and period p by Of,gp . We define

Pbad
K =

{
p ∈ {0, 1}n

∣∣∣∃x, x′ ∈ K : p|x− x′
}
. (16)

For K ⊂ {0, 1}n and p ∈ {0, 1}n, if p /∈ Pbad
K , let TK,p ⊂ {0, 1}n be a transversal for p (i.e., a maximal set

such that for x, y ∈ TK,p it holds that x 6= y mod p) such that TK,p ∩K = K. Using this transversal, we can

define for each K a random periodic function g
(K)
p that is identically distributed with gp, as follows.

• If p ∈ Pbad
K , we set g

(K)
p (x) = g(x mod p).

• If p /∈ Pbad
K , we set g

(K)
p (x) = g(y) for y ∈ TK,p such that x = y mod p.

For a unitary algorithm Ã that makes ` queries to an oracle Of,gp , we define the following procedures:

Procedure 0

1. Sample f , g and p.

2. Run Ã with oracle Of,gp resulting in a final adversary-oracle state |ψ̂〉. Apply the measurement
{P≥`, P<`} to F . If outcome is < `, output “fail.”

3. Measure K. If p ∈ Pbad
K , output “bad.” Otherwise, let |ψ〉 be the post-measurement state of adversary

and oracle, i.e. |ψ〉 = PKP≥`|ψ̂〉 = PK |ψ̂〉.

4. Output (K, p, |ψ〉).

Procedure 0K

Same as Procedure 0, except with oracle O
f,g

(K)
p

instead of Of,gp .

Procedure 1

1. Sample f and g.

2. Run A with an oracle Of,g0 resulting in a final adversary-oracle state |ψ̂〉. Apply the measurement
{P≥`, P<`} to F . If outcome is < `, output “fail.”

3. Measure K and sample p. If p ∈ Pbad
K , output “bad.” Otherwise, let |ψ〉 be the post-measurement state

of adversary and oracle, i.e. |ψ〉 = PKP≥`|ψ̂〉 = PK |ψ̂〉.

4. Output (K, p, |ψ〉).

We first observe that for all K, the outputs of procedures 0 and 0K are identically distributed because gp and
gp,K are. Note that for any fixed K, PKPq = PK ; this, together with Lemma 3, implies that

Pr [(K, p, |ψ〉)← Procedure 0K ] = Pr [(K, p, |ψ〉)← Procedure 1] (17)
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It follows that, still for a fixed K,

Pr [(K, p, |ψ〉)← Procedure 0] = Pr [(K, p, |ψ〉)← Procedure 1] . (18)

This implies also that in any of the three procedures, conditioned on the event that the output is neither
“fail” nor “bad” and on a fixed first output K, p is uniformly distributed on {0, 1}n \ Pbad. In other words,

Pr
[
p = p |K = K ∧ p /∈ Pbad

K

]
=

{(
2n − |Pbad

K |
)−1

p /∈ Pbad
K

0 else.
(19)

Let us denote the event that a procedure outputs a triple (K, p, |ψ〉) by “good.”
In what follows, we fix a particular period p, an outcome of the period-sampling step (step 1 in Procedures

0 and 0K and step 3 in Procedure 1). Given a number ` of queries we identify three subspaces of HF
corresponding to the three outcomes “good,” “bad” and “fail” of the procedures above:

S`fail = range(P<`) (20)

S`bad = span
{

range (PK)
∣∣∣K ⊂ {0, 1}n, |K| = `, ∃x, y ∈ K : p|x− y

}
, and (21)

S`good =
(
S`fail

)⊥ ∩ (S`bad

)⊥
. (22)

We emphasize that the decomposition defined by these subspaces depends on the aforementioned period p.
We let P `i for i ∈ {good,bad, fail} denote the projectors onto these subsets.

By the above reasoning we know that for any algorithm that makes ` queries to an oracle O and has final
state |ψ`O〉AF , it holds that P `good|ψ`Of,gp 〉AF = P `good|ψ`Of,g0 〉AF . It is easy to see that when another query is

made, i.e. the `+ 1st query of some algorithm, some transitions from S`i to S`+1,p
j are impossible. We only

need one impossibility, namely that according to Lemma 2, P `+1
i UFOP `fail = 0 for all i 6= fail. In words, once

an adversary has fallen behind his q-query plan of making one non-trivial query to f in every query, he can
never catch up. Also note that for ` = 0, S`fail = S`bad = 0. It is now easy to show by induction that for a
q-query adversary A with final adversary-oracle state |φ〉 it holds that

‖P qbad|φ〉‖2 ≤
q∑
`=1

∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥

2
, (23)

where |φ`〉 is the adversary oracle state before the `th query. The induction step is proven as follows. Assume
the above formula is true for q. Then we have for a (q + 1)-query adversary A with final adversary-oracle
state |φ〉 ∥∥∥P q+1

bad |φ〉
∥∥∥

2
=
∥∥∥P q+1

bad |ψq+1〉
∥∥∥

2
(24)

≤
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥∥P q+1

bad U
FOP qbad|φq+1〉

∥∥∥
2

(25)

+
∥∥∥P q+1

bad U
FOP qfail|φq+1〉

∥∥∥
2

(26)

=
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥∥P q+1

bad U
FOP qbad|φq+1〉

∥∥∥
2

(27)

≤
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+
∥∥UFOP qbad|φq+1〉

∥∥
2

(28)

=
∥∥∥P q+1

bad U
FOP qgood|φq+1〉

∥∥∥
2

+ ‖P qbad|ψq〉‖2 . (29)

Here we have used the unitary invariance of the Euclidean together with the observation that the state |φ〉 is
obtained from the state |ψq+1〉 right after the (q + 1)-st query of A by a unitary acting on the adversary’s
space only and which therefore commutes with P qbad in the first, the triangle inequality in the second line,
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the observation that P `+1
i UFOP `fail = 0 in the third line, and the fact that ‖P‖∞ ≤ 1 for any projector P in

the fourth line. In the fifth line we use the same argument as in the first line, just for |φq+1〉 and |ψq〉. This
proves Equation (23).

It remains to bound
∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥
2
. To this end, suppose that we measure the X-register of |φ`〉

in the computational basis with outcome X`, as well as K(`−1) the set of nonzero registers in F . According
to Equations (18) and (19), we have that X` and p are independent and p is uniformly distributed on
{0, 1}n \ Pbad

K conditioned on p /∈ Pbad
K and K = K for a fixed (`− 1)-element set K. It follows that

Pr
[
p ∈ Pbad

K∪{X`}

∣∣∣K = K ∧ p /∈ P bad
K

]
(30)

= Pr
[
∃y ∈ K : p|(X` − y)

∣∣∣K = K ∧ p /∈ P bad
K

]
(31)

≤ (`− 1)2
c′n
logn

2n − (`−1)(`−2)
2 2

c′n
logn

≤ (`− 1)2−n(1− c
logn ) (32)

Here the last inequality holds for some 0 < c < c′ and large enough n, and we have used in the third line

that there exists a constant c′ > 0 such that the number of divisors of an integer M is bounded by 2c
logM

log logM

which also implies ∣∣Pbad
K

∣∣ ≤ (`− 1)(`− 2)

2
2c

n
logn (33)

for all K ⊂ {0, 1}n, |K| = `. We would now like to relate the above probability to

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]
.

To this end we analyze how the operator P `badU
FOP `−1

good behaves on states of the form |x〉X ⊗ |φy〉 ⊗ |ζ〉EF
such that (PK)F |ζ〉EF = |ζ〉EF for some fixed K 63 x and p ∈ {0, 1}n such that p 6∈ Pbad

K . We calculate

UFOP `−1
good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (34)

= UFO|x〉X ⊗ |φy〉 ⊗ |ζ〉EFK ⊗ |0n(2n−`+1)〉FKc (35)

=
(
H⊗n

)
Y

CNOTY :Fx |x〉X ⊗ |y〉 ⊗ |ζ〉EFK ⊗ |0n(2n−`+1)〉FKc (36)

=
(
H⊗n

)
Y
|x〉X ⊗ |y〉 ⊗ |ζ〉EFK ⊗ |y〉Fx ⊗ |0n(2n−`)〉F(K∪{x})c (37)

= |x〉X ⊗ |φy〉 ⊗ |ζ〉EFK ⊗ |y〉Fx ⊗ |0n(2n−`)〉F(K∪{x})c . (38)

In the first equation we have use the assumptions that (PK)F |ζ〉EF = |ζ〉EF and p 6∈ Pbad
K ; the rest of the

calculation is analogous to Equation (14). This implies that

PK∪{x}U
FOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF = UFOP `−1
good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (39)

and therefore

P `badU
FOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF (40)

=

{
UFOP `−1

good|x〉X ⊗ |φy〉 ⊗ |ζ〉EF if ∃x′ ∈ K : p|(x− x′)
0 otherwise.

