
Leakage Resilient Secret Sharing and Applications

Akshayaram Srinivasan
University of California, Berkeley

akshayaram@berkeley.edu

Prashant Nalini Vasudevan
University of California, Berkeley

prashvas@berkeley.edu

November 27, 2018

Abstract

A secret sharing scheme allows a dealer to share a secret among a set of n parties such
that any authorized subset of the parties can recover the secret, while any unauthorized subset
of the parties learns no information about the secret. A local leakage-resilient secret sharing
scheme (introduced in independent works by (Goyal and Kumar, STOC 18) and (Benhamouda,
Degwekar, Ishai and Rabin, Crypto 18)) additionally requires the secrecy to hold against every
unauthorized set of parties even if they obtain some bounded local leakage from every other
share. The leakage is said to be local if it is computed independently for each share. So far,
the only known constructions of local leakage resilient secret sharing schemes are for threshold
access structures for very low (O(1)) or very high (n− o(log n)) thresholds.

In this work, we give a compiler that takes a secret sharing scheme for any monotone access
structure and produces a local leakage resilient secret sharing scheme for the same access struc-
ture, with only a constant-factor blow-up in the sizes of the shares. Furthermore, the resultant
secret sharing scheme has optimal leakage-resilience rate i.e., the ratio between the leakage tol-
erated and the size of each share can be made arbitrarily close to 1. Using this secret sharing
scheme as the main building block, we obtain the following results:

• Rate Preserving Non-Malleable Secret Sharing. We give a compiler that takes any
secret sharing scheme for a 4-monotone access structure1 with rate R and converts it into
a non-malleable secret sharing scheme for the same access structure with rate Ω(R). The
prior such non-zero rate construction (Badrinarayanan and Srinivasan, 18) only achieves a
rate of Θ(R/tmax log2 n), where tmax is the maximum size of any minimal set in the access
structure. As a special case, for any threshold t ≥ 4 and an arbitrary n ≥ t, we get the
first constant rate construction of t-out-of-n non-malleable secret sharing.

• Leakage-Tolerant Multiparty Computation for General Interaction Pattern.
For any function, we give a reduction from constructing leakage-tolerant secure multi-party
computation protocols obeying any interaction pattern to constructing a secure (and not
necessarily leakage-tolerant) protocol for a related function obeying the star interaction
pattern. This improves upon the result of (Halevi et al., ITCS 2016), who constructed a
protocol that is secure in a leak-free environment.

1A 4-monotone access structure has the property that any authorized set has size at least 4.

Contents

1 Introduction 3
1.1 Results and Techniques . 3
1.2 Related Work . 8

2 Preliminaries 9
2.1 Secret Sharing Scheme . 11

3 Leakage Resilient Secret Sharing Scheme 11
3.1 Definition . 12
3.2 Local Leakage Resilience . 12

3.2.1 Description of the Compiler . 12
3.2.2 Instantiation . 15

3.3 Strong Local Leakage Resilience . 15

4 Rate Preserving Non-Malleable Secret Sharing 20
4.1 Definition . 20
4.2 Construction . 20
4.3 Rate Analysis . 22

5 Leakage Tolerant MPC for General Interaction Patterns 22
5.1 Basic Definitions . 22
5.2 Known Protocols for Star Interaction Pattern . 25
5.3 Definition: Leakage Tolerant MPC for an Interaction Pattern 25
5.4 Construction . 26

A Background: Non-Malleable Codes 36

2

1 Introduction

Secret sharing [Sha79, Bla79] is a fundamental cryptographic primitive that allows a secret to be
shared among a set of parties in such a way that only certain authorized subsets of parties can
recover the secret by pooling their shares together; and any subset of parties that is not autho-
rized learn nothing about the secret from their shares. Secret sharing has had widespread ap-
plications across cryptography, ranging from secure multiparty computation [GMW87, BGW88,
CCD88], threshold cryptographic systems [DF90,Fra90,DDFY94] and leakage resilient circuit com-
pilers [ISW03,FRR+10,Rot12]

In this paper, we study secret sharing with a stronger privacy requirement – that the secret
remain hidden from unauthorized subsets of parties even if they have access to some small amount
of information about the shares of the remaining parties (referred to as leakage). Such leakage
resilience has been widely studied in the past as a desirable property in various settings and
cryptographic primitives [MR04,DP08,AGV09,NS09].

More specifically, we are interested in local leakage resilience, which means that secrets are
hidden from an adversary that works as follows. First, it specifies an unauthorized subset of
parties, and for each of the remaining parties, it specifies a leakage function that takes its share
as input and outputs a small pre-determined number of bits. Once the shares are generated, the
adversary is given all the shares of the unauthorized subset, and the output of the corresponding
leakage function applied to the each of the remaining shares.

This form of leakage resilience for secret sharing was formalized in recent work by Goyal and
Kumar [GK18a], and Benhamouda, Degwekar, Ishai and Rabin [BDIR18]. These papers showed
examples of leakage-resilient threshold secret sharing schemes (where subsets above a certain size
are authorized) for certain thresholds. They then showed applications of such schemes to con-
structions of leakage-resilient multi-party computation protocols and non-malleable secret sharing
schemes. Given the prevalence of secret-sharing in cryptographic constructions and the importance
of resilience to leakage, one may reasonably expect many more applications to be discovered in the
future.

In this work, we are interested in constructing local leakage resilient secret sharing schemes for
a larger class of access structures2 (in particular, for all thresholds). Beyond showing feasibility,
our focus is on optimizing the following parameters of our schemes:

• the rate, which is the ratio of the size of the secret to the size of a share, and,

• the leakage-resilience rate, which is the ratio of the number of bits of leakage tolerated per
share to the size of a share.

1.1 Results and Techniques

Our primary result is a transformation that converts a secret sharing scheme for any access structure
A into a local leakage resilient secret sharing scheme for A whose rate is a small constant factor
less than that of the original scheme, and which has an optimal leakage-resilience rate of 1.

Informal Theorem 1.1 There is a compiler that, given a secret sharing scheme for a monotone
access structure A with rate R, produces a secret sharing scheme for A that has rate R/3.01 and
is local leakage resilient with leakage-resilience rate tending to 1.

2The access structure of a secret sharing scheme is what we call the set of authorized subsets of parties.

3

In particular, for any k ≤ n, starting from k-out-of-n Shamir secret sharing [Sha79] gives us a
k-out-of-n threshold secret sharing scheme with rate 1/3.01 and leakage rate 1. The only results
known even for threshold access structures before our work were for either very small or very large
thresholds. Goyal and Kumar [GK18a] presented a construction for k = 2, which had both rate
and leakage-resilience rate Θ(1/n). This was extended to any constant k by Badrinarayanan and
Srinivasan [BS18], with rate Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)). Benhamouda
et al. [BDIR18] showed that k-out-of-n Shamir secret sharing over certain fields is local leakage-
resilient if k = n− o(n), and this has rate 1 and leakage-resilience rate roughly 1/4.

Outline of Construction. We will now briefly describe the functioning of our compiler for the
case of a k-out-of-n threshold secret sharing scheme, for simplicity. It makes use of a strong seeded
randomness extractor Ext, which is an algorithm that takes two inputs – a seed s and a source w –
and whose output Ext(s, w) is close to being uniformly random if s is chosen at random and w has
sufficient entropy. The extractor being “strong” means that the output remains close to uniform
even if the seed is given.

We take any threshold secret sharing scheme (such as Shamir’s [Sha79]), and share our secret
m with it to obtain the set of shares (Sh1, . . . ,Shn). We first choose a uniform seed s, and for each
i ∈ [n], we choose a uniformly random source wi (all of appropriate lengths), and mask Shi using
Ext(s, wi). That is, we compute Sh′i = Shi ⊕ Ext(s, wi). We then secret share s using a 2-out-of-n
secret sharing scheme to get the set of shares S1, . . . , Sn. The share corresponding to party i in our
scheme is now set to (wi,Sh

′
i, Si).

Given k such shares, to recover the secret, we first reconstruct the seed from any two Si’s
and then unmask Sh′i by XORing with Ext(s, wi) to obtain Shi. We then use the reconstruction
procedure of the underlying secret sharing to recover the message.

The correctness and privacy of the constructed scheme are straightforward to check. To argue
the local leakage resilience of this construction, we go over a set of n− k+ 1 hybrids where in each
hybrid, we will replace one Shi with the all 0’s string. Once we have replaced n− k+ 1 such shares
with the 0’s string, we can then rely on the secrecy of the underlying secret sharing scheme to
show that the message is perfectly hidden. Thus, it is now sufficient to show that any two adjacent
hybrids in the above argument are statistically close. To argue that the adjacent hybrids, say Hybi
and Hybi+1, are statistically close, we rely on the randomness property of the extractor. Note that
even given bounded leakage from the source wi, we can show that wi has sufficient entropy so that
the output of the extractor on the weak source wi is statistically close to random. This allows us
to argue that Ext(s, wi) acts as a one-time pad and thus, we can replace Shi with the all 0’s string.

However, in order to make the argument work, we must ensure that the leakage from the source
is independent of the seed. This is where we will be using the fact that the seed is secret shared
using a 2-out-of-n secret sharing scheme. In our reduction, we fix the share Si to be independent
of the seed and then leak from the source wi. Once the seed is known3, we can sample the other
shares (S1, . . . , Si−1, Si+1, . . . , Sn) as a valid 2-out-of-n secret sharing of s that is consistent with
the fixed share Si. This allows us to argue that the leakage on wi is independent of the source.
There is a small caveat here that the masked value Sh′i is dependent on the seed and hence we
cannot argue independence of the leakage on the source and the seed. However, we use a simple
trick of masking Sh′i by another one-time pad and then secret share the one-time pad key along
with the seed s and use this argue that this masked value is independent of the seed.

3As the extractor is a strong seeded extractor, Ext(s, wi) is statistically close to uniform even given the seed.

4

This construction described above has several advantages. The main advantage is that the
transformation is rather simple and only incurs a very small overhead when compared to the
original secret sharing scheme. In particular, the rate of the resultant leakage resilient secret
sharing has only a small constant factor loss when compared to the initial secret sharing scheme.
Also, we can sample the seed s of the extractor once and use it for sharing multiple secrets.4 The
second advantage is that it easily generalizes to all monotone access structures, basically, the only
difference is that we use a secret sharing scheme for this access structure to obtain the set of shares
(Sh1, . . . ,Shn), and the rest of the steps are exactly the same as before. The third advantage is that
the resultant secret sharing scheme has optimal leakage-resilience rate, i.e., the ratio between the
number of bits of leakage tolerated and size of the share tends to 1 as the amount of leakage that
the scheme is designed to handle increases. Finally, if we use the inner product two-source extractor
of Chor and Goldreich [CG88] as the underlying extractor then the sharing procedure is a linear
function of the secret and a quadratic function of the randomness, and this can be implemented
efficiently.

Rate-Preserving Non-Malleable Secret Sharing. Non-malleable secret sharing schemes, in-
troduced by Goyal and Kumar [GK18a], are secret sharing schemes where it is not possible to
tamper with the shares of a secret s (in certain limited ways) so as to convert them to shares cor-
responding to a different secret s′ that is related to s (such as s+ 1 or s with the first bit flipped).
We are interested in security against an adversary that tampers each share independent of the
others (called individual tampering). In this setting, Goyal and Kumar presented a construction of
a non-malleable k-out-of-n threshold secret sharing scheme, and in a later paper [GK18b] extended
this to general access structures. Their constructions, however, had an asymptotic rate of zero.

Badrinarayanan and Srinivasan [BS18] gave a compiler that takes any secret sharing scheme for
a 4-monotone5 access structure and outputs a non-malleable secret sharing scheme for the same
access structure. The main tool used in their compiler was a local leakage resilient threshold secret
sharing scheme. The loss in the rate of the resulting non-malleable secret sharing scheme depended
on the parameters of the underlying local leakage resilient secret sharing. In particular, to have only
a constant loss in the rate, it was important to have a local leakage resilient threshold secret sharing
scheme that had a constant rate and a constant leakage-resilience rate. We plug in our basic leakage
resilient secret sharing scheme that has both these features with the compiler of Badrinarayanan
and Srinivasan to obtain a rate-preserving compiler for non-malleable secret sharing.

