
Towards Round-Optimal Secure Multiparty Computations:
Multikey FHE without a CRS

Eunkyung Kim1, Hyang-Sook Lee(�)2, and Jeongeun Park2

1 Security Research Team, Samsung SDS
E tower, Seongchongil 56, Seocho-gu, Seoul, 06765, Republic of Korea Country

ek41.kim@samsung.com
2 Department of Mathematics, Ewha Womans University, Republic of Korea

hsl@ewha.ac.kr, jungeun7430@ewhain.net

Abstract. Multikey fully homomorphic encryption (MFHE) allows homomorphic operations between
ciphertexts encrypted under different keys. In applications for secure multiparty computation (MPC)
protocols, MFHE can be more advantageous than usual fully homomorphic encryption (FHE) since
users do not need to agree with a common public key before the computation when using MFHE. In
EUROCRYPT 2016, Mukherjee and Wichs constructed a secure MPC protocol in only two rounds
via MFHE which deals with a common random/reference string (CRS) in key generation. After then,
Brakerski et al.. replaced the role of CRS with the distributed setup for CRS calculation to form a four
round secure MPC protocol. Thus, recent improvements in round complexity of MPC protocols have
been made using MFHE.

In this paper, we go further to obtain round-efficient and secure MPC protocols. The underlying MFHE
schemes in previous works still involve the common value, CRS, it seems to weaken the power of using
MFHE to allow users to independently generate their own keys. Therefore, we resolve the issue by
constructing an MFHE scheme without CRS based on LWE assumption, and then we obtain a secure
MPC protocol against semi-malicious security in three rounds.

Keywords: Multi key FHE; LWE assumption; Multi party computation; Lattice.

1 Introduction

1.1 Multikey fully homomorphic encryption.

Fully homomorphic encryption (FHE) scheme (KeyGen,Enc,Dec,Eval) is a public key encryption scheme
with the additional algorithm Eval that allows homomorphic operations on ciphertexts: for any (pk, sk)←
KeyGen(1λ), a function f , and two ciphertexts c, c′ encrypted with pk, Eval algorithm takes (pk, f, 〈c, c′〉) as
input and returns a new ciphertext c∗ such that

Dec(sk, c∗) = f(Dec(sk, c),Dec(sk, c′)).

FHE is a very useful cryptographic primitive, and there has been profound progress after the first construction
of FHE by Gentry [4]. Multikey fully homomorphic encryption (MFHE), introduced in [8], is part of that
progress. MFHE is a generalization of FHE which supports homomorphic operations between ciphertexts
encrypted with different keys: with abbreviated notation, Eval algorithm of an MFHE scheme takes c and c′

encrypted with pk and pk′, respectively, and then returns a new ciphertext c∗ such that3

Dec(〈sk, sk′〉, c∗) = f(Dec(sk, c),Dec(sk′, c′))

MFHE can be applied to construct secure multiparty computation (MPC) protocols, which is our main
concern.

3 Both of secret keys sk and sk′ are needed to decrypt the multikey ciphertext c∗ for the semantic security.



1.2 Secure multiparty computation via MFHE.

Secure multiparty computation (MPC) can be very helpful for those who want to evaluate a function on
their personal data in cooperation with untrusted parties. More specifically, suppose that N parties hold the
private input x1, · · · , xN , respectively, and that they do not believe one another at all but must evaluate a
function f . Then secure MPC protocol allows the parties to compute f(x1, · · · , xN ) without disclosing their
secret inputs to other users. Secure computation was initially studied by Yao [12] in 1982 as secure two-party
computation, which later was generalized to the multi-party by Goldreic, Micali and Wigderson [6].

MPC protocols can be realized by MFHE schemes easily: each user encrypts the data xi with its own public
key pki, and sends the ciphertext ci ← Enc(pki, xi) to other users. On receiving all the public keys pk1, · · · , pkN
and all the ciphertexts c1, · · · , cN , users run Eval algorithm of MFHE with inputs ({pki}i∈[N ], {ci}i∈[N ], f)
to obtain a new ciphertext c∗ which encrypts the function value f(x1, · · · , xN ). These MPC protocols are
not only secure by MFHE, but also highly efficient in terms of round complexity: Mukherjee and Wichs [10]
constructed an MFHE scheme based on LWE which simplified the scheme of Clear and McGoldrick [3]
to obtain a MPC protocol in only two rounds with a common random/reference string (CRS). They also
achieved semi-malicious security for their MPC protocol based on LWE assumption, and fully-malicious
security with additional NIZK. And then, Brakerski et al. [2] replaced the CRS in their MFHE scheme with a
distributed setup for deriving the CRS, and obtained a three round semi-mailiciously secure MPC protocol
and a four round fully-maliciously secure MPC protocol.

However, since these protocols are constructed from MFHE scheme associated with the CRS, either
a trusted setup in which all parties get access to the same string CRS (see [10]), or a complex setup for
generating the CRS that adds one more round in the protocol (see [2]) is needed. This may weaken the power
of using MFHE. Therefore, in order to get a secure MPC protocol which is also simple and round-efficient, it
is important to construct an MFHE scheme without CRS.

