
Adversarially Robust Property-Preserving
Hash Functions

Elette Boyle∗
IDC Herzliya

Rio Lavigne†
MIT

Vinod Vaikuntanathan‡
MIT

November 27, 2018

Abstract

Property-preserving hashing is a method of compressing a large input x into a short
hash h(x) in such a way that given h(x) and h(y), one can compute a property P (x,y) of
the original inputs. The idea of property-preserving hash functions underlies sketching,
compressed sensing and locality-sensitive hashing.

Property-preserving hash functions are usually probabilistic: they use the random choice
of a hash function from a family to achieve compression, and as a consequence, err on some
inputs. Traditionally, the notion of correctness for these hash functions requires that for ev-
ery two inputs x and y, the probability that h(x) and h(y) mislead us into a wrong predic-
tion of P (x,y) is negligible. As observed in many recent works (incl. Mironov, Naor and
Segev, STOC 2008; Hardt and Woodruff, STOC 2013; Naor and Yogev, CRYPTO 2015), such
a correctness guarantee assumes that the adversary (who produces the offending inputs)
has no information about the hash function, and is too weak in many scenarios.

We initiate the study of adversarial robustness for property-preserving hash functions,
provide definitions, derive broad lower bounds due to a simple connection with commu-
nication complexity, and show the necessity of computational assumptions to construct
such functions. Our main positive results are two candidate constructions of property-
preserving hash functions (achieving different parameters) for the (promise) gap-Hamming
property which checks if x and y are “too far” or “too close”. Our first construction relies
on generic collision-resistant hash functions, and our second on a variant of the syndrome
decoding assumption on low-density parity check codes.

∗E-mail: eboyle@alum.mit.edu
†E-mail: rio@mit.edu
‡E-mail: vinodv@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619, CNS-

1718161 and CNS-1414119, an MIT-IBM grant, and a DARPA Young Faculty Award.

1 Introduction

The problem of property-preserving hashing, namely how to compress a large input in a way that
preserves a class of its properties, is an important one in the modern age of massive data. In
particular, the idea of property-preserving hashing underlies sketching [MP80, MG82, AMS96,
CM05, CCF04], compressed sensing [CDS01], locality-sensitive hashing [IM98], and in a broad
sense, much of machine learning.

As two concrete examples in theoretical computer science, consider universal hash func-
tions [CW77] which can be used to test the equality of data points, and locality-sensitive hash
functions [IM98, Ind00] which can be used to test the `p-distance between vectors. In both
cases, we trade off accuracy in exchange for compression. For example, in the use of universal
hash functions to test for equality of data points, one stores the hash h(x) of a point x together
with the description of the hash function h. Later, upon obtaining a point y, one computes h(y)
and checks if h(y) = h(x). The pigeonhole principle tells us that mistakes are inevitable; all
one can guarantee is that they happen with an acceptably small probability. More precisely,
universal hash functions tell us that

∀x 6= y ∈ D,Pr[h← H : h(x) 6= h(y)] ≥ 1− ε

for some small ε. A cryptographer’s way of looking at such a statement is that it asks the ad-
versary to pick x and y first; and evaluates her success w.r.t. a hash function chosen randomly
from the family H. In particular, the adversary has no information about the hash function
when she comes up with the (potentially) offending inputs x and y. Locality-sensitive hash
functions have a similar flavor of correctness guarantee.

The starting point of this work is that this definition of correctness is too weak in the face of
adversaries with access to the hash function (either the description of the function itself or per-
haps simply oracle access to its evaluation). Indeed, in the context of equality testing, we have
by now developed several notions of robustness against such adversaries, in the form of pseu-
dorandom functions (PRF) [GGM86], universal one-way hash functions (UOWHF) [NY89] and
collision-resistant hash functions (CRHF). Our goal in this work is to expand the reach of these
notions beyond testing equality; that is, our aim is to do unto property-preserving hashing what
CRHFs did to universal hashing.

Several works have observed the deficiency of the universal hash-type definition in adver-
sarial settings, including a wide range of recent attacks within machine learning in adversar-
ial environments (e.g., [MMS+17, KW17, SND17, RSL18, KKG18]). Such findings motivate a
rigorous approach to combatting adversarial behavior in these settings, a direction in which
significantly less progress has been made. Mironov, Naor and Segev [MNS08] showed in-
teractive protocols for sketching in such an adversarial environment; in contrast, we focus on
non-interactive hash functions. Hardt and Woodruff [HW13] showed negative results which
say that linear functions cannot be robust (even against computationally bounded adversaries)
for certain natural `p distance properties; our work will use non-linearity and computational
assumptions to overcome the [HW13] attack. Finally, Naor and Yogev [NY15] study adversar-
ial Bloom filters which compress a set in a way that supports checking set membership; we
will use their lower bound techniques in Section 5.

Motivating Robustness: Facial Recognition. In the context of facial recognition, authorities
A and B store the captured images x of suspects. At various points in time, say authority A
wishes to look up B’s database for a suspect with face x. A can do so by comparing h(x) with
h(y) for all y in B’s database.

1

This application scenario motivated prior notions of fuzzy extractors and secure sketch-
ing. As with secure sketches and fuzzy extractors, a locality-sensitive property-preserving
hash guarantees that close inputs (facial images) remain close when hashed [DORS08]; this
ensures that small changes in ones appearance do not affect whether or not that person is au-
thenticated. However, neither fuzzy extractors nor secure sketching guarantees that far inputs
remain far when hashed. Consider an adversarial setting, not where a person wishes to evade
detection, but where she wishes to be mistaken for someone else. Her face x′ will undoubtably
be different (far) from her target x, but there is nothing preventing her from slightly altering her
face and passing as a completely different person when using a system with such a one-sided
guarantee. This is where our notion of robustness comes in (as well as the need for cryptog-
raphy): not only will adversarially chosen close x and x′ map to close h(x) and h(x′), but if
adversarially chosen x and x′ are far, they will be mapped to far outputs, unless the adversary
is able to break a cryptographic assumption.

Comparison to Secure Sketches and Fuzzy Extractors. It is worth explicitly comparing fuzzy
extractors and secure sketching to this primitive [DORS08], as they aim to achieve similar
goals. Both of these seek to preserve the privacy of their inputs. Secure sketches generate
random-looking sketches that hide information about the original input so that the original in-
put can be reconstructed when given something close to it. Fuzzy extractors generate uniform-
looking keys based off of fuzzy (biometric) data also using entropy: as long as the input has
enough entropy, so will the output. As stated above, both guarantee that if inputs are close,
they will ‘sketch’ or ‘extract’ to the same object. Now, the entropy of the sketch or key guar-
antees that randomly generated far inputs will not collide, but there are no guarantees about
adversarially generated far inputs. To use the example above, it could be that once an adver-
sary sees a sketch or representation, she can generate two far inputs that will reconstruct to the
correct input.

Robust Property-Preserving Hash Functions. We put forth several notions of robustness for
property-preserving hash (PPH) functions which capture adversaries with increasing power
and access to the hash function. We then ask which properties admit robust property-preserving
hash functions, and show positive and negative results.

• On the negative side, using a connection to communication complexity, we show that
most properties and even simple ones such as set disjointness, inner product and greater-
than do not admit non-trivial property-preserving hash functions.

• On the positive side, we provide two constructions of robust property-preserving hash
functions (satisfying the strongest of our notions). The first is based on the standard cryp-
tographic assumption of collision-resistant hash functions, and the second achieves more
aggressive parameters under a new assumption related to the hardness of syndrome de-
coding on low density parity-check (LDPC) codes.

• Finally, we show that for essentially any non-trivial predicate (which we call collision-
sensitive), achieving even a mild form of robustness requires cryptographic assumptions.

We proceed to describe our contributions in more detail.

1.1 Our Results and Techniques

We explore two notions of properties. The first is that of property classesP = {P : D → {0, 1}},
sets of single-input predicates. This notion is the most general, and is the one in which we

2

prove lower bounds. The second is that of two-input properties P : D × D → {0, 1}, which
compares two inputs. This second notion is more similar to standard notions of universal
hashing and collision-resistance, stronger than the first, and where we get our constructions.
We note that a two-input predicate has an analogous predicate-class P = {Px}x∈D, where
Px1(x2) = P (x1, x2).

The notion of a property can be generalized in many ways, allowing for promise properties
which output 0, 1 or ~ (a don’t care symbol), and allowing for more than 2 inputs. The sim-
plest notion of correctness for property-preserving hash functions requires that, analogously
to universal hash functions,

∀x, y ∈ DPr[h← H : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ)

or for single-input predicate-classes

∀x ∈ D and P ∈ P Pr[h← H : H.Eval(h, h(x), P) 6= P (x)] = negl(λ)

where λ is a security parameter.
For the sake of simplicity in our overview, we will focus on two-input predicates.

Defining Robust Property-Preserving Hashing. We define several notions of robustness for
PPH, each one stronger than the last. Here, we describe the strongest of all, called direct-access
PPH.

In a direct-access PPH, the (polynomial-time) adversary is given the hash function and is
asked to find a pair of bad inputs, namely x, y ∈ D such that H.Eval(h, h(x), h(y)) 6= P (x, y).
That is, we require that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ).

The direct-access definition is the analog of collision-resistant hashing for general properties.
Our other definitions vary by how much access the adversary is given to the hash function,

and are motivated by different application scenarios. From the strong to weak, these include
double-oracle PPH where the adversary is given access to a hash oracle and a hash evaluation
oracle, and evaluation-oracle PPH where the adversary is given only a combined oracle. Def-
initions similar to double-oracle PPH have been proposed in the context of adversarial bloom
filters [NY15], and ones similar to evaluation-oracle PPH have been proposed in the context
of showing attacks against property-preserving hash functions [HW13]. For more details, we
refer the reader to Section 2.

Connections to Communication Complexity and Negative Results. Property-preserving
hash functions for a property P , even without robustness, imply communication-efficient pro-
tocols for P in several models. For example, any PPH for P implies a protocol for P in the
simultaneous messages model of Babai, Gal, Kimmel and Lokam [BGKL03] wherein Alice
and Bob share a common random string h, and hold inputs x and y respectively. Their goal
is to send a single message to Charlie who should be able to compute P (x, y) except with
small error. Similarly, another formalization of PPH that we present, called PPH for single-
input predicate classes (see Section 2) implies efficient protocols in the one-way communica-
tion model [Yao79].

We use known lower bounds in these communication models to rule out PPHs for several
interesting predicates (even without robustness). There are two major differences between the
PPH setting and the communication setting, however: (a) in the PPH setting, we demand an

3

error that is negligible (in a security parameter); and (b) we are happy with protocols that
communicate n − 1 bits (or the equivalent bound in the case of promise properties) whereas
the communication lower bounds typically come in the form of Ω(n) bits. In other words, the
communication lower bounds as-is do not rule out PPH.

At first thought, one might be tempted to think that the negligible-error setting is the same
as the deterministic setting where there are typically lower bounds of n (and not just Ω(n));
however, this is not the case. For example, the equality function which has a negligible error
public-coin simultaneous messages protocol (simply using universal hashing) with communi-
cation complexityCC = O(λ) and deterministic protocols requireCC ≥ n. Thus, deterministic
lower bounds do not (indeed, cannot) do the job, and we must better analyze the randomized
lower bounds. Our refined analysis shows the following lower bounds:

• PPH for the Gap-Hamming (promise) predicate with a gap of
√
n/2 is impossible by

refining the analysis of a proof by Jayram, Kumar and Sivakumar [JKS08]. The Gap-
Hamming predicate takes two vectors in {0, 1}n as input, outputs 1 if the vectors are
very far, 0 if they are very close, and we do not care what it outputs for inputs in the
middle.

• We provide a framework for proving PPHs are impossible for some total predicates, char-
acterizing these classes as reconstructing. A predicate-class is reconstructing if, when only
given oracle access to the predicates of a certain value x, we can efficiently determine
x with all but negligible probability.1 With this framework, we show that PPH for the
Greater-Than (GT) function is impossible. It was known that GT required Ω(n) bits (for
constant error) [RS15], but we show a lower bound of exactly n if we want negligible
error. Index and Exact-Hamming are also reconstructing predicates.

• We also obtain a lower bound for a variant of GT: the (promise) Gap-k GT predicate
which on inputs x, y ∈ [N = 2n], outputs 1 if x − y > k, 0 if y − x > k, and we do not
care what it outputs for inputs in between. Here, exactly n− log(k)− 1 bits are required
for a perfect PPH. This is tight: we show that with fewer bits, one cannot even have a
non-robust PPH, whereas there is a perfect robust PPH that compresses to n− log(k)− 1
bits.

New Constructions. Our positive results are two constructions of a direct-access PPH for
gap-Hamming for n-length vectors for large gaps of the form ∼ O(n/ log n) (as opposed to an
O(
√
n)-gap for which we have a lower bound). Let us recall the setting: the gap Hamming

predicate Pham, parameterized by n, d and ε, takes as input two n-bit vectors x and y, and
outputs 1 if the Hamming distance between x and y is greater than d(1 + ε), 0 if it is smaller
than d(1 − ε) and a don’t care symbol ~ otherwise. To construct a direct-access PPH for this
(promise) predicate, one has to construct a compressing family of functionsH such that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : Pham(x, y) 6= ~

∧H.Eval(h, h(x), h(y)) 6= Pham(x, y)] = negl(λ). (1)

Our two constructions offer different benefits. The first provides a clean general approach,
and relies on the standard cryptographic assumption of collision-resistant hash functions. The
second builds atop an existing one-way communication protocol, supports a smaller gap and
better efficiency, and ultimately relies on a (new) variant of the syndrome decoding assumption
on low-density parity check codes.

1In the single-predicate language of above, the predicate class corresponds to P = {P (x, ·)}.

4

Construction 1. The core idea of the first construction is to reduce the goal of robust Ham-
ming PPH to the simpler one of robust equality testing; or, in a word, “subsampling.” The
intuition is to notice that if x1 ∈ {0, 1}n and x2 ∈ {0, 1}n are close, then most small enough subsets
of indices of x1 and x2 will match identically. On the other hand, if x1 and x2 are far, then most
large enough subsets of indices will differ.

The hash function construction will thus fix a collection of sets S = {S1, . . . , Sk}, where
each Si ⊆ [n] is a subset of appropriately chosen size s. The desired structure can be achieved
by defining the subsets Si as the neighbor sets of a bipartite expander. On input x ∈ {0, 1}n,
the hash function will consider the vector y = (x|S1 , . . . ,x|Sk) where x|S denotes the substring
of x indexed by the set S. The observation above tells us that if x1 and x2 are close (resp. far),
then so are y1 and y2.

Up to now, it is not clear that progress has been made: indeed, the vector y is not com-
pressing (in which case, why not stick with x1,x2 themselves?). However, y1,y2 satisfy the
desired Hamming distance properties with fewer symbols over a large alphabet, {0, 1}s. As a
final step, we can then leverage (standard) collision-resistant hash functions (CRHF) to com-
press these symbols. Namely, the final output of our hash function h(x) will be the vector
(g(x|S1), . . . , g(x|Sk)), where each substring of x is individually compressed by a CRHF g.

The analysis of the combined hash construction then follows cleanly via two steps. The
(computational) collision-resistence property of g guarantees that any efficiently found pair of
inputs x1,x2 will satisfy that their hash outputs

h(x1) = (g(x1|S1), . . . , g(x1|Sk)) and h(x2) = (g(x2|S1), . . . , g(x2|Sk))

are close if and only if it holds that

(x1|S1 , . . . ,x1|Sk) and (x2|S1 , . . . ,x2|Sk)

are close as well; that is, x1|Si = x2|Si for most Si. (Anything to the contrary would imply
finding a collision in g.) Then, the combinatorial properties of the chosen index subsets Si
ensures (unconditionally) that any such inputs x1,x2 must themselves be close. The remainder
of the work is to specify appropriate parameter regimes for which the CRHF can be used and
the necessary bipartite expander graphs exist.

Construction 2. The starting point for our second construction is a simple non-robust hash
function derived from a one-way communication protocol for gap-Hamming due to Kushile-
vitz, Ostrovsky, and Rabani [KOR98]. In a nutshell, the hash function is parameterized by a
random sparse m×n matrix A with 1’s in 1/d of its entries and 0’s elsewhere; multiplying this
matrix by a vector z “captures” information about the Hamming weight of z. However, this
can be seen to be trivially not robust when the hash function is given to the adversary. The ad-
versary simply performs Gaussian elimination, discovering a “random collision” (x, y) in the
function, where, with high probability x ⊕ y will have large Hamming weight. This already
breaks equation (1).

The situation is somewhat worse. Even in a very weak, oracle sense, corresponding to
our evaluation-oracle-robustness definition, a result of Hardt and Woodruff [HW13] shows
that there are no linear functions h that are robust for the gap-`2 predicate. While their result
does not carry over as-is to the setting of `0 (Hamming), we conjecture it does, leaving us
with two options: (a) make the domain sparse: both the Gaussian elimination attack and the
Hardt-Woodruff attack use the fact that Gaussian elimination is easy on the domain of the hash
function; however making the domain sparse (say, the set of all strings of weight at most βn
for some constant β < 1) already rules it out; and (b) make the hash function non-linear: again,

5

both attacks crucially exploit linearity. We will pursue both options, and as we will see, they
are related.

But before we get there, let us ask whether we even need computational assumptions to
get such a PPH. Can there be information-theoretic constructions? The first observation is
that by a packing argument, if the output domain of the hash function has size less than

2n−n·H(
d(1+ε)
n

) ≈ 2n−d logn(1+ε) (for small d), there are bound to be “collisions”, namely, two far
points (at distance more than d(1 + ε)) that hash to the same point. So, you really cannot com-
press much information-theoretically, especially as d becomes smaller. A similar bound holds
when restricting the domain to strings of Hamming weight at most βn for constant β < 1.

With that bit of information, let us proceed to describe in a very high level our construction
and the computational assumption. Our construction follows the line of thinking of Apple-
baum, Haramaty, Ishai, Kushilevitz and Vaikuntanathan [AHI+17] where they used the hard-
ness of syndrome decoding problems to construct collision-resistant hash functions. Indeed,
in a single sentence, our observation is that their collision-resistant hash functions are locality-
sensitive by virtue of being input-local, and thus give us a robust gap-Hamming PPH (albeit
under a different assumption).

In slightly more detail, our first step is to simply take the construction of Kushilevitz, Os-
trovsky, and Rabani [KOR98], and restrict the domain of the function. We show that finding
two close points that get mapped to far points under the hash function is simply impossible
(for our setting of parameters). On the other hand, there exist two far points that get mapped
to close points under the hash functions (in fact, they even collide). Thus, showing that it is
hard to find such points requires a computational assumption.

In a nutshell, our assumption says that given a random matrix A where each entry is chosen
from the Bernoulli distribution with Ber(1/d) with parameter 1/d, it is hard to find a large
Hamming weight vector x where Ax (mod 2) has small Hamming weight. Of course, “large”
and “small” here have to be parameterized correctly (see Section 4.2 for more details), however
we observe that this is a generalization of the syndrome decoding assumption for low-density
parity check (LDPC) codes, made by [AHI+17].