(41)
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We therefore calculate for a fixed p,∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥2

2

=

∥∥∥∥∥∥∥∥∥∥∥
∑

K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n

P `badU
FO (|x〉〈x|X ⊗ PK) |φ`〉

∥∥∥∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥∥∥∥∥
UFO

∑
K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n\K
∃x′∈K:p|(x−x′)

(|x〉〈x|X ⊗ PK) |φ`〉

∥∥∥∥∥∥∥∥∥∥∥

2

2

=
∑

K⊂{0,1}n
|K|=`−1

p 6∈Pbad
K

∑
x∈{0,1}n\K
∃x′∈K:p|(x−x′)

‖(|x〉〈x|X ⊗ PK) |φ`〉‖22

= Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

∣∣∣p = p
]
.

Using Equation (32) we can bound

Ep←{0,1}n
[
Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

]]
= Pr

[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

]
=

∑
K⊂{0,1}n

Pr
[
p /∈ Pbad

K ∧ p ∈ Pbad
K∪{X`}

∣∣∣K = K0

]
Pr[K = K0]

=
∑

K⊂{0,1}n
Pr
[
p ∈ Pbad

K∪{X`}

∣∣∣K = K0 ∧ p /∈ Pbad
K

]
Pr
[
p /∈ Pbad

K ∧K = K
]

≤ Pr
[
p /∈ Pbad

K

]
(`− 1)2−n(1− c

logn )

≤ (`− 1)2−n(1− c
logn ) .

Here we have used Equation (32) in the first inequality. The probability in the first line is taken over a run of
the adversary with a fixed period and random g and f , and in the other lines the period is picked uniformly
at random from {0, 1}n as for a properly generated key in Construction 2. The last two equations together
imply

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]
≤ (`− 1)2−n(1− c

logn ). (42)
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Plugging this into Equation (23) yields

Pr
[
p ∈ Pbad

K

]
= E

[
‖P qbad|φ〉‖

2

2

]
≤ E

( q∑
i=1

∥∥∥P `badU
FOP `−1

good|φ`〉
∥∥∥

2

)2


≤ q
q∑
i=1

E
[∥∥∥P `badU

FOP `−1
good|φ`〉

∥∥∥2

2

]

≤

(
q∑
`=1

√
(`− 1)2−n(1− c

logn )

)2

≤ q2(q − 1)

2
2−n(1− c

logn ) (43)

using the Cauchy-Schwartz inequality in the second line. This finally implies that the adversary’s guess p′ is
equal to p and the measurement < q vs. ≥ q returns ≥ q with probability at most

Pr[p = p′ ∧ ” ≥ q”] (44)

≤Pr
[
p ∈ Pbad

K ∧ ” ≥ q”
]

+ Pr
[
p /∈ Pbad

K ∧ p = p′ ∧ ” ≥ q”
]

(45)

≤Pr
[
p ∈ Pbad

K ∧ ” ≥ q”
]

+ Pr
[
p = p′

∣∣p /∈ Pbad
K ∧ ” ≥ q”

]
(46)

≤q
2(q − 1)

2
2−n(1− c

logn ) +

(
2n − (`− 1)(`− 2)

2
2
c′n
logn

)−1

(47)

≤negl(n) . (48)

Here we have used Equation (43) and the uniformity of p conditioned on p /∈ Pbad
K and K = K in the last

line.

Remark. As we will later show, this BZ-secure MAC is not secure in our proposed notion of blind-
unforgeability. It’s not hard to see that it is also not GYZ-secure. Indeed, observe that the forging adversary
described above queries on messages starting with 0 only, and then forges successfully on a message starting
with 1. If the scheme was GYZ secure, then in the accepting case, the portion of this adversary between the
query and the final output would have a simulator which leaves the computational basis invariant. Such a
simulator cannot change the first bit of the message from 0 to 1, a contradiction.

4 The new notion: Blind-Unforgeability

4.1 Formal definition

For simplicity, our discussion will concentrate on the case of MACs with canonical verification. The case of
digital signatures with deterministic signing algorithm is a simple adaptation. We will also later show how
to extend our approach to the case of MACs and signatures with non-canonical verification. We begin by
defining a “blinding” operation. Let f : X → Y and B ⊆ X. We let

Bf(x) =

{
⊥ if x ∈ B,
f(x) otherwise.

We say that f has been “blinded” by B. In this context, we will be particularly interested in the setting
where elements of X are placed in B independently at random with a particular probability ε; we let Bε
denote this random variable. (It will be easy to infer X from context, so we do not reflect it in the notation.)
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Next, we define a security game in which an adversary is tasked with using a blinded MAC oracle to
produce a valid input-output pair in the blinded set.

Definition 4. Let Π = (KeyGen,Mac,Ver) be a MAC with message set X. Let A be an algorithm, and
ε : N→ [0, 1] an efficiently computable function. The blind forgery experiment BlindForgeA,Π(n, ε) proceeds as
follows:

1. Generate key: k ← KeyGen(1n).

2. Generate blinding: select Bε ⊆ X by placing each m into Bε independently with probability ε(n).

3. Produce forgery: (m, t)← ABεMack(1n).

4. Outcome: output 1 (win) if Verk(m, t) = acc and m ∈ Bε; otherwise output 0 (lose.)

We say that a scheme is blind-unforgeable if, for any efficient adversary, the probability of winning the
game is negligible. The probability is taken over the choice of key, the choice of blinding set, and any internal
randomness of the adversary. We remark that specifying an adversary requires specifying (in a uniform
fashion) both the algorithm A and the blinding function ε.

Definition 5. A MAC Π is blind-unforgeable (BU) if for every polynomial-time uniform adversary (A, ε),
Pr
[
BlindForgeA,Π(n, ε(n)) = 1] ≤ negl(n) .

We also define the “q-time” variant of the blinded forgery game, which is identical to Definition 4 except
that the adversary is only allowed to make q queries to BεMack in step (3). We call the resulting game
BlindForgeqA,Π(n, ε), and give the corresponding definition of q-time security (now against computationally
unbounded adversaries.)

Definition 6. A MAC Π is q-time blind-unforgeable (q-BU) if for every q-query adversary (A, ε), we have
Pr
[
BlindForgeqA,Π(n, ε(n)) = 1] ≤ negl(n) .

The above definitions are agnostic regarding the computational class of the adversary and the type of
oracle provided. For example, selecting PPT adversaries and classical oracles in Definition 5 yields a definition
of classical unforgeability; we will later show that this is equivalent to standard EUF-CMA. The main focus of
our work will be on BU against QPTs with quantum oracle access, and q-BU against unrestricted adversaries
with quantum oracle access.

4.1.1 Some technical details.

We now remark on a few details in the usage of BU. First, strictly speaking, the blinding sets in the security
games above cannot be generated efficiently. However, a pseudorandom blinding set will suffice. Pseudorandom
blinding sets can be generated straightforwardly using an appropriate pseudorandom function, such as a PRF
against PPTs or a qPRF against QPTs. A precise description of how to perform this pseudorandom blinding is
given in the proof of Corollary 3. Note that simulating the blinding requires computing and uncomputing the
random function, so we must make two quantum queries for each quantum query of the adversary. Moreover,
verifying whether the forgery is in the blinding set at the end requires one additional classical query. This
means that (4q + 1)-wise independent functions are both necessary and sufficient for generating blinding
sets for q-query adversaries (see [5, Lemma 6.4].) In any case, an adversary which behaves differently in the
random-blinding game versus the pseudorandom-blinding game immediately yields a distinguisher against
the corresponding pseudorandom function.

The blinding symbol. There is some flexibility in how one defines the blinding symbol ⊥. In situations where
the particular instantiation of the blinding symbol might matter, we will adopt the convention that the blinded
version Bf of f : {0, 1}n → {0, 1}` is defined by setting Bf : {0, 1}n → {0, 1}`+1, where Bf(m) = 0`||1 if
m ∈ B and Bf(m) = f(m)||0 otherwise. One advantage of this convention (i.e., that ⊥ = 0`||1) is that we
can compute on and/or measure the blinded bit (i.e., the (`+ 1)-st bit) without affecting the output register
of the function. This will also turn out to be convenient for uncomputation.
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Non-canonical verification. Some care is needed when using the above definitions for MACs and digital
signatures with non-canonical verification. Consider the following MAC. Let F : {0, 1}n → {0, 1}n be a
random function, and define Mac(m) = F (m)||0 and Ver(m, t||b) = δt,F (m). Forging is trivial: we query on 0n

and flip the last bit of the tag, producing the valid and fresh pair (0n, F (0n)||1). And yet, this MAC is BU
secure: producing either F (x)||0 or F (x)||1 for a blinded x would imply an efficient algorithm that predicts
values of F . (We will later show that random functions are BU-secure.)