1.3 Previous Work.

Let us briefly review the MFHE scheme by Mukherjee and Wichs [10] with N parties. Given a common

random public matrix B ∈ Z(n−1)×m
q as a CRS (m and n will be specified later), for i ∈ [N ], i-th party Pi

generates a key pair (pki, ski) = (Ai, ti) where Ai = (B,bi)
T ∈ Zn×mq , ti ∈ Znq and tiAi ≈q 0 (i.e. tiAi − 0

is short in Zmq ). Define the multi-secret key t̂ = (t1, · · · , tN ) ∈ ZnNq which is required for the semantic security.
Then a valid multikey ciphertext of a bit µ ∈ {0, 1}, which requires all the secret keys sk1, · · · , skN to decrypt,

is a matrix Ĉi ∈ ZnN×mNq such that t̂Ĉi ≈q µt̂Ĝ (i.e. t̂Ĉi − µt̂Ĝ is short in ZmNq ) where G ∈ Zn×mq is a

fixed public matrix and Ĝ = diag(G, · · · ,G) ∈ ZnN×mNq is an expanded matrix having the matrix G as
diagonal components. To do this, they built a polynomial time algorithm GSW.Lcomb (see Property 5.3
in [10]) that links pki = Ai and skj = tj for i 6= j which is possible thanks to the CRS matrix B. Then the

multikey ciphertext Ĉi is obtained from a single-key ciphertext Ci, which can be decrypted by all parties’
secret keys. Then they use the MFHE scheme to construct a two round MPC protocol which is secure in the
fully-malicious model. See [10] for details.

1.4 Our contribution.

In this work, we give an important stepping stone to get a simple and round-efficient MPC protocol. Namely,
we construct a three round MPC protocol, that is secure in the semi-malicious model, without a CRS from an
MFHE scheme that use neither a CRS nor a complex setup for inducing a CRS. This is interesting mainly for
two reasons. (i) A MPC protocol without a CRS means that no longer a trusted setup (for example, banks, or
any certificate authorities) for distributing the CRS is needed, and this fits the recent trends in cryptography
such as the famous digital currency Bitcoin. (ii) Three-round seems to be a lower bound when we do not use
a CRS: Firstly, since there is no CRS, each user generates its own key pair independently and sends it to
other users prior to the protocol, which requires at least one round. Next, once the ciphertexts and public
keys are transferred, the computation can be done by the evaluation algorithm of MFHE. Thus, it takes at

2



least one more round to transfer the information. Finally, since the decryption algorithm of MFHE requires
all the secret keys (sk1, · · · , skN ) as input due to the semantic security, at least one more round is needed in
order for each user to send an intermediate decrypted value involving only its secret key to another users.

To do this, we generalize the MFHE scheme by Mukherjee and Wichs [10] to construct an MFHE scheme
without a CRS. In our scheme, Pi freely generates its key pair (pki, ski) = (Ai, ti) by choosing its own

random matrix Bi ∈ Z(n−1)×m
q , instead of the CRS matrix B. Namely, we have pki = Ai = (Bi,bi)

T ∈ Zn×mq .
Since pki’s no longer contain the common matrix B, we cannot apply GSW.Lcomb algorithm directly to link
pki = Ai and skj = tj for i 6= j. Instead, we give a polynomial time algorithm LinkAlgo that generalizes
GSW.Lcomb algorithm. Then we use LinkAlgo algorithm to transform a single-key ciphertext Ci into a
multikey ciphertext Ĉi as in [10]. Moreover, Since our single key encryption step is independent of the
LinkAlgo algorithm, one can use our scheme for single key FHE and then just expand it freely with multi
parties if she wants to use it for MFHE or MPC.

We extend the previous version(an MFHE scheme) which was a proceeding paper [7]. Here, we modify
the previous scheme a bit(ciphertext expansion procedure) to be more secure adding a new security notion. It
is reasonable to think that a multikey cihpertext cannot be decrypted unless all the secret keys are gathered,
so we introduce a new security notion called multikey-CPA security and prove the security of our scheme. To
do this, we set security parameters of our scheme to satisfy GSW FHE scheme and Regev-LWE symmetric
key encryption scheme at the same time. We prove the security by describing a multikey-IND-CPA game to
show that the advantage of adversary who distinguishes our MFHE multikey ciphertext is as same as the
advantage of the distinguisher of Regev-LWE ciphertext. Since Regev-LWE is semantically secure under certain
parameters based on LWE assumption, there is no PPT adversary who distinguishes our multikey ciphertext.

1.5 Organization.

In Section 2, we introduce notation used throughout the paper, and review important definitions, including
the learning with errors (LWE) problem and Multikey fully homomorphic encryption (MFHE) schemes. In
Section 3, as our first main result, we present LinkAlgo algorithm for transforming a single-key ciphertext
to the related multikey ciphertext. Based on the first result, in Section 4, we construct an MFHE scheme
without a CRS, and obtain a three round MPC protocol that is secure in the semi-malicious model.