In our second step, we remove the sparsity requirement on the input domain of the predi-
cate. We show a sparsification transformation which takes arbitrary n-bit vectors and outputs
n′ > n-bit sparse vectors such that (a) the transformation is injective, and (b) the expansion
introduced here does not cancel out the effect of compression achieved by the linear transfor-
mation x → Ax. This requires careful tuning of parameters for which we refer the reader to
Section 4.2.

The Necessity of Cryptographic Assumptions. The goal of robust PPH is to compress be-
yond the information theoretic limits, to a regime where incorrect hash outputs exist but are
hard to find. If robustness is required even when the hash function is given, this inherently ne-
cessitates cryptographic hardness assumptions. A natural question is whether weaker forms of
robustness (where the adversary sees only oracle access to the hash function) similarly require
cryptographic assumptions, and what types of assumptions are required to build non-trivial
PPHs of various kinds.

As a final contribution, we identify necessary assumptions for PPH for a kind of predi-
cate we call collision sensitive. In particular, PPH for any such predicate in the double-oracle
model implies the existence of one-way functions, and in the direct-access model implies ex-
istence of collision-resistant hash functions. In a nutshell, collision-sensitive means that find-
ing a collision in the predicate breaks the property-preserving nature of any hash. The proof
uses and expands on techniques from the work of Naor and Yogev on adversarially robust
Bloom Filters [NY15]. The basic idea is the same: without OWFs, we can invert arbitrary

6

polynomially-computable functions with high probability in polynomial time, and using this
we get a representation of the hash function/set, which can be used to find offending inputs.

2 Defining Property-Preserving Hash Functions

Our definition of property preserving hash functions (PPHs) comes in several flavors, depend-
ing on whether we support total or partial predicates; whether the predicates take a single
input or multiple inputs; and depending on the information available to the adversary. We
discuss each of these choices in turn.

Total vs. Partial Predicates. We consider total predicates that assign a 0 or 1 output to each
element in the domain, and promise (or partial) predicates that assign a 0 or 1 to a subset of the
domain and a wildcard (don’t-care) symbol ~ to the rest. More formally, a total predicate P on
a domain X is a function P : X → {0, 1}, well-defined as 0 or 1 for every input x ∈ X . A
promise predicate P on a domain X is a function P : X → {0, 1,~}. Promise predicates can
be used to describe scenarios (such as gap problems) where we only care about providing an
exact answer on a subset of the domain.

Our definitions below will deal with the more general case of promise predicates, but we
will discuss the distinction between the two notions when warranted.

Single-Input vs Multi-Input Predicates. In the case of single-input predicates, we consider
a class of properties P and hash a single input x into h(x) in a way that given h(x), one can
compute P (x) for any P ∈ P . Here, h is a compressing function. In the multi-input setting,
we think of a single fixed property P that acts on a tuple of inputs, and require that given
h(x1), h(x2), . . . , h(xk), one can compute P (x1, x2, . . . , xk). The second syntax is more expres-
sive than the first, and so we use the multi-input syntax for constructions and the single-input
syntax for lower bounds2.

Before we proceed to discuss robustness, we provide a working definition for a property-
preserving hash function for the single-input syntax. For the multi-input predicate definition
and further discussion, see appendix A.

Definition 1. A (non-robust) η-compressing Property Preserving Hash (η-PPH) family H = {h :
X → Y } for a function η and a class of predicates P requires the following two efficiently computable
algorithms:

• H.Samp(1λ)→ h is a randomized p.p.t. algorithm that samples a random hash function fromH
with security parameter λ.

• H.Eval(h, P, y) is a deterministic polynomial-time algorithm that on input the hash function h,
a predicate P ∈ P and y ∈ Y (presumably h(x) for some x ∈ X), outputs a single bit.

Additionally,H must satisfy the following two properties:

• η-compressing, namely, log |Y | ≤ η(log |X|), and

2There is yet a third possibility, namely where there is a fixed predicate P that acts on a single input x, and
we require that given h(x), one can compute P (x). This makes sense when the computational complexity of h is
considerably less than that of P , say when P is the parity function and h is an AC0 circuit, as in the work of Dubrov
and Ishai [DI06]. We do not explore this third syntax further in this work.

7

For security parameter λ, fixed predicate class P , and h sampled fromH.Samp

Non-Robust PPH Adversary has no access to hash function or evaluation.
Evaluation-Oracle PPH Access to the evaluation oracle OEval

h (x, P) = H.Eval(h, P, h(x)).
Double-Oracle PPH Access to both OEval

h (as above) and hash oracle OHash
h (x) = h(x).

Robust PPH Direct access to the hash function, description of h.
“Direct Access”

Figure 1: A table comparing the adversary’s access to the hash function within different ro-
bustness levels of PPHs.

• robust, according to one of four definitions that we describe below, leading to four notions of
PPH: definition 2 (non-robust PPH), 3 (evaluation-oracle-robust PPH or EO-PPH), 5 (double-
oracle-robust PPH or DO-PPH), or 7 (direct-access robust PPH or DA-PPH). We will refer to
the strongest form, namely direct-access robust PPH as simply robust PPH when the intent is
clear from the context. See also figure 1 for a direct comparison between these.

The Many Types of Robustness. We will next describe four definitions of robustness for
PPHs, starting from the weakest to the strongest. Each of these definitions, when plugged
into the last bullet of Definition 1, gives rise to a different type of property-preserving hash
function. In each of these definitions, we will describe an adversary whose goal is to produce
an input and a predicate such that the hashed predicate evaluation disagrees with the truth.
The difference between the definitions is in what an adversary has access to, summarized in
figure 1.

2.1 Non-Robust PPH

We will start by defining the weakest notion of robustness which we call non-robust PPH. Here,
the adversary has no information at all on the hash function h, and is required to produce a
predicate P and a valid input x, namely where P (x) 6= ~, such that H.Eval(h, P, x) 6= P (x)
with noticeable probability. When P is the family of point functions (or equality functions),
this coincides with the notion of 2-universal hash families [CW77]3.

Here and in the following, we use the notation Pr[A1; . . . ;Am : E] to denote the probability
that event E occurs following an experiment defined by executing the sequence A1, . . . , Am in
order.

Definition 2. A family of PPH functions H = {h : X → Y } for a class of predicates P is a family of
non-robust PPH functions if for any P ∈ P and x ∈ X such that for P (x) 6= ~,

Pr[h← H.Samp(1λ) : H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

2.2 Evaluation-Oracle Robust PPH

In this model, the adversary has slightly more power than in the non-robust setting. Namely,
she can adaptively query an oracle that has h← H.Samp(1λ) in its head, on inputs P ∈ P and
x ∈ X , and obtain as output the hashed evaluation result H.Eval(h, P, h(x)). Let Oh(x, P) =
H.Eval(h, P, h(x)).

3While 2-universal hashing corresponds with a two-input predicate testing equality, the single-input version
({Px1}where Px1(x2) = (x1 == x2)) is more general, and so it is what we focus on.

8

Definition 3. A family of PPH functions H = {h : X → Y } for a class of predicates P is a family of
evaluation-oracle robust (EO-robust) PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P)← AOh(1λ) :

P (x) 6= ~ ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

The reader might wonder if this definition is very weak, and may ask if it follows just
from the definition of a non-robust PPH family. In fact, for total predicates, we show that the
two definitions are the same. At a high level, simply querying the evaluation oracle on (even
adaptively chosen) inputs cannot reveal information about the hash function since with all but
negligible probability, the answer from the oracle will be correct and thus simulatable without
oracle access. The proof of the following lemma is in Appendix B.1.

Lemma 4. Let P be a class of total predicates on X . A non-robust PPHH for P is also an Evaluation-
Oracle robust PPH for P for the same domain X and same codomain Y .

However, when dealing with promise predicates, an EO-robustness adversary has the abil-
ity to make queries that do not satisfy the promise, and could get information about the hash
function, perhaps even reverse-engineering the entire hash function itself. Indeed, Hardt and
Woodruff [HW13] show that there are no EO-robust linear hash functions for a certain promise-
`p distance property; whereas, non-robust linear hash functions for these properties follow
from the work of Indyk [IM98, Ind00].

2.3 Double-Oracle PPH

We continue our line of thought, giving the adversary more power. Namely, she has access to
two oracles, both have a hash function h ← H.Samp(1λ) in their head. The hash oracle OHash

h ,
parameterized by h ∈ H, outputs h(x) on input x ∈ X . The predicate evaluation oracle OEval

h ,
also parameterized by h ∈ H, takes as input P ∈ P and y ∈ Y and outputs H.Eval(h, P, y).
When P is the family of point functions (or equality functions), this coincides with the notion
of psuedo-random functions.

Definition 5. A family of PPH functions H = {h : X → Y } for a class of predicates P is a family of
double-oracle-robust PPH (DO-PPH) functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P)← AOHash
h ,OEval

h (1λ) :

P (x) 6= ~ ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

We show that any evaluation-oracle-robust PPH can be converted into a double-oracle-
robust PPH at the cost of a computational assumption, namely, one-way functions. In a nut-
shell, the observation is that the output of the hash function can be encrypted using a sym-
metric key that is stored as part of the hash description, and the evaluation proceeds by first
decrypting.

Lemma 6. Let P be a class of (total or partial) predicates on X . Assume that one-way functions exist.
Then, any EO-robust PPH for P can be converted into a DO-robust PPH for P .

See appendix B.2 for the full proof.

9

2.4 Direct-Access Robust PPH

Finally, we define the strongest notion of robustness where the adversary is given the descrip-
tion of the hash function itself. When P is the family of point functions (or equality functions),
this coincides with the notion of collision-resistant hash families.

Definition 7. A family of PPH functions H = {h : X → Y } for a class of predicates P is a family of
direct-access robust PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P)← A(h) :

P (x) 6= ~ ∧H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

We will henceforth focus on direct-access-robust property-preserving hash functions and re-
fer to them simply as robust PPHs.

3 Property Preserving Hashing and Communication Complexity

In this section, we identify and examine a relationship between property-preserving hash fam-
ilies (in the single-input syntax) and protocols in the one-way communication (OWC) model.
A OWC protocol is a protocol between two players, Alice and Bob, with the goal of evaluating
a certain predicate on their inputs and with the restriction that only Alice can send messages
to Bob.

Our first observation is that non-robust property-preserving hash functions and OWC pro-
tocols [Yao79] are equivalent except for two changes. First, PPHs require the parties to be
computationally efficient, and second, PPHs also require protocols that incur error negligible
in a security parameter. It is also worth noting that while we can reference lower-bounds in
the OWC setting, these lower bounds are typically of the form Ω(n) and are not exact. On the
other hand, in the PPH setting, we are happy with getting a single bit of compression, and so
an Ω(n) lower bound still does not tell us whether or not a PPH is possible. So, while we can
use previously known lower bounds for some well-studied OWC predicates, we need to refine
them to be exactly n in the presence of negligible error. We also propose a framework (for total
predicates) that yields exactly n lower bounds for INDEXn, GREATERTHAN,and EXACTHAM-
MING.

3.1 PPH Lower Bounds from One-Way Communication Lower Bounds

In this section, we will review the definition of OWC, and show how OWC lower bounds
imply PPH impossibility results.

Definition 8. [Yao79, KNR95] A δ-error public-coin OWC protocol Π for a two-input predicate P :
{0, 1}n × {0, 1}n → {0, 1} consists of a space R of randomness, and two functions ga : X1 × R → Y
and gb : Y ×X2 ×R→ {0, 1} so that for all x1 ∈ X1 and x2 ∈ X2,

Pr[r ← R; y = ga(x1; r) : gb(y, x2; r) 6= P (x1, x2)] ≤ δ.

A δ-error public-coin OWC protocol Π for a class of predicates P = {P : {0, 1}n → {0, 1}}, is
defined much the same as above, with a function ga : X ×R→ Y , and another function gb : Y ×P →
{0, 1}, which instead of taking a second input, takes a predicate from the predicate class. We say Π has
δ-error if

Pr[r ← R; y = ga(x; r) : gb(y, P ; r) 6= P (x)] ≤ δ

10

Let Protocolsδ(P) denote the set of OWC protocols with error at most δ for a predicate P ,
and for every Π ∈ Protocolsδ(P), let YΠ be the range of messages Alice sends to Bob (the range
of ga) for protocol Π.

Definition 9. The randomized, public-coin OWC complexity of a predicate P with error δ, denoted
RA→Bδ (P), is the minimum over all Π ∈ Protocolsδ(P) of dlog |YΠ|e.

For a predicate class P , we define the randomized, public-coin OWC complexity with error δ, de-
noted RA→Bδ (P), is the minimum over all Π ∈ Protocolsδ(P) of dlog |YΠ|e.

A PPH scheme for a two-input predicate4 P yields a OWC protocol for P with communi-
cation comparable to a single hash output size.

Theorem 10. Let P be any two-input predicate P and P = {Px}x∈{0,1}n be the corresponding pred-
icate class where Px2(x1) = P (x1, x2). Now, let H be a PPH in any model for P that compresses n
bits to m = ηn. Then, there exists a OWC protocol Π such that the communication of Π is m and with
negligible error.

Conversely, the amount of possible compression of any (robust or not) PPH family H : {h : X →
Y } is lower bounded by RA→Bnegl(λ)(P). Namely, log |Y | ≥ RA→Bnegl(λ)(P).

Essentially, the OWC protocol is obtained by using the public common randomness r to
sample a hash function h = H.Samp(1λ; r), and then Alice simply sends the hash h(x1) of her
input to Bob. See Appendix C.1 for the proof.

3.2 OWC and PPH lower bounds for Reconstructing Predicates

We next leverage this connection together with OWC lower bounds to obtain impossibility
results for PPHs. First, we will discuss the total predicate case; we consider some partial
predicates in section 3.3.

As discussed, to demonstrate the impossibility of a PPH, one must give an explicit n-bit
communication complexity lower bound (not just Ω(n)) for negligible error. We give such
lower bounds for an assortment of predicate classes by a general approach framework we
refer to as reconstructing. Intuitively, a predicate class is reconstructing if, when given only
access to predicates evaluated on an input x, one can, in polynomial time, determine the exact
value of x with all but negligible probability.

Definition 11. A class P of total predicates P : {0, 1}n → {0, 1}, is reconstructing if there exists
a PPT algorithm L (a ’learner’) such that for all x ∈ {0, 1}n, given randomness r and oracle access to
predicates P on x, denoted Ox(P) = P (x),

Pr
r

[LOx(r)→ x] ≥ 1− negl(n).

Theorem 12. If P is a reconstructing class of predicates on input space {0, 1}n, then a PPH does not
exist for P .

Proof. We will prove this by proving the following OWC lower bound:

RA→Bnegl(n)(P) = n.

By Theorem 10, this implies a PPH cannot compress the input and still be correct.

4Or rather, for the induced class of single-input predicates P = {Px2}x2∈{0,1}n , where Px2(x1) = P (x1, x2); we
will use these terminologies interchangeably.

11

We show that if Alice communicates any fewer than n bits to Bob, then there exists at least
one pair of (x, P) ∈ {0, 1}n × P such that the probability that the OWC protocol outputs P (x)
correctly is non-negligible. Our strategy is to generate pairs (x, P) over some distribution
such that, for every fixed choice of randomness of the OWC protocol, the probability that the
sampled (x, P) evaluates incorrectly will be 1/poly(n). We first prove that such a distribution
violates the negligible-error correctness of OWC.

A bad distribution violates correctness. Let D be the distribution producing (x, P), rΠ be
the randomness of a OWC protocol Π, and gb(ga(x), P) = gb(ga(x; rΠ), P ; rΠ) for ease of nota-
tion. Suppose, for sake of contradiction, that our distribution had a non-negligible chance of
producing an error (it is a “bad” distribution), but the correctness of the OWC protocol held.
So, we have

1

poly
= Pr

(x,P)∼D,rΠ
[P (x) 6= gb(ga(x), P)]

=
∑
(x,P)

Pr
(x,P)

[D = (x, P)] Pr[P (x) 6= gb(ga(x), P)|(x, P) = D],

while the definition of negligible-error OWC protocol states that for every (x, P) pair, Pr[P (x) 6=
gb(ga(x), P)] ≤ negl(n). If we plug in negl(n) for the value of Pr[P (x) 6= gb(ga(x), P)|(x, P) =
D], then we get

Pr
(x,P)∼D,rΠ

[P (x) 6= gb(ga(x), P)] = negl(n) ·
∑
(x,P)

Pr
(x,P)

[D = (x, P)] = negl(n).

This is a contradiction, and therefore the existence of a distribution producing input-predicate
pairs (x, P) that break the OWC protocol with 1/poly probability, violates the (negligible error)
correctness.

Generating a bad distribution. So, fix any randomness of the OWC protocol. We will now
generate such a distribution D, blind to the randomness of the protocol, that violates correct-
ness of the protocol with 1/poly(n) probability. Let L be the learner for P . We generate this
attack as follows:

1. x $← {0, 1}n.

2. r $← Ur (to fix the randomness for L).

3. Simulate L(r), answering each query P toOx correctly by computing P (x), keeping a list
P1, . . . , Pt of each predicate query that was not answered with ⊥.

4. i $← [t].

5. Output (x, Pi).

We will show that the probability this attack succeeds will be Ω(1/t), where t is the total
number of queries L makes to Ox. Since L is PPT, with all but negligible probability, t =
poly(n), and therefore the attack succeeds with 1/poly(n) probability.

Note that if Alice and Bob communicate fewer than n bits, for at least half of x ∈ {0, 1}n,
there exists an x′ that maps to the same communicated string: ga(x) = ga(x

′). We analyze the
attack success probability via a sequence of steps.

12

Chose x or x′ in a pair. We will first compute the probability that we chose an x that was part
of some pair hashing to the same string. Let Pairs be a maximal set of non-overlapping
pairs (x, x′) that map to the same things. That is for (x, x′) and (y, y′) in Pairs, then none
of x, x′, y, y′ can equal each other. The fraction of elements that show up in Pairs is at
least 1/4. Therefore Prx[choose x or x′ in a pair] ≥ 1

4 .

Chose x and x′ that L(r) reconstructs. Now assume that we have chosen either an x or x′ in
Pairs (that is, fix x and x′). The probability that L distinguishes between x and x′ is
at least the probability that L correctly reconstructs both x and x′. Via a union bound,
Prr[L

Ox(r) = x ∧ LOx′ (r) = x′] ≥ 1− 2negl(n) = 1− negl(n).

Chose i that distinguishes x and x′. Next, assume all previous points. Let i∗ ∈ [t] be the first
query at which Pi∗(x) 6= Pi∗(x

′). Because we fixed r, L(r) now behaves deterministically,
although adapts to query inputs, and so Pi∗ will be the i∗’th query from L to both oracles
Ox and Ox′ , and must be answered differently (Pi∗(x) 6= Pi∗(x

′)). Since ga(x) = ga(x
′),

we have that gb(ga(x), Pi∗) = gb(ga(x
′), Pi∗) and so either gb(ga(x), Pi∗) 6= Pi∗(x) or

gb(ga(x
′), Pi∗) 6= Pi∗(x

′).

The probability we guess i = i∗ is 1
t .