This issue is addressed with a simple and natural adjustment: we blind (message, tag) pairs rather than
just messages. We briefly describe this for the case of MACs. Let Π = (KeyGen,Mac,Ver) be a MAC with
message set M , randomness set R and tag set T , so that Mack : M ×R→ T and Verk : M × T → {acc, rej}
for every k ← KeyGen. Given a parameter ε and an adversary A, the blind forgery game proceeds as follows:

1. Generate key: k ← KeyGen; generate blinding: select Bε ⊆ M × T by placing pairs (m, t) in Bε
independently with probability ε;

2. Produce forgery: produce (m, t) by executing A(1n) with quantum oracle access to the function

BεMack;r(m) :=

{
⊥ if (m,Mack(m; r)) ∈ Bε,
Mack(m; r) otherwise.

where r is sampled uniformly for each oracle call.

3. Outcome: output 1 if Verk(m, t) = acc ∧ (m, t) ∈ Bε; otherwise output 0.

Security is then defined as before: Π is secure if for all adversaries A (and their declared ε), the success
probability at winning the above game is negligible. Note that, for the case of canonical MACs, this definition
coincides with Definition 5.

5 Intuitive security and the meaning of BU

In this section, we gather a number of results which build confidence in BU as a correct definition of
unforgeability in our setting. We begin by showing that a wide range of “intuitively forgeable” MACs (indeed,
all such examples we have examined) are correctly characterized by BU as insecure.

5.1 Intuitively forgeable schemes

As indicated earlier, BU security rules out any MACs where an attacker can query a subset of the message
space and forge outside that region. To make this claim precise, we first define the query support supp(A)
of an oracle algorithm A. Let A be a quantum query algorithm with oracle access to the quantum oracle
O for a classical function from n to m bits. Without loss of generality, A proceeds by applying a sequence
of unitaries OUqOUq−1 · · · OU1 to the initial state |0〉XY Z , followed by a POVM E . Here, X and Y are the
input and output registers of the function and Z is the algorithm’s workspace. Let |ψi〉 be the intermediate
state of A after the application of Ui. Then supp(A) is defined to be the set of input strings x such that there
exists a function f : {0, 1}n → {0, 1}m such that 〈x|X |ψi〉 6= 0 for at least one i ∈ {1, ..., q} when O = Of .

Theorem 9. Let A be a QPT such that supp(A) ∩R = ∅ for some R 6= ∅. Let Mac be a MAC, and suppose
AMack(1n) outputs a valid pair (m,Mack(m)) with m ∈ R with non-negligible probability. Then Mac is not
BU-secure.

To prove Theorem 9, we will need a fact which controls the change in the output state of an algorithm
resulting from applying a blinding to its oracle. Given an oracle algorithm A and two oracles F and G, the
trace distance between the output of A with oracle F and with oracle G is denoted by δ(AF (1n),AG(1n)).
Given two functions F, P : {0, 1}n → {0, 1}m, we define the function F ⊕ P by (F ⊕ P )(x) = F (x)⊕ P (x).
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Theorem 10. Let A be a quantum query algorithm making at most T queries, and F : {0, 1}n → {0, 1}m
a function. Let B ⊆ {0, 1}n be a subset chosen by independently including each element of {0, 1}n with
probability ε, and P : {0, 1}n → {0, 1}m be any function with support B. Then

E
B

[
δ
(
AF (1n),AF⊕P (1n)

)]
≤ 2T

√
ε .

The proof is a relatively straightforward adaptation of a hybrid argument in the spirit of the lower bound
for Grover search [3]. We provide the complete proof in Appendix B.1. We are now ready to prove Theorem 9.

Proof of Theorem 9. Let A be a quantum algorithm with supp(A) for any oracle. By our hypothesis,

p̃ := Prk,(m,t)←AMack (1n) [Mack(m) = t ∧m /∈ supp(A)] ≥ n−c ,

for some c > 0 and sufficiently large n. Since supp(A) is a fixed set, we can think of sampling a random
Bε as picking B0 := Bε ∩ supp(A) and B1 := Bε ∩ supp(A) independently. Let “blind” denote the random
experiment of A running on Mack blinded by a random Bε: k,Bε, (m, t)← ABεMack(1n), which is equivalent
to k,B0, B1, (m, t)← AB0Mack(1n). The probability that A wins the BU game is

p := Pr
blind

[Mack(m) = t ∧m ∈ Bε]

≥ Pr
blind

[Mack(m) = t ∧m ∈ B1]

≥ Pr
blind

[Mack(m) = t ∧m ∈ B1 | m /∈ supp(A)] · Pr
blind

[m /∈ supp(A)]

= Pr
k,B0

(m,t)←AB0Mack

[Mack(m) = t ∧m /∈ supp(A)] · Pr
k,B1

(m,t)←AB0Mack

[m ∈ B1|m /∈ supp(A)]

≥
(
p̃− 2T

√
ε
)
ε

≥ p̃3

27T 2
.

Here the second-to-last step follows from Theorem 10; in the last step, we chose ε = (p̃/3T )2. We conclude
that A breaks the BU security of the MAC.

Now recall the adversary against the BZ-secure (but intuitively insecure) Construction 2, as described in
Section 3.2. This yields the following.

Theorem 11. The MAC from Construction 2 is BU-insecure.

5.2 Relationship to other definitions

In the purely classical setting, our notion is equivalent to EUF-CMA. In the strong unforgeability case, this
means BU with blinding on message-tag pairs, as described in Section 4.1.1.

Proposition 2. A MAC is EUF-CMA if and only if it is blind-unforgeable against classical adversaries.

Proof. Set Fk = Mack. Consider an adversary A which violates EUF-CMA. Such an adversary, given 1n

and oracle access to Fk (for k ∈R {0, 1}n), produces a fresh forgery (m, t) with non-negligible probability
s(n) This same adversary (when coupled with an appropriate ε) breaks the MAC under the BU definition.
Specifically, let p(n) be the running time of A, in which case A clearly makes no more than p(n) queries, and
define ε(n) = 1/p(n). Consider now a particular k ∈ {0, 1}n and a particular sequence r of random coins for
AFk(1n). If this run of A results in a forgery (m, t), observe that with probability at least (1− ε)p(n) ≈ e−1

in the choice of Bε, we have Fk(q) = BεFk(q) for every query q made by A. On the other hand, Bε(m) = ⊥
with (independent) probability ε. It follows that the winning probability of A in the blind forgery experiment
is at least εs(n)/e = Ω(s(n)/p(n)).
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On the the other hand, suppose that (A, ε) is an adversary that wins blind-unforgeability with inverse-

polynomial probability r(n). Consider now the EUF-CMA adversary A′Fk(1n) which simulates the adversary
A(·)(1n) by answering oracle queries according to a locally-simulated version of BεFk; specifically, the
adversary A′ proceeds by drawing a subset Bε(n) ⊆ {0, 1}∗ (pseudorandomly) and answering queries made
by A according to BεF . Note that, when x ∈ Bε, this query is answered without an oracle call to F (x). In
addition, A′ can construct the set Bε “on the fly,” by determining, when a particular query q is made by A,
whether q ∈ Bε and “remembering” this information in case the query is asked again (“lazy sampling”). With
probability r(n), A produces a forgery on a point which was not queried by A′, as desired. It follows that A′
produces a (conventional) forgery with non-negligible probability when given Fk for k ∈R {0, 1}n.

As we have shown above, there are examples which are BZ-secure but BU-insecure (and intuitively broken.)
An interesting question is whether BU-security implies BZ security. While we do not fully settle this question,
we give some indication that this may be the case. Specifically, we show (in Appendix B.2) that any adversary
that makes k quantum queries and outputs ck2 forgeries (for some constant c) with high probability, can also
be used to break BU.

6 Blind-forgery secure schemes

We now show that a number of natural MAC constructions satisfy blind-unforgeability.