2 Preliminaries

In this paper, we denote κ the security parameter. A function negl(κ) is negligible if for every positive
polynomial p(κ) it holds that negl(κ) < 1

p(κ) . We denote Z/qZ as Zq and its elements are integer in the range

of (−q/2, q/2]. Now we define the notation of vectors and matrices. For a vector x = (x1, x2, . . . , xn) ∈ Zn,
x[i] denotes the i-th component scalar. For a matrix M ∈ Zn×m, M[i, j] denotes the i-th row and the j-th
column element of M. Also we use the notation Mrow

i which is denoted as i-th row of M and similarly, Mcol
j

is denoted as j-th column of M. We use row representation of matrices and define the infinity norm of a
vector x as ‖x‖∞ = maxi(x[i]) and that of a matrix M is defined as maxi(

∑
j M[i, j]). Dot product of two

vectors v,w is denoted by < v,w >. We also denote the set {1, . . . , n} by [n].

Let X and Y be two distributions over a finite domain. We write X
comp
≈ Y if they are computationally

indistinguishable. For an integer bound Bχ = Bχ(κ), we say that a distribution ensemble χ = χ(κ) is
Bχ-bounded if Prx←χ(κ)[|x| > Bχ(κ)] ≤ negl(κ). Throughout this paper, we use the notation ≈q to emphasize
that the two values are almost equal in Zq except for short differences.

2.1 The Learning With Errors Problem.

We recall the learning with errors(LWE) problem, a representative hard problem on lattices introduced by
Regev [11]

3



Definition 1. Let κ be the security parameter, n = n(κ), q = q(κ) be integers and let χ = χ(κ), be distributions
over Z. Given a matrix A ∈ Zm×nq and a vector b ∈ Znq , the decisional learning with error(LWE) problem is
determining whether b has been sampled uniformly at random from Znq or b = sA + e for some small random
s ∈ Zmq and e ∈ χn for any polynomial m = m(κ).

The parameter setting for our version of the LWE assumption is that for any polynomial p = p(κ) there is a
polynomial n = n(κ), a modulus q = q(κ) of singly-exponential size, and a Bχ bounded distribution χ = χ(κ)
and q ≥ 2pBχ.

2.2 Multikey FHE(MFHE).

We give a formal definition of Multikey FHE(MFHE) [10] which is an adaptation from the original concept [8].

Definition 2. A multikey (Leveled) FHE scheme is a tuple of algorithms MFHE = (Setup,KeyGen,Enc,Expand,Eval,Dec)
described as follows.

– Setup(1κ, 1d) → params: It takes κ is a security parameter and d is the circuit depth as inputs and it
outputs the system parameters params.

– KeyGen(params)→ (pk, sk): It takes params and outputs a key pair (pk, sk).
– Enc(pk, µ)→ c: On input pk and a message µ, outputs a ciphertext c. we call it by a fresh ciphertext.
– Expand((pk1, . . . , pkN ), c, i)→ ĉi: Given a sequence of N public-keys, and a fresh ciphertext c under i-th

key pki, it outputs an expanded ciphertext ĉ.
– Eval(params, C, (ĉ1, . . . , ĉ`))→ ĉ: Given a boolean circuit C of depth ≤ d along with ` expanded ciphertexts,

it outputs an evaluated ciphertext ĉ.
– Dec(params, ĉ, (sk1, . . . , skN )) → µ: On input a ciphertext(possibly evaluated) ĉ and a sequence of N

secret keys, it outputs the message µ. This decryption procedure can be done by the one round threshold
distributed decryption:
• PartDec(ĉ, i, ski): On input a ciphertext(possibly evaluated) under a sequence of N public keys and
i-th secret key, it outputs a partial decryption pi.

• FinDec(p1, . . . , pN ): On input N partial decryptions, it outputs the message µ.

2.3 GSW FHE scheme

Our MFHE scheme is similar to [10] apart from the existence of a trusted setup and a few algorithms. Here
we describe the GSW fully homomorphic encryption scheme [5] following the notation of [10]. Note that we
take the matrix B in KeyGen as with the original GSW encryption scheme instead Mukherjee and Wichs [10]
gets the matrix B from Setup, hence consider it as a CRS.

– GSW .Setup(1κ, 1d)→ (params): The needed parameters for this scheme to satisfy the LWE assumption
are n,m, q,G, χ where G ∈ Zn×mq is a trapdoor matrix [9], Bχ-bounded error distribution χ = χ(κ, d), a

modulus q = Bχ2ω(dκlogκ), and m = n log q + ω(log(κ)). and It outputs params := (n,m, q,G, χ,Bχ).
– GSW .KeyGen(params)→ (pk, sk): generates a secret key and the corresponding public key respectively.

Sample s
$← Zn−1q . A secret key sk = t := (−s, 1) ∈ Znq . Sample e

$← χm and B
$← Z(n−1)×m

q . Set

b = sB + e ∈ Zmq . The corresponding pk = A ∈ Zn×mq is defined as A:=

(
B
b

)
.

• The important relation between pk and sk is tA ≈q 0, which is because tA = (−s, 1)

(
B
b

)
=

−sB + b = e : small(i.e.‖e‖∞ ≤ Bχ).