Chose the bad input from x or x′. Assuming all previous points in this list, we get that for
one of x or x′, the predicate Pi is evaluated incorrectly by gb. Since we have assumed
we chose one of x or x′ (uniformly), the probability we chose the x or x′ that evaluate
incorrectly is 1/2.

The probability the attack succeeds. Putting all of these points together, after fixing the hash
function randomness (and sufficiently large n),

Pr
L

[gb(ga(x), Pi) 6= Pi(x)] ≥ 1

4
· (1− negl(n)) · 1

t
· 1

2
≥ 1

10t
.

To recap: we have shown that for every randomness for a OWC protocol, we can produce an
input and predicate such that the protocol fails with polynomial-chance. This implies that the
OWC protocol does not have negligible error, and furthermore that no PPH can exist for such
a predicate class.

Reconstructing using INDEXn, GREATERTHAN, or EXACTHAMMING

We turn to specific examples of predicate classes and sketch why they are reconstructing. For
formal proofs, we refer the reader to Appendix C.2.

• The INDEXn class of predicates {P1, . . . , Pn} is defined over x ∈ {0, 1}n where Pi(x) = xi,
the i’th bit of x. INDEXn is reconstructing simply because the learner L can just query the
each of the n indices of the input and exactly reconstruct: xi = Pi(x).

• The GREATERTHAN class of predicates {Px}x∈[2n] is defined over x ∈ [2n] = {0, 1}n
where Px2(x1) = 1 if x1 > x2 and 0 otherwise. GREATERTHAN is reconstructing be-
cause we can run a binary search on the input space, determining the exact value of x
in n queries. GREATERTHAN is an excellent example for how an adaptive learner L can
reconstruct.

• The EXACTHAMMING(α) class of predicates {Px}x∈{0,1}n is defined over x ∈ {0, 1}n
where Px2(x1) = 1 if ||x1 − x2||0 > α and 0 otherwise. To show that EXACTHAM-
MING(n/2) is reconstructing requires a little more work. The learner L resolves each

13

index of x independently. For each index, L makes polynomially many random-string
queries r toOx; if the i’th bit of r equals xi, then r is more likely to be within n/2 hamming
distance of x, and if the bits are different, r is more likely to not be within n/2 hamming
distance of x. The proof uses techniques from [JKS08], and is an example where the
learner uses randomness to reconstruct.

We note that it was already known that INDEXn and EXACTHAMMING(n/2) had OWC
complexity of n-bits for any negligible error [KNR95], though no precise lower bound for ran-
domized OWC protocols was known for GREATERTHAN. What is new here is our unified
framework.

3.3 Lower bounds for some partial predicates

In the previous section, we showed how the ability to reconstruct an input using a class of
total predicates implied that PPHs for the class cannot exist. This general framework, un-
fortunately, does not directly extend to the partial-predicate setting, since it is unclear how
to define the behavior of an oracle for the predicate. Nevertheless, we can still take existing
OWC lower bounds and their techniques to prove impossibility results in this case. We will
show that GAPHAMMING(n, n/2, 1/

√
n) (the promise version of EXACTHAMMING) cannot ad-

mit a PPH, and that while Gap-k GREATERTHAN has a perfectly correct PPH compressing to
n− log(k)− 1 bits, compressing any further results in polynomial error (and thus no PPH with
more compression).

First, we define these partial predicates.

Definition 13. The definitions for GAPHAMMING(n, d, ε) and Gap-k GREATERTHAN are:

• The GAPHAMMING(n, d, ε) class of predicates {Px}x∈{0,1}n has Px2(x1) = 1 if ||x1 − x2||0 ≥
d(1 + ε), 0 if ||x1 − x2||0 ≤ d(1− ε), and ~ otherwise.

• The Gap-k GREATERTHAN class of predicates {Px}x∈[2n] has Px2(x1) = 1 if x1 > x2 + k, 0 if
x1 < x2 − k, and ~ otherwise.

Now, we provide some intuition for why these lower bounds (and the upper bound) exist.

Gap-Hamming. Our lower bound will correspond to a refined OWC lower bound for the
Gap-Hamming problem in the relevant parameter regime. Because we want to prove that we
cannot even compress by a single bit, we need to be careful with our reduction: we want the
specific parameters for which we have a lower bound, and we want to know just how the error
changes in our reduction.

Theorem 14. There does not exist a PPH for GAPHAMMING(n, n/2, 1/
√
n).

To prove, we show the OWC complexity RA→Bnegl(n) (GAPHAMMING (n, n/2, 1/
√
n)) = n. A

Ω(n) OWC lower bound for Gap-Hamming in this regime has been proved in a few different
ways [Woo04, Woo07, JKS08]. Our proof will be a refinement of [JKS08] and is detailed in
appendix C.3.1.

The high-level structure of the proof is to reduce INDEXn to GAPHAMMING with the correct
parameters. Very roughly, the ith coordinate of an input x ∈ {0, 1}n can be inferred from the
bias it induces on the Hamming distance between x and random public vectors. The reduction
adds negligible error, but since we require n bits for negligible-error INDEXn, we also require
n bits for a OWC protocol for GAPHAMMING.

14

Notice that this style of proof looks morally as though we are “reconstructing” the input x
using INDEXn. However, the notion of getting a reduction from INDEXn to another predicate-
class in the OWC model is not the same as being able to query an oracle about the predicate
and reconstruct based off of oracle queries. Being able to make a similar reconstructing charac-
terization of partial-predicates as we have for total predicates would be useful and interesting
in proving more lower bounds.

Gap-k GreaterThan. This predicate is a natural extension of GREATERTHAN: we only care
about learning that x1 < x2 if |x1 − x2| is larger than k (the gap). Intuitively, a hash function
can maintain this information by simply removing the log(k) least significant bits from inputs
and directly comparing: if h(x1) = h(x2), they can be at most k apart. We can further re-
move one additional bit using the fact that we know x2 when given h(x1) (considering Gap-k
GreaterThan as the corresponding predicate class parameterized by x2).

For the lower bound, we prove a OWC lower bound, showing RA→Bnegl(n)(P) = n− log(k)− 1.
This will be a proof by contradiction: if we compress to n − log(k) − 2 bits, we obtain many
collisions that are more than 3.5k apart. These far collisions imply the existence of inputs that
the OWC protocol must fail on, even given the gap. We are able to find these inputs the OWC
must fail on with polynomial probability, and this breaks the all-but-negligible correctness of
the protocol. Our formal theorem statement is below.

Theorem 15. There exists a PPH with perfect correctness for Gap-k GREATERTHAN compressing
from n bits to n− log(k)− 1. This is tight: no PPH for Gap-k GREATERTHAN can compress to fewer
than n− log(k)− 1 bits.

For the proof, see appendix C.3.2.

4 Two Constructions for Gap-Hamming PPHs

In this section, we present two constructions of PPHs for GAPHAMMING. Recall from section
3.3 that the gap-Hamming property P = GAPHAMMING(n, d, ε) is parameterized by the input
domain {0, 1}n, an integer d ∈ [n] and a parameter ε ∈ R≥0, so that P (x1,x2) = 1 if ||x1⊕x2||0 ≥
d(1 + ε) and 0 if ||x1 ⊕ x2||0 ≤ d(1 − ε). Both of our constructions will distinguish between
d(1 − ε)-close and d(1 + ε)-far vectors for d ≈ O(n/ log n). This means that the gap is quite
large, approximately O(n/ log n).

Our two constructions offer different benefits. The first provides a clean general approach,
and relies on the standard cryptographic assumption of collision-resistant hash functions.
The second takes a different approach, building on a one-way communication protocol for
GAPHAMMING of [KOR98]. The latter construction supports a smaller gap and better effi-
ciency, and ultimately relies on a (new) variant of the syndrome decoding assumption on low-
density parity check codes. Both our constructions are two-input PPH construction, which are
more general than single-input constructions that support a predicate class (see Lemma 33).

4.1 A Gap-Hamming PPH from Collision Resistance

Our first construction is a robust m/n-compressing GAPHAMMING(n, d, ε) PPH for any m =
nΩ(1), d = o(n/ log λ) and any constant ε > 0. Security of the construction holds under the
(standard) assumption that collision-resistant hash function families (CRHFs) exist.

We now informally describe the idea of the construction which, in one word, is “subsam-
pling”. In slightly more detail, the intuition is to notice that if x1 ∈ {0, 1}n and x2 ∈ {0, 1}n

15

are close, then most small enough subsets of indices of x1 and x2 will match identically. On
the other hand, if x1 and x2 are far, then most large enough subsets of indices will differ. This
leads us to the first idea for the construction, namely, fix a collection of sets S = {S1, . . . , Sk}
where each Si ⊆ [n] is a subset of appropriately chosen size s. On input x ∈ {0, 1}n, output
y = (x|S1 , . . . ,x|Sk) where x|S denotes the substring of x indexed by the set S. The observation
above tells us that if x1 and x2 are close (resp. far), so are y1 and y2.

However, this does not compress the vector x. Since the union of all the sets
⋃
i∈[k] Si has to

be the universe [n] (or else, finding a collision is easy), it turns out that we are just comparing
the vectors index-by-index. Fortunately, it is not necessary to output x|Si by themselves; rather
we can simply output the collision-resistant hashes. That is, we will let the PPH hash of x,
denoted y, be (g(x|S1), . . . , g(x|Sk)) where g is a collision resistant hash function randomly
drawn from a CRHF family.

This simple construction works as long as s, the size of the sets Si, is Θ(n/d), and the collec-
tion S satisfies that any subset of disagreeing input indices T ⊆ [n] has nonempty intersection
with roughly the corresponding fraction of subsets Si. The latter can be achieved by selecting
the Si of size Θ(n/d) at random, or alternatively as defined by the neighbor sets of a bipartite
expander. We are additionally constrained by the fact that the CRHF must be secure against
adversaries running in time poly(λ). So, let t = t(λ) be the smallest output size of the CRHF
such that it is poly(λ)-secure. Since the input size s to the CRHF must be ω(t) so that g actually
compresses, this forces d = o(n/t).

Before presenting our construction more formally, we define our tools.

• We will use a family of CRHFs that take inputs of variable size and produce outputs of
t bits and denote it by Ht = {h : {0, 1}∗ → {0, 1}t}. We implicitly assume a procedure
for sampling a seed for the CRHF given a security parameter 1λ. One could set t =
ω(log λ) and assume the exponential hardness of the CRHF, or set t = λO(1) and assume
polynomial hardness. These choices will result in different parameters of the PPH hash
function.

• We will use an (n, k,D, γ, α)-bipartite expander G = (L ∪ R,E) which is a D-left-regular
bipartite graph, with |L| = n and |R| = k such that for every S ⊂ L for which |S| ≤ γn,
we have |N(S)| ≥ α|S|, where N(S) is the set of neighbors of S. For technical reasons,
we will need the expander to be δ-balanced on the right, meaning that for every v ∈ R,
|N(v)| ≥ (1− δ)nD/k.

A simple probabilistic construction shows that for every n ∈ N, k = o(n) and constant
a ∈ (0, 1), and any γ = o(k

n log(n/k)) and D = Θ(log(1/γ)) so that for every δ > 0, δ-
balanced (n, k,D, γ, α)-bipartite expanders exist. In fact, there are even explicit efficient
constructions that match these parameters [CRVW02]. The formal lemma statement and
proof are given in Appendix D.1.

We next describe the general construction, and then discuss explicit parameter settings and
state our formal theorem.

Setting the Parameters. The parameters required for this construction to be secure and con-
structible are as follows.

• Let n ∈ N and constant ε > 0.

• We require two building blocks: a CRHF and an expander. So, let Ht = {g : {0, 1}∗ →
{0, 1}t} be a family of CRHFs secure against poly(λ)-time adversaries. Let G be a δ-
balanced (n, k,D, γ, α)-expander for a constant δ bounding the degree of the right-nodes,

16

Robust GAPHAMMING(n, d, ε) PPH familyH from any CRHF

Our (n,m, d, ε)-robust PPH familyH = (H.Samp,H.Eval) is defined as follows.

• H.Samp(1λ, n). Fix a δ-balanced (n, k,D, γ, α)-bipartite expander G = (L ∪ R,E)
(either deterministically or probabilistically). Sample a CRHF g ← Ht. Output h =
(G, g).

• H.Hash(h = (G, g),x). For every i ∈ [k], compute the (ordered) set of neighbors of
the i-th right vertex in G, denoted N(i). Let x̂(i) := x|N(i) be x restricted to the set
N(i). Output

h(x) :=
(
g(x̂(1)), . . . , g(x̂(k))

)
as the hash of x.

• H.Eval(h = (G, g),y1,y2). Compute the threshold τ = D · d · (1 − ε). Parse y1 =

(ŷ
(1)
1 , . . . , ŷ

(k)
1) and y2 = (ŷ

(1)
2 , . . . , ŷ

(k)
2). Compute

∆′ =
k∑
i=1

1(ŷ
(i)
1 6= ŷ

(i)
2),

where 1 denotes the indicator predicate. If ∆′ ≤ τ , output CLOSE. Otherwise, out-
put FAR.

Table 1: Construction of a robust GAPHAMMING(n, d, ε) PPH family from CRHFs.

17

where n is the size of the left side of the graph, k is the size of the right, D is the left-
degree, γn is the upper bound for an expanding set on the right that expands to a set of
size α times the original size.

• These building blocks yield the following parameters for the construction: compression
is η = kt/n and our center for the Gap-Hamming problem is bounded by γn

(1+ε) ≤ d <
k

D(1−ε) .

If we consider what parameter settings yield secure CRHFs with output size t and for what
parameters we have expanders, we have a PPH construction where given any n and ε, there
exists a d = o(n) and η = O(1) such that Construction 1 is a robust PPH for gap-Hamming.
We will see that the smaller t is, the stronger the CRHF security assumption, but the better our
compression.

Now, given these settings of parameters, we will formally prove Construction 1 is a robust
Gap-Hamming PPH.

Theorem 16. Let λ be a security parameter. Assuming that exponentially secure CRHFs exist, for any
polynomial n = n(λ), and any constants ε, η > 0, Construction 1 is an η-compressing robust property
preserving hash family for GAPHAMMING(n, d, ε) where d = o(n/ log λ log log λ). Assuming only
that polynomially secure CRHFs exist, for any constant c > 0, we achieve d = o(n/λc).

Proof. Before getting into the proof, we more explicitly define the parameters ti include param-
eters associated with the expander in our construction. Once we have defined these parame-
ters, we will show how each of these parameters is used to prove the construction is correct
and robust. So, in total, we have the following paramters and implied constraints for our
construction (including the graph):

1. Let n ∈ N be the input size and let ε > 0 be any constant.

2. Our CRHF isHt = {g : {0, 1}∗ → {0, 1}t}.

3. Our expander will be a δ-balanced (n, k,D, γ, α)-expander, where k < n/t, γ = o(k
n log(n/k)),

D = Θ(log(1/γ)), and α > D · d(1−ε)
γn .

4. Our center for the gap-hamming problem is d, and is constrained by γn
1+ε ≤ d <

k
D(1−ε) .

5. Constraint 4 implies that k = nΩ(1), since γn·D(1−ε)
1+ε < k.

Now, we prove our construction is well-defined and efficient. Fix any δ, a ∈ (0, 1). Using
lemma 47, proved in the appendix, we know that δ-balanced (n, k,D, γ, α = an)-bipartite
expanders exist and can be efficiently sampled for k = o(n/ log n), D = Θ(log log n), and
γ = Θ̃(1/ log n). Thus, sampling G before running the construction is efficient. Once we have
a G, sampling and running a CRHF k = O(n) times is efficient. Comparing k outputs of the
hash function is also efficient. Therefore, each of H.Samp, H.Hash, and H.Eval is efficient in
λ = poly(n).

Now, we prove that Construction 1 is compressing. Points 2 and 3 mean that m = k · t <
n/t · t = n, as required.

Lastly, we will prove our construction is robust. Let A be a PPT adversary. We will show
that A (in fact, even an unbounded adversary) cannot find x1 and x2 such that ||x1 − x2|| ≤
d(1 − ε) but H.Eval(h, h(x1), h(x2)) evaluates to FAR, and that A must break the collision-
resistance ofHt in order to find x1 and x2 where ||x1−x2|| ≥ d(1+ε) butH.Eval(h, h(x1), h(x2))
evaluates to CLOSE.

18

• First, consider any x1,x2 ∈ {0, 1}n where ||x1 − x2||0 ≤ d(1− ε). Let ∆ = ||x1 − x2||0. So,
consider the set S ⊂ L corresponding to the indices that are different between x1 and x2,
and T = N(S) ⊂ R. The maximum size of T is |S| ·D, the degree of the graph.

For every i ∈ T , we get that the intermediate computation has x̂
(i)
1 6= x̂

(i)
2 , but for ev-

ery j 6∈ T , we have x̂
(j)
1 = x̂

(j)
2 which implies ŷ

(j)
1 = ŷ

(j)
2 after applying g. Therefore∑k

i=1 1(ŷ
(i)
1 6= ŷ

(i)
2) ≤

∑
i∈S 1(ŷ

(i)
1 6= ŷ

(i)
2) +

∑
j 6∈S 1(ŷ

(j)
1 6= ŷ

(j)
2) ≤ ∆ ·D.

We set the threshold τ = D · d · (1 − ε) in the evaluation. Point 4 guarantees that τ < k
(and implicitly implies k > D(1− ε)), so because D ·∆ ≤ D ·d(1− ε) = τ < k,H.Eval will
evaluate ∆′ ≤ τ . Thus, H.Eval will always evaluate to CLOSE in this case, regardless of
the choice of CRHF.

• Now consider ||x1 − x2||0 ≥ d(1 + ε), and again, let ∆ = ||x1 − x2||0 and define S ⊂ L
and T ⊂ R as before.

By point 4 again (γn ≤ d(1 + ε)), we can restrict S to S′ where |S′| = γn, and by the
properties of expanders |N(S′)| ≥ γn ·α. Now, point 3 guarantees that τ = D ·d ·(1−ε) <
α · γn. So, for every i ∈ T ′, x̂(i)

1 6= x̂
(i)
2 , and |T ′| ≥ α · γn > τ . Now we want to argue

that with all but negligible probability over our choice of g, g will preserve this equality
relation, and so ∆′ = |T ′|. Given that our expander is δ-balanced for some constant
δ > 0, we have that |x̂(i)

1 | = |x̂(i)
2 | = |N(ri)| ≥ (1 − δ)nD/k. Now, point 3 states that the

constraints have k < n/t, implying n/k > t. So, (1− δ)D · n/k > (1− δ)D · t.
This means that every input to g will be larger than the output ((1 − δ) is a constant
and D = ω(1)), and so if g(x̂

(i)
1) = g(x̂

(i)
2) but x̂(i)

1 6= x̂
(i)
2 for any i, then our adversary

has found a collision, which happens with all but negligible probability for adversaries
running in time poly(λ).

Therefore, with all but negligible probability over the choice of g and adversarially cho-
sen x1 and x2 in this case, ∆′ =

∑m′

i=1 1(ŷ
(i)
1 6= ŷ

(i)
2) ≥ α · γn = τ , and H.Eval outputs

FAR.