6.1 Random schemes

Theorem 12. Let R : X → Y be a uniformly random function such that 1/|Y | is negligible in n. Then R is
a blind-forgery secure MAC.

Proof. For simplicity, we assume that the function is length-preserving; the proof generalizes easily. Let A be
an efficient quantum adversary. The oracle BεR supplied to A during the blind-forgery game is determined
entirely by Bε and the restriction of R to the complement of Bε. On the other hand, the forgery event

ABεFk(1n) = (m, t) ∧ |m| ≥ n ∧ Fk(m) = t ∧BεFk(m) = ⊥

depends additionally on values of R at points in Bε. To reflect this decomposition, given R and Bε define
Rε : Bε → Y to be the restriction of R to the set Bε and note that—conditioned on BεR and Bε—the random
variable Rε is drawn uniformly from the space of all (length-preserving) functions from Bε into Y . Note, also,
that for every n the purported forgery (m, t)← ABεR(1n) is a (classical) random variable depending only on
BεR. In particular, conditioned on Bε, (m, t) is independent of Rε. It follows that, conditioned on m ∈ Bε,
that t = Rε(m) with probability no more than 1/2n and hence φ(n, ε) ≤ 2−n, as desired.

Next, we show that a qPRF is a blind-unforgeable MAC.

Corollary 3. Let m and t be poly(n), and F : {0, 1}n × {0, 1}m → {0, 1}t a qPRF. Then F is a blind-
forgery-secure fixed-length MAC (with length m(n)).

Proof. For a contradiction, let A be a QPT which wins the blind forgery game for a certain blinding factor ε(n),
with running time q(n) and success probability δ(n). We will use A to build a quantum oracle distinguisher
D between the qPRF F and the perfectly random function family F tm with the same domain and range.

First, let k = q(n) and let H be a family of (4k + 1)-wise independent functions with domain {0, 1}m and
range {0, 1, . . . , 1/ε(n)}. The distinguisher D first samples h ∈R H. Set Bh := h−1(0). Given its oracle Of ,
D can implement the function Bhf (quantumly) as follows:

|x〉|y〉 7→|x〉|y〉|Hx〉|δh(x),0〉 7→ |x〉|y〉|Hx〉|δh(x),0〉|f(x)〉
7→|x〉|y ⊕ f(x) · (1− δh(x),0)〉|Hx〉|δh(x),0〉|f(x)〉
7→|x〉|y ⊕ f(x) · (1− δh(x),0)〉 .
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Here we used the CCNOT (Toffoli) gate from step 2 to 3 (with one control bit reversed), and uncomputed
both h and f in the last step. After sampling h, the distinguisher D will execute A with the oracle Bhf . If
A successfully forges a tag for a message in Bh, A′ outputs “pseudorandom”; otherwise “random.”

Note that the function Bhf is perfectly ε-blinded if h is a perfectly random function. Note also that the
entire security experiment with A (including the final check to determine if the output forgery is blind) makes
at most 2k quantum queries and 1 classical query to h, and is thus (by Theorem 7) identically distributed to
the perfect-blinding case.

Finally, by Theorem 12, the probability that D outputs “pseudorandom” when f ∈R F tm is negligible. By
our initial assumption about A, the probability that D outputs “pseudorandom” becomes δ(n) when f ∈R F .
It follows that D distinguishes F from perfectly random.

Next, we give a information-theoretically secure q-time MACs (Definition 6.)

Theorem 13. Let H be a (4q + 1)-wise independent function family with range Y , such that 1/|Y | is a
negligible function. Then H is a q-time BU-secure MAC.

Proof. Let (A, ε) be an adversary for the q-time game BlindForgeqA,h(n, ε(n)), where h is drawn from H. We
will use A to construct a distinguisher D between H and a random oracle. Given access to an oracle O,
D first runs A with the blinded oracle BO, where the blinding operation is performed as in the proof of
Corollary 3 (i.e., via a (4q + 1)-wise independent function with domain size 1/ε(n).) When A is completed, it
outputs (m,σ). Next, D queries O on the message m and outputs 1 if and only if O(m) = σ and m ∈ B. Let
γO be the probability of the output being 1.

We consider two cases: (i.) O is drawn as a random oracle R, and (ii.) O is drawn from the family H. By
Theorem 7, since D makes only 2q quantum queries and one classical query to O, its output is identical in
the two cases. Observe that γR (respectively, γH) is exactly the success probability of A in the blind-forgery
game with random oracle R (respectively, H). We know from Theorem 12 that γR is negligible; it follows
that γH is as well.

Several domain-extension schemes, including NMAC (a.k.a. encrypted cascade), HMAC, and AMAC, can
transform a fixed-length qPRF to a qPRF that takes variable-length inputs [20] . As a corollary, starting from
a qPRF, we also obtain a number of quantum blind-unforgeable variable-length MACs.

6.2 Hash-and-MAC

To authenticate messages of arbitrary length with a fixed-length MAC, it is common practice to first compress
a long message by a collision-resistant hash functon and then apply the MAC. This is known as Hash-and-
MAC. However, when it comes to BU-security (and quantum security in general), collision-resistance may not
be sufficient. We therefore propose a new notion which generalizes collision-resistance in the quantum setting,
and show that it is sufficient for Hash-and-MAC with BU security.

Recall that, given a subset B of a set X, χB : X → {0, 1} denotes the characteristic function of B.

Definition 7 (Bernoulli-preserving hash). Let H : X → Y be an efficiently computable function family.
Define the following distributions on subsets of X:

1. Bε : generate Bε ⊆ X by placing x ∈ Bε independently with probability ε. Output Bε.

2. BHε : generate Cε ⊆ Y by placing y ∈ Cε independently with probability ε. Sample h ∈ H and define
Bhε := {x ∈ X : h(x) ∈ Cε}. Output Bhε .

We say that H is a Bernoulli-preserving hash if for all adversaries (A, ε),∣∣∣ Pr
B←Bε

[AχB (1n) = 1]− Pr
B←BHε

[AχB (1n) = 1]
∣∣∣ ≤ negl(n) .
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The motivation for the name is simply that selecting Bε can be viewed as a Bernoulli process taking place
on the set X, while Bhε can be viewed as the pullback (along h) of a Bernoulli process taking place on Y .

We show that the standard Hash-and-MAC construction will preserve BU security, if we instantiate the
hash function with a Bernoulli-preserving hash. Recall that, given a MAC Π = (Mack,Verk) with message
set X and a function h : Z → X, there is a MAC Πh := (Machk ,Ver

h
k) with message set Z defined by

Machk = Mack ◦ h and Verhk(m, t) = Verk(h(m), t).

Theorem 14 (Hash-and-MAC with Bernoulli-preserving hash). Let Π = (Mack,Verk) be a BU-secure MAC
with Mack : X → Y , and let h : Z → X a Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

The proof follows in a straightforward way from the definitions of BU and Bernoulli-preserving hash;
the details are in Appendix B.6. In Appendix B, we also provide a number of additional results about
Bernoulli-preserving hash functions. These results can be summarized as follows.

Theorem 15.

• If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.

• If H is 4q-wise independent, then it is a Bernoulli-preserving hash against q-query adversaries.

• Under the LWE assumption, there is a (public-key) family of Bernoulli-preserving hash functions.

• If we only allow classical oracle access, then the Bernoulli-preserving property is equivalent to standard
collision-resistance.

• Bernoulli-preserving hash functions are collapsing.

The collapsing property is another quantum generalization of collision-resistance, proposed in [22].
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Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 497–527, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[23] Salil P Vadhan et al. Pseudorandomness. Foundations and Trends R© in Theoretical Computer Science,
7(1–3):1–336, 2012.

[24] Mark Zhandry. How to construct quantum random functions. In Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science, FOCS ’12, pages 679–687, Washington, DC, USA,
2012. IEEE Computer Society.

[25] Mark Zhandry. Quantum Lightning Never Strikes the Same State Twice. ArXiv e-prints, November
2017.

[26] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. Cryp-
tology ePrint Archive, Report 2018/276, 2018. https://eprint.iacr.org/2018/276.

A The Fourier Oracle number operator

Recall the “number operator” NF , defined in Equation (3) from Section 2.

Lemma 4. The number operator satisfies
∥∥[NF , UFOXY F ]∥∥∞ = 1. In particular, the joint state of a quantum

query algorithm and the oracle after the q-th query is in the kernel of Pl for all l > q.