Informal Theorem 1.2 There is a compiler that, given a secret sharing scheme for a 4-monotone
access structure A with rate R, produces a secret sharing scheme for A that has rate Ω(R) and is
non-malleable against individual tampering.

Leakage-Tolerant MPC for General Interaction Pattern. Next, we provide an application
of our constructions to multi-party computation, an area where secret sharing is rather pervasive.
An interaction pattern is a directed graph which specifies the sequence of messages that have to be
sent during the execution of a protocol. To give an example, consider a ring interaction pattern.
Here, the first message is sent by the party P1 to the party P2 and depending on this message, P2

4For the security of this modification to go through, we need the adversary to specify all the secrets and leakage
functions upfront – it cannot adaptively choose the secrets and leakage functions depending on the previous leakage.

5k-monotone means that all authorized sets in the access structure are of size at least k.

5

sends a message to P3 and so on. Finally, the party Pn sends a message to P1 who computes the
output based on this message. The directed graph corresponding to this has (n + 1) nodes, one
corresponding to each message and one for the output, and the graph is a single directed path that
goes from the first message to the last and then to the output node. To give another example,
a standard 2-round MPC protocol with n parties can be represented by an interaction pattern
graph with two sets of n2 nodes, representing the messages sent by each party to each other party
in the two rounds. The edges then go from the nodes corresponding to first-round messages to
second-round messages, according to the protocol.

It is well-known from a sequence of works [HLP11,GGG+14,BGI+14] that the standard notion of
MPC which guarantees that only the output is leaked is impossible to achieve for certain interaction
patterns. To see this, consider the star interaction pattern where there is a special party called as
the evaluator and every party sends a single message to the evaluator who computes the output.
In this interaction pattern, if the evaluator colludes with some subset of the parties then it is
easy to see that the colluding parties learn the residual function with the honest parties inputs
to be fixed and the corrupted parties inputs to be varied. To capture this inherent leakage with
certain interaction patterns, Halevi et al. [HIJ+16] introduced the notion of fixed and free inputs.
Intuitively, every honest party’s input is fixed. In addition to this, every corrupted party’s input is
fixed if there exists a path from the corrupted party to the evaluator that passes through at least
one honest party. The rest of the corrupted parties’ inputs are free. A secure MPC protocol that
is compliant with an interaction pattern guarantees that only the residual function with the above
defined notion of fixed inputs is revealed to the adversary.

We define the notion of leakage tolerance for an MPC protocol that is compliant with an interac-
tion pattern along the same lines as that of leakage tolerant MPC [BCH12]. In the setting of leakage
tolerance, as in the standard setting, we consider an adversary who corrupts an arbitrary subset of
parties and can see their entire views. But in addition to this, the adversary also obtains bounded
leakage on the complete internal state – that includes both the input, the secret randomness, and
the entire view of the protocol – of every honest party. Here, the adversary can potentially learn
bounded information about the honest party’s input since it has access to all of the honest parties’
secret state. We would like to guarantee that nothing beyond such bounded information about the
inputs and the residual function is actually leaked to the adversary. Technically, we account for
this leakage by allowing the simulator to learn the same amount of information about the honest
parties’ inputs.

What makes the task of providing such security non-trivial is that unlike a standard MPC
simulator who is allowed to cheat in generating the protocol messages, a simulator in the leakage
tolerance setting cannot deviate from the protocol specification. This is because any deviation can
be caught by the adversary by leveraging the leakage on the secret state of the honest party. At
first sight, the task of designing such a simulator seems impossible as we require the simulator
to generate the correct protocol messages based only the output (or more generally, based on the
residual function). However, notice that the leakage functions are local to the honest party’s view.
Hence, the simulator must follow the protocol correctly at the local level but must somehow cheat
in the global level, i.e., in generating the joint distribution of the protocol messages. To make this
task even more demanding, we do not wish to use any computational assumptions and only make
use of information theoretic tools to achieve leakage tolerance.

In this setting, we upgrade one of the results of Halevi et al [HIJ+16] to have the additional
guarantee of leakage tolerance. They showed that the star interaction pattern described earlier is

6

complete for MPC on general interaction patterns – given a secure protocol for a function f that
is compliant with the star interaction pattern, they showed how to construct a secure protocol for
f compliant with any other interaction pattern. Similarly, we obtain the following.

Informal Theorem 1.3 There is a compiler that, given a function f : {0, 1}n → {0, 1}, an inter-
action pattern I, and a secure protocol for f compliant with the star interaction pattern, produces
a secure protocol (with a setup phase producing correlated randomness) for f compliant with I that
is also leakage tolerant. Further, if in the original protocol each party uses M bits of communica-
tion and R bits of correlated randomness, then each party in the new protocol uses O(n2M) bits of
communication and O(R+ n2M) bits of correlated randomness.

Using the known protocols for the star interaction pattern [BGI+14, BKR17, GGG+14], we
obtain the following corollaries.

Corollary 1.1 (from [BGI+14]) For any function f : {0, 1}n → {0, 1}∗ and any interaction
pattern I, there exists a I-compliant protocol that computes f with leakage tolerance upto n − 1
passive corruptions. The communication complexity of the protocol is exponential in n.

Corollary 1.2 (from [BKR17]) For any function f : {0, 1}n → {0, 1}∗ that is computable in
NC1 and any interaction pattern I, there exists an efficient, I-compliant protocol that computes
f with leakage tolerance upto a constant number of passive corruptions. Furthermore, assuming
the existence of one-way functions, for any function f : {0, 1}n → {0, 1}∗ that is computable by a
circuit, there exists an efficient I-compliant protocol that computes f with leakage tolerance upto a
constant number of passive corruptions.

Corollary 1.3 (from [GGG+14]) Assuming the existence of indistinguishability obfuscation and
one-way functions, for any interaction pattern I and any function f : {0, 1}n → {0, 1}∗ that is
computable by circuits, there exists an efficient, I-compliant protocol that computes f with leakage
tolerance upto n− 1 passive corruptions.

Our actual construction also covers functions where each party has multiple bits as input (see
Theorem 5.11). The compiler we use is the same as that of Halevi et al., except using a leakage-
resilient secret sharing scheme where theirs uses additive secret sharing. However, the proof of
leakage tolerance is quite involved, and, in fact, it turns out that standard local leakage resilience
is insufficient for this purpose. We now provide some intuition on why this is the case. In the
Halevi et al.’s construction, some set of secrets are shared among all the parties in the correlated
randomness generation phase. The messages sent during the execution of the protocol comprise of
a subset of a party’s shares. So, a party’s secret state not only includes its own shares, but also
the shares received from the other parties. Thus, any leakage function on a honest party’s internal
state is not local as it gets to see a subset of other parties’ shares. Thus, we need a secret sharing
scheme satisfying a stronger notion of leakage resilience that we describe next.

Stronger Leakage-Resilience. Motivated by the aforementioned application to leakage toler-
ance in multi-party computation, we study secret sharing resilient to a stronger form of leakage.
In the earlier definition of local leakage, the leakage functions that are applied on the shares of
honest parties are required to be specified independently of the shares that are completely revealed

7

to the adversary. In our stronger definition, these leakage functions are allowed to depend on some
number of the adversary’s shares. We construct k-out-of-n threshold secret sharing schemes that
are resilient to such stronger leakage where the adversary is given (k − 1) shares, and the leakage
functions applied on the honest party’s shares are allowed to depend on (k − 2) of these shares.
This construction, which is in fact a simple modification of our earlier one, has worse rate, but still
has optimal leakage-resilience rate. Referring temporarily to the above as (k−2, k−1)-strong local
leakage, we have the following.

Informal Theorem 1.4 For any k ≤ n, there is a k-out-of-n threshold secret sharing scheme that
is resilient against (k − 2, k − 1)-strong local leakage, has rate Ω(1/n), and leakage-resilience rate
tending to 1.

It is easy to check that this definition is impossible to achieve for a k-out-of-n threshold secret
sharing scheme if we allow the leakage functions to depend on all (k− 1) of the adversary’s shares,
as the leakage function on any honest party’s share can use the (k − 1) shares along with this
share to reconstruct the secret and leak a few bits of the secret. Even when k = n, we note that
construction of a n-out-of-n secret sharing in the work of Benhamouda et al. [BDIR18] does not
imply the above theorem because their construction only has a constant privacy error when the
leakage functions on the honest party’s share is allowed to depend on k − 2 shares.

1.2 Related Work

In concurrent and independent work, Aggarwal et al. [ADN+18] also construct leakage-resilient
secret sharing schemes for any access structure (from any secret sharing scheme for that access
structure). They use this to construct non-malleable secret sharing for general monotone access
structures and threshold signatures that are resilient to leakage and mauling attacks. Whereas
our construction of non-malleable secret sharing for general monotone access structures is rate-
preserving, their construction has an asymptotic rate of 0. On the other hand, their work addition-
ally considers the stronger model of concurrent tampering and gives positive results in this model
as well.

Most closely related to our work are the papers by Goyal and Kumar on non-malleable secret
sharing [GK18a,GK18b], Benhamouda et al on leakage-resilient secret sharing and MPC [BDIR18],
and Badrinarayanan and Srinivasan on non-malleable secret sharing with non-zero rate [BS18].

Local leakage resilient secret sharing (in the sense in which we use this term) was first studied by
Goyal and Kumar [GK18a] and Benhamouda et al [BDIR18] (independently of each other). [GK18a]
constructed a local leakage resilient 2-out-of-n threshold secret sharing scheme with rate and
leakage-resilience rate both Θ(1/n). They used this as a building block to construct non-malleable
threshold secret sharing schemes secure against individual and joint tampering (where the adver-
sary is allowed to jointly tamper sets of shares). A later paper also by Goyal and Kumar [GK18b]
extended this to a compiler that adds non-malleability to a secret sharing scheme for any access
structure. The non-malleable schemes resulting from both of these works, however, had rate tend-
ing to 0. Badrinarayanan and Srinivasan [BS18] later presented a compiler that converts any rate R
secret sharing scheme to a non-malleable one for the same access struture with rate Θ(R/t log2 n),
where t is the maximum size of any minimal set in the access structure. In the process, they
constructed local leakage resilient k-out-of-n secret sharing schemes for a constant k that had rate
Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)).

8

Benhamouda et al. [BDIR18] were interested in studying the leakage-resilience of existing secret
sharing schemes and MPC protocols. Inspired by the results of Guruswami and Wootters [GW16]
that implied the possibility of recovering the secret from single-bit local leakage of Shamir shares
over small characteristic fields, they investigated the leakage resilience of Shamir secret sharing
over larger characteristic fields. They showed that, for large enough characteristic and large enough
number of parties n, this scheme is leakage-resilient (with leakage-resilience rate close to 1/4) as
long as the threshold is large (at least n−o(log(n))). They used this fact to show leakage-resilience
of the GMW protocol [GMW87] (using Beaver’s triples), and to show an impossibility result for
multi-party share conversion.

Boyle et al. [BGK14] define and construct leakage-resilient verifiable secret sharing schemes
where the sharing and reconstruction are performed by interactive protocols (as oppoosed to just
algorithms). They also show that a modification of the Shamir secret sharing scheme satisfies a
weaker notion of leakage-resilience than the one we consider here, where it is only required that a
random secret retain sufficient entropy given the leakage on the shares.

Dziembowski and Pietrzak [DP07] construct secret sharing schemes (that they call intrusion-
resilient) that are resilient to adaptive leakage where the adversary is allowed to iteratively ask for
leakage from different shares. Their reconstruction procedure is also interactive, however, requiring
as many rounds of interaction as the adaptivity of the leakage tolerated.

Leakage-resilience of secure multiparty computation has been studied in the past in various
settings [BGJK12, GIM+16, DHP11]. More broadly, leakage-resilience of various cryptographic
primitives have been quite widely studied – we refer the reader to the survey by Alwen et al [ADW09]
and the references therein. The notion of leakage tolerance was introduced by Garg et al [GJS11] and
Bitansky et al [BCH12], and has been the subject of many papers since [BCG+11,BGJ+13,BDL14].