4.2 A Gap-Hamming PPH from Sparse Short Vectors

In this section, we present our second family of robust property-preserving hash (PPH) func-
tions for gap Hamming distance. The construction proceeds in three steps: in Section 4.2.1,
we start with an (unconditionally) secure non-robust PPH; in Section 4.2.2, we build on this to
construct a robust PPH with a restricted input domain; and finally, in Section 4.2.3, we show
how to remove the restriction on the input domain.

The construction is the same as the collision-resistant hash function construction in the
work of [AHI+17]. In a single sentence, our observation is that their input-local hash functions
are locality-sensitive and thus give us a robust gap-Hamming PPH (albeit under a different
assumption). We proceed to describe the construction in full for completeness.

4.2.1 Non-Robust Gap-Hamming PPH

We first describe our starting point, a non-robust PPH for GAPHAMMING, derived from the
locality sensitive hash of Kushilevitz, Ostrovsky, and Rabani [KOR98]. In a nutshell, the hash
function is parameterized by a random sparse m × n matrix A with 1s in a 1/d fraction of its
entries and 0s elsewhere; multiplying this matrix by a vector z “captures” some information

19

Non-robust GAPHAMMING(n, d, ε) PPH familyH

• H.Samp(1λ, 1n). Pick a constant c appropriately such that m := cλ
ε2
< n. Let

µ1 =
m

2
(1− e−2(1−ε)); µ2 =

m

2
(1− e−2(1+ε)) and τ = (µ1 + µ2)/2

Generate an m× n matrix A by choosing each entry from the Bernoulli distribution
Ber(1/d). Output (A, τ) as the description of the hash function.

• H.Hash((A, τ),x). Output Ax ∈ Zm2 .

• H.Eval((A, τ),y1,y2). If ||y1 ⊕ y2||0 ≤ τ , output CLOSE, otherwise output FAR.

Table 2: Construction of a non-robust GAPHAMMING(n, d, ε) PPH family.

about the Hamming weight of z; in particular, it distinguishes between the cases that the Ham-
ming weight is much larger than d versus much smaller. Furthermore, since this hash function
is linear, it can be used to compress two inputs x and y independently and later compute their
Hamming distance. The construction is described in Table 2.

Lemma 17 ([KOR98]). Let λ be a security parameter. For every n ∈ N, d ∈ [n] and ε = Ω(
√
λ/n),

Construction 2 is a non-robust PPH for GAPHAMMING(n, d, ε).

Proof. First, we note that H is compressing. We have m = cλ
ε2

and ε = Ω(
√
λ/n). Therefore,

if we have chose c appropriately, there exists another constant c′ < 1 such that m ≤ c′n.
Compression is why we require a lower bound on epsilon.

Now, we show that H satisfies the non-robust notion of correctness. For any x1 and x2 ∈
{0, 1}n, let z = x1 ⊕ x2. H.Eval(Ax1,Ax2) tests if ||Az||0 ≤ τ . We will show that for all z, with
all but negligible probability over our choice of A, this threshold test will evaluate correctly.

To do this, we will invoke the (information theoretic) XOR lemma. That is, if ||z||0 = k,
then for ai

$← Ber(p)n, Pr[ai · z = 1] = 1
2(1− (1− 2p)k). Our hash function has p = 1/d, so now,

we will apply this to our two cases for z:

• ||z||0 ≤ d(1− ε). We have that Pr[ai · z = 1] = 1
2(1− (1− 2

d)d(1−ε)) ∼ 1
2(1− 1

e2(1−ε)) by the
XOR lemma. We get that for all z such that ||z||0 ≤ d(1− ε),

E
A

[||Az||0] = m · Pr
ai

[ai · z = 1] ≤ m

2
(1− 1

e2(1−ε)) := µ1

• ||z||0 ≥ d(1 + ε). Again, using the XOR lemma, and plugging in k = d(1 + ε), we have
that,

E
A

[||Az||0] = m · Pr
ai

[ai · z = 1] ≥ m

2
(1− 1

e2(1+ε)
) := µ2

Now, a routine calculation using Chernoff bounds shows that with overwhelming proba-
bility over our choice of A, we do not miscategorize the Hamming weight of z. We will go
through both cases again.

20

• ||z||0 ≤ d(1 − ε). Recall that µ1 = m
2 (1 − 1

e2(1−ε)). Let τ = (1 + δ)µ1. A Chernoff bound
states that

Pr
A

[||Az||0 ≥ τ] ≤ e−δµ1/3

Now we will ensure that e−δµ1/3 = negl(λ). Using τ , we can compute δ exactly to be
1
2(e

−2(1−ε)−e−2(1+ε)

(1−e−2(1−ε))
). We will use the fact that e2ε − e−2ε > 4ε for all ε > 0.

Now, using our expression for µ1, we get that

e−δµ1/3 = exp[−δ · m
2

(1− e−2(1−ε))]

= exp[−1

2
·

(
e−2(1−ε) − e−2(1+ε)

1− e−2(1−ε)

)
· cλ

2ε2
(1− e−2(1−ε))]

= exp[−1

2
(e−2(1−ε) − e−2(1+ε)) · cλ

2ε2
]

∼ exp[−1

2
· 4ε

e2
· cλ

2ε2
] = exp[

−cλ
e2ε

] = negl(λ)

• ||z||0 ≥ d(1 + ε). Recall that µ2 = m
2 (1− 1

e2(1+ε)). Given our expression of τ , we have that
τ = (1− δ)µ2. We will use the same strategy as in the previous case to show correctness,
showing

e−δ
2µ2/2 ≤ e−λ

So, recall that δ = 1
2(e

−2(1−ε)−e−2(1+ε)

(1−e−2(1−ε))
), and notice that (1− e−2(1+ε)) ≥ 1− e−2 > 4

5 for all
ε > 0. We compute

e−δ
2µ2/2 = exp[−δ2m

2
(1− e−2(1+ε))]

≤ exp[−δ2 cλ

2ε2
· 4

5
] = exp[−2

5
· δ2 cλ

ε2
]

≤ exp[−2

5
· 1

4

(
e−2(1−ε) − e−2(1+ε)

(1− e−2(1−ε))

)2

· cλ
ε2

]

≤ exp[− 1

10
·

(
e−2(1−ε) − e−2(1+ε)

1

)2

· cλ
ε2

]

≤ exp[− 1

10
· (e−2(e2ε − e−2ε))2 · cλ

ε2
]

≤ exp[− 1

10
· 16ε2

e4
· cλ
ε2

] = exp[−8cλ

5e4
] = negl(λ)

In both cases, the probability that we choose a bad matrix A for a fixed input z is negligible in
the security parameter, proving the lemma.

4.2.2 Robust Gap-Hamming PPH with a Sparse Domain

To make the construction robust, we need to protect against two directions of attack: finding a
low-weight vector that gets mapped to a high-weight vector, and finding a high-weight vector
that maps to a low-weight one. To address the first line of attack, we will use an information-
theoretic argument identical to the one in the proof of lemma 17. In short, in the proof of

21

lemma 17, we computed the probability that a fixed low-weight vector maps to a high-weight
vector (on multiplication by the sparse matrix A). The number of low-weight vectors is small
enough that by a union bound, the probability that there exists a low-weight vector that maps
to a high-weight vector is small as well.

To address the second line of attack, we unfortunately cannot make an information-theoretic
argument (to be expected, as we compress beyond the information theoretic limits). Indeed,
one possible attack is simply to use Gaussian elimination on A to come up with non-zero
(probably high-weight) vector that maps to 0. Because A has a non-trivial null-space, this
attack is likely to succeed.

To thwart such attacks, we leverage one of the following two loopholes that circumvent
Gaussian elimination: (1) our first approach is to consider linear functions with sparse domains,
restricting the input to be vectors of weight ≤ βn for constant β < 1/2, and so Gaussian elim-
ination no longer works; and (2) building on this, we extend this to a non-linear construction
where the domain is the set of all strings of a certain length. Our construction relies on the fol-
lowing hardness assumption that we refer to as the “sparse short vector” (SSV) assumption.
The SSV assumption is a variant of the syndrome decoding problem on low-density parity-
check codes, and roughly states that it is hard to find a preimage of a low-weight syndrome
vector for which the preimage has “medium” weight.

Definition 18. Let n ∈ N. Let β̂, α, η ∈ [0, 1] and ω, τ ∈ [n]. The (β̂, α, ω, τ, η)-SSV (Sparse Short
Vector) assumption states that for any PPT adversaryA given an ηn×nmatrix A with entries sampled
from Ber(α),

Pr
A∼Ber(α)ηn×n

[
A(A)→ z ∈ {0, 1}n : ω ≤ ||z||0 ≤ β̂n and ||Az||0 ≤ τ

]
= negl(n).

On the Assumption. We now consider attacks on the SSV assumption which help us refine
the parameter settings.

One way to attack the assumption is to solve the syndrome decoding problem for sparse
parity-check matrices (also called the binary short vector problem or bSVP in [AHI+17]). In
particular, find a β̂-sparse z such that Az = 0. To thwart these attacks, and at the same time
have a compressing PPH construction, we need at the very minimum that H(β̂/2) > η > 2β̂.

η < H(β̂/2) ensures compression. Recall that we hash elements x1 and x2 in the hopes of
being able to approximate their hamming distance. We have z = x1⊕x2 is the vector we want
to compute gap-hamming on, and so to guarantee z has sparsity β̂, x1 and x2 need sparsity
β̂/2 = β. Vector x1,x2 ∈ {0, 1}n of weight at most β̂n/2 require (asymptotically) H(β̂/2)n bits
each to describe, and so ηn needs to be less than that.

η > 2β̂ is for security. If ηn ≤ 2β̂n, then we are able to use Gaussian elimination to find a
β̂-sparse vector. Consider an ηn× n matrix A, and the first ηn× ηn square of it, call it A′. Use
Gaussian elimination to compute an ηn-length vector z′ such that A′z′ = 0. Padding z′ with
0’s, we get z where Az = 0. We expect ||z||0 = ηn/2, and since ηn/2 ≤ β̂n, we have broken the
assumption.

Thus, for β = β̂/2, we would like η to be as close to H(β) as possible to give us non-trivial
compression and at the same time, security from as conservative an assumption as possible.
The reader might wonder about efficient unique decoding algorithms for LDPC codes. It turns
out that the noise level (β̂) for which the efficient decoding algorithms for LDPC imply a so-
lution to bSVP is only a subset of the entire range (H−1(η), η/2). The range where efficient
algorithms do not work (the “gap”) grows with the locality parameter α [GB16, DKP16], and
as the sparsity β̂ tends towards 0, LDPC becomes similar to random linear code both combina-

22

Robust PPH for Sparse GAPHAMMING(n, d, ε)

• H.Samp(1λ, n, d, β, ε):

– Choose appropriate constants c1, c2 > 0 such that

m := max

{
c1λ

ε2
,
n · 3e2 ln(2)H(d(1− ε)/n) + c2λ

ε
, 4βn+ 1

}
< H(β)n .

– Compute µ1 = m
2 (1− e−2(1−ε)) and µ2 = m

2 (1− e−2(1+ε)). Let τ = (µ1 + µ2)/2.

– Generate an m× n matrix A by choosing each entry from Ber(1/d).

– Output A and the threshold τ .

• H.Hash(A,x) : If ||x||0 ≤ βn, output Ax ∈ Zm2 . Otherwise, output failure.

• H.Eval(y1,y2) : if ||y1 ⊕ y2||0 ≤ τ , output CLOSE, otherwise output FAR.

Table 3: Construction of a robust PPH for sparse-domain GAPHAMMING(n, d, ε).

torially [Gal63, LS02], and, presumably, computationally. For a more detailed discussion, we
refer the reader to [AHI+17].

We will set the sparsity parameter α ≥ c/n for a large enough constant c, or to be conser-
vative α ≥ log n/n to ensure that w.h.p. there are no all-0 columns.

Finally, we point out that when the matrix A is uniformly random and not sparse, SSV
(where the adversary has to map small vectors to tiny vectors) is equivalent to bSVP (where
the adversary has to map small vectors to 0). We briefly sketch how to reduce bSVP to SSV for
a uniformly random A. The reduction takes an instance of bSVP, a matrix B = [B1||B2] where
B2 is square, and generates the matrix A := B−1

2 B1 as an instance of SSV. If the adversary finds
x1,x2 such that B−1

2 B1x1 = x2 solving SSV, then we have [B1||B2] · [xT1 ||xT2] = 0, solving bSVP.
However, this reduction does not work when A is sparse, though this connection indicates
that the SSV problem is also hard.

Robust Hashing Construction for Gap-Hamming. Let the problem β-Sparse Gap-Hamming
be the same as GAPHAMMING, except we restrict the domain to be over x ∈ {0, 1}n with
sparsity ||x||0 ≤ βn. Our construction of a robust PPH for Sparse Gap-Hamming is as follows.

Settings Parameters from SSV Assumption to the Sparse Domain Construction Our main
tool in this construction is the SSV assumption. So, here we consider a very conservative
parameter setting for the SSV assumption, and show what parameters we acheive for our β-
Sparse Gap-Hamming construction.

• n ∈ N and ε = Ω(
√
λ/n).

• Let the (β, α, ω = (1 + ε)/α, τ, η)-SSV be true for the following parameters: 0 < β ≤ 0.04
is a constant (this needs to be true in order to have 4β < H(β)), α ≥ log n/n, τ = ηn

4 (e−
e−2(1−ε)− e−2(1+ε)), and η = H(β) · (1− ζ) for a small constant ζ. These parameters come
from believing a relatively conservative parameter settings for the SSV.

23

• Notice that the η in the assumption is just the number of output bits over the number of
input bits. The actual compression of our construction is actually (at most) the number of
output bits overH(β)n. So, with this assumption, we get compression (ηH(β)n)/(H(β)n) =
(1− ζ) = Ω(1), and a center for our Gap-Hamming problem to be at any d ≤ n

logn .

We formally show why assuming the SSVunder the correct parameter settings yields a β-
Sparse Gap-Hamming PPH.

Theorem 19. Let λ be a security parameter, let n = poly(λ) ∈ N and take any ε = Ω(
√
λ/n). Let

β, α, η ∈ [0, 1] and ω, τ ∈ [n]. Under the (β, α, ω = (1+ε)/α, τ, η)-SSV assumption, the construction
in Table 3 is a direct-access secure PPH for β/2-sparse GAPHAMMING(n, d, ε) where d = 1/α.

Proof. This proof follows the same structure as the proof for lemma 17, with the same computa-
tions for µ1 and µ2, but we will require a different m to get an information-theoretic argument
for the case when ||z||0 ≤ d(1− ε) and rely on the assumption to show robustness for the other
case.

So, let µ1 = m
2 (1 − 1

e2(1−ε)) and µ2 = m
2 (1 − 1

e2(1+ε)). δ is also computed as before to be

δ = 1
2(e

−2(1−ε)−e−2(1+ε)

(1−e−2(1−ε))
). We analyze both cases with two claims.

Claim 20. Given any adversaryA, it is impossible forA to output a vector z such that ||z||0 < d(1−ε)
and ||Az||0 ≥ τ with all but negligible probability over our choice of A.

Proof. We get, via a union bound and then Chernoff bound. Recall that m = max
{
c1λ
ε2
,

1
ε

(
n · 3e2 ln(2)H(d(1− ε)/n) + c2λ

)}
, and so m ≥ n·3e2 ln(2)H(d(1−ε)/n)+c2λ

ε . Also, notice that
δ ≥ 2ε

e2(1−e−2(1−ε))
.

Pr
A

[∃z s.t. ||z||0 ≤ d(1− ε) ∧ ||Az||0 ≥ τ] ≤ 2nH(d(1−ε)/n) Pr
A

[||Az||0 ≥ τ]

≤ exp[ln(2)nH(d(1− ε)/n)− δµ1/3]

≤ exp[ln(2)H(d(1− ε)/n)n− 2ε

e2(1− e−2(1−ε))
· m

2

(
1− e−2(1−ε)

)
· 1

3
]

= exp[ln(2)H(d(1− ε)/n)n− ε

3e2
·m]

≤ exp[ln(2)H(d(1− ε)/n)n− ε

3e2
·
(

3e2

ε
· (ln(2)H(d(1− ε)/n)n) +

c2λ

ε

)
]

= exp[− ε

3e2
· c2λ

ε
] = exp[− c2

3e2
] = negl(λ)

Claim 21. Let η = m/n, β be the parameter input into H.Samp, and τ the threshold computed in
H.Samp. Assuming the (2β, 1/d, d(1 + ε), τ, η)-SSV assumption, any PPT adversaryA cannot find z
such that ||z||0 ≥ d(1 + ε) and ||Az||0 ≤ τ .

Proof. We need to use the assumption to bound the probability an adversary A is able to pro-
duce two vectors x1 and x2 in {0, 1}n such that ||x1||0, ||x2||0 ≤ βn, ||x1 − x2|| ≥ d(1 + ε), and
||Ax1 ⊕Ax2||0 ≤ τ , when given A. That is, equivalently, it can produce a vector z ∈ {0, 1}n
where d(1 + ε) ≤ ||z||0 ≤ 2βn and ||Az||0 ≤ τ . So, the statement becomes exactly the definition
of the (2β, 1/d, d(1 + ε), τ, η)-SSV assumption:

Pr
A

[A(A)→ z ∈ {0, 1}n : τ ≤ ||z||0 ≤ 2βn ∧ ||Az||0 ≤ τ] = negl(n)

24

The claims work together to show that no PPT adversary can find low weight vectors that
map to high weight ones, and vice-versa, even if she has access to the code of hash function,
A. Therefore, the construction is robust in the direct-access model.

4.2.3 From the Full Domain to a Sparse Domain

Now that we have a gap-Hamming preserving hash for sparse vectors (||x||0 ≤ βn), we can
extend this to work for the full domain.

One might consider a trivial way of converting any vector into a sparse vector via padding
with 0’s; we can take any vector x ∈ {0, 1}n and convert it into a ’sparse’ vector x′ ∈ {0, 1}n′

with density at most n/n′ by padding it with n′ − n zeros. However, this transformation is
expensive in the length of the vector; we need to more than quadruple the length of x to get
the density to be β < .04. Unfortunately, this transformation is also linear, and if we believe
that the non-sparse version (construction 2) is not robust, then this combined linear version
cannot be robust with the same parameters.

Instead of using padding, we will use a non-linear transformation that is more efficient
in sparsifying a vector in terms of length, but incurs some bounded error in measuring gap-
hamming distance. As long as we are liberal enough with the gap, ε, this will be a robust PPH
that gets around attacks on a linear sketches, despite incurring some error.

Algorithm 1: Sparsify(x, k)

Input: x ∈ {0, 1}n and parameter k
Output: x′ ∈ {0, 1}2kn/k with density 1/2k.