Proof. Let |ψ〉XYEF be an arbitrary query state, where X and Y are the query input and output registers,
E is the algorithm’s internal register and F is the FO register. We expand the state in the computational
basis of X,

|ψ〉XYEF =
∑

x∈{0,1}n
p(x)|x〉X |ψx〉Y EF . (49)

Set C̃NOTA:B = HACNOTA:BHA and observe that

UFO
XY F |x〉X |ψx〉Y EF = |x〉X

(
C̃NOT

⊗m)
Y :Fx
|ψx〉Y EF .

Therefore [
NF , UXY F

]
|x〉X |ψx〉Y EF = |x〉X

[
NF ,

(
C̃NOT

⊗m
)
Y :Fx

]
|ψx〉Y EF

= |x〉X
[
(1− |0〉〈0|)Fx ,

(
C̃NOT

⊗m)
Y :Fx

]
|ψx〉Y EF .

It follows that∥∥∥[NF , UXY F ]|ψ〉XYEF∥∥∥
2

=
∑

x∈{0,1}n
p(x) ‖[NF , UXY F ] |ψx〉Y EF ‖2

=
∑

x∈{0,1}n
p(x)

∥∥∥∥[(1− |0〉〈0|)Fx , (C̃NOT
⊗m)

Y :Fx

]
|ψx〉Y EF

∥∥∥∥
2

≤
∥∥∥∥[(1− |0〉〈0|)F0n

,
(
C̃NOT

⊗m)
Y :F0n

]∥∥∥∥
∞
, (50)

where we have used the definition of the operator norm and the normalization of |ψ〉XYEF in the last line. For
a unitary U and a projector P , it is easy to see that ‖[U,P ]‖∞ ≤ 1, as [U,P ] = PU(1−P )− (1−P )UP is a
sum of two operators that have orthogonal support and singular values smaller or equal to 1. We therefore
get ‖[NF , UXY F ] |ψ〉XYEF ‖2 ≤ 1, and as the state |ψ〉 was arbitrary, this implies

∥∥[NF , UXY F ]
∥∥
∞ ≤ 1. The

example from equation (2) shows that the above is actually an equality. The observation that PlηF = 0 for
all l > 0 and an induction argument proves the second statement of the lemma.
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B More on Bernoulli-preserving hash

In this section, we prove several results about Bernoulli-preserving hash functions. Recalling Definition 7, we
refer to blinding according to Bε as “uniform blinding,” and blinding according to BHε as “hash blinding.”
First, we show that random and pseudorandom functions are Bernoulli-preserving, and that this property is
equivalent to collision-resistance against classical queries.

Lemma 5. Let H : X → Y be a function such that 1/|Y | is negligible. Then

1. If H is a random oracle or a qPRF, then it is a Bernoulli-preserving hash.

2. If H is 4q-wise independent, then it is a Bernoulli-preserving hash against q-query adversaries.

Proof. The claim for random oracles is obvious: by statistical collision-resistance, uniform blinding is
statistically indistinguishable from hash-blinding. The remaining claims follow from the observation that one
can simulate one quantum query to χBhε using two quantum queries to h (see, e.g., the proof of Corollary 3.)

Theorem 16. A function h : {0, 1}∗ → {0, 1}n is Bernoulli-preserving against classical-query adversaries if
and only if it is collision-resistant.

Proof. First, the Bernoulli-preserving hash property implies collision-resistance: testing whether two colliding
inputs are either i) both not blinded or both blinded, or ii) exactly one of them is blinded, yields always
outcome i) when dealing with a hash-blinded oracle and a uniformly random outcome for a blinded oracle and
ε = 1/2. On the other hand, consider an adversary A that has inverse polynomial distinguishing advantage
between blinding and hash-blinding, and let x1, ..., xq be its queries. Assume for a contradiction that with
overwhelming probability h(xi) 6= h(xj) for all xi 6= xj . Then with that same overwhelming probability the
blinded and hash-blinded oracles are both blinded independently with probability ε on each xi and are hence
statistically indistinguishable, a contradiction. It follows that with non-negligible probability there exist two
queries xi 6= xj such that h(xi) = h(xj), i.e., A has found a collision.

Bernoulli-preserving hash from LWE. We have observed that any qPRF is immediately a Bernoulli-
preserving hash function. Such a hash can be constructed from various quantum-safe computational
assumptions (e.g., LWE). Unfortunately, a qPRF requires a secret key, and typically does not give a short
digest, which would result in long tags. (In practice, it is probably more convenient and more reliable to
instantiate a qPRF from block ciphers, which may not be ideal for message authentication.)

Here we point out that one can also construct a public Bernoulli-preserving hash function based on
the quantum security of LWE. Specifically, we show that the collapsing hash function in [21] is also a
Bernoulli-preserving hash. This construction relies on a lossy function family F : X → Y and a universal
hash function G = {gk : Y → Z}k∈K. A lossy function family admits two types of keys: a lossy key s← Dlos
and an injective key s← Dinj , which are computationally indistinguishable. Fs : X → Y under a lossy key s
is compressing, i.e., |im(Fs)| << |Y |; whereas under an injective key s, Fs is injective. See [21, Definition 2]
for a formal definition, and [16] for an explicit construction based on LWE. There exist efficient constructions
for universal hash families by various means [23]. With these ingredients in hand, one then constructs a
hash function family H = {hs,k} by hs,k := gk ◦ Fs with public parameters generated by s← Dlos, k ← K.
The proof of Bernoulli-preserving for this hash function is similar to Unruh’s proof that H is collapsing; see
Appendix B.7 for details.

Relationship to collapsing. Finally, we relate the Bernoulli-preserving property to another quantum gen-
eralization of classical collision-resistance: the collapsing property. Collapsing hash functions are particularly
relevant to post-quantum signatures. We first define the collapsing property (slightly rephrasing Unruh’s
original definition [22]) as follows. Let h : X → Y be a hash function, and let SX and SXY be the set of
quantum states (i.e., density operators) on registers corresponding to the sets X and X × Y , respectively. We
define two channels from SX to SXY . First, Oh receives X, prepares |0〉 on Y , applies |x〉|y〉 7→ |x〉|y⊕ h(x)〉,
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and then measures Y fully in the computational basis. Second, O′h first applies Oh and then also measures
X fully in the computational basis.

Oh : |x〉X
h7−→ |x, h(x)〉X,Y

measure Y7−→ (ρyX , y) ,

O′h : |x〉X
h7−→ |x, h(x)〉X,Y

measure X&Y7−→ (x, y) .

If the input is a pure state on X, then the output is either a superposition over a fiber h−1(s)× {s} of h (for
Oh) or a classical pair (x, h(x)) (for O′h) .

Definition 8 (Collapsing). A hash function h is collapsing if for any single-query QPT A, it holds that∣∣Pr[AOh(1n) = 1]− Pr[AO′h(1n) = 1]
∣∣ ≤ negl(n) .

To prove that Bernoulli-preserving hash implies collapsing, we need a technical fact. Recall that any subset
S ⊆ {0, 1}n is associated with a two-outcome projective measurement {ΠS ,1−ΠS} on n qubits defined by
ΠS =

∑
x∈S |x〉〈x|. We will write ΞS for the channel (on n qubits) which applies this measurement.

Lemma 6. Let S1, S2, . . . , Scn be subsets of {0, 1}n, each of size 2n−1, chosen independently and uniformly
at random. Let ΞSj denote the two-outcome measurement defined by Sj, and denote their composition

Ξ̃ := ΞScn ◦ ΞScn−1
◦ · · · ◦ ΞS1

. Let Ξ denote the full measurement in the computational basis. Then

Pr
[
Ξ̃ = Ξ

]
≥ 1− 2−εn , whenever c ≥ 2 + ε with ε > 0,

A proof is given in Appendix B.3. We remark that, to efficiently implement each ΞS with a random subset
S, we can sample hi : [M ]→ [N ] from a pairwise-independent hash family (sampling an independent hi for
each i), and then define x ∈ S iff. h(x) ≤ N/2. For any input state

∑
x,z αx,z|x, z〉, we can compute∑

x,z

αx,z|x, z〉 7→
∑
x,z

|x, z〉|b(x)〉, where b(x) := h(x)
?
≤ N/2 ,

and then measure |b(x)〉. Pairwise independence is sufficient by Theorem 7 because only one quantum query
is made.

Theorem 17. If h : X → Y is Bernoulli-preserving, then it is collapsing.