Secure multiparty computation with general interaction patterns was first studied by Halevi et
al [HIJ+16], who showed a reduction from general interaction patterns to the star pattern (which is
what we base our reduction on). They then showed an inefficient information-theoretically secure
protocol for general functions, and an efficient one for symmetric functions. They also showed a
computationally secure protocol for general functions assuming the existence of indistinguishabil-
ity obfuscation and one-way functions, and for symmetric functions under an assumption about
multilinear maps.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and corresponding
lowercase letters to denote a sample from the same. Let [n] denote the set {1, 2, . . . , n} and Ur

denote the uniform distribution over {0, 1}r. For a finite set S, we denote x
$← S as sampling x

uniformly at random from the set S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate
of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed
by T . We write ◦ to denote concatenation.

Standard definitions of min-entropy and statistical distance are given below.

Definition 2.1 (Min-entropy) The min-entropy of a source X is defined to be

H∞(X) = min
s∈support(X)

{log(1/Pr[X = s])}

A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

9

Definition 2.2 (Statistical distance) Let D1 and D2 be two distributions on a set S. The sta-
tistical distance between D1 and D2 is defined to be:

|D1 −D2| = max
T⊆S
|D1(T)−D2(T)| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

D1 is ε-close to D2 if |D1 −D2| ≤ ε.

We will use the notation D1 ≈ε D2 to denote that the statistical distance between D1 and D2

is at most ε.

Lemma 2.3 (Triangle Inequality) If D1 ≈ε1 D2 and D2 ≈ε2 D3 then D1 ≈ε1+ε2 D3.

We now recall the definition of (average) conditional min-entropy [DORS08].

Definition 2.4 ([DORS08]) The average conditional min-entropy is defined as

H̃∞(X|W) = log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − logE
[
2−H∞(X|W=w)

]
We recall some results on conditional min-entropy from [DORS08].

Lemma 2.5 ([DORS08]) If a random variable B can take at most ` values, then H̃∞(A|B) ≥
H∞(A)− log `.

Seeded Extractors. We now recall the definition of a strong seeded extractor.

Definition 2.6 (Strong seeded extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an
independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud. Further if the function Ext(·, u) is a linear function over F2 for
every u ∈ {0, 1}d, then Ext is called a linear seeded extractor.

An average case seeded extractor requires that if a source X has average case conditional min-
entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform even when Z is given. We
recall the following lemma from [DORS08] which states that every strong seeded extractor is also
an average-case strong extractor.

Lemma 2.7 ([DORS08]) For any δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is also
a (k + log

(
1
δ

)
, ε+ δ) average case strong extractor.

10

2.1 Secret Sharing Scheme

We first give the definition of a k-monotone access structure, then define a sharing function and
finally define a secret sharing scheme.

Definition 2.8 (k-Monotone Access Structure) An access structure A is said to be monotone
if for any set S ∈ A, any superset of S is also in A. We will call a monotone access structure A
as k-monotone if for any S ∈ A, |S| ≥ k.

Definition 2.9 (Sharing Function [Bei11]) Let [n] = {1, 2, . . . , n} be a set of identities of n
parties. Let M be the domain of secrets. A sharing function Share is a randomized mapping from
M to S1 × S2 × . . . × Sn, where Si is called the domain of shares of party with identity i. A
dealer distributes a secret m ∈ M by computing the vector Share(m) = (S1, . . . ,Sn), and privately
communicating each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 2.10 ((A, n, εc, εs)-Secret Sharing Scheme [Bei11]) Let M be a finite set of se-
crets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing
function Share with domain of secrets M is a (A, n, εc, εs)-secret sharing scheme with respect to
monotone access structure A if the following two properties hold :

• Correctness: The secret can be reconstructed by any set of parties that are part of the access
structure A. That is, for any set T ∈ A, there exists a deterministic reconstruction function
Rec : ⊗i∈TSi →M such that for every m ∈M,

Pr[Rec(Share(m)T) = m] = 1− εc

where the probability is over the randomness of the Share function. We will slightly abuse the
notation and denote Rec as the reconstruction procedure that takes in T ∈ A and Share(m)T
as input and outputs the secret.

• Statistical Privacy: Any collusion of parties not part of the access structure should have
almost no information about the underlying secret. More formally, for any unauthorized set
U ⊆ [n] such that U /∈ A, and for every pair of secrets m0,m1 ∈M , for any distinguisher D
with output in {0, 1}, the following holds :

|Pr[D(Share(m0)U) = 1]− Pr[D(Share(m1)U) = 1]| ≤ εs

We define the rate of the secret sharing scheme as lim|m|→∞
|m|

maxi∈[n] |Share(m)i|

Remark 2.11 (Threshold Secret Sharing Scheme) For ease of notation, we will denote a t-
out-of-n threshold secret sharing scheme as (t, n, εc, εs)-secret sharing scheme.

3 Leakage Resilient Secret Sharing Scheme

In this section, we will define and construct a leakage resilient secret sharing scheme against a class
of local leakage functions.

11

3.1 Definition

We first recall the definition of a leakage resilient secret sharing scheme from [GK18a].

Definition 3.1 (Leakage Resilient Secret Sharing [GK18a]) A (A, n, εc, εs) secret sharing scheme
(Share,Rec) for message space M is said to be ε-leakage resilient against a leakage family F if for
all functions f ∈ F and for any two messages m0,m1 ∈M:

|f(Share(m0))− f(Share(m1))| ≤ ε

3.2 Local Leakage Resilience

In this subsection, we will transform any secret sharing scheme to a leakage resilient secret sharing
scheme against the local leakage function family. We first recall the definition of this function
family.

Local Leakage Function Family. Let Share : M → S1 × S2 . . . × Sn. We are interested in
constructing leakage resilient secret sharing schemes against the specific function family FA,µ =
{fK,−→τ : K ⊆ [n],K 6∈ A, τi : Si → {0, 1}µ} where fK,−→τ on input (share1, . . . , sharen) outputs sharei
for each i ∈ K in the clear and outputs τi(sharei) for every i ∈ [n] \ K. Following [BDIR18], we
will call secret sharing schemes resilient to FA,−→τ as local leakage resilient secret sharing. We will
define the leakage-rate of such secret sharing schemes to be limµ→∞

µ
maxi∈[n] |Share(m)i| .

Remark 3.2 We remark that definition 3.1 is satisfiable against the leakage function class FA,µ
(for any µ > 0) only if the access structure is 2-monotone (see Definition 2.8). Hence, in the rest
of the paper, we will concentrate on 2-monotone access structures.

3.2.1 Description of the Compiler

We will give a compile that takes any (A, n, εc, εs) secret sharing scheme for any 2-monotone A
and outputs a local leakage resilient secret sharing scheme for A. We give the description of the
compiler in Figure 1 and give an informal overview below.

Overview. The sharing function does the following. On input a secret m, it first shares m using
the underlying secret sharing scheme for the access structure A to get the set of shares (Sh1, . . . ,
Shn). It chooses an uniform seed s and for each i ∈ [n], chooses an uniform source wi for the
underlying strong seeded extractor Ext. For each i ∈ [n], it masks Shi using the output of the
extractor on the source wi using the seed s to obtain the masked shares Sh′i. It then chooses an
uniform string r and computes S′i = Sh′i⊕r. It shares (s, r) using a 2-out-of-n Shamir secret sharing
scheme to obtain the set of shares (S1, . . . , Sn). The share corresponding to party i is the triple
sharei = (wi, S

′
i, Si). The reconstruction function first obtains (s, r) from the Si’s. Notice that since

A is 2-monotone each authorized set has atleast two shares and we can reconstruct (s, r) from any
authorized set of shares. It then computes Shi = S′i⊕ r⊕Ext(wi, s). It finally reconstructs m from
the Shi’s.

Theorem 3.3 Consider any 2-monotone access structure A and µ ∈ N and a secret domain M
with secrets of length m. Suppose for some η, d, ρ ∈ N and εc, εs, ε ∈ [0, 1), the following exist:

12

Let (Share,Rec) be a (A, n, εc, εs) secret sharing scheme for sharing secrets fromM with share
size equal to ρ bits. Let (Share(2,n),Rec(2,n)) be a 2-out-of-n Shamir Secret sharing. Let Ext :

{0, 1}η × {0, 1}d → {0, 1}ρ be a (η − µ, ε)-average-case, strong seeded extractor.

LRShare : To share a secret m ∈M:

1. Run Share(m) to obtain the shares (Sh1, . . . ,Shn).

2. Choose an uniform seed s
$← {0, 1}d and a masking string r

$← {0, 1}ρ.
3. For each i ∈ [n] do:

(a) Choose wi
$← {0, 1}η.

(b) Set Sh′i = Shi ⊕ Ext(wi, s).

4. Run Share(2,n)(s, r) to obtain S1, . . . , Sn.

5. Output sharei as (wi,Sh
′
i ⊕ r, Si).

LRRec : Given the shares sharej1 , sharej2 , . . . , sharej` where K = {j1, . . . , jk} ∈ A do:

1. For each i ∈ K, parse sharei as (wi, S
′
i, Si).

2. Run Rec(2,n)(Sj1 , Sj2) to recover (s, r)

3. For each i ∈ K do:

(a) Compute Sh′i = S′i ⊕ r.
(b) Recover Shi by computing Sh′i ⊕ Ext(wi, s).

4. Run Rec(Shj1 , . . . ,Shjk) to recover the secret m.

Figure 1: Local Leakage-Resilient Secret Sharing

• A (A, n, εc, εs) secret sharing scheme for the secret domain M with share length ρ.

• A (η − µ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d → {0, 1}ρ.

Then, the construction in Figure 1, when instantiated with these, is a (A, n, εc, εs) secret sharing
scheme for M that is 2(εs + n · ε)-leakage resilient against FA,µ. It has share size (η + 2ρ+ d).

Proof We note that correctness follows directly from the correctness of (Share,Rec) and that of
Shamir’s secret sharing. We will now argue leakage resilience and privacy will follow directly from
this argument.

Leakage Resilience. Let us fix a function fK,−→τ ∈ FA,µ where K 6∈ A. Recall that fK,−→τ on
input (share1, . . . , sharen) will output sharei in the clear for every i ∈ K and for all other i, it will
output τi(sharei). We need to show that for any two secrets m,m′ ∈M:

|fK,−→τ (LRShare(m))− fK,−→τ (LRShare(m′))| ≤ 2(εs + n · ε)

13

The proof strategy is as follows. We start with the distribution wherein we will output
fK,−→τ (Share(m)). Then, for each i 6∈ K, we will choose Ri randomly from {0, 1}ρ and run the
function τi with input (wi, Ri ⊕ r, Si) instead of (wi, Sh

′
i ⊕ r, Si). We will show that the output of

fK,−→τ on the modified input is statistically close to the real world leakage by relying on the extractor
property. Once we have replaced all Shi with a random string for i 6∈ K, we can rely on the privacy
of secret sharing scheme (Share,Rec) to argue that the message is statistically hidden given the
leakage. We will now formalize this argument.

Let us consider some total ordering ≺ of the elements in the set [n]\K. We define a sequence of
hybrids Hybi for every i ∈ [n] \K where we use the modified sharing procedure LRShare′i described
below.

Description of LRShare′i :

1. Run Share(m) to obtain the shares (Sh1, . . . ,Shn).

2. Choose an uniform seed s
$← {0, 1}d and a masking element r

$← {0, 1}ρ.

3. For each j ∈ [n] do:

(a) Choose wj
$← {0, 1}η.

(b) Choose Sh′j ← {0, 1}ρ if j ∈ [n] \K and j ≺ i. Else, set Sh′j = Shj ⊕ Ext(wj , s).

4. Run Share(2,n)(s, r) to obtain S1, . . . , Sn.

5. Output sharei as (wi, Sh
′
i ⊕ r, Si).

The output of Hybi is fK,−→τ (share1, . . . , sharen). Let ` = |[n] \K| and let i1 be the first element
and i` to be the last element in [n]\K as per the ordering ≺. Notice that in Hybi1 , the distribution
of the shares given as input to fK,−→τ is identical to a valid secret sharing of m. We first prove the
following claim.