1 Let x′ =′′ (the empty string);
2 for i = 1 to n/k do
3 Let yi ← xki, xki+1, . . . , xk(i+1)−1;
4 Let ti ←

∑k−1
j=0 2jyi,j ;

5 Let y′i = eti , the ti’th basis vector in 2k dimensions;
6 x′ ← x′||y′i;
7 end
8 return x′

Algorithm 1 takes a dense bit vector of length n and turns it into a 1/2k-sparse bit vector
of length 2kn/k. This is done by breaking the vector x ∈ {0, 1}n into n/k blocks of k bits,
and replacing each k-bit value with its corresponding (unit) indicator vector in {0, 1}2k . Given
two vectors x1,x2 ∈ {0, 1}n with ||x1 − x2||0 = ∆, the sparsified versions x′1 and x′2 have
2∆/k ≤ ||x1 − x2|| ≤ 2∆.

Recall that the trivial sparsifying method, simple padding, goes from n bits to n/β. If we
let k = log(1/β), then using Algorithm 1, we go from n bits to n2k

k = n
log(1/β)β , saving a log

factor of 1/β. The construction in Table 4 is for dense gap-hamming.

Parameter settings for the full-domain construction Just as in the sparse case, we will pro-
pose a parameter setting compatible with a conservative instantiation of the SSV assumption.

• Let n ∈ N, β < 0.01, and ε′ ≥ 1
log(1/β)+1 ≈ 0.13.

• We will be using the same parameter setting as for the sparse case (notice that ε′ is larger
than in the sparse setting). So, let the (β, α, ω = (1 + ε′)/α, τ, η′)-SSV be true for the

25

Robust GAPHAMMING(n, d, ε) PPH familyH

• H.Samp(1λ, n, d, β, ε).

– If 1−1/ log(1/β)
1+1/ log(1/β) ≥ ε, output failure.

– Let n′ = n
log(1/β)β , d′ =

(
(1− ε)d+ (1 + ε) d

log(1/β)

)
, and ε′ = 1− (1−ε)d

d′ .

– Pick constants c1, c2 such that

m := max

{
c1λ

ε′2
,
n′ · 3e2 ln(2)H(d′(1− ε′)/n′) + c2λ

ε′
, 4βn′ + 1

}
< n

– Compute µ1 = m
2 (1− e−2(1−ε′)) and µ2 = m

2 (1− e−2(1+ε′)). Let τ = (µ1 + µ2)/2.

– Generate an m× n′ matrix A by choosing each entry from Ber(1/d′).

– Output A and the threshold τ .

• H.Hash(A,x) : let x′ ← Sparsify(x′, log(1/β)), output Ax′ ∈ Zm2 .

• H.Eval(y1,y2) : if ||y1 − y2||0 ≤ τ , output CLOSE, otherwise output FAR.

Table 4: Construction of a robust GAPHAMMING(n, d, ε) PPH family.

following parameters from the sparse case: β ≤ 0.01, α ≥ log n/n, and τ = η′n
4 (e −

e−2(1−ε′)−e−2(1+ε′)). Now, we will need a better compression term than before. Let z > 0
be a constant (close to 0), and η′ = β log(1/β)(1 − z) ≈ 0.066(1 − z). These parameters
come from believing a relatively conservative parameter settings for the SSV assumption,
with the parameters tuned just right to imply a Gap-Hamming PPH for the full domain.

• In total, Construction 4 is an η-compressing GAPHAMMING(n, d, ε) PPH, where η =
η′

β log(1/β) = (1− z), d ≤ 1
2α ((1− ε′) + log(1/β)ε′) ≈ 0.87n

logn , and gap ε ≥ 1−1/ log(1/β)
1+1/ log(1/β) ≈ 0.74.

These parameters are formally proved to hold due to the security of the sparse construc-
tion, Construction 3, in Lemma 23.

Next, we will go into the details for why certain settings of the SSV assumption imply a Gap-
Hamming PPH.

Theorem 22. Let λ be a security parameter, let n = poly(λ) ∈ N. Let β, η ∈ [0, 1] and τ ∈ [n].
Assuming the (2β, 1/d′, d′(1 + ε′), τ, η)-SSV assumption, where β is sparsity, η = m/n′, and τ is

computed as in Table 4, then the construction in Table 4 is a Direct-Access secure PPH.

Proof. This is a simple application of theorem 19 with the correctness of algorithm Sparsify.
First, some properties about Sparsify. When given the input of an n-bit vector x, and pa-

rameter log(1/β), the inner loop executes n/ log(1/β) times. Each loop adds 2log(1/β) = 1/β
coordinates to x′, and so the output vector x′ is n

log(1/β)β bits. Second, x′ is β-sparse. This is
because each loop adds at most one coordinate with a 1 in it (a standard basis vector), and the
loop executes n/ log(1/β) times, meaning the density is at most n/ log(1/β)

n/ log(1/β)·1/β = β.
In order for this to be a PPH, we first need compression: sparsification expands inputs and

so we need to be sure that we shrink it enough afterwards. Of course the construction fails

26

any time m ≥ n, but we need to argue such an m even exists. As per earlier analysis, we need
m > 4βn′. Given n′ = n/(log(1/β)β), this means m > 4n/ log(1/β). If log(1/β) ≥ 5, then there
exists anm such that 4n/ log(1/β) < m < n, and so there exists a compressingm in this context
for sufficiently large n.

Now note that when given x1, and x2 where ||x1 − x2||0 = ∆, we have that 2∆
log(1/β) ≤

||Sparsify(x1)− Sparsify(x2)||0 ≤ 2∆; so Sparsify introduces some error.
So, assume (2β, 1/d′, d′(1 + ε′), τ, η)-SSV holds for τ, β, η, d′, ε′ computed as in the construc-

tion and for a contradiction assume there exists an adversary A that can break Direct-Access
robustness of construction 4. We will show that A must break the (2β, 1/d′, d(1 + ε), τ, η)-
SSV assumption. So,Awill output two vectors, x1 and x2 that with noticeable probability will
fit into one of two cases breaking Direct-Access robustness:

• ||x1 ⊕ x2||0 < d(1 − ε) such that ||A(Sparsify(x1) − Sparsify(x2))||0 > τ . Let ẑ ←
Sparsify(x1) − Sparsify(x2). We have that ||ẑ||0 < d(1 − ε) ≤ 2d′(1 − ε′). Now because
of how we computed m, the same proof as in the proof of construction 3 will show that
there exists such a ẑ with negligible probability in λ. Therefore, with all-but-negligible
probability, A cannot take this line of attack.

• ||x1 ⊕ x2||0 > d(1 + ε) such that ||A(Sparsify(x1) − Sparsify(x2))||0 < τ . Let ẑ ←
Sparsify(x1) − Sparsify(x2). Recall that Sparsify introduces bounded error, so we know
that ||ẑ||0 > 2d(1+ε)

log(1/β) ≥ d
′(1 + ε′) given how we have computed our parameters.

Therefore, we have computed a 2β-sparse vector ẑ ∈ {0, 1}n′ , with τ computed as in
construction 3 for parameters n′, d′, ε′, which exactly violates the (2β, 1/d′, d′(1+ε′), τ, η)-
SSV.

On Feasibility Settings for the Full-Domain Construction. Here we will prove that if there
exists a parameter setting for the sparse construction, Construction 3, with good-enough com-
pression, then there exists a parameter setting for the full domain, Construction 4. It is impor-
tant to note, however, that we get a worse lower bound for our resulting gap ε: η′ is constant,
so β is also constant, and since we require ε′ > 1/(log(1/β) + 1) our resulting ε is also constant.

Lemma 23. Assume that Construction 3 is an η′-compressing robust PPH for GAPHAMMING(n′, d′, ε′)
where η′ < β log(1/β) and ε′ > 1

log(1/β)+1 . Then, Construction 4 is an η-compressing robust PPH for
GAPHAMMING(n, d, ε) for the following parameters:

• η = η′

β log(1/β) ,

• n = β log(1/β)n′,

• d = d′

2 ((1− ε′) + log(1/β)ε′),

• ε = ε′ log(1/β)−(1−ε′)
ε′ log(1/β)+(1−ε′) .

Proof. Note that we can allways assume the gap is bigger, so if ε′ ≤ 1
log(1/β)+1 , then we can use

our PPH for GAPHAMMING(n′, d′, ε′) as a PPH for GAPHAMMING(n′, d′, 1
log(1/β)+1 + .0001).

So, without loss of generality, assume ε′ > 1
log(1/β)+1 .

We will show that Construction 4 is a robust PPH for GAPHAMMING(n, d, ε) by show-
ing that we can take any dense input in {0, 1}n, turn it into a sparse input in {0, 1}n′ , and

27

then using Construction 3, that hash functions and evaluations will produce correct results for
GAPHAMMING(n, d, ε). Robustness follows from the robustness of Construction 3.

First, compression is guaranteed since ηn = η′n′ < β log(1/β)n′ = n, implying η < 1.
Next, take any x ∈ {0, 1}n and let x′ = Sparsify(x, log(1/β)). Notice that x′ has length

n′ = n/(β log(1/β)) and sparsity at least β by the correctness of Sparsify. Therefore, x is a valid
input to the hash functions from Construction 3.

Now, we need to show that the resulting hash function is correct. For any x1,x2 ∈ {0, 1}n,
where ||x1 − x2|| = ∆, we have 2∆

log(1/β) ≤ ||Sparsify(x1) − Sparsify(x2)|| ≤ 2∆. We have two
cases to consider to ensure correctness.

• If ∆ < d(1 − ε), then ||x1 − x2|| < 2d(1 − ε) = d′(1 − ε′). Then, by the robustness of
Construction 3, the hash function will output CLOSE with all but negligible probability
over our choice of hash, even with adversarially chosen inputs.

• If ∆ > d(1 + ε), then ||x1−x2|| > 2d(1 + ε)/ log(1/β) = d′(1 + ε′). Then, by the robustness
of Construction 3, the hash function will output FAR with all but negligible probability
over our choice of hash, even with adversarially chosen inputs.

Notice that setting n,d, and ε to these values exactly translates into having n′, d′, and ε′ be
the intermediate values in Construction 4. With this lemma we can explicitly characterize the
valid parameter settings for the full domain as follows.

Full-Domain Parameter Settings. Fix our input size n, and assume that the Sparse-Domain
construction works for any constant compression η′, any ε = Ω(1), for some constant sparsity
β.

• We can compress by any constant η = O(1),

• we can handle any constant gap ε = Ω(1),

• and we can let our center be any d ≤ n
2 logn((1− ε) + (1 + ε)).

5 Necessity of Cryptographic Assumptions

Recall the goal of robust PPH is to compress beyond the information theoretic limits, to a
regime where incorrect hash outputs exist but are computationally hard to find. When the hash
function is given, this inherently means such constructions necessitate cryptographic hardness
assumptions. A natural question is what types of assumptions are required to build non-trivial
PPHs of various kinds.

In this section, we address the computational assumptions implied by PPH for classes of
predicates which satisfy a notion we refer to as collision sensitivity. As the name suggests, a
class of predicates is collision sensitive if finding a collision in a given hash function breaks the
soundness of the hash.

Definition 24. A class of predicates P is collision sensitive if there exists a PPT algorithm A such
that for any pair x, x′, Pr[A(x, x′)→ P : P (x) 6= P (x′)] ≥ 1− negl(n).

Notice that a class of predicates being reconstructing (as per Section 3.2) automatically im-
plies collision-sensitivity. Indeed, it is a stronger characteristic: Since the reconstructing learner
can use a series of predicates P to determine x from all other x′ with negligible probability, this

28

already implies we can use that same series P to distinguish x from any other x′ (also with
negligible probability).

We show two lower bounds for achieving a PPH for any class of collision-sensitive predi-
cates P :

1. Direct-Access robust PPHs forP implies the existence of collision resistant hash functions
(using the definition of equality PPHs).

2. Double-Oracle robust PPHs for P implies one-way functions (using techniques from
[NY15]).

These results follow from characterizations of PPH for the specific case of the equality predicate
in the respective models.

On the other hand, we demonstrate an unconditional construction for the weaker notion of
Evaluation-Oracle PPHs for equality, using pairwise independence. Note that existence of an
unconditional construction is to be expected, as Evaluation-Oracle PPHs align with non-robust
PPHs for the case of total predicates (such as equality).

5.1 The Equality Predicate and Collision-Sensitivity

Denote Qx2(x1) := [x1 == x2] the x2-parameterized equality predicate, and denote Q′x2
(y) :=

H.Eval(h,Qx2 , y) for a given hash function h sampled from PPH H. One thing to notice is that
finding any collision with respect to h, i.e. h(x1) = h(x2) but x1 6= x2, means that Q′x2

(h(x1)) =
Q′x2

(h(x2)), and so either Q′x2
(h(x1)) 6= Qx2(x1) or Q′x2

(h(x2)) 6= Qx2(x2). This necessarily
means that no matter what Q′ actually computes with respect to x2 and h(x1) = h(x2), its
output at least one of the inputs x1, x2 is incorrect. We leverage this together with the following
reduction from PPH for any collision-sensitive predicate class to PPH for equality, in order to
prove lower bounds.

Theorem 25. If there exists a (direct-access / double-oracle / evaluation-oracle) robust PPH for any
collision-sensitive predicate P with compression η, then there exists a (direct-access / double-oracle /
evaluation-oracle, resp.) robust equality PPH with compression η.

Proof. We will prove the contrapositive. Assume in any of our robust models that there does
not exist an equality PPH with compression η. Then, for any η-compressing hash h, there exists
an adversary B that, when playing the game corresponding to the model, can output an x1 and
x2 such that Qx2(x1) 6= Q′x2

(h(x1)).
Now, for sake of contradiction, also assume that there exists a PPHH for a class of collision-

sensitive predicates P . Consider the following PPH H′ for the class of equality predicates,
where H′.Samp = H.Samp, and where we define H′.Eval(h,Qx2 , h(x1)) = 1 if and only if
h(x1) = h(x2). Note that H′ also has compression factor η. Because equality PPH does not
exist by assumption, there exists an efficient adversary B who can output x1 and x2 such that
Qx2(x1) 6= H′.Eval(h,Qx2 , h(x1)) with non-negligible probability. By construction, it must be
that x1 6= x2. This implies Qx2(x1) = 0 and therefore H′.Eval(h,Qx2 , h(x1)) = 1. From our
definition of Q′, this means that h(x1) = h(x2). Now because P is collision-sensitive, we
can use algorithm A on x1, x2 to generate a predicate Pcs ∈ P such that Pcs(x1) 6= Pcs(x2).
However, because h(x1) = h(x2), H.Eval(h, Pcs, h(x1)) = H.Eval(h, Pcs, h(x2)). One of these
evaluations must be incorrect. Therefore, any attack against the corresponding equality version
of the PPH is also an attack against the collision-sensitive predicate class PPH (in any model).

29

In the following subsections, we focus on characterizations of PPH for equality within our
respective levels of robustness. Then in Section 5.5 we return to the corresponding implications
for PPH for any class of collision-sensitive predicates.

5.2 Direct-Access Equality PPHs if and only if CRHFs

We observe that Direct-Access robust PPHs for equality are equivalent to collision-resistant
hash functions (CRHFs):

Definition 26. A family of functions H = {h : X → Y } is a family of CRHFs if it is efficiently
sampleable, efficiently evaluatable, compressing, and for any PPT adversary A,

Pr
h←H.Samp(1λ)

[A(h)→ (x1, x2) : h(x1) = h(x2) ∧ x1 6= x2] ≤ negl(λ)

Notice that a CRHF family satisfies the definition of an equality PPH, H.Eval(h, Px2 , y) =
(h(x2) == y): an adversary who finds H.Eval(h, Px2 , h(x1)) 6= (x1 == x2), violating correct-
ness of the PPH, must have found h(x1) = h(x2), violating the collision-resistance of the CRHF.
Notice also that an equality PPH must satisfy collision-resistance: an adversary finding a col-
lision between x1 and x2 can break the correctness of the PPH with eitherH.Eval(h, Px2 , h(x1))
orH.Eval(h, Px2 , h(x2)). Therefore, the two definitions are equivalent.

5.3 Double-oracle Equality PPHs if and only if OWFs

We will prove that such a hash family existing is equivalent to OWFs. This is significantly less
obvious than the previous characterization of the equality PPHs using CRHFs. First we will
show the obvious direction, that OWFs imply Double-oracle Equality PPHs.

Claim 27. Suppose one-way functions exist. Then for any polynomial p, there exist Double-Oracle
robust PPH familiesH = {h : {0, 1}n → {0, 1}m} for equality also exist.

Proof. OWFs imply the existence of (compressing) PRFs. Let H = {h : {0, 1}n → {0, 1}m}
be a family of PRFs. We will prove that H is also an equality-preserving hash robust in the
Double-Oracle model.

Consider an adversary A that has a non-negligible advantage at finding a collision. That
is, Prh

[
Ah(·) → (x, y) : h(x) = h(y)

]
≥ ε+ δ, where δ is non-negligible. Now, let R : {0, 1}n →

{0, 1}m be a truly random function. Clearly, for any A, Prh
[
AR(·) → (x, y) : h(x) = h(y)

]
= ε

— no PPT algorithm can have any advantage over finding a collision in a random function
beyond a guaranteed collision probability for random guessing.

SinceA has a noticeable advantage, we can distinguish when h is a PRF and when we have
a random oracle. This contradicts the definition of a PRF. Therefore, no PPT A should have
more than a negligible advantage in producing a collision.

5.3.1 Double-Oracle PPHs for Equality imply OWFs.

We will show that without OWFs, given any compressing family of functions H, we can find
a collision given only an oracle to h ∈ H with noticeable probability. Finding a collision is
equivalent to finding a pair of inputs breaking the guarantees of the PPH.

Theorem 28. Double-Oracle robust PPHs for equality imply OWFs.

30

The proof of this theorem is in appendix E and is an adaptation and generalization of the
proof that adversarially robust Bloom Filters require OWFs from [NY15]. The basic idea is
to use the fact that we can invert any poly-time evaluatable function in polynomial time to
reverse-engineer the randomness used in generating that specific hash function fromH.Samp.
Once we are able to do this, we can augment that inversion algorithm to also return a nearly
random preimage. This will cause us to find a collision with noticeable probability.

5.4 Evaluation-Oracle PPHs for Equality with Pairwise Independence.

We note that we do not need any computational assumptions to obtain an Equality PPH in the
Evaluation-Oracle model. Let F be a pairwise-independent hash family from m bits to n bits,
with n < m. We will prove that F is secure in the Evaluation-Oracle model.

Theorem 29. Let F = {f : {0, 1}m → {0, 1}n} be any compressing pairwise-independent hash
family. F is an equality-preserving hash that is robust in the Evaluation Oracle Model.

Proof. First, note that F is compressing by definition. So, we will move on to proving it is
secure. We will show that we can replace every query answered by the evaluation oracle with
an oracle that just returns the correct answer using a series of hybrids. LetOeq be an oracle that
returns 1 if two strings are different and 0 if they are equal.

So, let A be a PPT adversary and let T = poly(n) be the maximum number of queries A
can make. We will prove that A cannot distinguish whether he is receiving actual predicate
evaluations or correct evaluations. In Hybrid 0, A is using Oh.Eval′ for all of the queries. In
Hybrid t, A is getting answers from Oeq for the first t queries, and then gets answers from
Oh.Eval′ for the last T − t queries.