– GSW .Enc(pk, µ) → (C): Choose a short random matrix R
$← {0, 1}m×m then encrypt a bit message

µ ∈ {0, 1} under the public key pk as C ∈ Zn×mq , where

C := AR + µG

Here, tC = e′ + µtG where e′ = eR implies ‖e′‖∞ ≤ mBχ.

4



– GSW .Eval(C1,C2)→ (C∗): Let C1,C2 ∈ Zn×mq be two GSW encryption of µ1, µ2 under the pk respec-
tively, so that: tC1 = µ1tG + e1 and tC2 = µ1tG + e2. We can do homomorphic operations(addition,
multiplication) as following:
• GSW .Add(C1,C2): C1 + C2.

• GSW .Mult(C1,C2): C1G
−1(C2) ∈ Zn×mq .

– GSW .Dec(sk,C)→ (µ): On input as sk,C, set w = (0, . . . , 0, bq/2e) ∈ Znq and compute v = tCG−1(wT ) =

ē + µ(q/2) ∈ Zq such that ē =< e,G−1(wT ) >. Output |b v
q/2e| checking if the value is close to 0 or q/2.

The function G−1(·) introduced in [9] takes any matrix M ∈ Zn×m′

q (for any m′ ∈ N) and outputs a matrix
whose all elements are in the set {0,1}. This function satisfies GG−1(M) = M.

The semantic security of GSW FHE scheme under the LWE assumption (with proper parameters) is
proved in [5]. To analyze the correctness, we follow the notion of β-noisy ciphertext [10].

Definition 3. A β-noisy ciphertext of a message µ under a secret key sk(= t) ∈ Znq is a matrix C ∈ Zn×mq

satisfying tC = µtG + e for some e with ‖e‖∞ ≤ β.

To recover the original message correctly, the maximum size of the error generated during the decryption
procedure should be less than q/4. Recall that the depth of the circuit is d and let the fresh ciphertext is
β-noisy ciphertext. Then β is mBχ. And evaluated ciphertext is at most (m + 1)dβ-noisy. Finally during
the GSW-decryption procedure, the error is multiplied by m. Therefore, the error would become at most
m2(m+ 1)dBχ, which is less than q/4 because of our choice of parameters.

2.4 An application of Regev’s LWE : a symmetric key cryptosytem(Regev-LWE)

There is an application of LWE problem [11], which is a symmetric key cryptosystem. It is semantically
secure assuming the above LWE assumption. We briefly introduce this scheme for our security proof. The
parameters such as κ, d,m, n,Bχ, q, and the error distribution χ is as same as GSW FHE scheme’s.

– Setup(1κ) outputs params=(m,n, q, χ,Bχ).
– KeyGen(params): sk = s ∈ Znq .
– Enc(sk, µ): It takes a bit µ, and sk.
• choose A ∈ Zn×mq

• Sets a vector w = (b q2c, . . . , b
q
2c) ∈ Zmq

• Take a random error ← χm.
• Compute b = sA + error + µw ∈ Zmq .
• Output c = (A,b).

– Dec(sk, c) : The decryption is 0, if b− sA is closer to 0m than w. Otherwise, the decryption is 1.

3 MFHE scheme without a CRS

3.1 Single-key ciphertext to multikey ciphertext

An MFHE scheme allows homomorphic operations between ciphertexts under different keys, but the GSW
scheme from the previous section is not enough for such operations. This is due to the fact that there is no
relation between two different users’ keys. In this section, we present a polynomial time algorithm LinkAlgo
that links two different keys by giving a relation between them. And then we will use LinkAlgo to transform a
single-key GSW ciphertext into a multikey ciphertext, and finally to obtain an MFHE scheme.

Let R ∈ {0, 1}m×m be a 0-1 matrix, and V(s,t) be a β-noisy GSW ciphertext of R[s, t] (s-th row and t-th
column of R) under (pk, sk) = (A, t) for all s, t ∈ [m]. Let (pk′, sk′) be another, or possibly same, GSW key
pair. Then LinkAlgo takes pk′ and encryptions V (s,t)’s, and returns a matrix X as follows:

5



Algorithm 1 LinkAlgo algorithm

Input: pk′ and {V(s,t)}s,t∈[m]

Output: X ∈ Zn×m
q

1. Define Ls,t ∈ Zn×m
q for all s, t ∈ [m] by

Ls,t[a, b] =

{
A′[a, s] if t=b
0 otherwise

2. Output X =
∑m

s=1

∑m
t=1 V

(s,t)G−1(Ls,t) ∈ Zn×m
q .

Proposition 4. We have tX = tA′R + e, where ‖e‖∞ ≤ m3β.

Proof. Since V(s,t) is a β-noisy encryption of R[s, t] under (pk, sk) = (A, t), we have tV(s,b) = R[s, t]tG+es,t
for some es,t with ‖es,t‖∞ ≤ β. Hence, it holds that

tX =
∑
s,t

tV(s,t)G−1(Ls,t)

=
∑
s,t

(R[s, t]tG + es,t)G
−1(Ls,t)

=
∑
s,t

(R[s, t]tLs,t + e′s,t)

= t
∑
s,t

R[s, t]Ls,t +

m∑
s,t

e′s,t,

where e′s,t := es,tG
−1(Ls,t) has a norm ‖e′s,t‖ ≤ mβ.