Proof. Let A be an adversary with inverse-polynomial distinguishing power in the collapsing game. Choose n
such that X = {0, 1}n. We define k = cn hybrid oracles H0, H1, . . . ,Hk, where hybrid Hj is a channel from
SX to SXY which acts as follows: (1.) adjoin |0〉Y and apply the unitary |x〉X |y〉Y 7→ |x〉X |y ⊕ h(x)〉Y ; (2.)
measure the Y register in the computational basis; (3.) repeat j times: (i.) select a uniformly random subset
S ⊆ X of size 2n−1; (ii.)apply the two-outcome measurement ΞS to the X register; (4.) output registers X
and Y .

Clearly, H0 is identical to the Oh channel in the collapsing game. By Lemma 6, Hk is indistinguishable
from the O′h. By our initial assumption and the triangle inequality, there exists a j such that∣∣Pr[AHj (1n) = 1]− Pr[AHj+1(1n) = 1]

∣∣ ≥ 1/poly(n) . (51)

We now build a distinguisher D against the Bernoulli-preserving property (with ε = 1/2) of h. It proceeds
as follows: (1.) run A(1n) and place its query state in register X; (2.) simulate oracle Hj on XY (use 2-wise
independent hash to select sets S); (3.) prepare an extra qubit in the |0〉 state in register W , and invoke the
oracle for χB on registers X and W ; (4.) measure and discard register W ; (5.) return XY to A, and output
what it outputs.

We now analyze D. After the first two steps of Hj (compute h, measure output register) the state of A
(running as a subroutine of D) can be expressed as∑

z

∑
x∈h−1(s)

αxz|x〉X |s〉Y |z〉Z .
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Here Z is a side information register private to A. Applying the j partial measurements (third step of Hj)
then results in a state of the form

∑
z

∑
x∈M βxz|x〉|s〉|z〉 , where M is some subset of h−1(s). Applying the

oracle for χB into an extra register then yields∑
z

∑
x∈M

βxz|x〉|s〉|z〉|χB(x)〉W .

Now consider the two cases of the Bernoulli-preserving game.
First, in the “hash-blinded” case, B = h−1(C) for some set C ⊆ Y . This implies that χB(x) = χC(h(x)) =

χC(s) for all x ∈M . It follows that W simply contains the classical bit χC(s); computing this bit, measuring
it, and discarding it will thus have no effect. The state returned to A will then be identical to the output
of the oracle Hj . Second, in the “uniform blinding” case, B is a random subset of X of size 2n−1, selected
uniformly and independently of everything else in the algorithm thus far. Computing the characteristic
function of B into an extra qubit and then measuring and discarding that qubit implements the channel ΞB ,
i.e., the measurement {ΠB ,1−ΠB}. It follows that the state returned to A will be identical to the output of
oracle Hj+1.

By (51), it now follows that D is a successful distinguisher in the Bernoulli-preserving hash game for h,
and that h is thus not a Bernoulli-preserving hash.

B.1 A simulation theorem

Theorem 18. Let A be a quantum query algorithm making at most T queries, and F : {0, 1}n → {0, 1}m
a function. Let B ⊆ {0, 1}n be a subset chosen by independently including each element of {0, 1}n with
probability ε, and P : {0, 1}n → {0, 1}m be any function with support B. Then

E
B

[
δ
(
AF (1n),AF⊕P (1n)

)]
≤ 2T

√
ε .

Proof. For a function Q : {0, 1}n → {0, 1}m, we let OQ denote the unitary map |x〉|y〉 7→ |x〉|y ⊕ Q(x)〉.
Recall that A is specified by a fixed initial state |φ0〉 in some finite-dimensional Hilbert space, a sequence of
T unitary “computation” operators C1, . . . , Ck, and a POVM {Pi : i ∈ I}. The distribution (on I) resulting
from the algorithm applied to the oracle OQ is given by applying the POVM to the state

|φQ〉 := CTOQCT−1 · · · OQC0|φ0〉 .

Recall that if the trace distance between two such states satisfies

δ
(
|φQ1〉, |φQ2〉

)
:=
√

1− |〈φQ1 |φQ2〉|2 ≤ ε

then the distance in total variation between the distributions produced by any POVM on these two states
is no more than ε. In our case, we are interested in controlling EB[δ(φF , φP⊕F )]. Define F ′ = F ⊕ P . In
preparation for a standard hybrid argument, define

|φk〉 = CTOF ′ · · · OF ′︸ ︷︷ ︸
(†)

CkOF . . .OFC0︸ ︷︷ ︸
(‡)

|φ0〉 |φFk 〉 = CkOF . . .OFC0︸ ︷︷ ︸
(‡)

|φ0〉 ,

so that all oracle invocations in (†) are answered according to OF ′ and all those in (‡) are answered according
to OF . Since δ is a metric on pure states, we have

E δ(|φF 〉, |φP⊕F 〉) ≤ E
T∑
k=1

δ(|φk〉, |φk−1〉) =

T∑
k=1

E δ(|φk〉, |φk−1〉) .

Note that δ is invariant under (simultaneous) unitary action, and hence for any F , B, and P ,

δ(|φk〉, |φk−1〉)
= δ(CTOF ′ · · · OF ′CkOF . . .OFC0|φ0〉, CTOF ′ · · · OF ′Ck−1OF . . .OFC0|φ0〉)
= δ(OFCk−1 . . .OFC0|φ0〉,OF ′Ck−1 . . .OFC0|φ0〉)
= δ(OF |φFk−1〉,OF ′ |φFk−1〉) = δ(|φFk−1〉,OFOF ′ |φFk−1〉) = δ(|φFk−1〉,OP |φFk−1〉) .
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For pure states |ψ〉 and |ψ′〉, δ(|ψ〉, |ψ′〉) ≤ ‖|ψ〉 − |ψ′〉‖. Note that |ψ〉 = ΠB |ψ〉 + (I − ΠB)|ψ〉, and OP
operates identically on (I −ΠB)|ψ〉. Therefore

E
B

[δ(φF , φP⊕F )] ≤ T max
|φ〉

E ‖|φ〉 − OP |φ〉‖

= T max
|φ〉

E
B
‖ΠB |φ〉 − OPΠB |φ〉+ (1−OP )(I −ΠB)|φ〉‖

≤ T max
|φ〉

E
B

(‖ΠB |φ〉‖+ ‖OPΠB |φ〉‖)

= 2T max
|φ〉

E
B
‖ΠB |φ〉‖

≤ 2T max
|φ〉

√
E
B
|〈φ|ΠB |φ〉| (Jensen’s inequality) .

Let π be a uniformly random element of the symmetric group on {0, 1}n and Uπ be the unitary operator
associated with the permutation π. We have that

E
B

[
|〈φ|ΠB |φ〉|

]
= E

B
E
π

[
|〈φ|UπΠBU

−1
π |φ〉|

]
= 2−n E

B
[Tr (ΠB)] = ε .

Thus we conclude that EB [δ(φF , φP⊕F )] ≤ 2T
√
ε.

B.2 BU implies quadratic BZ

It’s interesting to ask if BU-security implies BZ-security, as the BZ definition certainly captures a natural
family of attacks that one would like to rule out. We are unable to settle this question completely, but provide
some weaker connection. Specifically, we show that if a function is BU-secure, then it is BZ-secure with a
weaker definition of BZ-security that forbids an adversary from producing ck2 forgeries from k queries with
high probability.

For this purpose, consider a function M : X → Y and a BZ-type adversary A which, given oracle access
to M , makes some k queries and produces ck2 forgeries (with probability 1); here c ≥ 1 is a constant we
set later in the discussion. We consider the behavior of this adversary ABεM supplied with an oracle BεM
blinded at a random set Bε. We will show that for an appropriate value of c and ε, this adversary produces a
family of forgeries which includes at least one blinded forgery with constant probability. Finally selecting one
of these forgeries at random produces an adversary that breaks the BU security definition.

Returning to the BZ-adversary A, we say that a particular blinding set B is γ-evasive if

Pr
A

[AM outputs no elements of B] ≥ γ .

(Note that this event is determined by running A with the unblinded oracle M .) Observing that

Pr
A,Bε

[AM outputs no elements of Bε] ≤ (1− ε)ck
2

≤ e−cεk
2

.

We note that (by Markov’s inequality),

Pr
Bε

[Bε is γ-evasive] ≤ e−cεk/γ .

Similarly, we say that a particular blinding set B is γ-divergent if

‖DAM −DABM ‖t.v. ≥ γ ,

where DM is the distribution of outputs of AM and DBM is the distribution of outputs of ABM when M is
blinded on set B. In light of Theorem 2,

E
Bε

[‖DM −DBεM‖t.v.] ≤ 2k
√
ε
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and it follows by Markov’s inequality that

Pr
Bε

[Bε is γ-divergent] = Pr
Bε

[‖DM −DBM‖t.v. ≥ γ] ≤ 2k
√
ε/γ .