We will now show that statistically A cannot distinguish between Hybrid t and Hybrid
t−1. So,A has made t−1 queries and gotten correct responses for each of them. A’s tth query
can be x1, x2 where x1 = x2 or x1 6= x2. Both oracles are guaranteed to answer the same way
if x2 = x2, so let’s examine the case where x1 6= x2. The probability over our choice of f ∈ F
that h(x1) = h(x2) is 2−n because F is pairwise independent. Therefore, the probability that
Oh.Eval′ answers differently from Oh.Eval′ is 2−n, and A can only distinguish Hybrid t and t− 1
with probability 2−n.

This means thatA can distinguish Hybrid 0 from Hybrid T with probability at most poly(n)·
2−n = negl(n) (union bound).

5.5 Collision-Sensitivity, OWFs, and CRHFs

As shown in Theorem 25, any lower bound for equality PPHs implies a lower bound for all
PPHs for collision sensitive predicate classes. Therefore, we get the following two corollaries.

Corollary 30. Let P be any collision-sensitive predicate class. Then any PPH for P in the Direct-
Access model implies that CRHFs exist.

Corollary 31. Let P be any collision-sensitive predicate class. Then any PPH for P in the Evaluation-
Oracle model implies that OWFs exist.

Acknowledgments. Many thanks to Daniel Wichs for suggesting the construction in Sec-
tion 4.1 and for useful conversations regarding the connection to secure sketches and fuzzy
extractors.

31

References

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. Low-complexity cryptographic hash functions. In 8th Innovations
in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley,
CA, USA, pages 7:1–7:31, 2017.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 20–29, 1996.

[BGKL03] László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Com-
munication complexity of simultaneous messages. SIAM J. Comput., 33(1):137–166,
2003.

[CCF04] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items
in data streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[CDS01] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decom-
position by basis pursuit. SIAM Rev., 43(1):129–159, 2001.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Random-
ness conductors and constant-degree lossless expanders. In Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 659–668,
New York, NY, USA, 2002. ACM.

[CW77] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA, pages 106–112, 1977.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sam-
pling. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, May 21-23, 2006, pages 711–720, 2006.

[DKP16] I. Dumer, A. A. Kovalev, and L. P. Pryadko. Distance verification for ldpc codes.
In 2016 IEEE International Symposium on Information Theory (ISIT), pages 2529–2533,
July 2016.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, March 2008.

[Gal63] Robert Gallagher. Low-density parity-check codes, 1963.

[GB16] Leonid Geller and David Burshtein. Bounds on the belief propagation threshold
of non-binary LDPC codes. IEEE Trans. Information Theory, 62(5):2639–2657, 2016.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

32

[GIL+90] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security
preserving amplification of hardness. In Proceedings [1990] 31st Annual Symposium
on Foundations of Computer Science, pages 318–326 vol.1, Oct 1990.

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive
inputs? In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Sympo-
sium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 121–130. ACM, 2013.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
604–613, 1998.

[Ind00] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 189–197,
2000.

[JKS08] T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication com-
plexity of hamming distance. Theory of Computing, 4(1):129–135, 2008.

[KKG18] Harini Kannan, Alexey Kurakin, and Ian J. Goodfellow. Adversarial logit pairing.
CoRR, abs/1803.06373, 2018.

[KNR95] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communi-
cation complexity. In Proceedings of the Twenty-seventh Annual ACM Symposium on
Theory of Computing, STOC ’95, pages 596–605, New York, NY, USA, 1995. ACM.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approx-
imate nearest neighbor in high dimensional spaces. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, STOC ’98, pages 614–623, New
York, NY, USA, 1998. ACM.

[KW17] J. Zico Kolter and Eric Wong. Provable defenses against adversarial examples via
the convex outer adversarial polytope. CoRR, abs/1711.00851, 2017.

[LS02] S. Litsyn and V. Shevelev. On ensembles of low-density parity-check codes: asymp-
totic distance distributions. IEEE Transactions on Information Theory, 48(4):887–908,
Apr 2002.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143–152, 1982.

[MMS+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
CoRR, abs/1706.06083, 2017.

[MNS08] Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, pages 651–660, 2008.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor.
Comput. Sci., 12:315–323, 1980.

33

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 33–43, 1989.

[NY15] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Ad-
vances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 565–584, 2015.

[RS15] Sivaramakrishnan Natarajan Ramamoorthy and Makrand Sinha. On the commu-
nication complexity of greater-than. In 53rd Annual Allerton Conference on Com-
munication, Control, and Computing, Allerton 2015, Allerton Park & Retreat Center,
Monticello, IL, USA, September 29 - October 2, 2015, pages 442–444, 2015.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against
adversarial examples. CoRR, abs/1801.09344, 2018.

[SND17] Aman Sinha, Hongseok Namkoong, and John C. Duchi. Certifiable distributional
robustness with principled adversarial training. CoRR, abs/1710.10571, 2017.

[Woo04] David Woodruff. Optimal space lower bounds for all frequency moments. In
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, pages 167–175, Philadelphia, PA, USA, 2004. Society for Industrial and
Applied Mathematics.

[Woo07] David P. Woodruff. Efficient and private distance approximation in the communica-
tion and streaming models. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 2007.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing (preliminary report). In Proceedings of the 11h Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

34

A Multi-Input vs Single-Input Predicates

We discuss the differences between definitions of property-preserving hashes with a family of
single-input predicates versus a fixed multi-input predicate. For an example, consider the two-
input equality predicate, namely P (x1, x2) = 1 if x1 = x2 and 0 otherwise. However, we can
also define a class of predicates P = {Px}x∈X where Px1(x2) = 1 if x1 = x2 and 0 otherwise.
This exponential-size predicate class P accomplishes the same task as the two-input single
predicate. In general, we can take any two-input (or multi-input) predicate and convert it into
a predicate class in the same manner.

We give below the definition of (direct access) PPH for a two-input property P . The other
definitions follow a similar vein, and are omitted.

Definition 32. A (direct-access-robust) property-preserving hash family H = {h : X → Y } for a
two-input predicate P : X ×X → {0, 1} consists of two efficiently computable algorithms:

• H.Samp(1λ)→ h is a randomized p.p.t. algorithm that samples a random hash function fromH
with security parameter λ.

• H.Eval(h, y1, y2) is a deterministic polynomial-time algorithm that that on input the hash func-
tion h and values y1, y2 ∈ Y (presumably h(x1) and h(x2) for some x1, x2 ∈ X), outputs a
single bit.

Additionally, h ∈ H must satisfy the following two properties:

• compressing: dlog |Y |e < dlog |X|e, and

• direct-access robust: for any PPT adversary A,

Pr[h← H.Samp(1λ); (x1, x2)← A(h) :

P (x1, x2) 6= ~ ∧H.Eval(h(x1), h(x2)) 6= P (x1, x2)] ≤ negl(λ)

Any multi-input family of PPH can be converted into a PPH for the corresponding predicate-
class with the following simple transformation: Px1(x2) := P (x1, x2) is transformed into the
class of predicates {Px}x∈X . In general, single-input PPHs look easier to construct, since the
transformed predicate has more information to work with. In fact, we can show an explicit
example where the lower bound for the single-predicate version is smaller than the multi-
predicate version (see the Gap GREATERTHANproofs in appendix section C.3.2).

Lemma 33. LetH be a robust PPH in any model for a two-input predicate P on X . Then, there exists
a PPH secure in the same model for the predicate class {Px}x∈X where Px1(x2) = P (x1, x2).

Proof. Assume we have a PPHH for a two-input predicate P and the corresponding predicate
class is P = {Px2}x2∈X . We will defineH′ as follows.

• H′.Samp(1λ) = H.Samp(1λ).

• H′.Eval(h, y, P ′x2
) = H.Eval(h, y, h(x2)).

Our goal is now to show that an adversary breakingH′ in the security modelH could also
breakH in that model.

• Consider the Evaluation-Oracle model. Any evaluation query will be of the form Px1

and x2, where Px1 has enough information to extract x1. So, we just query the 2-input
Evaluation-Oracle on x1 and x2 and pass on the result.

35

• Consider the Double-Oracle model. Again, any evaluation query will be handled in a
similar way, although we get Px1 and y2, and first need to query for the hash for x1 and
then query the evaluation oracle for h(x1), y2. Any hash query carries over directly.

• Consider the Direct-Access model. If we are given the code forH, we can easily construct
code for H′ and hand an adversary that code with the same distribution as if we were
to sample H′ without first sampling H. Thus, if the adversary can break H′ with non-
negligible probability, the adversary will break our construction of H′ with the same
probability.

B Proofs of Section 2: Relationships between definitions

Here we will write the proofs for the lemmas described in section 2. First, lemma 4 states that
for total predicates, non-robustness and evaluation-oracle PPHs are equivalent. Then, lemma
6 states that with OWFs, we can take a EO-robust PPH to get a DO-robust PPH, simply by
pairing a hash function with an invertible PRF.

B.1 Proof of lemma 4: From a Non-Robust to Robust PPH for Total Predicates

Here is the proof that a non-robust PPH for a total predicate implies an Evaluation-Oracle PPH.

Lemma 34. Let P be a class of total predicates onX . A non-robust PPHH for P is also an Evaluation-
Oracle robust PPH for P for the same domain X and same codomain Y .

Proof. Let H = {h : X → Y } be a non-robust PPH for a class of total predicates P on X . With-
out any access to the hash function itself, any adversary (not even computationally bounded)
has a negligible chance of coming up with an x and P that violate correctness because the
adversary has no idea which h was sampled from H. We will show that even given an Eval-
uation Oracle, A still cannot learn anything about which h was sampled, and so has the same
advantage as blindly guessing.

LetAmake at most T queries toOEval
h . LetOP just be the trivial predicate evaluation oracle,

so OP(x, P) = P (x). We will now construct a series of t hybrids.

• Hybrid 0. A queries OEval
h .

• Hybrid t. For the first t queries, A gets answers from OP . For the last T − t queries, A
gets answers from OEval

h .

• Hybrid T . Amakes all T queries to OP .

Note thatA’s first query toOEval
h has a negligible chance of being answered incorrectly due

to the correctness of the PPH (i.e. has a negligible chance of being distinguishable from OP).
The only way for A to distinguish hybrids t − 1 and t is if query t was answered incorrectly.
Since query t is A’s first query to the OEval

h in Hybrid t, A will be able to detect this difference
with negligible probability in λ.

Since T = poly(λ), a union bound yields that the maximum possible probability A can
distinguish Hybrid 0 from Hybrid T is poly(λ) · negl(λ) = negl(λ).

36

Given H with algorithms (Samp,Transf) a no-function access, oracle-predicate PPH family
and a CCA2-secure symmetric encryption scheme (Gen,Enc,Dec), we can construct H∗
with algorithms (Samp∗,Transf∗) as follows.

Samp∗(1λ) :

1. h← Samp(1λ).

2. (fk, k)
$← F .

3. Output h∗ = (h, k) where h∗(x) = fk(h(x)).

Eval∗(h∗, P, y∗)

1. Parse h∗ = (h, k).

2. y ← f−1
k (y∗).

3. Output Eval(h, P, y).

Figure 2: Tranforming a PPH that is secure against adversaries that do not have access to the
hash function and only oracle access to predicates to a PPH secure against adversaries with
oracle access to the hash functions using CCA2-secure symmetric encryption.

So, in Hybrid T , A is making no queries to OEval
h . In fact, A can simulate every response

from OP just by evaluating P (x) on its own.

Pr
h←H.Samp(1λ)

[AOEval
h (1λ)→ (x, P) : P ′(h(x)) 6= P (x)]

Pr
h←H.Samp(1λ)

[A(1λ)→ (x, P) : P ′(h(x)) 6= P (x)] + negl(λ) = negl(λ)

Therefore,H is secure in the Evaluation-Oracle model.

B.2 Proof of lemma 6: Amplifying an EO-robust PPH to a DO-robust PPH

Here we will restate the lemma.

Lemma 35. Let P be a class of (total or partial) predicates on X . Assume that one-way functions exist.
Then, any EO-robust PPH for P can be converted into a DO-robust PPH for P .

Proof. First, let OWFs exist. Then, PRP’s also exist. So, let m = ηn, and F = {f : {0, 1}n →
{0, 1}m} be a family of strong PRP’s where each fk is efficiently invertible with the key k. The
characterization of strong here means that f−1

k is also a PRP. Figure 2 details how to take an
EO-robust PPHH and get a DO-robust PPHH∗. It is easy to see thatH∗ satisfies the efficiency
properties of the sampling algorithm, and since F is a PRP, H∗ is also η-compressing. We
still need to prove that this is robust. We will do this with a series of hybrids. Let A be an
adversary against H∗. Let B run A as a subroutine and have access to Oh. Let T = poly(n) be
the maximum number of queries Amakes to OHash

h∗ and OEval
h∗ to break the correctnessH∗ with

non-negligible probability.

• Hybrid 0. In this game, A makes all T hash and evaluation queries to OHash
h∗ and OEval

h∗

respectively. B outputs the (x, P) that A outputs at the end of its queries.

• Hybrid t. In this game, A makes the first t − 1 queries to OHash
h∗ and OEval

h∗ appropriately.
But, then B simulates every query from t to T as follows:

37

– For every hash query x, if x had already been queried before, B just sends the same
answer as given before by OHash

h∗ . If x has not been queried before, B chooses a
random element y in the image of h∗ that has not been seen before. B saves the pair
(x, y) in memory.

– For every evaluation query y, if y is associated with some x as h∗(x), then B queries
Oh with the pair (x, P). Oh correctly returnsH.Eval(h, P, h(x)) = H∗.Eval(h∗, P, h∗(x)).
If y has not been associated with an x, B chooses a random element x ∈ {0, 1} that
has not been queried/seen before, saves the pair (x, y). Then, B queries Oh(x, P).

B outputs the (x, P) that A outputs at the end of its queries.

• Hybrid T . B simulates the answer to every single queryAmakes as follows just as above.
B outputs the (x, P) that A outputs at the end of its queries.

If B has a non-negligible probability of outputting (x, P) breaking the correctness ofH∗ in Hy-
brid T , then either A has non-negligible probability of outputting some (x, P) in Hybrid 0, or
there exists a t ∈ [T] where A has a noticeable gap in winning Hybrid t versus winning Hy-
brid t− 1. Therefore, we can create an adversary A∗ that can distinguish, with non-negligible
probability, between Hybrids t and t − 1. Moreover, the query made at that point must be a
query x or y that has not been asked about before (otherwise there is no difference between the
Hybrids). If the query is a hash query, then this implies A∗ can distinguish between the PRP
fk(h(x)) and a truly random permutation. This cannot happen because of the pseudorandom-
ness of fk. If the query is an evaluation query on a y that we have not yet seen, then we assume
it was associated with a random x not yet queried; A∗ is distinguishing between f−1

k (y) and
random. Because fk is a strong PRP, f−1

k is also a PRP, and therefore, distinguishing f−1
k (y)

from random should also be impossible for PPT adversaries.
So, since any PPT algorithm in finding (x, P) such that H.Eval(h, h(x), P) 6= P (x), B must

also have negligible advantage, and therefore A also has negligible advantage.

C Proofs for Section 3: PPH Lower Bounds from One-Way Commu-
nication Lower Bounds

C.1 Proof of theorem 10: OWC Lower Bounds Imply PPH Lower Bounds

Here is our proof that a lower bound in OWC complexity implies a lower bound for PPHs.

Theorem 36. Let P be any two-input predicate P and P = {Px}x∈{0,1}n be the corresponding pred-
icate class where Px2(x1) = P (x1, x2). Now, let H be a PPH in any model for P that compresses n
bits to m = ηn. Then, there exists a OWC protocol Π such that the communication of Π is m and with
negligible error.

Proof. Let P ′x be the transformed predicate for Px, so P ′x(y1) = H.Eval(hr, y1, P). Π will operate
as follows:

• Alice computes ga(x1; r) = hr(x1) where hr = H.samp(1λ; r) (runs the sampling algor-
tihm with public randomness r).

• Bob computes gb(y, x2; r) = H.Eval(hr, y1, Px2) where Bob can also evaluate hr = H.Samp(1λ; r)
with the public randomness and can compute P ′x2

(y1) = H.Eval(hr, y1, Px2).

38

First, the communication of Π is clearly m bits since Alice only sends a single hashed value of
x1 during the protocol.

Second, Π is correct with all but negligible probability. This follows directly from the
soundness or correctness of the PPH — even a non-robust PPH has correctness with over-
whelming probability. Formally, for any two inputs from Alice and Bob, x1 and x2 respectively,

Pr
r

[gb(ga(x1; r), x2; r) = P (x1, x2)]

= Pr
hr←H.Samp(1λ)

[P ′x2
(hr(x1)) = P (x1, x2)] ≥ 1− negl(n).

C.2 Proofs that INDEXn, GREATERTHAN, and EXACTHAMMINGare Reconstructing

First, we will go over INDEXn. It was already known that INDEXn had OWC complexity of n-
bits for any negligible error [KNR95]. While the methods of Kremer et. al. give a lower bound
relative to the error, we care about negligible error from our definition of PPHs.

Lemma 37. INDEXn is reconstructing.

Proof. The learning algorithm L is straightforward: for every x ∈ {0, 1}n, LOx makes n static
queries P1, . . . , Pn where Pj(x) = xj . After n queries, L has (x1, . . . , xn) = x. Note that L does
not require adaptivity or randomness.

Corollary 38. There does not exist a PPH for INDEXn.

Now we will examine GREATERTHAN. GREATERTHAN is a problem where the determin-
istic lower bound is known to be exactly n, but no precise lower bound for randomized OWC
protocols is known. Recall that for equality, we have the same deterministic lower bound, but
a randomized protocol with negligible error can have significantly smaller OWC complexity
O(λ). The same will not be true of GREATERTHAN.

Lemma 39. GREATERTHAN is reconstructing.

Proof-sketch. For every x ∈ [2n], LOx is simply binary searching for x using the greater-than
predicate. So, the first query isOx(2n−1) and depending on the answer, the next query is either
2n−2 or 2n−1 + 2n−2, and so forth. There are a total of n queries, and from those queries L can
exactly reconstruct x.

Corollary 40. There does not exist a PPH for GREATERTHAN

Next, we turn to EXACTHAMMING, with parameter α.

Definition 41. The EXACTHAMMINGα two-input predicate is defined as

EXACTHAMMINGα(x1, x2) =

{
0 if ||x1 − x2||0 ≤ α
1 if ||x1 − x2||0 > α

While making the claim that EXACTHAMMING has OWC complexity of n bits follows from
Theorem 14 in the following section, we are able to demonstrate the flexibility of reconstructing
predicates; the proof of this lemma uses an L that is randomized.

Lemma 42. EXACTHAMMING(n/2) is reconstructing.

39

Proof. This proof borrows techniques from [JKS08], where they showed that GAPHAMMING

(n/2, c
√
n) required Ω(n) bits of communication, by reducing INDEXn to an instance of this

problem. We will have L use Ox to create this same GAPHAMMING instance just as Alice and
Bob separately computed it.

LOx will use the following algorithm:

1. For every i ∈ [n] and j ∈ [m]:

(a) Use the randomness to generate a new random vector ri,j
$← {0, 1}n.