Now it suffices to show that
∑m
s=1

∑m
t=1 R[s, t]Ls,t = A′R. Note that Ls,t has s-th column of A′ on the

t-th column and 0 elsewhere.

m∑
s=1

m∑
t=1

R[s, t]Ls,t =

m∑
t=1

m∑
s=1


0 · · · R[s, t]A′[1, s] · · · 0
...

. . . R[s, t]A′[2, s] · · · 0
...

...
... · · ·

...
0 · · · R[s, t]A′[n, s] · · · 0



=

m∑
t=1


0 · · ·

∑m
s=1 R[s, t]A′[1, s] · · · 0

...
. . .
∑m
s=1 R[s, t]A′[2, s] · · · 0

...
...

... · · ·
...

0 · · ·
∑m
s=1 R[s, t]A′[n, s] · · · 0



=

m∑
t=1


0 · · · < A′row1 ,Rcol

t > · · · 0
...

. . . < A′row2 ,Rcol
t > · · · 0

...
...

... · · ·
...

0 · · · < A′rowm ,Rcol
t > · · · 0

 = A′R,

where A′row` denotes the `-th row of A′ and Rcol
` denotes the `-th colum of R.

To sum up,

tX = t
∑
s,t

R[s, t]Ls,t +

m∑
s,t

e′s,t = tA′R + e,

where e :=
∑m
s=1

∑m
t=1 e′s,t has norm ‖e‖∞ ≤ m3β.

6



3.2 Our MFHE scheme

Let G be the matrix and G−1(·) be the function as we described in Section 2. Following the notation of [10],

we expand G as ĜN = diag(G, · · · ,G) ∈ ZnN×mNq and let ĜN
−1

(·) be the corresponding function of ĜN .
Define a tuple of algorithms

(MFHE .Setup,MFHE .KeyGen,MFHE .Enc,MFHE .Expand,MFHE .Eval,MFHE .Dec) as follows:

– MFHE .Setup(1κ, 1d)→ (params)
1. Run GSW .Setup(1κ, 1d)
2. Output params.

– MFHE .KeyGen(params)→ (pk, sk)
1. Run GSW .KeyGen(params)

2. Output (pk, sk)=

((
B
b

)
, t

)
.

– MFHE .Enc(pk, µ)→ (C)
1. Run GSW .Enc(pk, µ).
2. Output C (i.e. C = AR + µG).

In this step, the party keeps its R for the next step.
– MFHE .Expand((pk1, pk2, . . . , pkN ), i,C) → (Ĉi) On other’s public keys and a fresh ciphertext C, the

execution is following:

1. • {V(s,t)
i,j }s,t∈[m] ← {GSW .Enc(R[s, t], pkj)}s,t∈[m] for j ∈ [N ].

• {V̄(s,t)
i,j }s,t∈[m] ← {GSW .Enc(R̄[s, t], pkj)}s,t∈[m] for j ∈ [N ]\{i}, where R̄ is chosen from

{0, 1}m×m.
2. Compute

• Xj
i ← LinkAlgo({V(s,t)

i,j }s,t∈[m], pki) for j ∈ [N ].

• X̄j
i ← LinkAlgo({V̄(s,t)

i,j }s,t∈[m], pkj) for j ∈ [N ]\{i}.
3. Choose Q

$← Zn×mq . Set the matrix Qh ∈ Zn×mq having the first row tiQ + ēh and the rest rows zero,
where ti is the sk of the party i, ēh is chosen from χm,∀h ∈ [N ]\{i}.

4. Define a matrix Ĉi ∈ ZnN×mNq as

Ĉi :=



C1
i 0 . . . 0 0

0 C2
i . . . 0 0

...
...

...
...

...
Q . . . Ci

i . . . Q
...

...
...

...
0 0 . . . 0 CN

i


which is concatenated by N2 number of n×m sub-matrices. The diagonal sub-matrices of Ĉi are
Cj
i = Ci −Xj

i + X̄j
i −Qj for j∈ [N ]\{i} and the i-th diagonal sub-matrix is Ci −Xi

i. Lastly, Q is on
the i -th row and zero matrix 0n×m is elsewhere.

5. Output Ĉi.
– MFHE .Eval(params, f, Ĉ1, . . . , Ĉ`)→ (Ĉ∗)

1. Given ` expanded ciphertexts, run the GSW homomorphic evaluation algorithm working with the
expanded dimension nN,mN and ĜN , Ĝ−1N .

2. Output Ĉ∗.
– MFHE .Dec(params, (sk1, . . . , skN ), Ĉi)→ (µ)

1. Given the sequence of secret keys(sk1 = t1, . . . , skN = tN ) and an expanded ciphertext Ĉi, set a
vector t̂:=[t1, t2, . . . , tN ] ∈ ZnNq .

2. Run GSW .Dec algorithm with ĜN and Ĝ−1N .
3. Output µ.

7



In fact, this MFHE .Dec can be done by threshold decryption, described in Section 2.