Fixing γ ≤ 1/2− δ for δ > 0, note that if B is neither γ-evasive nor γ-divergent then

Pr
A

[AM outputs an element of B] ≥ 1− γ ,

(associated with the distribution DM ), and hence

Pr
A

[ABM outputs an element of B] ≥ 1− 2γ ≥ 2δ .

Finally, note that the probability that B is (1/2− δ)-evasive or (1/2− δ)-divergent is no more than

1

1/2− δ

[
e−cεk

2

+ 2k
√
ε
]

︸ ︷︷ ︸
(†)

.

Then it is clear that one can choose the constants δ and c, and the blinding probability ε = Θ(1/k2), so that
this quantity is a constant bounded away from one. (For example, set δ = 1/6. Then, with ε = 1/(144k2) the
second term of (†) above is no more than 1/6; setting c = 288 guarantees the first term is likewise no more
than e−2 < 1/6 and the entire expression is a constant less than one. One can achieve better constants with
more care, but the quadratic dependence on ε in Theorem 2 dictates the quadratic gap between k and the
number of forgeries achieved by this simple method of proof.)

Finally, we create a BU adversary for M by running the BZ adversary, blinded as above with ε = Θ(1/k2),
and selecting one of the ck2 output values at random.

B.3 Full measurement via random two-outcome measurements

Here we give the proof of Lemma 6, restated below. We remark that the constant c is likely to be improved,
and it’s not our intention to optimize it since we only need it in an imaginary hybrid game of a reduction
proof.

Lemma 7. Let S1, S2, . . . , Scn be subsets of {0, 1}n each of size 2n−1, chosen independently and uniformly
at random. Let ΞSj denote the two-outcome measurement defined by Sj, and denote their composition

Ξ̃ := ΞScn ◦ ΞScn−1 ◦ · · · ◦ ΞS1 . Let Ξ denote the full measurement in the computational basis. Then

Pr
[
Ξ̃ = Ξ

]
≥ 1− 2−εn ,

whenever c ≥ 2 + ε with ε > 0.

Proof. We give a combinatorial proof. Consider an arbitrary mixed state of density matrix ρ = (ρx,y)x,y∈{0,1}n ,
the full measurement Ξ on ρ gives

Ξ(ρ) =
∑

x∈{0,1}n
|x〉〈x| ρ |x〉〈x| =

∑
x∈{0,1}n

ρx,x |x〉〈x| ,

Given a set S ⊆ {0, 1}n, the projective measurement ΞS on ρ operates as

ΞS(ρ) =
∑
x,y∈S

|x〉〈x| ρ |y〉〈y|+
∑
x,y/∈S

|x〉〈x| ρ |y〉〈y|

=
∑
x,y∈S

ρx,y |x〉〈y|+
∑
x,y/∈S

ρx,y |x〉〈y| .
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Namely, ΞS will zero-out the entries ρx,y in ρ, where (x ∈ S, y /∈ S) or (x /∈ S, y ∈ S). It is easy to verify that
the same effect occurs when Ξ and ΞS are applied to a subsystem of a bipartite state.

Now, for any c = 2 + ε with ε > 0, consider sampling S1, S2, . . . , Scn independently at random, each of
size 2n−1, and define a few random events:

Eix,y : x ∈ Si ∧ y ∈ Si, or x /∈ Si ∧ y /∈ Si ;

Ex,y : ∀i ∈ {1, . . . , cn} s.t. Eix,y ;

BAD : ∃x, y ∈ {0, 1}n, x 6= y s.t. Ex,y .

Observe that if BAD does not occur, it implies that for any x 6= y, the off-diagonal entry ρx,y is eliminated by

one of ΞSi , and as a result Ξ̃ = ΞScn ◦ . . . ◦ ΞS1 will be identical to Ξ.
Fix a pair (x, y) with x 6= y, clearly Pr[Eix,y] = 1/2. Since each Si is chosen independently,

Pr[Ex,y] = Πi Pr[Eix,y] = 1/2cn .

By the union bound,

Pr[BAD] ≤
(

2n

2

)
· Pr[Ex,y] ≤ 22n/2cn = 2−εn .

Therefore we conclude that

Pr[Ξ̃ = Ξ] ≥ Pr[Ξ̃ = Ξ | BAD] · Pr[BAD] ≥ 1− 2−εn .

B.4 Non-adaptive quantum queries and “double spending”

The following lemma shows that if there exists a non-adaptive quantum algorithm A making q queries to a
function f : {0, 1}n → {0, 1}m that learns a certain property p(f), then with inverse polynomial probability,
there exists another non-adaptive q-query algorithm that learns p(f) and q input-output-pairs with inverse
polynomial probability. For this to hold, we need to assume that A makes its queries using a blank output
register (i.e., initialized in the |0〉 state). This is the case, e.g., in period-finding and Simon’s algorithm.

In the following, denote the set of n-bit-to-m-bit functions by F(n,m).

Lemma 8 (Double spending lemma). Let F ⊆ F(n,m) be a set of functions, P a set, p : F → P a function,
and D a probability distribution on F . Suppose there exists a quantum query algorithm A which makes q
non-adaptive quantum queries to Of with blank output register for f ← D and outputs p(f) with 1/poly(n)
probability. Then there also exists an algorithm A′ which makes q non-adaptive quantum queries to Of for
f ← D and outputs both p(f) and q input-output pairs of f with 1/poly(n) probability.

Proof. Let X = {0, 1}n, Y = {0, 1}m and HZ = CZ for Z = X,Y . Set AO(1n) = E (O⊗q|ψ〉Xq ⊗ |0〉Y q )
where |ψ〉 is some input state and E = {Ep}p∈P is a POVM on H⊗qX ⊗H

⊗q
Y with outcomes labelled by the

possible properties of f . Let |ψ1〉 = O⊗q|ψ〉Xq ⊗ |0〉Y q . A outputs p(f) with inverse polynomial probability,
say with probability psucc = 〈ψ1|Ep(f)|ψ1〉. It follows that the post-measurement state conditioned on the
outcome p(f),

|ψp(f)
2 〉 =

√
Ep(f)|ψ1〉√
〈ψ1|Ep(f)|ψ1〉

,

has inverse polynomial overlap with |ψ1〉,〈
ψ1 | ψp(f)

2

〉
=
〈ψ1|

√
Ep(f)|ψ1〉√

〈ψ1|Ep(f)|ψ1〉

≥
√
〈ψ1|Ep(f)|ψ1〉 (52)

This implies immediately that measuring |ψp(f)
2 〉 in the computational basis will yield q input output pairs of

f with inverse polynomial success probability.
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We remark that the distribution of input-output pairs is at most 1− 1/poly(n) far from the distribution
one would get by simply measuring immediately after the query of A. This means that, in the case of
period-finding and Simon’s algorithm (where the queries are uniform), the input-output pairs will be distinct
with non-negligible probability.

B.5 Alternative proof that random functions are BZ-secure

Using Lemma 2, we can give a simple proof of the fact that a random function is BZ-secure. Because of its
simplicity, and because much of it can be reused to prove a separation between BZ and BU, we provide this
proof below.

Theorem 19 ([5]). An algorithm making q quantum queries to a random oracle f : {0, 1}n → {0, 1}m
produces q + 1 input-output pairs of f with probability at most

2dlog(q+1)e

2m
. (53)

Note that the probability bound is within a factor of 2 of the one obtained in [5], and matches it for
q + 1 = 2k, k ∈ N.

Proof. Let A be an adversary that, when provided with the quantum random oracle f , outputs q+1 candidate
input-output pairs. Formally, let ρ(X,Y )q+1F be the joint cq-state of the adversary and the FO, where the
classical registers (X,Y )q+1 contain A’s output and F is the FO’s register. If we wanted to determine the
success of A at this point, we would apply the Fourier transform to F , and then measure F and check if the
outcome for Fxi is yi for each (xi, yi) output by A.

Note that Plρ = 0 for all l > q by Lemma 2, i.e., there are at most q entries of F that are nonzero. This
implies that the entry corresponding to at least one of the inputs that A has output is, in fact, equal to 0m.
However, this is only true in superposition: different branches of the superposition may have different entries
in the state |0m〉. We will deal with this issue by thinking about a new algorithm B, which will simulate the
entire execution of A (including the oracle) and then perform a small number of additional measurements
prior to the success check. The additional measurements will find a pair (xi0 , yi0) in (X,Y )q+1 such that
Fxi0 is actually in the state |0m〉 (in every branch of the superposition.) The probability that yi0 = f(xi0)
(in the execution of B) will then be 2−m. We will then apply Lemma 1 to show that the success probability
of A is not much better.