Claim 3.4 For every i, i′ ∈ [n] \K such that i′ is the successor of i as per the ordering ≺, we have
Hybi′ ≈ε Hybi.

Proof Assume for the sake of contradiction that the statistical distance between Hybi′ and Hybi
is greater than ε. We will use this to break the property of the strong, average-case seeded extractor
Ext. The reduction is described below.

The reduction runs Share(m) to obtain (Sh1, . . . ,Shn). It then chooses a random string ri
$←

{0, 1}ρ and a random Shamir share Si. It then defines a function fri,Si : {0, 1}η → {0, 1}µ as
follows: on input wi, run τi(wi, ri, Si) and output whatever it outputs. Note that since the output

length of fri,Si is µ bits, it follows from Lemma 2.5 that for a randomly chosen wi
$← {0, 1}η,

H̃∞(wi|fri,Si(wi)) ≥ η − µ. The reduction receives from the extractor challenger (s, fri,Si(wi), Ri)
where either Ri = Ext(wi, s) or Ri is chosen uniformly at random. It sets Sh′i = Shi ⊕Ri and sets
r = ri⊕Sh′i. It then generates Shamir secret sharing of (s, r) such that it is consistent with the share

Si to obtain S1, . . . , Sn. For every other j 6= i, it chooses wj
$← {0, 1}η, and chooses Sh′j

$← {0, 1}ρ
if j ≺ i and j ∈ [n]\K; else, it sets Sh′j = Shj⊕Ext(wj , s). For every k ∈ K, the reduction outputs
(wk, Sh

′
k ⊕ r, Sk) and for every other j ∈ [n] \K ∪ {i}, it outputs τj(wj , Sh

′
j ⊕ r, Sj). For j = i, it

outputs fri,Si(wi).

14

Notice that if Ri is Ext(wi, s) then the output of the reduction is identical to Hybi. Else, it is
identical to Hybi′ . Thus, the statistical distance between Hybi′ and Hybi is more than ε implies
that this reduction can break the extractor property which is a contradiction.

By repeated application of Claim 3.4, we infer that Hybi1 ≈`ε Hybi` . We note that Hybi` is εs-
close to another distribution D where (Sh1, . . . ,Shn) are generated as Share(0) instead of Share(m)
and this follows directly from the privacy property of the (Share,Rec). The proof of theorem now
follows from observing that D ≈εs+`ε fK,−→τ (LRShare(m′)).

3.2.2 Instantiation

We first recall the explicit construction of strong seeded extractors from the work of Guruswami,
Umans and Vadhan [GUV09].

Theorem 3.5 ([GUV09]) For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n+ log(1

ε)) and m = (1− α)k.

We now instantiate our scheme with the following building blocks:

• Let (Share,Rec) be a secret sharing scheme for a 2-monotone access structure A for sharing
m-bit messages with rate R.

• We use the Guruswami, Umans and Vadhan [GUV09] strong seeded extractor (refer The-
orem 3.5). We set n = 1.01m/R + log(1/ε) + µ and d = O(log n + log(1/ε)) and from
Theorem 3.5 and Lemma 2.7, it follows that Ext is a (1.01m/R + log(1/ε), 2ε) average-case,
strong seeded extractor.

Thus, we get |sharei| = |wi|+ |Shi|+ |Si| = n+m/R+ (m/R+ d) = 3.01m/R+ µ+O(logm+
logµ+ log 1/ε).

Corollary 3.6 If there exists a secret sharing scheme for a 2-monotone access structure with rate
R, then there exists an ε-local leakage resilient secret sharing for A for some negligible ε with rate
R/3.01.

For the special case of threshold secret sharing scheme for which we know constructions with
rate 1 [Sha79], we obtain the following corollary.

Corollary 3.7 For any n, t, µ ∈ N such that t ≤ n, and ε ∈ (0, 1), there is a t-out-of-n threshold
secret sharing scheme that is (2nε)-leakage resilient against Ft−1,µ, and has rate O(1), and leakage-
resilience rate 1.

3.3 Strong Local Leakage Resilience

In this subsection, we consider a stronger notion of leakage resilience for secret sharing, in which the
leakage on the “honest” shares is allowed to depend arbitrarily on the “corrupted” shares – this is
meant to capture a scenario where an adversary first learns the shares of t of the n parties, and then

15

specifies leakage functions that are applied to the remaining (n − t) shares, the outputs of which
are then given to the adversary. This corresponds to leakage resilience against the function family
described below. (For simplicity, we will describe our results in this subsection only for threshold
access structures, but they can be generalized to all access structures in a straightforward manner.)

Strong Local Leakage Function Family. Let Share : M → S1 × · · · × Sn be the sharing
algorithm of the scheme under consideration, and t ∈ [n] and µ be natural numbers. A semi-
local leakage function family is parametrized by three numbers t (the adaptivity threshold), t′ (the
corruption threshold), and µ (the amount of leakage), such that t ≤ t′. The family Ht,t′,µ consists
of functions {hT,T ′,−→τ }, where the subsets T ⊆ T ′ ⊆ [n] are such that |T | = t and |T ′| = t′; and for
i ∈ [n] \ T ′, the function τi takes inputs from (Si1 × · · · × Sit) × Si (where T = {i1, . . . , it}), and
outputs µ bits. The function hT,−→τ , when given input (share1, . . . , sharen), outputs sharei for each
i ∈ T ′, and τi((sharei1 , . . . , shareit), sharei) for i 6∈ T ′. A secret sharing scheme resilient to leakage
by such function families is said to be strongly local leakage resilient against Ht,t′,µ.

Game-based Definition. Strong local leakage resilience may alternatively, and perhaps more
naturally, be defined as the inability of the adversary to guess the bit b correctly in the following
game. The adversary picks a set T of size at most t and gives two messages m0 and m1 to
the challenger. The challenger tosses a random coin b, secret shares mb and gives the shares
corresponding to the set T to the adversary. Depending on this set, the adversary chooses a local
leakage function that operates on the rest of the (n − t) shares. This function outputs some set
of shares of size t′ − t in the clear and outputs a bounded leakage on the remaining shares. The
challenger provides the output of this local leakage function to the adversary and it guesses the bit
b. Formally, this is defined as follows:

1. The adversary selects the sets T ⊆ T ′ ⊆ [n] such that |T | = t and |T ′| = t′. It then picks
messages m0,m1 ∈M, and sends all of these to the challenger.

2. The challenger picks a random bit b and computes (share1, . . . , sharen) ← LRShare(mb). It
sends shareT to the adversary.

3. The adversary now chooses a local leakage function f(T ′\T),µ that operates on the (n − t)
shares (sharei)i 6∈T . It sends this to the challenger.

4. The challenger sends the leakage f(T ′\T),µ((sharei)i 6∈T).

5. The adversary outputs a guess b′ for b.

We require that Pr[b = b′] = 1/2 + negl.
We will show that a modification of the construction from Section 3.2.1 can achieve strong local

leakage resilience.

Theorem 3.8 Consider any n, t, µ ∈ N such that t ≤ n and a secret domainM. Suppose for some
η, d,R ∈ N and ε ∈ [0, 1), the following exist:

• A perfect t-out-of-n Shamir secret sharing scheme with share size ρ for secrets in M.

• A (η − µ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d → {0, 1}ρ.

16

Let (Share(t,n),Rec(t,n)) represent a t-out-of-n threshold secret sharing scheme for secrets in an
unspecified domain; let ρ be the bit-length of each share under this scheme when the secret
is from the secret domain M. Let η and d be such that there is a (k, ε)-average-case strong
seeded extractor Ext : {0, 1}η × {0, 1}d → {0, 1}ρ that outputs ρ bits, where k = (η − µ).

LRShare : To share a secret m ∈M:

1. Run Share(t,n)(m) to obtain the shares (Sh1, . . . ,Shn).

2. Choose a uniform seed s
$← {0, 1}d.

3. For each i ∈ [n] do:

(a) Choose wi
$← {0, 1}η.

(b) Choose a masking string ri
$← {0, 1}ρ.

(c) Set Sh′i = Shi ⊕ Ext(wi, s)⊕ ri.
(d) Run Share(t,n)(ri) to obtain r(i,1), . . . , r(i,n).

4. Run Share(t,n)(s) to obtain S1, . . . , Sn.

5. Output sharei as (wi, Sh
′
i, Si, (r(1,i), . . . , r(n,i))).

LRRec : Given any set of t shares sharei1 , sharei2 , . . . , shareit , do:

1. For each ij , parse shareij as (wij , S
′
ij
, Sij , (r(1,ij), . . . , r(n,ij))).

2. Run Rec(t,n)(Si1 , . . . , Sit) to recover s.

3. For each ij , do:

(a) Run Rec(t,n)(r(ij ,i1), . . . , r(i)j,it)) to recover rij .

(b) Recover Shij by computing S′ij ⊕ Ext(wij , s)⊕ rij .
4. Run Rec(Shi1 , . . . ,Shit) to recover the secret m.

Figure 2: Strongly Local Leakage-Resilient Secret Sharing

Then, the construction in Figure 2, when instantiated with these, is a t-out-of-n threshold secret
sharing scheme for M that is (2nε)-leakage resilient against H(t−2),(t−1),µ. It has share size (η +
ρ+ d+ nρ).

Using the same instantiations as in Section 3.2.2, we get the following.

Corollary 3.9 For any n, t, µ ∈ N such that t ≤ n, and ε ∈ [0, 1], there is a t-out-of-n threshold
secret sharing scheme that is (2nε)-leakage resilient against Ht−2,µ, and has rate Ω(1/n), and
leakage-resilience rate 1.

We now prove Theorem 3.8 along the same lines as Theorem 3.3.

17

Proof of Theorem 3.8: Correctness of the scheme in Figure 2 follows immediately from the
correctness of the underlying threshold secret sharing scheme. Privacy also follows from the privacy
of the underlying scheme by the observation that information about Shi is present only in the ith

share. The size of each share may also be verified by inspection. In the remainder of the proof, we
argue leakage resilience against H(t−2),(t−1),µ.

Fix a function hT,T ′,−→τ ∈ H(t−2),(t−1),µ. Recall that hT,T ′,−→τ on input (share1, . . . , sharen) will
output sharei for every i ∈ T ′ and for all other i, it will output τi(shareT , sharei). We need to show
that for any two secrets m,m′ ∈M:

|hT,T ′,−→τ (LRShare(m))− hT,T ′,−→τ (LRShare(m′))| ≤ 2nε

The proof strategy is as follows. We construct a sequence of hybrid sharing procedures LRShare0,
. . . , LRSharen, where LRShare1(m) is the same as LRShare(m), and the output of LRSharen(m)
contains no information about m. We will then show that the distributions of the output of hT,T ′,−→τ
when run on the shares produced by two consecutive hybrids have statistical distance at most ε.

For each i 6∈ T ′, in the ith hybrid, we will replace the (Shi ⊕ Ext(wi, s)⊕ ri) in the ith share of
the previous hybrid with a random string of appropriate length. We will show that the output of
hT,T ′,−→τ in either case is statistically close by relying on the properties of the extractor. Once we
have replaced all Shi’s with random strings for all i 6∈ T ′, we can rely on the privacy of the secret
sharing scheme (Share,Rec) to argue that the message is statistically hidden given the leakage. We
will now formalize this argument.

Let us consider some total ordering ≺ of the elements in the set [n] \ T ′. We define a sequence
of hybrid distributions for every i ∈ [0, n] where we use the modified sharing procedure LRSharei
described below. (We use notation that was set up in Figure 2.)

LRSharei : On input a secret m ∈M:

1. Run Share(t,n)(m) to obtain the shares (Sh1, . . . ,Shn).

2. Choose a uniform seed s
$← {0, 1}d.

3. For each j ∈ [n] do:

(a) Choose wj
$← {0, 1}η.

(b) Choose a masking string rj
$← {0, 1}ρ.