(b) Let bi,j ← ri,j [i] and ai,j = 1−Ox(ri,j).

2. For every i ∈ [n], let x′i = (ai,1, . . . , ai,m) and y′i = (bi,1, . . . , bi,m).

3. For every i ∈ [n], let x̂i = 1 if ||y′i − x′i||0 ≤ n/2 and x̂i = 0 otherwise.

4. Return x̂ = (x̂1, . . . , x̂n).

This algorithm is exactly the algorithm Alice and Bob use in the proof that Gap-Hamming
requires n bits of communication in appendix C.3.1: L acts out Alice’s part by using Ox to
compute exact-hamming between ri,j and x, and acts out Bob’s part by just taking the i’th
coordinate from that random vector as the guess for the i’th bit of x. Now, without generality
assume n is odd, and the analysis is then the same:

• Assume xi = 1. Then, Eri,j [||x′i − y′i||0] ≤ n
2 −

√
2π
e2
√
n, and so as long as m = O(n2), a

Chernoff bound yields Pr[||x′i − y′i||0 ≥ n
2] ≤ e−O(n) = negl(n). And so, the probability

that we guess xi is 0 when xi = 1 is negligible.

• Assume xi = 0. We have Eri,j [||x′i − y′i||0] ≤ n
2 +

√
2π
e2
√
n. Again, as long as m = O(n2), a

Chernoff bound yields Pr[||x′i − y′i||0 ≤ n
2] ≤ e−O(n) = negl(n).

And with that, the chance that we guess xi incorrectly is negligible.

Corollary 43. There does not exist a PPH for EXACTHAMMING(n/2).

C.3 Proofs of Lower bounds for Gap-Hamming and Gap-GreaterThan

C.3.1 Proof that Gap-Hamming Requires n bits of Communication

Here is the full proof that Gap-Hamming Requires n bits of Communication. Recall the defini-
tion of the GAPHAMMING problem.

Definition 44. The GAPHAMMING(n, d, ε) promise predicate acts on a pair of vectors from {0, 1}n
and is defined as follows.

P (x1,x2) =

0 if ||x1 ⊕ x2||0 ≤ d(1− ε)
1 if ||x1 ⊕ x2||0 ≥ d(1 + ε)
~ otherwise

where || · ||0 denotes the `0 norm, or equivalently Hamming weight.

Theorem 45. The randomized OWC complexity of GAPHAMMINGn(n/2,
√
n/2) with negligible er-

ror is exactly n;
RA→Bnegl(n)(GAPHAMMING(n, n/2, 1/

√
n)) = n.

40

Proof. This will be a randomized reduction of INDEXn to GAPHAMMING for an arbitrary error
δ; we will show that this randomized reduction introduces negligible error, and so if we want
negligible error for GAPHAMMING on these parameters, we require δ = negl(n), too. We will
take Alice’s input x and Bob’s index i ∈ [n] and create two new vectors, a and b n-bit vectors,
correlated using the public randomness so that if xi = 1, a and b will be within n/2 −

√
n/2

distance from each other and if xi = 0, the vectors will be at least n/2 +
√
n/2 distance with all

but negligible probability (over n).
Without loss of generality, assume n is odd.

• For each coordinate bj , Bob samples the same public randomness rj ← {0, 1}n and sets
bj ← rj . Bob is essentially pretending rj is Alice’s vector.

• For each coordinate aj , Alice samples the public randomness rj
$← {0, 1}n. If ||x−rj ||0 <

n/2, she sets aj ← 1, and if ||x − rj ||0 > n/2, she sets aj ← 0. Alice is marking if rj is a
good proxy for x.

We now need to argue that a and b are close if xi = 1 and far otherwise. We will do this
by computing the expected hamming distance between a and b, and then applying a Chernoff
bound. Let’s go through both cases.

• Assume xi = 1. Then, Er[||a − b||0] =
∑n

j=1 Prr[aj 6= bj]. Now, looking at Prr[aj 6= bj],
we have the two more cases. Either x and rj agree on strictly less than or greater than
(n − 1)/2 bits (meaning ri is not used in determining aj); or, x and rj agree on exactly
(n− 1)/2 bits. In the second case, since xi = 1, the probability that bj = aj is 1. So,

Pr
r

[aj 6= bj] = Pr[Case 1] · 1

2
− Pr[Case 2] · 0

Using Stirling’s approximation, we get that Pr[Case 2] = c
√

2√
n−1

, where 2
√
π

e2
≤ c ≤ e

π
√

2
.

And so,

Pr
r

[aj = bj] =

(
1− c

√
2√

n− 1

)
· 1

2

≤ 1

2
− c√

2n

Now, when we commute the expected hamming distance if xi = 1, we get

E
r
[||a− b||0] =

n∑
j=1

Pr
r

[aj 6= bj] ≤ n · (
1

2
− c√

2n
) =

n

2
− c
√
n√
2

Plugging in the lower bound for c we computed with Stirling’s approximation, we have

E
r
[||a− b||0] ≤ n

2
−
√

2π

e2
·
√
n

Now, using a Chernoff bound, we get that Pr[||a− b||0 > n
2 +

√
n

4] ≤ e−O(n) = negl(n).

• Assume xi = 0. We will use the same analysis as before, but now in the second case, we
have xi = 0, so the probability that ri = aj is 0. And hence,

E
r
[||a− b||0] ≥ n

2
+

√
2π

e2
·
√
n

Again, using a Chernoff bound, we get that Pr[||a− b||0 < n
2 +

√
n

4] ≤ e−O(n) = negl(n).

Therefore, with all but negligible probability in n, this randomized reduction is correct.

41

C.3.2 Proof that Gap-k Greater-Than requires n− log(k)− 1 bits

First, let us recall the definition of the Gap-k greater-than predicate P .

Px1(x2) =

1 if x1 > x2 and |x1 − x2| > k
0 if x1 ≤ x2 and |x1 − x2| > k
∗ otherwise

Theorem 46. For k ≥ 1, the OWC complexity of gap-k GREATERTHAN is

RA→Bnegl(n)(P) = n− log(k)− 1

and in fact there exists a protocol compressing by log(k) + 1 bits that has no error.

Proof. Assume k is a power of 2. All other k follow: we will be unable to compress by more
than dlog(k)e+ 1 bits. Let P be the Gap-k GREATERTHAN predicate.

Designing a PPH. The proof that we can compress by log(k) + 1 is simply that our hash
function h just removes the last log(k) + 1 bits. However, P ′ must do a little work:

• Let L = h−1(h(x)) = {x0, x1, . . . , x2k} be the list, in order, of all elements mapping to
h(x), where x0 + 2k = x1 + 2k − 1 = · · · = x2k.

• If a ≤ xk, P ′a(h(x)) = 0, and if a > xk, P ′a(h(x)) = 1.

First we show this algorithm is correct. For every x, a ∈ [2n], if Pa(h(x)) = 0, then a ≤
minh−1(h(x)) + k ≤ x + k. If a < x, then Pa(h(x)) answers correctly, but if a > x, we get that
|x − a| ≤ k, and so our output is still alright since a is within the gap around x. Similarly, if
Pa(h(x)) = 1, then a > maxh−1(h(x)) − k ≥ x − k. For the same reasons the output is either
correct or within the gap.

Lower bound. Now we want to show that if h compresses by more than log(k) + 1 bits, we
can non-adaptively find two inputs such thatP ′a(h(x)) 6= Pa(x) with non-negligible probability.
In fact we will show that we can guess a, x with probability at least 1

400n . Our method will be
first to guess an x that is “bad” (collides with an x′more than 5

2k from it), guess if it is smaller or
bigger than x′ (b), and then guess by how much x′ is smaller or bigger than x (2s−1 ≤ |x−x′| ≤
2s):

1. x $← [N]

2. b $← {0, 1} and s $← {log k + 1, . . . , n}.

3. If b = 0: a $← {x− 2s, . . . , x− (k + 1)} and output x and a.
If b = 1: a $← {x+ (k + 1), . . . , x+ 2s} and output x and a.

Let h be any function hashing n bits to n − (log(k) + 2) bits (again assume k is a power of
2). Let K = 3.5k, we want to bound the probability we choose a random input x and end up
with h(x) having a pre-image size at least size K:

Pr
x

$←[N]

[
|h−1(h(x))| ≥ K

]
= 1− Pr

x
$←[N]

[
|h−1(h(x))| < K

]
≥ 1− (K − 1)(2n−log(k)−1 − 1)2−n

≥ 1− (K − 1)(
1

4k
)

≥ 1− 3.5k

4k
=

1

8

42

Consider any preimage h−1(y) of size at least 3.5k: if we sort the set h−1(y), then pair off the
first x in the sorted list with the 5

2 · k’th, the second with the 5
2k+ 1’th and so on, then choosing

x
$← h−1(y), with probability 4

7 , xwill have an x′ it is paired with. For all a in between x and x′,
and at least distance k from both of them, P ′a(h(x)) is wrong more often than P ′a(h(x′)) or vice-
versa. For each x, x′ pair, consider all a in between x and x′ and at least distance k from both
of them: P ′a(h(x)) = P ′a(h(x′)). So, for one of x or x′, this will evaluate incorrectly. Therefore,
one of x or x′ will have that, for at least half of the a’s in between and distance k from both, P ′a
evaluates incorrectly. We also have that since x and x′ are at least 5

2k apart, there are at least
k
2 elements a that are distance k from both of them. If we choose at random from elements at
least distance k from x, we get the probability of choosing an a at distance k from both x and
x′ is 1

3 .
We will call an x bad if it has an x′ such that h(x) = h(x′) and |x − x′| ≥ 3.5k (which we

call ‘paired’), and for all the a in between x and x′ and distance k from both, more than half of
them evaluate incorrectly on x.

Pr
x

[x is bad] ≥ Pr[x is bad||h−1(h(x))| ≥ K] · Pr[|h−1(h(x))| ≥ K]

≥ Pr[x is bad||h−1(h(x))| ≥ K ∧ ∃ paired x′] · Pr[∃ paired x′||h−1(h(x))| ≥ K] · 1

8
≥ Pr[x is bad||h−1(h(x))| ≥ K ∧ ∃ paired x′ ∧ x has more incorrect a]

· 1

2
· 4

7
· 1

8

≥ 1

28

Now, assume that we have chosen a bad x. We will compute the probability we choose an a
that Pa(x) 6= P ′a(h(x)). Consider x and its pair x′: x is wrong on at least half of the a between x
and x′, so our goal is to sample between x and x′ without knowing x′. First, we guess whether
x < x′ or vice-versa (our choice of the bit b). Then, we guess how far apart they are to the
nearest power of 2 (our choice of s ∈ [n]). Finally, if we have guessed both of these correctly,
we sample in the range x ± s, and with probability at least 1/2 we are sampling in the range
(x, x′), and again with probability at least 1/2, we sample an a that evaluates incorrectly for x.
Formally, we have:

• Assume x is bad, and so is paired with an x′. Prx,b,s,a[P
′
a(h(x)) 6= Pa(x)] ≥ Prx,b,s,a[P

′
a(h(x)) 6=

Pa(x)|b is correct] · 1
2 .

• Now assume that both x is bad and b is chosen correctly (that is, we know x < x′ or
x′ < x). Prx,b,s,a[P

′
a(h(x)) 6= Pa(x)] ≥ Prx,b,s,a[P

′
a(h(x)) 6= Pa(x)|2s−1 < |x− x′| ≤ 2s] · 1

n .

• Assume x is bad, b is chosen correctly, and s is also guessing the range between x and x′

correctly. We have Prx,b,s,a[P
′
a(h(x)) 6= Pa(x)] ≥ Prx,b,s,a[P

′
a(h(x)) 6= Pa(x)|a ∈ (x, x′)] · 1

2
since Prx,b,s,a[a ∈ (x, x′)] ≥ 1

2 given a ∈ (x, x+ 2s) or a ∈ (x− 2s, x) when b = 0 or b = 1
respectively.

• Assume we have chosen an a ∈ (x, x′) or (x′, x) (whichever is correct). The probability
that |x − a| and |x′ − a| > k is at least 1

3 (since we guarantee that a is at least distance k
from x).

• Finally, assume all of the previous points. We get Prx,b,s,a[P
′
a(h(x)) 6= Pa(x)] ≥ 1

2 because
x is bad and we are choosing a ∈ (x, x′) or (x′, x) (whether b = 0 or 1) where a is distance
more than k from both x and x′. So, P ′a(x) will evaluate incorrectly on at least half of all
such a’s.

43

• Putting all of these conditionals together (multiplying them), we have

Pr
x,b,s,a

[P ′a(h(x)) 6= Pa(x)] ≥ 1

28
· 1

2
· 1

n
· 1

2
· 1

3
=

1

336n
.

This completes the proof: if we try to compress more than dlog(k)e + 1 bits, we end up
being able to use the above attack to find a bad input on the hash function with probability at
least 1

400n .

A Different Lower Bound for Two-input Greater-Than. Here we will intuitively describe
why the lower bound for Two-Input Greater-Than is n − log(k), one bit less than the lower
bound on the single-input version. Consider the construction for a single-input gap-k Greater-
Than PPH, as described in the proof above. h(x) removes the last log(k) + 1 bits from x, and
we are able to compare a value a to h−1(x), checking if a is in the lower half or the higher half.
If we instead are only given h(x) and h(a), we can only check that a is in the h−1(x), and have
no sense of where.
So, in the two-input case, we have a simple upper bound: our hash h′(x) removes exactly
the log(k) lowest bits, and P ′(h(x), h(a)) simply compare h(x) > h(a). The proof that this is
optimal follows the same structure as above, except we let K = 2k. Now, if our adversary
finds a random collision, h(x) = h(a), there is a large enough chance that |x − a| > k, which
would violate the correctness of the PPH.

D Proofs for Section 4

Here we will include the omitted proofs for our Gap-Hamming PPH constructions. These
proofs tend to involve basic Chernoff bound calculations.

D.1 Proofs for Subsection 4.1: CRHFs for a Gap-Hamming PPH

Here is the proof of the lemma left out in Section 4.1.

Lemma 47. For n sufficiently large, k = O(n), constant a ∈ (0, 1), γ = o(k
n log(n/k)), and D =

Θ(log(1/γ)). For any constant δ ∈ (0, 1), δ-biased (n, k,D, γ, aD)-expanders exist and are con-
structible in time poly(n).

Proof. First, we will show that with the right parameter settings for D and γ, we can show
δ-biased (n, k,D, γ, aD)-expanders exist via random sampling. In fact, we will show that with
constant probability p, we will sample such an expander. Then, we will show that with proba-
bility at least 1−negl(n), the graph we sample via this method is δ-balanced. So, the probability
we will sample a graph that is both an (n, k,D, γ, aD)-expander and δ-biased is a union bound:
p− negl(n). This means that we will sample a δ-biased (n, k,D, γ, aD)-expander with constant
probability.

Sampling an expander with constant probability. First we will show that we can sample
these expanders with constant probability. We will bound the following sampling procedure:
for each node in L, uniformly sample D distinct neighbors in R and add those edges. We have
that for any set S ⊆ [n] and K ⊆ [k],

Pr[N(S) ⊆ K] ≤
(
|K|
k

)D·|S|
44

since for this upper bound, we can just model this process as every node in L choosingD edges
to R independently.

G is not a (n, k,D, γ, aD)-expander if there exists a subset S of R such that |S| ≤ γn, and a
subset K ⊆ [k], |K| < aD|S| such that N(S) ⊆ K. We will upper bound this probability with
a constant. We start by turning this probability into an infinite series:

Pr
G

[G is not a (γ, k,D, γ, aD)-expander] ≤
∑

S,|S|≤γn

∑
K,|K|=aD|S|

Pr
G

[N(S) ⊆ K]

≤
γn∑
s=1

∑
S,|S|=s

∑
K,|K|=aDs

Pr
G

[N(S) ⊆ K]

≤
γn∑
s=1

(
n

s

)
·
(

k

aDs

)
·
(
aDs

k

)Ds
≤

γn∑
s=1

(ne
s

)s
·
(
ke

aDs

aDs)
·
(αs
k

)Ds
≤

γn∑
s=1

x′
s for x′ =

(ne
s

)(ke

aDs

)aD (aDs
k

)D
Notice that for s varying from 1 to γn, this quantity is maximized when s = γn. So, let x =(
e
γ

)(
ke

aDγn

)aD (
aDγn
k

)D
, where x′ ≤ x. We will interpret this as a geometric series and get

γn∑
s=1

x′
s ≤

γn∑
s=1

xs ≤
∞∑
s=1

xs =
x

1− x
if |x| < 1.

We need this upper bound to be some constant less than 1, which means we want x to be a
constant strictly less than 1

3 . This is where our restrictions on k, γ, and D will come into play.(
e

γ

)(
ke

aDγn

)aD (aDγn
k

)D
<

1

3(
e

γ

)
eD
(
aDγn

k

)D(1−a)

<
1

3

eD
(
aDγn

k

)D(1−a)

<
γ

3e

Now, we have k = o(n). Assume that we have γ = o(k/(n(log(n/k)))) andD = O(log(1/γ))).
With these parameters, we haveDγ = o(k/n). This is fairly easy to show: if γ = o(k/n(log(n/k))),
then γ = k/(nf(log(n/k))) for some f(a) = ω(a), and we have two cases to analyze:

• log(n/k) ≥ log(f(log(n/k))). Now, because f(a) = ω(a), this means f(log(n/k)) =
ω(log(n/k)). And given the inequality, f(log(n/k)) = ω(log(n/k) + log(f(log(n/k))).

• log(n/k) < log(f(log(n/k))). So, f(log(n/k)) = ω(log(f(log(n/k)))) (and is exponentially
larger). Given the inequality, this implies f(log(n/k)) = ω(log(n/k) + log(f(log(n/k))).

In both cases, we have f(log(n/k)) = ω(log(n/k) + log(f(log(n/k))). This yields

Dγ =
log(n/k) + log(f(log(n/k)))

f(log(n/k))
· k
n

= o(1) · k
n

= o(k/n).

45

Dγ = o(k/n) gives us

aDγn

k
=
a · c1 log(1/γ) · c2γn

k
=
o(k)

k
= o(1).

Therefore, for any constant 0 < b < 1 and sufficiently large n, we have aDγn
k < b. Substituting

that term with b, we have

eD
(
aDγn

k

)D(1−a)

< eD · bD(1−a) <
γ

3e

D(log(e) + (1− a) log(b)) < log(γ)− log(3e)

D((1− a) log(1/b)− log(e)) > log(1/γ) + log(3e)

D >
log(1/γ) + log(3e)

(1− a) log(1/b)− log(e)

Now, since we can use any constant b, we will choose b to make the denominator a positive
constant: let b > e(a−1), and we have that

D = Ω(log(1/γ)).

Given these matching upper and lower bounds for D, we have D = Θ(log(1/γ)).