– MFHE .PartDec(c, ski)→ (pi):
1. Given an expanded ciphertext c = Ĉ and i-th ski = ti ∈ Znq , break Ĉ into N row sub matrices Ĉi

(i.e. Ĉ = (ĈT
1 , . . . , Ĉ

T
N ) where Ĉi ∈ Zn×mN .

2. Fix a vector ŵ = [0, . . . , 0, dq/2e] ∈ ZnNq .

3. compute γi = tiĈiĜ
−1(ŵT ) ∈ Zq

4. Output pi = γi + esmi where esmi
$← [−Bdec

smdg,B
dec
smdg] is small randon noise with Bdec

smdg = 2dκlogκBχ.
– MFHE .FinDec(p1, . . . , pN )→ (µ):

1. Given p1, . . . , pN , just sum p =
∑N
i=1 pi.

2. Output µ = |d p
q/2c|.

Note that the above algorithms MFHE .Setup, MFHE .KeyGen, and MFHE .Enc are just GSW scheme’s. Since
GSW scheme’s evaluation algorithm works only for ciphertexts under the same key, Mukherjee and Wichs’s
MFHE scheme modified it to fit into multikey setting. Therefore, they put the matrix B in the SETUP stage
and consider as a common random string (CRS). Due to the fact, one can assume that every user has the
same matrix already from a trusted party to generate its public key. However, we give the users freedom of
choosing their public keys at random without depending on a CRS. Our MFHE scheme is secure due to the
semantic security of GSW encryption scheme and the correctness of expansion.

Correctness of Expansion. Let Ĉ be the multikey ciphertext of a bit µ obtained by i-th user from
MFHE .Expand algorithm:

Ĉ← MFHE .Expand((pk1, · · · , pkN ), i,C)

where C is a GSW encryption of µ under (pki, ski) = (Ai, ti) and Ri is the relevant random matrix. For the

multi-secret key t̂ = [t1, · · · , tN ] and the public matrix ĜN , if Ĉ satisfies the relation t̂Ĉ ≈q µt̂ĜN , then
we can naturally generalize the arguments of GSW FHE scheme. Namely, we can achieve the correctness of
encryption, correctness of evaluation, simulatability of partial decryption, and hence a valid MFHE scheme
as in [10].

Recall that for a valid GSW key pair (pk, sk) = (A, t) it holds that
tA = −sB + b = e for some ‖e‖∞ ≤ Bχ. For a valid GSW ciphertext C of µ under (pk, sk) = (A, t)
it holds that tC = µtG + e′ for some ‖e′‖∞ ≤ βinit = mBχ. We also recall that for a valid output X
from LinkAlgo({V(a,b)}a,b, pk′ = A′) with respect to a 0-1 matrix R we have tX = tA′R + e′′ for some
‖e′′‖∞ ≤ m3βinit = m4Bχ.

Now, we are ready to prove the correctness of expansion. By the definition, we have

t̂Ĉ = [t1C
1
i + tiQ, t2C

2
i + tiQ, · · · , tiCi

i, · · · , tNCN
i + tiQ]

= [t1(Ci −X1
i + X̄1

i −Q1) + tiQ, · · · , ti(Ci −Xi
i), · · · , tN (Ci −XN

i + X̄N
i −QN ) + tiQ].

Let’s see how the bit message µ is correctly recovered and check the error bound by using the followng
properties.

(1) tjC = tj(AiRi + µG) = tjAiRi + µtjG.

(2) tjX
j
i = tjAiRi + e′′j , where ‖e′′j ‖∞ ≤ m4Bχ.

(3) tiX
i
i = tiAiRi + e′′i = ẽi, where ‖ẽi‖∞ ≤ (m4 +m)Bχ.

(4) tjX̄
j
i = tjAjR̄ + ē′′j = ẽj , where ‖ẽj‖∞ ≤ (m4 +m)Bχ.

(5) tjQj = tiQ + ēj , where ‖ēj‖∞ ≤ Bχ.

∴tj(C−Xj
i + X̄j

i −Qj) + tiQ = µtjG + êj ,

ti(C−Xi
i) = µtiG + êi

Therefore, we have t̂Ĉ = µt̂ĜN + ê where ê = [ê1, · · · , êi, · · · , êN ] and ‖ê‖∞ ≤ (2m4 +m+ 1)Bχ. During
the decryption procedure, this error is multiplied by mN . By our choice of the parameter, mN(2m4 +m+
1)Bχ < q/4.

8



Multikey ciphertext security One thing that is important for multikey FHE encryption scheme’s security
is that a multikey ciphertext can be decrypted only when all the parties’ secret keys are gathered. In other
words, no one can decrypt it with only its own secret key. Therefore, it is not enough to be sure about
this MFHE scheme’s security only with the single key ciphertext security(semantic security of GSW)and
the correctness of expansion. We prove no one can decrypt our multikey ciphertext unless he gets all the
parties’ secret keys. Even if a party who participates in this MFHE scheme has its own secret key and can do
something with this secret key, this multikey ciphertext must not reveal any information about other party’s
message. Moreover, since we do not publish a single key ciphertext but a multikey ciphertext, it is necessary
to define a new security notion for our expanded ciphertext indeed.