(c) If j ∈ [n] \ T and j ≺ i or j = i, choose Sh′j ← {0, 1}ρ.
(d) Else, set Sh′j = Shj ⊕ Ext(wj , s)⊕ rj .
(e) Run Share(t,n)(rj) to obtain r(j,1), . . . , r(j,n).

4. Run Share(t,n)(s) to obtain S1, . . . , Sn.

5. Output sharei as (wi, Sh
′
i, Si, (r(1,i), . . . , r(n,i))).

For any secret m ∈ M, the hybrid Hybmi is defined as the distribution of hT,T ′,−→τ (share1, . . . ,
sharen), where the shares are obtained from LRSharei(m). Notice that in Hybm0 , the distribution of
the shares given as input to hT,T ′,−→τ is identical to a valid secret sharing of m. We now prove the
following claim.

Claim 3.10 For any m ∈M and every i, i′ ∈ [0, n] \ T ′ such that i′ is the successor of i under the
ordering ≺, we have Hybmi′ ≈ε Hybmi .

18

Proof Assume for the sake of contradiction that the statistical distance between Hybmi′ and Hybmi
is greater than ε. We will use this to break the property of the strong, average-case seeded extractor
Ext. The reduction is described below.

The reduction’s task it to specify a leakage function h such that the distributions of the form
(s, h(w), z) where z is either Ext(w, s) or a random string, are statistically far. It will pick ` in
such a way that it can use the “challenge” (s, `(w), z) to sample a distribution that is the same as
Hybmi if z is an extractor output, and the same as Hybmi′ if z is a random string.

Initially, the reduction sets the shares sharej for j ∈ T to be completely random – it picks wj ,
Sh′j , Sj and r(·,j)’s uniformly at random from the appropriate domains, and sets sharej = (wj , Sh

′
j ,

Sj , (r(1,j), . . . , r(n,j))). Then, for i′, it picks Sh′i′ , Si′ and the r(·,i′)’s at random. It then defines the
leakage function ` : {0, 1}η → {0, 1}µ that, on input w, outputs τi′(shareT , (w,Sh

′
i′ , Si′ , (r(·,i′)))).

The reduction now receives an extractor challenge (s, `(w), z) where either z = Ext(w, s) or z
is chosen uniformly at random. It will then set things up so that w is being implicitly used as wi′

in a hybrid sharing scheme, and z in place of Ext(wi, s).
To do so, it first runs Share(t,n)(m) to obtain (Sh1, . . . ,Shn). For each j ∈ T , it sets rj to be

Sh′j ⊕ Shj ⊕Ext(wj , s). For i′, it sets ri′ to be Sh′i′ ⊕ Shi′ ⊕ z. If j 6∈ T ′ ∪ {i′} and j ≺ i′, it sets wj ,
Sh′j and rj to be random strings. For all other j (which are either in T ′ or satisfy i′ ≺ j) , it picks
wj and rj at random, and sets Sh′j to be Shj ⊕Ext(wj , s)⊕ rj . It then sets all the r(j,j′)’s and Sj ’s
that have not been set so far in such a way that they form valid random sharings of the rj ’s and
s. This last part can be done because all of these sharings are under a t-out-of-n threshold sharing
scheme, and until this point we have only determined at most (t− 1) of the shares of any of these
quantities, as |T | is at most (t−2). Each sharej can now be set to be (wj , Sh

′
j , Sj , (r(1,j), . . . , r(n,j))).

Finally, to produce the output of hT,T ′,−→τ , for every j ∈ T ′, the reduction outputs sharej , for
i′ it outputs `(w) as the output of τi′ , and for every other j 6∈ T ′ ∪ {i′}, it computes and outputs
τj(shareT , (wj , Sh

′
j , Sj , (r(.,j)))). Notice that if z is Ext(w, s) then the output of the reduction is

identical to Hybmi ; else, it is identical to Hybmi′ .
Note that since the output length of ` is µ bits, it follows from Lemma 2.5 that for a randomly

chosen w
$← {0, 1}η, H̃∞(w|`(w)) ≥ η − µ = k. Thus, if Ext is a (k, ε)-strong average-case seeded

extractor, the distance between the distributions (s, `(w), z) with z being Ext(w, s) or random is at
most ε. Thus, the statistical distance between Hybi′ and Hybi being more than ε would imply that
this reduction can break this extractor property, which is a contradiction. This proves the claim.

By repeated application of Claim 3.4, we infer that for any m, Hybm0 ≈nε Hybmn . In computing
Hybmn , the shares in T ′ of the underlying threshold scheme are computed as they are supposed to
be, but all the other shares are replaced with random strings. By the privacy of this underlying
threshold secret sharing scheme, as T ′ is of size less than t, the distribution Hybmn is independent
of m, and is thus the same as Hybm

′
n for any secret m′, which is at most nε far from Hybm

′
0 .

Thus, Hybm0 ≈2nε Hybm
′

0 , and the theorem now follows from observing that Hybm0 is the same as
hT,T ′,−→τ (LRShare(m)).

19

4 Rate Preserving Non-Malleable Secret Sharing

In this section, we will use the leakage resilient secret sharing scheme in Section 3 to construct a
non-malleable secret sharing scheme. Specifically, we give a compiler that takes any secret sharing
scheme for a 4-monotone access structure (see Definition 2.8) with rate R and converts it into a
non-malleable secret sharing scheme for the same access structure with rate O(R). In appendix ,
we give some background on non-malleable codes.

4.1 Definition

We recall the definition of non-malleable secret sharing for a monotone access structure A.

Definition 4.1 (Non-Malleable Secret Sharing for General Access Structures [GK18b])
Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme for message space M and access structure
A. Let F be a family of tampering functions. For each f ∈ F , m ∈ M and authorized set T ∈ A,
define the tampered distribution Tamperf,Tm as Rec(f(Share(m))T) where the randomness is over the
sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-
malleable w.r.t. F if for each f ∈ F and any authorized set T ∈ A, there exists a distribution Df,T

over M∪ {same?} such that for any m,

|Tamperf,Tm − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
.

4.2 Construction

We give a construction of a non-malleable secret sharing scheme for a 4-monotone access structures
against the individual tampering function family Find (see below).

Individual Tampering Family Find. Let Share be the sharing function of the secret sharing
scheme that outputs n-shares in S1×S2 . . .×Sn. The function family Find is composed of functions
(f1, . . . , fn) where each fi : Si → Si.

Construction. The construction is same as the one given in [BS18] but we instantiate the leakage-
resilient secret sharing scheme with the one constructed in the previous section. We now give the
description of the building blocks and then give the construction. In the following, we will denote
a t-out-of-n monotone access structure as (t, n).

Building Blocks. The construction uses the following building blocks. We instantiate them with
concrete schemes later:

• A 3-split-state non-malleable code (Enc,Dec) where Enc :M→ L×C×R and the simulation
error of the scheme is ε1. Furthermore, we assume that for any two messages m,m′ ∈ M,
(C,R) ≈ε2 (C′,R′) where (L,C,R)← Enc(m) and (L′,C′,R′)← Enc(m′).

20

• A (A, n, εc, εs) (where A is 4-monotone) secret sharing scheme (SecShare(A,n),SecRec(A,n))
with statistical privacy (with error εs) for message space L. We will assume that the size of
each share is m1.

• A (3, n, 0, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-leakage resilient against
leakage functions F(3,n),m1

for message space C. We assume that the size of each share is m2.

• A (2, n, 0, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message space R that is ε4-
leakage resilient against leakage functions F(2,n),µ where µ = m1 + m2. We assume that the
size of each share is m3.

We give the formal description of the construction in Figure 3 (taken verbatim from [BS18]).

Share(m) : To share a secret s ∈M do:

1. Encode the secret s as (L,C,R)← Enc(s).

2. Compute the shares
(SL1, . . . ,SLn)← SecShare(A,n)(L)

(SC1, . . . ,SCn)← LRShare(3,n)(C)

(SR1, . . . ,SRn)← LRShare(2,n)(R)

3. For each i ∈ [n], set sharei as (SLi,SCi,SRi) and output (share1, . . . , sharen) as the
set of shares.

Rec(Share(m)T) : Given a set of shares in an authorized set T ′ ∈ A, let T ⊆ T ′ denote a
minimal authorized set. To reconstruct the secret from the shares in set T (of size at
most t), do:

1. Let the shares corresponding to the set T be (sharei1 , . . . , shareit).

2. For each j ∈ {i1, . . . , it}, parse sharej as (SLj , SCj , SRj).

3. Reconstruct
L := SecRec(A,n)(SLi1 , . . . ,SLit)

C := LRRec(3,n)(SCi1 ,SCi2 ,SCi3)

R := LRRec(2,n)(SRi1 , SRi2)

4. Output the secret s as Dec(L,C,R).

Figure 3: Construction of Non-Malleable Secret Sharing Scheme for 4-monotone access structure
taken verbatim from [BS18]

Imported Theorem 4.2 ([BS18]) For any arbitrary n ∈ N and and 4-monotone access struc-
ture A, the construction given in Figure 3 is a (A, n, εc, εs) secret sharing scheme. Furthermore, it
is (ε1 + ε3 + ε4)-non-malleable against Find.

21

4.3 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the works of [KOS18, GMW17]
(see Theorem A.5). Using their construction, the |L| = |C| = |R| = O(m) bits and the error

ε1 = 2−Ω(m/ log1+ρ(m)) for any ρ > 0.

2. We use a secret sharing scheme for access structure A with rate R. We get m1 = O(m/R).

3. We instantiate (LRShare(3,n), LRRec(3,n)) and (LRShare(2,n), LRRec(2,n)) from Section 3.2.2. We

get m2 = O(m) and m3 = O(m) by setting ε3 and ε4 to be 2−Ω(m/ logm).

Thus, the size of a share is m1 +m2 +m3 = O(m/R) and hence the rate is O(R). The error of our

construction is 2−Ω(m/ log1+ρ(m)).
We obtain the following corollary.

Corollary 4.3 For any n ∈ N, ρ > 0 and 4-monotone access structure A, if there exists a statis-
tically private (with privacy error ε) secret sharing scheme for A that can share m-bit secrets with
rate R, there exists a non-malleable secret sharing scheme for sharing m-bit secrets for the same
access structure A against Find with rate Ω(R) and simulation error ε+ 2−Ω(m/ log1+ρ(m)).

5 Leakage Tolerant MPC for General Interaction Patterns

In this section, we will construct a leakage tolerant secure multiparty computation protocol for any
interaction pattern. We will first recall some basic definitions from [HIJ+16].

5.1 Basic Definitions

This subsection is taken verbatim from [HIJ+16].
We begin by defining the syntax for specifying a communication pattern I and a protocol Π

that complies with it. In all the definitions below, we let P = {P1, . . . , Pn} denote a fixed set of
parties who would participate in the protocol. When we want to stress the difference between a
protocol message as an entity by itself (e.g., “the 3rd message of party P1”) and the content of that
message in a specific run of the protocol, we sometime refer to the former as a “message slot” and
the latter as the “message content.” To define an N -message interaction pattern for the parties in
P, we assign a unique identifier to each message slot. Without loss of generality, the identifiers are
the indices 1 through N . An interaction pattern is then defined via a set of constraints on these
message slots, specifying the sender and receiver of each message, as well as the other messages that
it depends on. These constraints are specified by a message dependency graph, where the vertices
are the message slots and the edges specify the dependencies.

Definition 5.1 (Interaction pattern [HIJ+16]) An N -message interaction pattern for the set
of parties P is specified by a message dependency directed acyclic labeled graph,

I = ([N], D, L : V → P × (P ∪ Out))

The vertices are the message indices [N], each vertex i ∈ [N] is labeled by a sender-receiver
pair L(i) = (Si, Ri), with Ri = Out meaning that this message is output by party Si rather than

22

sent to another party. The directed edges in D specify message dependencies, where an edge i→ j
means that message j in the protocol may depend on message i. The message-dependency graph
must satisfy two requirements:

• I is acyclic. We assume without loss of generality that the message indices are given in
topological order, so i < j for every (i→ j) ∈ D.