Sampling a Balanced Expander. This will be a simple application of a Chernoff bound. Con-
sider the expected value of the degree of nodes on the right: EG[|N(v)|] = nD/k. Notice that
|N(v)| =

∑
u∈L 1(v ∈ N(u)), and for every u ∈ L and v ∈ R, we have PrG[v ∈ N(u)] = D/k,

which is independent for every u ∈ L. A Chernoff bound tells us for every v ∈ R and any
constant 0 ≤ d ≤ 1, PrG[|N(v)| ≤ (1 − δ)nD/k] ≤ exp[−δ

2nD
2k]. Because k = o(n) and δ is

constant, exp[−δ
2nD
2k] = 2−n

O(1)
= negl(n). Now, via a simple union bound over all v ∈ R, we

have

Pr
G

[∃v ∈ R, |N(v)| < (1− δ)nD/k] ≤
∑
v∈R

Pr
G

[|N(v)| < (1− δ)nD/k]

≤ k · exp

[
−δ2nD/k

2

]
= k/2n

O(1)
= negl(n).

Therefore, the probability that our random graph is δ-balanced is at least 1− negl(n).
This completes the proof: we can simply sample a random D-left-regular bipartite graph,

check if it is a balanced expander with the desired parameters, and with constant probability
it will be.

E Proof of Theorem 28: A Double-Oracle Equality PPH implies OWFs

We will show that without OWFs, given any compressing family of functions H, we can find
a collision given only an oracle to h ∈ H using algorithm 2, and finding such a collision is
equivalent to finding a pair of inputs breaking the guarantees of the PPH.

Before our proof, we will need to define bins.

Definition 48. A bin By ⊆ {0, 1}n is defined by an element in y ∈ Im(g) for some function g:
By = {x : g(x) = y}.

46

We will typically fix a bin and analyze the properties of that bin, so we will drop the sub-
script.

We will also assume that OWFs do not exist, which allows us to have non-uniform invert-
ers.

Theorem 49 ([GIL+90]). If OWFs do not exist, then weak OWFs do not exist. This means that for
every function f : {0, 1}n → {0, 1}m, there exists a non-uniform inverter Af and a polynomial Q,

Pr
x

[
y ← f(x), x′ ← Af (y) : f(x′) = y

]
≥ 1− 1

Q(n)
.

Here is an overview of our proof: we will use our oracle access to h and our ability to invert
function to produce an approximation h′ of h. We then need to have a noticeable probability
of choosing an element x and getting an inverse x′ from an inverter Ah such that neither x nor
x′ disagree between h and h′. The way to ensure this is to think of the output bin defined by
x and bound the fraction of elements that are bad (that disagree between h and h′). Since we
may have some bad elements in our bin, even if they are a small fraction, an arbitrary inverter
of h′ might always choose to give us inverses that disagree between h and h′. So, we will want
to split the bin into sub-bins using a pairwise independent hash function f $← Fk for some k
– lemma 53 tells us that there exists a k ∈ [n] so that there are very few bad elements in our
sub-bin in expectation.

Algorithm 2: FindCollisions(Oh, {Fk}k∈[n],A)

Input: Oh is an oracle for h. We have n− 3 families of pairwise independent hashes:
Fk = {f : {0, 1}n → {0, 1}k}. We also have a set of n− 3 non-uniform PPT
inverters A = {Agk} for each gk ∈ {0, · · · , n− 3} for
gk(h, fk,x, x) = fk,x, h(x), fk(x)||h(x) where fk ← Fk.

Output: (x, x′) so that x 6= x′ and h(x) = h(x′) or ⊥ on failure.
1 Choose x = x1, · · · , xt

$← {0, 1}n and x $← {0, 1}n;
2 Compute y = (y1 = Oh(x1), · · · , yk = Oh(xk));

3 Choose k $← {0, · · · , n− 3};
4 Choose f $← Fk;
5 Compute f(x)||Oh(x) = f(x)||h(x);
6 Compute h′, f, x1, · · · , xt, x′ ← Agk(f,x,y, f(x)||h(x)) or output ⊥ if Agk fails ;
7 if x 6= x′ and Oh(x) = Oh(x′) then
8 return (x, x′)
9 end

10 else
11 return ⊥
12 end

Theorem 50. Double-Oracle robust PPHs for equality imply OWFs.

Proof. Throughout this proof, we will reference a few lemmas proved later. We will present
this proof first to motivate the lemmas. We will prove that algorithm 2 finds collisions in any
compressing function with noticeable probability.

To put this all together, let’s label some events:

• InverseSuccess(IS) is the event that Agk outputs a correct inverse.

47

• Collision is the event we get a collision with algorithm 2.

• GoodApprox is the event thatAgk produces an h′ that disagrees with h on at most 1/(100nc)-
fraction of inputs. A bad element is an element x such that h(x) 6= h′(x).

• GoodBin is the event that the x we chose landed in a bin with at most 1/nc bad elements
and has more than 1 element.

• CleanSubBin is the event that after choosing f from Fk for k = max(0, i − 3), we end up
in a sub-bin with no bad elements and more than one element. Otherwise we refer to the
sub-bin as dirty.

We will first assume that Agk succeeds and that k = max(0, i − 3). We will compute the prob-
ability of failure using a union bound later, and since k is chosen independently at random of
all other events, we will include that with probability 1/n < 1/(n− 3).

We dissect the probability, over our choice of x $← {0, 1}n×t, x $← {0, 1}n, and f $← Fk where
k = max(0, i − 3), of getting a collision given InverseSuccess; e.g. in the next lines Pr[Collision]
really means Pr[Collision|IS]:

Pr
x,x,f

[Collision] ≥ Pr[Collision|CleanSubBin] · Pr[CleanSubBin]

≥ Pr[Collision|CleanSubBin] · Pr[CleanSubBin|GoodBin]·
Pr[GoodBin]

≥ Pr[Collision|CleanSubBin] · Pr[CleanSubBin|GoodBin]·
Pr[GoodBin|GoodApprox] · Pr[GoodApprox]

Now, let’s analyze each of these probabilities one-by-one, starting with
Pr[GoodApprox|IS].

• Pr[GoodApprox|IS] ≥ 99/100.

This is a straight application of lemma 51. We guarantee that with probability 99/100, h′

agrees with h on all but 1/p(n)-fraction of inputs for any polynomial p(n) depending on
our number of queries t. Now, we have chosen 100nc for our polynomial.

• Pr[GoodBin|GoodApprox ∧ IS] ≥ 49/100.

From lemma 52, we know that 99/100-fraction of our inputs end up in a bin where at
most 100/(100nc) = 1/nc-fraction of the inputs disagree between h and h′. Now, we
could end up in a bin with only one element, but at most 1/2 of the elements could map
to bins of size 1. This is because if we compress even just by one bit and map as many of
our 2n elements to bins with a single element in them, we can map the first 2n−1 − 1 to
single-element bins, but the last bin must contain the rest, and 2n−1−1

2n < 1
2 . Compressing

by more bits only decreases this fraction.

Therefore, Pr[GoodBin|GoodApprox∧ IS] = 1−Pr[only one element in bin or in a bad bin].
By a union bound, this gives us 1− (1/2 + 1/100) = 49/100.

• Pr[CleanSubBin|GoodBin ∧ IS] ≥ 79/100.

From lemma 53, we know that our sub-bin contains bad elements with probability at
most 16/nc. Assume we have chosen c large enough so that 16/nc ≤ 1/100. Then, from
lemma 55, we know that with probability at least 8/10, we have more than 1 element.
So, Pr[CleanSubBin|GoodBin ∧ IS] = 1− Pr[only element in sub-bin or in a dirty sub-bin].
By a union bound this is at least 1− (2/10 + 1/100) = 79/100.

48

• Pr[Collision|CleanSubBin ∧ IS] ≥ 1
2 .

We are guaranteed to have at least two elements in our sub-bin. So, when Agk produces
a pre-image for h′(x)||f(x), then A has probability at most 1/2 of giving us x′ = x, but
we are guaranteed that h′(x′) = h(x′) since we are in a clean sub-bin.

This means,

Pr[Collision|IS] ≥ 1

2
·
(

79

100
· 49

100
· 99

100

)
≥ 19

100

We’re almost done. We need to finish this analysis by consider the case that Ag does not
find an inverse and that we correctly chose k = min(0, i − 3). First, note that Pr[¬IS] ≤ 1/100
from theorem 49 because the input to Ag looks like a random output from g. Finally,

Pr[Collision] ≥ Pr[Collision|IS] · Pr[IS] · Pr[k = min(0, i− 3)]

≥ 19

100
· 99

100
· 1

n
≥ 18

100n

Helpful lemmas Here we will go through the lemmas that make our analysis possible. We
will start by showing that with polynomially many queries t, we have a 99/100 chance of
getting an approximate h′ that agrees on almost all queries with h.

Lemma 51. Let p(n) be any polynomial and assume OWFs do not exist. Let t ≥ (r + 7)p(n), and we
define a function g(h, x1, . . . , xt) = x1, . . . , xt, h(x1), . . . , h(xt). Let x = (x1, · · · , xt)

$← {0, 1}t·n.
For any non-uniform inverter Ag that succeeds in producing an inverse h′,

Pr
h,x

[
h′ ← Ag(x,y) : Pr

x

[
h(x) = h′(x)

]
≥ 1− 1/p(n)

]
≥ 98/100.

Proof. Let r = nO(1) be the number of bits required to describe a hash function in H. Now, fix
h, the hash function we have oracle-access to. We consider the following function, which we
use in line 2 of algorithm 2:

g : {0, 1}r × {0, 1}tn → {0, 1}tn × {0, 1}tm

g : (h, x1, · · · , xt) 7→ (x1, · · · , xt, h(x1), · · · , h(xt))

Since OWFs do not exist, we have an inverter Ag which can invert g to get an h′ on at least
99/100-fraction of possible outputs of g. First, assume that Ag produces a correct inverse.
Now, we will bound the probability that h′ differs on more than 1/p(n)-fraction of inputs to h:

Pr
x

[
∀xi, h(xi) = h′(xi)

]
≤ (1− 1

p(n)
)t.

Since h′ has only r bits to describe itself, we can bound the probability that there even exists
such an h′ with a union bound:

Pr
x

[
∃h′ : ∀xi, h(xi) = h′(xi)

]
≤ 2r

(
1− 1

p(n)

)t
.

We want this probability to be less than 1
100 , so we can bound the number of queries t as

follows:

2r
(

1− 1

p(n)

)t
≤ 1

100
⇐⇒ t ≥ (r + log(100)) · 1

log
(

p(n)
p(n)−1

)
49

We notice that this ugly term 1

log
p(n)
p(n)−1

≤ p(n) for all n. It turns out that p(n) is a very good

upper bound of this term: assuming p(n) is increasing, for all exponents 0 ≤ c < 1, there exists
n′ so that for all n > n′, 1

log
p(n)
p(n)−1

≥ p(n)c.

Given that 7 > log2(100), we can choose t such that

t ≥ (r + 7)p(n).

Now, we will assume that h and h′ agree on all but 1/p(n) inputs and prove, using a simple
counting argument, that 99/100 of our inputs land in bins with at most 100/p(n)-fraction of
bad bins.

Lemma 52. If h and h′ disagree on at most q(n) = 2n/p(n), then there exists a set of bins containing
99/100-fraction of all inputs such that each bin contains at most a 1/p′(n)-fraction of bad inputs where
p′(n) = p(n)/100.

Proof. For sake of contradiction, assume that the lemma is not true: for every set of 99/100 · 2n
inputs x ∈ {0, 1}n, at least one of the x falls into a bin B, where strictly more than 1/p′(n)-
fraction of the inputs y ∈ B are “bad,” mapping h(y) 6= h′(y).

So, let us consider the set where we map as many inputs as we can to good bins, bins with
≤ 1/p′(n)-fraction of the inputs are bad. This means that the rest of the inputs map to bins
where > 1/p′(n)-fraction of the inputs are bad. In the best case for this, we can find good bins
for 99/100 · 2n − 1 of the inputs, but not for the last one.

Let q′ ≥ 2n/100 + 1 be the number of inputs that are left, and therefore all map to bad bins.
In fact, these q′ elements fill the remaining bins exactly, so if we try counting the number of
bad elements:

#bad >
∑

B is a bad bin

(
|B| · 1

p′(n)

)
=

q′

p′(n)
.

Since q′ > 2n/100, this implies #bad > 2n/(100p′(n)) = 2n/p(n). This is a contradiction
since we assumed #bad ≤ 2n/p(n).

Therefore, there exists a subset S ⊂ {0, 1}n where |S| ≥ 2n/100, and all x ∈ S map to bins
with fraction at most 100/p(n) of the elements in those bins are bad.

Now, let us assume that we are in a good bin where h′ agrees with h on all but 1/nc elements
in this bin. We will prove that with noticeable probability, we can split the bin into sub-bins,
where most of them are completely clean (and in fact that we will land in a clean bin).

Lemma 53. Let B be a bin of size between 2i and 2i+1, and at most 1/nc-fraction of elements x ∈ B
are bad.

Let k = max(0, i − 3) and f : {0, 1}n → {0, 1}k $← F a pairwise independent hash-function
family. For an arbitrary fixed x ∈ B,

Pr
f

$←F

[
6 ∃x′ ∈ B so that h(x′) 6= h′(x′) ∧ f(x′) = f(x)

]
≥ 16

nc

Proof. Let |B| = s. By assumption, 2i ≤ s ≤ 2i+1. We will be focusing on the number of bad
elements in B. Let q be the number of bad elements in B. Again, by assumption, q ≤ s/nc.

We have two cases: i < 4 and i ≥ 4. For the case that i < 4, we can choose c to be large
enough so that 2i/nc < 1. When this is the case, there are no bad elements in B, and therefore

50

for k = 0, the sub-bin defined by h′(x)||f(x) = h′(x) is entirely clean. In fact, for n > 2, we
choose c ≥ 4 and we are guaranteed this fact. When i ≥ 4, we need to do a bit more analysis.

Fix a sub-bin B′ for an arbitrary element in the image of f ∈ F . Let X̂ =
∑q

j=1 X̂j be
the sum of indicator values X̂j where X̂j is 1 if the jth bad element in our starting bin B is
mapped to bin B′. So, X = |B′| is a non-negative random element. We can bound the mean
of X̂ as µ̂ = E[X̂] ≤ s

nc ·
1
2k

. Since s is between 2i and 2i+1, µ̂ ≤ 16
nc . With a Markov bound,

Pr[X̂ ≥ 1] ≤ µ̂
1 ≤

16
nc .

Finally, we need to make sure that our sub-bin is large enough. So, we will assume that
we are in a bin of size s between 2i and 2i+1 and let k = i− 3, as in the previous theorem. We
will show using the assymetric Chebyshev theorem, theorem 54, that with probability 8/10,
we have a sub-bin of at least 2 elements.

Theorem 54 (Asymetric Chebyshev). For a random variable X of unknown or assymetric distribu-
tion with mean µ and variance σ2 and for two integers, k1 + k2 = 2µ,

Pr [k1 < X < k2] ≥
4
(
(µ− k1)(µ− k2)− σ2

)
(k2 − k1)2

.

Lemma 55. Let B be a bin of size between 2i and 2i+1 for i ≥ 1, and at most 1/nc-fraction of elements
x ∈ B are bad.

Let k = max(0, i − 3) and f : {0, 1}n → {0, 1}k $← F a pairwise independent hash-function
family. With probability at least 8/10, there are at least 2 elements in a sub-bin defined by h′(x)||f(x).

Proof. In this proof we consider the bin B as a whole. Let X =
∑s

j=1Xj where Xj indicates
if the jth element in B maps to our sub-bin B′ defined by h′(x)||f(x). Note that since f is
pairwise independent, X is the sum of pairwise independent variables.

Again, the first case, where i < 4, is simple to analyze. Here k = 0, and we are looking at B
as a whole, which by assumption i ≥ 1 has at least 2 elements. The second case, where i ≥ 4,
requires more analysis.

Let µ be the mean of X . By linearity of expectation µ =
∑

E[Xj] =
∑ 1

2k
= s

2k
. Since

k = i− 3, 8 ≤ µ ≤ 16.
Let σ2 be the variance of X . We compute σ2 as follows, keeping in mind that the Xj are

pairwise independent so covariance between 2 variables is 0:

σ2 = Var

 s∑
j=1

Xj

 =

s∑
j=1

Var(Xj) +
∑
j 6=`

Cov(Xj , X`)

=
s∑
j=1

Var(Xj) =
s∑
j=1

1

2k

(
1− 1

2k

)
=

s

2k
(1− 1

2k
) < µ.

Since we have variance and mean, we can use theorem 54, the Chebyshev inequality. If we
let k1 = 1 and k2 = 2µ− 1, we satisfy k1 + k2 = 2µ, and can compute

Pr[X > 1] ≥ Pr[1 < X < 2µ− 1] ≥ 4(µ− 1)(2µ− 1− µ)− σ2

(2µ− 1− 1)

=
4

4(µ− 1)2
·
(
(µ− 1)2 − σ2

)
≥
(
(µ− 1)2 − µ

)
(µ− 1)2

.

51

Recall that 8 ≤ µ ≤ 16 and this function increases with µ. So, plugging in µ = 8 gives us a
minimum:

Pr[X > 1] ≥ (8− 1)2 − 8

(8− 1)2
=

41

49
>

8

10
.

52

	Introduction
	Our Results and Techniques

	Defining Property-Preserving Hash Functions
	Non-Robust PPH
	Evaluation-Oracle Robust PPH
	Double-Oracle PPH
	Direct-Access Robust PPH

	Property Preserving Hashing and Communication Complexity
	PPH Lower Bounds from One-Way Communication Lower Bounds
	OWC and PPH lower bounds for Reconstructing Predicates
	Lower bounds for some partial predicates

	Two Constructions for Gap-Hamming PPHs
	A Gap-Hamming PPH from Collision Resistance
	A Gap-Hamming PPH from Sparse Short Vectors
	Non-Robust Gap-Hamming PPH
	Robust Gap-Hamming PPH with a Sparse Domain
	From the Full Domain to a Sparse Domain

	Necessity of Cryptographic Assumptions
	The Equality Predicate and Collision-Sensitivity
	Direct-Access Equality PPHs if and only if CRHFs
	Double-oracle Equality PPHs if and only if OWFs
	Double-Oracle PPHs for Equality imply OWFs.

	Evaluation-Oracle PPHs for Equality with Pairwise Independence.
	Collision-Sensitivity, OWFs, and CRHFs

	Multi-Input vs Single-Input Predicates
	Proofs of Section 2: Relationships between definitions
	Proof of lemma 4: From a Non-Robust to Robust PPH for Total Predicates
	Proof of lemma 6: Amplifying an EO-robust PPH to a DO-robust PPH

	Proofs for Section 3: PPH Lower Bounds from One-Way Communication Lower Bounds
	Proof of theorem 10: OWC Lower Bounds Imply PPH Lower Bounds
	Proofs that Indexn, GreaterThan, and ExactHammingare Reconstructing
	Proofs of Lower bounds for Gap-Hamming and Gap-GreaterThan
	Proof that Gap-Hamming Requires n bits of Communication
	Proof that Gap-k Greater-Than requires n - log(k) - 1 bits

	Proofs for Section 4
	Proofs for Subsection 4.1: CRHFs for a Gap-Hamming PPH

	Proof of Theorem 28: A Double-Oracle Equality PPH implies OWFs