For a probabilistic multikey FHE encryption algorithm, we naturally extend the original indistin-
guishability under chosen plaintext attack (IND-CPA) to any multikey FHE scheme by the following
game between a PPT adversary A and a challenger C. For any multikey FHE encryption scheme Π =
(KeyGen, Enc, Expand, Eval, Dec), any adversary A, and any value κ for the security parameter:
The multikey-CPA(Chosen Plaintext Attack) indistinguishability game:

1 C runs KeyGen(1κ) to generate random two key pairs (pk, sk), (pk′, sk′). Then it publishes pk, pk′, sk′ to
the adversary A and keeps sk in secret.

2 The adversary may perform a polynomially bounded number of encryptions or other operations.
3 The adversary A is given input 1κ and oracle access to Encpk(·) and Expand(·, pk, pk′), and outputs a pair

of messages m0, m1 of the same length. Then it gives these to C.
4 C chooses a random bit ← {0, 1} and a public key pk, computes a ciphertext cb ← Encpk(mb). Then it

expands it to a multikey ciphertext by running Expand algorithm with another public key and sends it to
A.

5 The adversary is free to perform any number of additional computations, encryptions or decrypt by sk′.
Finally, it outputs a guess for the value of b′. If b′ = b, A wins. (In this case, we say MPKCCPAA,Π (κ) = 1.)

Definition 5. A multikey FHE encryption scheme Π has indistinguishable encryptions under a chosen-
plaintext attack(or is multikey-CPA secure) if for all PPT adversaries A there exists a negligible function
negl such that

Pr
[
MPKCCPAA,Π (κ) = 1

]
≤ 1

2
+ negl(κ).

Lemma 6. Assuming LWE assumption, if there exists a PPT adversary A who distinguishes between our
MFHE multikey encryptions of 0 and 1 with non-negligible probability, there exists a PPT distinguisher D
which distinguishes between Regev-LWE encryptions of 0 and 1.

Proof. We prove this statement by contraposition. The proof is done by the following game between an
adversary A and a challenger C.

1 The challenger runs MFHE .KeyGen to generate key pairs (pk 1, sk 1), (pk 2, sk 2) and sends pk 1, pk 2, sk 2
to an adversary A who wants to distinguish multikey ciphertexts.

2 A may perform a polynomially bounded number of multikey encryptions or other operation running
MFHE .Enc and MFHE .Expand on input whatever she chooses and given public keys.

3 A submits two distinct chosen plaintext M0,M1 to the challenger C.
4 C chooses a bit b ∈ {0, 1} uniformly at random, and encrypts Mb by pk 1, say Cb, and expands it with

the other public key pk 2 then sends Ĉb to A.
5 A multiplies sk 2 to the second diagonal matrix of Ĉb on the left then sends it and sk 2 to D.
6 A outputs whatever D outputs.

In detail, in this game, the expanded ciphertext is following

Ĉb =

(
Cb −X1

1 Q
0 Cb −X2

1 + X̄2
1 −Q2

)
∈ Z2n×2m

q

9



. In step 5, A does t2(Cb −X2
1 + X̄2

1 −Q2) and gets bt2G + t1Q + error since sk 2 = t2 in our scheme. Now
it is a Regev-LWE ciphertext of b under sk 1 (Here, t2G is working as w in Regev-LWE ciphertext). Then
A sends it and sk 2 together to the Regev-LWE distinguisher D. Finally The advantage of A is as same as
the advantage of D which is negligible in the parameter κ by the semantic security of Regev-LWE public
key encryption scheme [11]. Let D0 and D1 are two distributions of Regev-LWE encryptions of 0 and 1,
respectively.

|Pr
[
MPKCCPAA,MFHE(κ) = 1

]
− 1

2
| = |Prx←D0

[D(x) = 1]− Prx←D1
[D(x) = 1] | ≤ negl(κ)

Therefore, since there is no PPT distinguisher D who succeeds with non-negligible probability, neither does
A.

Theorem 7. Our MFHE scheme defined in this section is multikey-CPA secure under LWE assumption.

Proof. By the above Lemma 6 and the definition of multikey-CPA security, the proof is done.

4 A three round MPC protocol

In the previous section, we give the LinkAlgo algorithm to have a relation between two key pairs (pk, sk)
and (pk′, sk′). In this section, we make use of the relation obtained by LinkAlgo algorithm to construct our
MFHE scheme, and then we introduce a three round MPC protocol that is secure against semi-malicious
adversary from the MFHE scheme. This type of adversary is weaker than standard active malicious adversary
but stronger than semi honest adversary who just follows a protocol honestly albeit it wants to know other
parties’ inputs. We give a definition of Semi-malicious adversary model which is introduced in [1].

Semi malicious adversary.