We now describe B in detail. Initially, B simulates both A and the oracle. After A has finished, but before
the success check is performed, B (which is in the state ρ) applies binary search to the q+ 1 inputs that A has
output. The goal is to find an input xi0 such that Fxi0 is in state |0m〉. We do this using binary measurements
that ask “are any of the registers Fxi1 , ..., Fxik in the state |0m〉?” We split up the set S0 = {x1, ..., xq+1}
into two subsets SL

0 = {x1, ..., xb(q+1)/2c} and SR
0 = {xb(q+1)/2c+1, ..., xq+1}, and measure whether Fx is in a

state different from |0n〉 for all x ∈ SL
0 . This is done using the binary measurement given by

P1 = (1− |0〉〈0|)x1 ⊗ ...⊗ (1− |0〉〈0|)xb(q+1)/2c ⊗ 1
⊗(2n−b(q+1)/2c) (54)

and it’s complementary projector P0 = 1− P1. If the outcome is no, we set S1 = SL
0 , if it is yes then we set

S1 = SR
0 . This makes sure that we continue with a set that contains an input such that the corresponding FO

register is in state |0n〉. Now we repeat the described steps using S1 in place of S0 and continue recursively
until we encounter a set Sl with only one element, say w. Continuing with the success check, we now
know that Fw is in the state |0m〉, which implies that f(w) is uniformly random and independent of A’s
output. Indeed, a register that is in a pure state is automatically in product with the rest of the universe,
and f(w) is determined by applying H⊗m, which transforms |0m〉 into |φ0〉, and measuring, which yields a
uniformly random outcome. Therefore A’s success probability is at most 2−m. The total number of binary
measurements for the binary search procedure is upper-bounded by dlog(q+ 1)e, so an application of Lemma 1
finishes the proof.
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B.6 Hash-and-MAC with Bernoulli-preserving hash

Recall that, given a MAC Π = (Mack,Verk) with message set X and a function h : Z → X, there is a MAC
Πh := (Machk ,Ver

h
k) with message set Z defined by Machk = Mack ◦ h and Verhk(m, t) = Verk(h(m), t). This is

the standard, so-called “Hash-and-MAC” construction.

Theorem 20. Let Π = (Mack,Verk) be a BU-secure MAC with Mack : X → Y , and let h : Z → X a
Bernoulli-preserving hash. Then Πh is a BU-secure MAC.

Proof. Let A be an adversary against Πh. We build an adversary A0 against Π which (given oracle
f : X → Y ) runs A and answers its queries with f ◦ h, i.e., |m〉|t〉 7→ |m〉|t ⊕ f(h(m))〉. This can be
implemented by first computing h into an extra register, then invoking the oracle, and then uncomput-
ing h. When A produces its final output (m, t), A0 outputs (h(m), t) and terminates. We claim that∣∣Pr[BlindForgeA,Πh(n, ε) = 1]− Pr[BlindForgeA0,Π(n, ε) = 1]

∣∣ ≤ negl(n) . Since the right-hand-side of the
difference above is negligible by BU-security of Π, establishing the claim will finish the proof.

We prove the claim by showing that the difference can be viewed as the success probability of a distinguisher
D against the Bernoulli-preserving property of h. The distinguisher D receives an oracle for χB (where B ⊆ Z
is sampled according to either Bε or Bhε ) and proceeds as follows:

1. generate a key k for Π;

2. run A, answering its oracle queries with |m〉|t〉 7→ |m〉|t〉|χB(m)〉|Mack(h(m))〉
7→ |m〉|t⊕ χB(m) ·Mack(h(m))〉|χB(m)〉 where we invoked the oracle in the first step and CCNOT in
the second.

3. when A outputs (m, t), compute b = Verhk(m, t) = Verk(h(m), t). Query the oracle to compute
b′ = χB(m), and output b ∧ b′.

It now remains to check that (i.) if B was sampled according to Bε (i.e., uniform blinding), then D is
simulating the game BlindForgeA,Πh(n, ε), and (ii.) If B was sampled according to Bhε (i.e., hash-blinding),
then D is simulating the game BlindForgeA0,Π(n, ε). Fact (i.) follows directly from the definition3 of the
BlindForge game. To see fact (ii.), observe that the BlindForge game against A0 samples a uniform blinding
set Cε ⊆ X and executes algorithm A with oracle

m 7−→ χCε(h(m)) ·Mack(h(m)) = χBhε (m) ·Mack(h(m)) ,

precisely as in the execution of A by D.

B.7 Even more on Bernoulli-preserving hash

Recall that blinding a function f : {0, 1}n → {0, 1}t on a set B ⊆ {0, 1}n results in the blinded function Bf
defined by Bf(x) = ⊥ = (0t, 1) for x ∈ B and Bf(x) = (f(x), 0) for x /∈ B.

Lemma 9. Let h : {0, 1}n → {0, 1}m be a Bernoulli-preserving hash and f : {0, 1}n → {0, 1}t an efficiently
computable function. Then for all oracle QPTs (A, ε), we have∣∣∣∣ Pr

B←Oε

[
ABf (1n) = 1

]
− Pr
B←Ohε

[
ABf (1n) = 1

]∣∣∣∣ ≤ negl(n) .

3Note that we have again used the convention that the blinding symbol ⊥ is the string 0 . . . 01; in our case, the final bit
corresponds to the register containing χB(m). If one chooses a different convention, it may be necessary to adjust D to uncompute
that register with an extra call to the oracle.
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Proof. It suffices to observe that one can simulate the oracle for Bf using two calls to an oracle for χB and
two executions of f , as follows.

|x〉|y〉|b〉 7→ |x〉|y〉|b〉|χB(x)〉|f(x)〉
7→ |x〉|y ⊕ χB(x) · f(x)〉|b⊕ χB(x)〉|χB(x)〉|f(x)〉
7→ |x〉|y ⊕ χB(x) · f(x)〉|b⊕ χB(x)〉
= |x〉|y ⊕Bf(x)〉

In the second step, we applied the CCNOT (Toffoli) gate to the second register, with the fourth and fifth
register as the controls and a CNOT to the third register with the fourth register as a control. With this
observation, it is straightforward to turn any distinguisher for Bεf vs. Bhε f into one for χBε vs. χBhε .

Finally, we show the Bernoulli-preserving hash property for the hash from Section B.

Theorem 21. H is Bernoulli-preserving hash if LWE holds against any efficient quantum distinguisher.

Proof. We proceed in three steps (with help of Lemma 10 below):

1) Since Fs is injective under an injective key, it is clearly Bernoulli-preserving hash. As a result,
Fs, s← Dlos must be Bernoulli-preserving hash too, because a lossy key is indistinguishable from an
injective key by definition.

2) Then gk is chosen properly so that it is injective when restricted to im(Fs) of lossy key s. Therefore gk
is Bernoulli-preserving hash too.

3) Finally, Hk,s is Bernoulli-preserving hash by the composition of Bernoulli-preserving hash functions gk
and Fs.

Lemma 10. Any injective function f is Bernoulli-preserving hash. Given any Bernoulli-preserving hash
f : X → Y and g : Y → Z that is Bernoulli-preserving hash on im(f), then h = g ◦ f is also Bernoulli-
preserving hash.

Proof. The first part follows by observing that a ε-random subset in the codomain corresponds exactly to a
ε-random subset in the domain under inverse of the function. Let O ≈ O′ denote that two oracles O and
O are indistinguishable by any quantum poly-time algorithm. For the second part, we need to show that
χC:C←εX ≈ χC:C=h−1(CZ),CZ←εZ , where ←ε indicates sampling a random subset of fraction ε. Since f is
Bernoulli-preserving hash, we have that

χC:C←εX ≈ χC:C=f−1(CY ),CY←εY ≡ χC:C=f−1(C′Y ),C′Y←εim(f) .

The second equivalence holds by observing that for any CY ⊆ Y , f−1(CY ) = f−1(CY ∩ im(f)). Then because
g is Bernoulli-preserving on im(f),

χC′Y :C′Y←εim(f) ≈ χC′Y :C′Y =g−1(CZ),CZ←εZ .

Therefore, we conclude that

χC:C←εX ≈ χC:C=f−1(g−1(CZ)),Cz←εZ = χC:C=h−1(CZ),Cz←εZ .
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