• If message j depends on message i, then the sender of message j is the receiver of message i.
That is, for every (i→ j) ∈ D, we have Sj = Ri (where L(i) = (Si, Ri) and L(j) = (Sj , Rj)).

We assume without loss of generality that each party P ∈ P has at most one output, namely
at most one i ∈ [N] such that L(i) = (P,Out). For a message j ∈ [N], we denote its incoming
neighborhood, i.e. all the messages that it depends on, by DepOn(j) := {i : (i→ j) ∈ D}.

An n-party, N -message interaction pattern, is an N -message pattern for P = [n]. We will
interchangeably denote the i-th party as either using i or Pi.

We next define the syntax of an MPC protocol complying with a restricted fixed interaction
pattern. Importantly, our model includes general correlated randomness set-up, making protocols
with limited interaction much more powerful.

Definition 5.2 (I compliant protocol [HIJ+16]) Let I = ([N], D, L) be an n-party N -message
interaction pattern. An n-party protocol complying with I is specified by a pair of algorithms
Π = (Gen,Msg) of the following syntax:

• Gen is a randomized sampling algorithm that outputs an n-tuple of correlated random strings
(r1, . . . , rn).

• Msg is a deterministic algorithm specifying how each message is computed from the messages
on which it depends. Concretely, the input of Msg consists of the index i ∈ [N] of a vertex in
the dependency graph, the randomness rSi and input xSi for the sender Si corresponding to
that vertex, and an assignment of message-content to all the messages that message i depends
on, M : DepOn(i) → {0, 1}∗. The output of Msg is an outgoing message in {0, 1}∗ , namely
the string that the sender Si should send to the receiver Ri.

The execution of such a protocol Π with pattern I proceeds as follows. During an offline set-up
phase, before the inputs are known, Gen is used to generate the correlated randomness (r1, ..., rn)
and distribute ri to party Pi . In the online phase, on inputs (x1, . . . , xn), the parties repeatedly
invoke Msg on vertices (message-slots) in I to compute the message-content they should send. The
execution of Π goes over the message slots in a topological order, where each message is sent after
all messages on which it depends have been received. We do not impose any restriction on the
order in which messages are sent, other than complying with the depend-on relation as specified by
I. Once all messages (including outputs) are computed, the parties have local outputs (y1, . . . , yn),
where we use yi = ⊥ to indicate that Pi does not have an output.

For a set T ⊂ [n] of corrupted parties, let viewT denote the entire view of T during the protocol
execution. This view includes the inputs xT , correlated randomness rT , and messages received
by T . (Sent messages and outputs are determined by this information.) The view does not include
messages exchanged between honest parties. Security of a protocol with communication pattern I
requires that for any subset of corrupted parties T ⊂ P, the view viewT reveals as little about the

23

inputs xT of honest parties as is possible with the interaction pattern I. We formulate this notion
of “as little as possible via the notion of fixed vs. free inputs: If parties Pi , Pj are corrupted and
no path of messages from Pi to Pj passes through any honest party, then the adversary can learn
the output of Pj on every possible value of xi . However, if there is some honest party on some
communication path from Pi to Pj , then having to send a message through that party may be
used to “fix the input of Pi that was used to generate that message, so the adversary can only learn
the value of the function on that one input.

Definition 5.3 (Fixed vs. free inputs.) For an interaction pattern I, parties Pi, Pj ∈ P (input
and output parties), and a set T ⊂ P of corrupted parties, we say that Pi has fixed input with
respect to I, T and Pj if either

• Pi 6∈ T (the input party is honest), or

• there is a directed path in I starting with some message sent by Pi, ending with some message
received by Pj , and containing at least one message sent by some honest party Ph 6∈ T .

We say that Pi has free input (with respect to I, T, Pj) if Pi ∈ T and its input is not fixed. We let
Free(I, T, Pj) ⊆ T denote the set of parties with free inputs, and Fixed(I, T, Pj) = P \Free(I, T, Pj)
is the complement set of parties with fixed input (all with respect to I, T and Pj).

Using the notion of fixed inputs, we can now capture the minimum information available to the
adversary by defining a suitable restriction of the function f that the protocol needs to compute.

Definition 5.4 For an n-party functionality f , interaction pattern I, corrupted set T ⊂ P , input
x = (x1, . . . , xn) and output party Pj ∈ P , the residual function fI,T,x,Pj is the function obtained
from fj by restricting the input variables indexed by F = Fixed(I, T, Pj) to their values in x. That
is, for input variables x′

F
= {x′i}i 6∈F , we define fI,T,x,Pj = fj(x1, . . . , xn), where x′i = xi for all

i ∈ F .

We formalize our notion of security in the semi-honest model below. To get around general im-
possibility results for security with polynomial-time simulation [HLP11,GGG+14,BGI+14], we will
allow by default simulators to be unbounded (but will also consider bounded simulation variants).
We start by considering perfectly/statistically/computationally secure protocols.

Definition 5.5 (Security with semi-honest adversaries). Let f be a deterministic n-party function-
ality, I be an n-party, N -message interaction pattern, and Π = (Gen,Msg) be an n-party protocol
complying with I. We say that Π is a perfectly T -secure protocol for f in the semi-honest model
for a fixed set T ⊂ P of corrupted parties if the following requirements are met:

• Correctness: For every input x = (x1, . . . , xn), the outputs at the end of the protocol execu-
tion are always equal to f(x) (namely, with probability 1 over the randomness of Gen).

• Semi-honest security: There is an unbounded simulator S that for any input x is given
xT and the truth tables of the residual functions fI,T,x,Pj for all Pj ∈ T , and its output is
distributed identically/statistically close/computationally indistinguishable to viewT (x).

Remark 5.6 (Efficient Simulation) For the case where we require the simulator to be efficient,
we provide the simulator with oracle access to the residual function fI,T,x,Pj .

24

5.2 Known Protocols for Star Interaction Pattern

We will first recall the star interaction pattern and recall some results for this case.

Star Interaction Pattern. A n + 1-party, n + 1-message interaction pattern is called a star
interaction pattern, if for each i ∈ [n], L(i) = (Pi, Pn+1), (i→ n+ 1) ∈ D and L(n) = (Pn+1,Out).
In other words, for every i ∈ [n], Pi sends a single message to Pn+1 who computes the output from
all the messages received.

Theorem 5.7 ([BGI+14]) For any function f : ({0, 1}m)n → {0, 1}∗, there exists a star compli-
ant protocol that computes f with perfect security tolerating upto n − 1 corruptions. The commu-
nication complexity of the protocol is exponential in nm.

Theorem 5.8 ([BKR17]) For any function f : ({0, 1}m)n → {0, 1}∗ that is computable in NC1,
there exists an efficient, star compliant protocol that computes f with perfect security tolerating a
constant number of corruptions. Furthermore, assuming the existence of one-way functions, for
any function f : ({0, 1}m)n → {0, 1}∗ that is computable by a circuit, there exists an efficient star
compliant protocol that computes f with computational security tolerating a constant number of
corruptions.

Theorem 5.9 ([GGG+14]) Assuming the existence of indistinguishability obfuscation and one-
way functions, for any function f : ({0, 1}m)n → {0, 1}∗ that is computable by circuits, there exists
an efficient, star compliant protocol that computes f with computational security tolerating upto
n− 1 corruptions.

5.3 Definition: Leakage Tolerant MPC for an Interaction Pattern

We now give the definition of leakage-tolerant MPC for an interaction pattern I.
We consider (n + 1)-party P = {P1, . . . , Pn, Pn+1} protocol Π that is compliant with an inter-

action pattern I with a single output party (namely, Pn+1 is the output party and does not have
any inputs) that computes a function of f : ({0, 1}m)n → {0, 1}∗, where the party Pi gets input
xi ∈ {0, 1}m for each i ∈ [n]. Suppose at the end of a protocol Π, the party Pi’s view viewi is from
a domain Vi. Let us denote Π(x) as the joint distribution of the views of every party during the
execution of the protocol. We are interested in adversaries that statically corrupt t (< n) of the
parties, obtaining their entire states, and also obtain some leakage on the states of the other un-
corrupted parties. More formally, we represent the view of such adversaries as families of functions
of the form Gt,µ = {gT,−→τ : T ⊆ [n], |T | ≤ t, τi : Vi → {0, 1}µ}; where gT,−→τ (Π(x)) outputs vi for
every i ∈ T , and τi(viewi) for i 6∈ T , when the protocol Π is run with input x – we refer to such a
function as a (T, µ)-leakage function.

Definition 5.10 (Leakage Tolerance against Semi-Honest Adversaries) Let f be a deter-
ministic n-party functionality, I be an n-party, N -message interaction pattern, and Π = (Gen,Msg)
be an n-party protocol complying with I. We say that Π is a (T, µ)- leakage tolerant protocol for f
in the semi-honest model for a set T ⊆ P if the it satisfies the following properties:

• Correctness: The protocol Π computes f(x) correctly for any input x = (x1, . . . , xn).

25

• Leakage Tolerance: For any (T, µ)- leakage function gT,−→τ , there is an unbounded simulator
S satisfying the following.

– For any input x = (x1, . . . , xn), the simulator S is given the inputs of the corrupted
parties xT and the truth tables of the residual functions fI,T,x,Pj for all Pj ∈ T as
input. It is allowed a single query to an oracle O[xT], which takes as input a tuple of
functions (σi)i∈T , where each function is of the form σi : {0, 1}m → {0, 1}µ, and outputs
(σi(xi))i∈T .

– We require that:
gT,−→τ (Π(x)) ≈ SO[xT](fI,T,x,Pj , xT)

where ≈ might indicate identical/statistically close/computationally indistinguishable.

We say that Π is a (t, µ)-(adaptive) leakage tolerant protocol for f if it is (T, µ)-(adaptive) leakage
tolerant for all T ⊆ P and |T | ≤ t.

5.4 Construction

In this subsection, we give a construction of a leakage-tolerant semi-honest MPC for any interaction
pattern I. The construction we give is the same as the one given in [HIJ+16] with the only change
being that we use our strong local leakage-resilient scheme instead of any secret sharing scheme.

Before we describe the construction, we introduce the following notation. For a function f :
({0, 1}m)n → {0, 1}, we denote by f bit : {0, 1}mn → {0, 1} the function that takes mn bits as
inputs, groups them together in order into n strings of length m each, and applies f on them.

Building Blocks. The construction uses the following building blocks:

• A star compliant, semi-honest protocol Π∗ = (Gen∗,Msg∗,Eval∗) that securely (either per-
fect/statistical/computational) computes the function f bit. Here, Msg∗ denotes the next
message function of the parties P1, . . . , Pmn and Eval∗ is the function computed by the eval-
uator (or in other words, party Pmn+1).

• A (n+1, n+1, 0, 0) threshold secret sharing scheme (LRShare, LRRec) that is ε-strong leakage
resilient for some negligible ε against the function family Hn−1,n,µ.

Construction. Let f : ({0, 1}m)n → {0, 1}∗ be a n-party functionality that depends on all its
inputs and I be an interaction pattern with a single sink. Let P = {P1, . . . , Pn+1} be the set of
parties with Pn+1 being the evaluator who does not have any inputs. We give the construction of
an I compliant protocol in Figure 4.

Theorem 5.11 If Π∗ computes f bit with statistical/computational security and (LRShare, LRRec)
is an ε-leakage resilient secret sharing scheme for some negligible ε then for any µ ≤ m, the con-
struction in Figure 4 is a semi-honest, I-compliant protocol for f that is (n, µ)-leakage tolerant with
statistical/computational security. Furthermore, if each party gets R bits of correlated randomness
and sends M bits in the protocol Π∗, then in O(m(R + n2M)) bits of correlated randomness and
sends O(n2Mm) bits.

Proof The correctness of the protocol follows directly from the correctness of (LRShare, LRRec)
and that of Π∗. We now argue leakage tolerance.

26

Gen : To generate the correlated randomness, do:

1. Run Gen∗ to obtain the correlated randomness (r1, . . . , rmn+1).

2. For each i ∈ [mn] and σ ∈ {0, 1}, compute mσ
i := Msg∗(σ, ri).

3. For each i ∈ [mn] and σ ∈ {0, 1}, compute (mσ
i,1, . . . ,m

σ
i,n+1)← LRShare(mσ

i).