A semi-malicious adversary can corrupt arbitrary number of honest parties. It can deviate a protocol to some
extent. In other words, he can choose the randomness of input by himself arbitrarily and adaptively in each
round. This choice must explain the message sent by the adversary. It must follow the correct behavior of
the honest protocol with inputs and randomness that it knows. We assume that it can be rushing (i.e. after
seeing messages from honest parties, it may choose its message.) and also the adversarial parties may abort
at any point of the protocol. The proof of the security goes on in the usual way showing that the real model’s

distribution
comp
≈ the ideal one.

4.1 A three round MPC protocol via MFHE

Let f : ({0, 1})N → {0, 1} be the function to compute. Let d the depth of the circuit for computing f .

Preprocessing. Run params← MFHE .Setup(1λ, 1d). Make sure that all the parties have params.
Input: For i ∈ [N ], each party Pi holds input xi ∈ {0, 1}, and wants to compute f(x1, · · · , xN ).
Round I. (Round for public key) Each party Pi executes the following steps:

– Generate its key pair (pki, ski)← MFHE .KeyGen(params).
– Broadcast the public key pki.

Round II. (Round for multikey ciphertext) Each party Pi for i ∈ [N ] on receiving public keys {pkk}k 6=i
executes the following steps:
– Encrypt the message xi with its public key pki to get a single-key ciphertext Ci ← MFHE .Enc(pki, xi).

Keep the relevant random matrix Ri,j ∈ {0, 1}m×m to Ci which will be need for MFHE .Expand.
– Run the expand algorithm to get a multikey ciphertext:

Ĉi ← MFHE .Expand((pk1, · · · , pkN ), i,Ci)

10



– Broadcast the multikey ciphertext Ĉi.
Round III. (Round for partial decryptions) Each party Pi for i ∈ [N ] on receiving ciphertexts {Ĉk}k 6=i

executes the following steps:
– Run the evaluation algorithm to get the evaluated ciphertext:

Ĉ∗ ← MFHE .Eval(f, (Ĉ1, · · · , ĈN ))

– Run the partial decryption algorithm on Ĉ∗:

pi ← MFHE .PartDec(Ĉ∗, (pk1, · · · , pkN ), i, ski)

– Broadcast the partial decryption pi of Ĉ∗.
Output: On receiving all the values {pk}k 6=i, run the final decryption algorithm to obtain the function value

f(x1, · · · , xN ):
y ← MFHE .FinDec(p1, · · · , pN ),

and output y = f(x1, · · · , xN ).

Security. The security proof of the above MPC protocol against semi-malicious adversaries is similar to
that of the previous work [10]. The proof heavily depends on the simulatability of partial decryption and
the multikey-CPA security of our MFHE encryption. By the correctness of expansion in Section 4, our
MFHE scheme inherits the simulatability of [10]. They proved the MPC protocol is secure against any
static semi-malicious adversaries who corrupt exactly N − 1 parties at first because of their simulator of the
threshold decryption. Then they proved the security against those who corrupt arbitrary number of parties
using only pseudorandom functions. We adapt their way apart from the messages of each round, i.e. the
simulator’s the first round behavior of [10] works in our second round and that of the second round works in
our third round.

5 Conclusion

We have presented an MFHE scheme without any CRS based on the LWE assumption, which is more secure
than our previous version [7]. As an important application, we have constructed a three round MPC protocol
which is secure against semi-malicious adversaries. This seems to be round -optimal among all MPC from
MFHE without CRS as we mentioned in introduction. In this work, we also have suggested an important
stepping stone to get secure MPC protocol, without any trusted setup, against fully malicious adversaries.

Acknowledgments

We would like to thank Dr. Mehdi Tibouchi for his helpful comment in this work. This research was supported
by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT and Future Planning(Grant Number: 2015R1A2A1A15054564)

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with
low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 483–501.
Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

2. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017: 15th Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science, vol.
10677, pp. 645–677. Springer, Heidelberg, Germany, Baltimore, MD, USA (Nov 12–15, 2017)

11



3. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part II. Lecture Notes in Computer Science,
vol. 9216, pp. 630–656. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

4. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford, CA, USA (2009), aAI3382729
5. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013,
Part I. Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2013)

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols
with honest majority. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. ACM,
ACM, New York, NY, USA

7. Kim, E., Lee, H.S., Park, J.: Towards round-optimal secure multiparty computations: Multikey FHE without
a CRS. In: Susilo, W., Yang, G. (eds.) ACISP 18: 23rd Australasian Conference on Information Security and
Privacy. Lecture Notes in Computer Science, vol. 10946, pp. 101–113. Springer, Heidelberg, Germany, Wollongong,
NSW, Australia (Jul 11–13, 2018)

8. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th Annual ACM Symposium on Theory of
Computing. pp. 1219–1234. ACM Press, New York, NY, USA (May 19–22, 2012)

9. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson,
T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp.
700–718. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

10. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.S.
(eds.) Advances in Cryptology – EUROCRYPT 2016, Part II. Lecture Notes in Computer Science, vol. 9666, pp.
735–763. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016)

11. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM)
56(6), 34 (2009)

12. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations
of Computer Science. pp. 160–164. IEEE Computer Society Press, Chicago, Illinois (Nov 3–5, 1982)

12


	Towards Round-Optimal Secure Multiparty Computations: Multikey FHE without a CRS