4. Choose random permutation strings b1, . . . , bn ← {0, 1}m, one for each party Pi,
i ≤ n.

5. Let c = b1 ◦ b2 ◦ . . . ◦ bn. For each i ∈ [mn], let ci denote the i-th bit of c.

6. For each j ∈ [n], the correlated randomness for party j is ({mci
i,j ,m

1−ci
i,j }i∈[mn], bj).

The correlated randomness of the evaluator Pn+1 is (rmn+1, {mci
i,n+1,m

1−ci
i,n+1}i∈[mn])

Msg : On input xj ∈ {0, 1}m and the correlated randomness, party Pj does the following:

1. Parses the correlated randomness as ({M0
i,j ,M

1
i,j}i∈[mn],σ∈{0,1}, bj).

2. Computes sj = xj ⊕ bj and sends sj on every path to the evaluator in I.

3. Then, for every Pk such that some path from Pk to the evaluator goes through Pj ,
party Pj waits until it receives the string sk and then sends {M sk,`

(k−1)m+`,j}`∈[m] =

{mxk,`
(k−1)m+`,j}`∈[m] on every path to the evaluator.

4. For every Pk such that no path from Pk to the evaluator goes through Pj , party Pj
sends both shares {M0

(k−1)m+`,j ,M
1
(k−1)m+`,j}`∈[m] on every path to the evaluator.

5. In addition, Pj forwards every message that it receives from other parties on some
I-path to the evaluator.

Eval: The evaluator uses its correlated randomness to reconstruct M
sk,`
(k−1)m+` for every k ∈ [n]

and ` ∈ [m]. It then uses the function Eval∗ on these reconstructed values to learn the
output.

Figure 4: A I compliant protocol computing f . The construction is same as the one in [HIJ+16]
except that we use our leakage resilient secret sharing.

Leakage Tolerance. To prove leakage tolerance of the protocol, we need to do the following.
Given a (T, µ)-leakage function gT,−→τ , we need to construct a simulator S such that,

gT,−→τ (Π(x)) ≈ SO[xT](fI,T,x,Pn+1 , xT)

Depending on whether Π∗ has statistical/computational security, we get ≈ to either be statis-
tically or computationally close.

Description of Simulator. Let T ⊂ [n] be the set of corrupted parties and let H be the set of
honest parties i.e., H = [n]\T . Partition T as Tfixed and Tfree where Tfixed = T ∩Fixed(I, T, Pn+1)
and Tfree = T \Tfixed. Let H∗ = Tfixed∪H and T ∗ = [n]\H∗. The simulator S does the following:

27

• It runs the simulator S∗ for the star compliant protocol Π∗ for computing f bit. To be more
precise, S runs S∗ by specifying T̂ = {(i− 1)m+ ` : i ∈ T ∗, ` ∈ [m]} as the set of corrupted
parties and gives each bit of the string xT ∗ as the corresponding corrupted parties’ input. It
sets the residual function to be given as input to S∗ as fI,T,x,Pn+1 . Notice that by definition,
the residual function fI,T,x,Pn+1 fixes the inputs xH∗ and leaves xT ∗ as free.

• The output of S∗ is the set of correlated randomness for the corrupted parties, namely,
{r(i−1)m+`}`∈[m] for each i ∈ T ∗ and the set of honest party messages {m(i−1)m+`}`∈[m] for
each i ∈ H∗.

• S uses the correlated randomness {r(i−1)m+`}`∈[m] to generate the messages for the corrupted
parties. Specifically, for each i ∈ T ∗ and ` ∈ [m], S computes mσ

(i−1)m+` = Msg∗(σ, r(i−1)m+`)

for σ ∈ {0, 1}.

• For every party i ∈ H∗, S sets both (m0
(i−1)m+`,m

1
(i−1)m+`) to be equal to {m(i−1)m+`}`∈[m]

obtained from S∗.

• For each i ∈ [mn] and σ ∈ {0, 1}, S computes (mσ
i,1, . . . ,m

σ
i,n+1)← LRShare(mσ

i).

• For each i ∈ T \ {n + 1}, S chooses random permutation strings b′i
$← {0, 1}m. For every

honest party i ∈ H, S sets b′i = 0m.

• Let c = b′1 ◦ b′2 ◦ . . . ◦ b′n. For each i ∈ [mn], let ci denote the i-th bit of c.

• For each j ∈ T , S sets the correlated randomness for party Pj for some j ≤ n as Rj = ({mci
i,j ,

m1−ci
i,j }i∈[mn],σ∈{0,1}, b

′
j). If Pn+1 ∈ T , it sets the evaluator’s correlated randomness to be

(rmn+1, {mci
i,n+1,m

1−ci
i,n+1}i∈[mn]).

• S generates the protocol messages as follows. Let the interaction pattern I be specified by
([N], D, L : V → P × (P ∪ Out)). For each k in 1 to N , S does the following:

– Let L(k) = (Pr1 , Pr2).

– If Pr1 ∈ T (or in other words, it is corrupted) then, S uses the input of the party Pr1
denoted by xr1 and the correlated randomness Rr1 to generate the protocol message
honestly.

– If Pr1 ∈ H, then S chooses a random string sr1 ← {0, 1}m (or reuses sr1 if it has been
picked before). S sends the party Pr1 ’s masked input as sr1 and sends the rest of the
messages (i.e., forwarding the appropriate set of shares) exactly as in the protocol.

• For every k ∈ H, let msgk be the set of messages that Pk has received during the execution
of the protocol. S defines the leakage function σk to be queried to the oracle O as follows. σk
has the messages msgk, the set of shares sharesk = {mci

i,k,m
1−ci
i,k }i∈[mn],σ∈{0,1} and the string

sk hardwired and on input xk, computes bk := xk ⊕ sk and outputs τk(msgk, sharesk, xk, bk).

• S outputs the protocol messages sent to and by the corrupted parties and {(Ri, xi)}i∈T in
the clear and for all i ∈ H, it outputs σi(xi).

28

We now argue that the output of the simulator is statistically/computationally close to the
output of gT,−→τ (Π(x)). We show this via a hybrid argument.

Hyb1 : In this hybrid, we make the following change with respect to gT,−→τ (Π(x)). For each i ∈ H∗
and ` ∈ [m], we generate the shares {mσ

(i−1)m+`,j}j∈[n+1],σ∈{0,1} which is part of the correlated

randomness as a leakage resilient secret sharing of the secret m
xi,`
(i−1)`+m for both σ ∈ {0, 1}. That

is, both set of shares correspond to the secret sharing of the same secret, namely, m
xi,`
(i−1)`+m. No-

tice that by definition of H∗, it follows that for every i ∈ H∗, there exists at least one party

Pj (for some j ≤ n) that does not reveal the share m
1−xi,`
(i−1)`+m,j for each ` ∈ [m] and hence, in-

tuitively, it should follow from the local leakage resilience property of our secret sharing scheme
that Hyb1 ≈s gT,−→τ (Π(x)). However, the proof of this claim is involved and we in fact, require the
underlying leakage resilient secret sharing to be strong. We now give the details.

Lemma 5.12 If (LRShare, LRRec) is an ε-strong leakage resilient secret sharing scheme, then
Hyb1 ≈nmε gT,−→τ (Π(x)).

Proof We prove this lemma by defining a sequence of sub-hybrids.
Let Γ be the set {(i, `) : i ∈ H∗, ` ∈ [m]}. Let ≺ be a total ordering on the set Γ. For every

element γ ∈ Γ, we define a hybrid distribution Hybγ where the correlated randomness is generated
as follows:

• Run Gen∗ to obtain the correlated randomness (r1, . . . , rmn).

• For each i ∈ [mn] and σ ∈ {0, 1}, compute mσ
i := Msg∗(σ, ri).

• For each i ∈ H∗ and ` ∈ [m], if (i, `) ≺ γ, reset mσ
(i−1)m+` := Msg∗(xi,`, r(i−1)`+m) for both

σ = {0, 1}.

• For each i ∈ [mn] and σ ∈ {0, 1}, compute (mσ
i,1, . . . ,m

σ
i,n+1)← LRShare(mσ

i).

• Choose random permutation strings b1, . . . , bn ← {0, 1}m, one for each party Pi, i ≤ n.

• Let c = b1 ◦ b2 ◦ . . . ◦ bn. For each i ∈ [mn], let ci denote the i-th bit of c.

• For each j ∈ [n], the correlated randomness for party j is ({mci
i,j ,m

1−ci
i,j }i∈[mn], bj). The

correlated randomness of the evaluator Pn+1 is {mci
i,n+1,m

1−ci
i,n+1}i∈[mn]

The protocol is then run exactly as in Figure 4 with the above generated correlated randomness.
We denote the joint distribution of the views of all the parties where the correlated randomness is
generated as above using Πγ(x). The output of Hybγ is gT,−→τ (Πγ(x)).

Let γfirst be the first element as per the ordering ≺. We note that Hybγfirst is distributed
identically to gT,−→τ (Π(x)). We now prove the following claim:

Claim 5.13 For any γ, γ′ ∈ Γ where γ′ is the successor of γ as per the ordering ≺, we have that
Hybγ ≈ε Hybγ′.

Proof Assume for the sake of contradiction that the statistical distance between Hybγ and Hybγ′
is greater than ε. We will use this to contradict the security of the strong leakage resilience of
(LRShare, LRRec). Let γ = (i∗, `∗). We first define the concept of friend parties.

29

Definition 5.14 (Friend Party) We define a party Pj to be a friend of Pi for an i ∈ H∗ as
follows:

• If i ∈ H, then Pj = Pi.

• Else, if i ∈ H∗ \ H, then Pj ∈ H is a friend of Pi such that there is a directed path in I
starting with some message sent by Pi, ending with some message received by the evaluator
Pn+1 , and containing at least one message sent by the party Pj.

Intuitively, the friend party of Pi∗ will not reveal its share m
1−xi∗,`∗
(i∗−1)`∗+m,j∗ and we can make use of

this to argue indistinguishability between Hybγ and Hybγ′ . We formalize this intuition by giving
a reduction to the strong leakage resilience property of the secret sharing scheme. The reduction
proceeds as follows:

1. Let Pj∗ be the friend of Pi∗ .

2. Let Sendj∗ be the set of parties in {P1, . . . , Pn} such that Pj∗ receives both shares from this
party for the `∗-th bit of the input of party Pi∗ during the execution of the protocol. We note
that |Sendj∗ | ≤ n− 1, since Sendj∗ does not include i∗.

3. Run Gen∗ to obtain the correlated randomness (r1, . . . , rmn).

4. For each i ∈ [mn] and σ ∈ {0, 1}, compute mσ
i := Msg∗(σ, ri).

5. For each i ∈ H∗ and ` ∈ [m], if (i, `) ≺ γ, reset mσ
(i−1)m+` := Msg∗(xi,`, r(i−1)`+m) for both

σ = {0, 1}.

6. For each i ∈ [mn] and σ ∈ {0, 1}, compute (mσ
i,1, . . . ,m

σ
i,n+1)← LRShare(mσ

i).

7. Reset for each j ∈ [n], m
1−xi∗,`∗
(i∗−1)m+`∗,j = ⊥.

8. Interact with the strong leakage resilient challenger. Provide (m0,m1) = (m
xi∗,`∗

(i∗−1)m+`∗ ,

m
1−xi∗,`∗
(i∗−1)m+`∗) as the two challenge messages and ask the challenger to reveal the shares of

the parties in the set Sendj∗ . The challenger replies with the set of shares sharek for each
k ∈ Sendj∗ where this set of shares correspond to a sharing of m0 or m1.

9. The reduction generates the permutation strings exactly as per the description of the protocol.

10. Using {sharek}k∈Sendj∗ , the set of shares it generated in Step 6, the parties inputs and the
permutation strings, the reduction generates all the protocol messages that are sent. We note
that this is possible since each party j ∈ [n] \ Sendj∗ , do not make use of missing shares in
generating the protocol messages.

11. Let msgj∗ be the set of messages that Pj∗ has received during the execution of the protocol.
The reduction defines a leakage function σk (that has µ bits of output) to be sent to the
challenger as follows. σj∗ has the following values hardwired:

• The messages msgj∗ that Pj∗ received during the execution of the protocol.

• All the shares generated as a part of the correlated randomness given to Pj∗ except the
share sharej∗ .

30

• The input xj∗ and the permutation string bj∗ .

On input the share sharej∗ , it computes τj∗ applied to the secret state of Pj∗ .

12. It provides this leakage function σj∗ to the challenger and asks for the shares of the remaining
parties in the clear.

13. Using the information received from the challenger, the reduction outputs the protocol mes-
sages sent to and by the corrupted parties and their private state and for all i ∈ H, it outputs
the leakage function τi applied on their secret state.

We note that if the shares correspond to a sharing of m0 then the output of the reduction is identical
to Hybγ′ . Else, it is identical to Hybγ . This contradicts the strong leakage resilience of the secret
sharing.

By repeated application of Claim 5.13, we infer that Hybγfirst ≈(nm−1)ε Hybγlast where γlast is
the last element in Γ as per the ordering ≺. Note that Hybγlast ≈ε Hyb1 via another application of
Claim 5.13. Thus, we infer that Hyb1 ≈nmε gT,−→τ (Π(x)). This completes the proof of the lemma.

Hyb2 : In this hybrid, for every i ∈ H∗ and ` ∈ [m], we set m
xi,`
(i−1)`+m (used in computing the secret

shares) as the output of S∗ on input xT ∗ and the residual function fI,T,x,Pn+1 . That is, instead
of computing m

xi,`
(i−1)`+m using the input bit xi,` and the correlated randomness r(i−1)`+m, we will

use the simulator S∗ for the star compliant protocol Π∗ to generate this message. Note that it
follows from the security of Π∗ that Hyb1 is statistically/computationally close to Hyb2 depending
on whether Π∗ was statistically/computationally secure.

Hyb3 : This hybrid is same as the output of the simulator S. Note that the only difference between
Hyb2 and Hyb3 is syntactic. In Hyb2, for each i ∈ H, we use the actual inputs xi for each i ∈ H∗ to
generate the output of τi(msgi, sharesi, xi, bi) whereas in Hyb3, we use σi(xi). Notice that the out-
put of τi(msgi, sharesi, xi, bi) is the same as the output of σi(xi) in the description of the simulator.
Thus, these two hybrids are identically distributed.

This completes the proof of Theorem 5.11.

Instantiation. Using the known protocols for the star interaction pattern (see Section 5.2), we
obtain the following corollary.

Corollary 5.15 ([BGI+14,BKR17,GGG+14]) Let I be a n-party interaction pattern with a
single sink and let be f : ({0, 1}m)n → {0, 1}∗ be a function which depends on all its inputs. Then,

• There is a statistical I-compliant leakage tolerant protocol that securely computes f upto n−1
passive corruptions. The communication complexity is exponential in n,m.

• If f is computable by a circuit in NC1, then there exists an efficient I-compliant leakage toler-
ant protocol that computes f with statistical security upto a constant number of corruptions.
Assuming one-way functions, every f that is computable by circuits has a computationally
secure, efficient, I-compliant leakage tolerant protocol upto a constant number of corruptions.

31

• Assuming indistinguishability obfuscation and one-way functions, every function computable
by circuits has a computationally secure, efficient, I-compliant leakage tolerant protocol upto
n− 1 passive corruptions.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta Maji, Omkant Pandey,
and Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In
TCC, 2016.

[ADN+18] Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski, Erick Pur-
wanto, Jo ao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable
secret-sharing schemes for general access structures. Manuscript, accessed via personal
communication, 2018.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the
bounded retrieval model. In Kaoru Kurosawa, editor, Information Theoretic Security,
4th International Conference, ICITS 2009, Shizuoka, Japan, December 3-6, 2009. Re-
vised Selected Papers, volume 5973 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Omer Reingold, editor, TCC 2009: 6th
Theory of Cryptography Conference, volume 5444 of Lecture Notes in Computer Science,
pages 474–495. Springer, Heidelberg, March 2009.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of
Lecture Notes in Computer Science, pages 722–739. Springer, Heidelberg, December
2011.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols.
In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume
7194 of Lecture Notes in Computer Science, pages 266–284. Springer, Heidelberg, March
2012.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 531–561. Springer, Heidelberg, August 2018.

[BDL14] Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant computation with
input-independent preprocessing. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in
Computer Science, pages 146–163. Springer, Heidelberg, August 2014.

32

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology - Third
International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Proceed-
ings, pages 11–46, 2011.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II,
volume 8617 of Lecture Notes in Computer Science, pages 387–404. Springer, Heidel-
berg, August 2014.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure
computation against adaptive auxiliary information. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 316–334. Springer, Heidelberg, August 2013.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty
computation secure against continual memory leakage. In Howard J. Karloff and To-
niann Pitassi, editors, 44th Annual ACM Symposium on Theory of Computing, pages
1235–1254. ACM Press, May 2012.

[BGK14] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin tossing.
Distributed Computing, 27(3):147–164, 2014.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BKR17] Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin. Robust non-interactive mul-
tiparty computation against constant-size collusion. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401
of Lecture Notes in Computer Science, pages 391–419. Springer, Heidelberg, August
2017.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National
Computer Conference, 48:313–317, 1979.

[BS18] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret
sharing. Manuscript, accessed via personal communication, 2018.

[CCD88] David Chaum, Claude Crepeau, and Ivan Damgaard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19. ACM, 1988.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function
securely. In 26th Annual ACM Symposium on Theory of Computing, pages 522–533.
ACM Press, May 1994.

33

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, edi-
tor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 307–315. Springer, Heidelberg, August 1990.

[DHP11] Ivan Damgard, Carmit Hazay, and Arpita Patra. Leakage resilient secure two-party
computation. Cryptology ePrint Archive, Report 2011/256, 2011. http://eprint.

iacr.org/2011/256.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–
139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In 48th
Annual Symposium on Foundations of Computer Science, pages 227–237. IEEE Com-
puter Society Press, October 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th
Annual Symposium on Foundations of Computer Science, pages 293–302. IEEE Com-
puter Society Press, October 2008.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 434–452, 2010.

[Fra90] Yair Frankel. A practical protocol for large group oriented networks. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89,
volume 434 of Lecture Notes in Computer Science, pages 56–61. Springer, Heidelberg,
April 1990.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 135–156. Springer, Heidelberg, May / June
2010.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 578–602, 2014.

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov.
Bounded-communication leakage resilience via parity-resilient circuits. In Irit Dinur,
editor, 57th Annual Symposium on Foundations of Computer Science, pages 1–10. IEEE
Computer Society Press, October 2016.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
Lecture Notes in Computer Science, pages 297–315. Springer, Heidelberg, August 2011.

34

http://eprint.iacr.org/2011/256
http://eprint.iacr.org/2011/256

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 685–698, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access
structures. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 501–530. Springer, Heidelberg, August 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229. ACM Press, May
1987.

[GMW17] Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate non-malleable
codes in the split-state model. Cryptology ePrint Archive, Report 2017/1048, 2017.
http://eprint.iacr.org/2017/1048.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4), 2009.

[GW16] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes. In Daniel
Wichs and Yishay Mansour, editors, 48th Annual ACM Symposium on Theory of Com-
puting, pages 216–226. ACM Press, June 2016.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure
multiparty computation with general interaction patterns. In Madhu Sudan, editor,
ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages
157–168. Association for Computing Machinery, January 2016.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 132–150. Springer, Heidelberg, August 2011.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, vol-
ume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, Heidelberg,
August 2003.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
pages 589–617, 2018.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. STOC, 2017.

35

http://eprint.iacr.org/2017/1048

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, Heidel-
berg, February 2004.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 18–35. Springer, Heidelberg, August 2009.

[Rot12] Guy N. Rothblum. How to compute underAC0 leakage without secure hardware. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 552–569. Springer, Heidel-
berg, August 2012.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

A Background: Non-Malleable Codes

We start with the definition of a coding scheme.

Definition A.1 (Coding scheme) Let Enc : {0, 1}m → {0, 1}n be a randomized algorithm and
Dec : {0, 1}n → {0, 1}m ∪ {⊥} be a deterministic function. We say that (Enc,Dec) is a coding
scheme with code length n and message length m if for all s ∈ {0, 1}m, Pr[Dec(Enc(s)) = s] = 1,
where the probability is taken over the randomness of Enc. The rate of the coding scheme is m

n .

Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-malleable codes which
generalizes the usual notion of error correction. In particular, it guarantees that when a codeword
is subject to tampering attack, the reconstructed message is either the original one or something
that is independent of the original message.

Definition A.2 (Non-Malleable Codes [DPW10]) Let Enc : {0, 1}m → {0, 1}n and Dec : {0,
1}n → {0, 1}m∪{⊥} be (possibly randomized) functions, such that Dec

(
Enc(s)

)
= s with probability

1 for all s ∈ {0, 1}m. Let F be a family of tampering functions and fix ε > 0. We say that
(Enc,Dec) is ε−non-malleable w.r.t. F if for every f ∈ F , there exists a random variable Df on
{0, 1}m ∪ {same?}, such that for all s ∈ {0, 1}m,

|Dec(f(Xs))− copy(Df , s)| ≤ ε

where Xs ← Enc(s) and copy is defined by copy(x, y) =

{
x if x 6= same?

y if x = same?
. We call n the length

of the code and m/n the rate.

Split-state Tampering Functions. We focus on the split-state tampering model where the
encoding scheme splits s into c states: Enc(s) = (S1, . . . ,Sc) ∈ S1 × S2 . . .× Sc and the tampering
family is Fsplit =

{
(f1, . . . , fc)

∣∣fi : Si → Si
}

. We will call such a code as c-split-state non-malleable
code.

36

Augmented Non-Malleable Codes. We recall the definition of augmented, 2-split-state non-
malleable codes [AAG+16].

Definition A.3 (Augmented Non-Malleable Codes [AAG+16]) A coding scheme (Enc,Dec)
with code length 2n and message length m is an augmented 2-split-state non-malleable code with
error ε if for every function f, g : {0, 1}n → {0, 1}n, there exists a random variable D(f,g) on
{0, 1}n × ({0, 1}m ∪ {same?}) such that for all messages s ∈ {0, 1}m, it holds that

|(L,Dec(f(L), g(R)))− S(D(f,g), s)| ≤ ε

where (L,R) = Enc(s), (L, m̃) ← Df,g and S((L, m̃), s) outputs (L, s) if m̃ = same? and otherwise
outputs (L, m̃).

Explicit Constructions. We now recall the constructions of split-state non-malleable codes.

Theorem A.4 ([Li17]) For any n ∈ N, there exists an explicit construction of 2-split-state non-

malleable code with efficient encoder/decoder, code length 2n, rate O(1
logn) and error 2

−Ω(n
logn

)
.

Theorem A.5 ([KOS18,GMW17]) For every n ∈ N and ρ > 0, there exists an explicit con-
struction of 3-split-state non-malleable code with efficient encoder/decoder, code length (3 + o(1))n,

rate 1
3+o(1) and error 2−Ω(n/ log1+ρ(n)).

Additional Property. It was shown in [BS18] that the construction given in [KOS18,GMW17]
satisfies the property that given two particular states of the codeword, the message remains statis-
tically hidden.

37

	Introduction
	Results and Techniques
	Related Work

	Preliminaries
	Secret Sharing Scheme

	Leakage Resilient Secret Sharing Scheme
	Definition
	Local Leakage Resilience
	Description of the Compiler
	Instantiation

	Strong Local Leakage Resilience

	Rate Preserving Non-Malleable Secret Sharing
	Definition
	Construction
	Rate Analysis

	Leakage Tolerant MPC for General Interaction Patterns
	Basic Definitions
	Known Protocols for Star Interaction Pattern
	Definition: Leakage Tolerant MPC for an Interaction Pattern
	Construction

	Background: Non-Malleable Codes

