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Abstract. Local pseudorandom generators allow to expand a short random string into a long pseudo-
random string, such that each output bit depends on a constant number d of input bits. Due to its extreme
efficiency features, this intriguing primitive enjoys a wide variety of applications in cryptography and
complexity. In the polynomial regime, where the seed is of size n and the output of size ns for s > 1, the
only known solution, commonly known as Goldreich’s PRG, proceeds by applying a simple d-ary predicate
to public random size-d subsets of the bits of the seed.

While the security of Goldreich’s PRG has been thoroughly investigated, with a variety of results deriving
provable security guarantees against class of attacks in some parameter regimes and necessary criteria to be
satisfied by the underlying predicate, little is known about its concrete security and efficiency. Motivated
by its numerous theoretical applications and the hope of getting practical instantiations for some of them,
we initiate a study of the concrete security of Goldreich’s PRG, and evaluate its resistance to cryptanalytic
attacks. Along the way, we develop a new guess-and-determine-style attack, and identify new criteria which
refine existing criteria and capture the security guarantees of candidate local PRGs in a more fine-grained
way.
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1 Introduction

One of the most fundamental problems in cryptography is the question of what makes an efficiently
computable function hard to invert. The quest for the simplest design which leads to a primitive
resisting all known attacks is at the heart of both symmetric and asymmetric cryptography: while
we might be able to build seemingly secure primitives by relying on more and more complex designs
to thwart cryptanalysis attempts, such a “security by obscurity” approach is unsatisfying. Instead,
as advocated almost two decades ago by Goldreich [Gol00], we should seek to construct the simplest
possible function that we do not know how to invert efficiently. Only this way, Goldreich argued, can
we better understand what really underlies the security of cryptographic constructions.

Random Local Functions. In an attempt to tackle this fundamental problem, Goldreich suggested
a very simple candidate one-way function as a promising target for cryptanalysis: let (n,m) be integers,
and let (σ1, . . . , σm) be a list of m subsets of [n], such that each subset is of small size: for any i ≤ m,
|σi| = d(n), where d(n)� n (in actual instantiations, d(n) can for example be logarithmic in n, or even

constant). Fix a simple predicate P : {0, 1}d(n) 7→ {0, 1}, and define the function f : {0, 1}n 7→ {0, 1}m
as follows: on input x ∈ {0, 1}n, for any subset S of [n], let x[σ] denote the subset of the bits of
x indexed by σ. Compute f(x) as P (x[σ1])|| · · · ||P (x[σm]) (that is, f(x) is computed by applying
the predicate P to all subsets of the bits of x indexed by the sets σ1, . . . , σm). We call random local
functions the functions obtained by instantiating this template.
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In his initial proposal, Goldreich advocated instantiating the above methodology with m ≈ n and
d(n) = O(log n), and conjectured that if the subsets (σ1, . . . , σm) form an expander graph1, and for
an appropriate choice of the predicate P , it should be infeasible to invert the above function f in
polynomial time. While setting d(n) to O(log n) offers stronger security guarantees, the more extreme
design choice d(n) = O(1) (also discussed in Goldreich’s paper) enhances the above candidate with an
appealing feature: it enjoys constant input locality (which puts it into the complexity class NC0), hence
it is highly parallelizable (it can be computed in constant parallel time). It appeared in subsequent
works that a stronger variant of Goldreich’s conjecture, which considers m � n and claims that f is
in fact a pseudorandom generator, was of particular interest; we will elaborate on this later on.

Local Pseudorandom Generators. The question of whether cryptographic primitives can exist in
weak complexity classes such as NC0 has attracted a lot of attention in the cryptographic community. A
primitive of particular interest, which has been the focus of most works on the subject, is the notion of
pseudorandom generators (PRGs), which are functionsG : {0, 1}n 7→ {0, 1}m extending a short random
seed into a longer, pseudorandom string. The existence of PRGs in NC0 was first considered by Cryan
and Miltersen in [CM01]. Remarkably, it was shown by Applebaum, Ishai, and Kushilevitz [AIK04,
AIK08] that cryptographically secure pseudorandom generators (with linear stretch m = O(n)) exist
in a complexity class as low as NC0

4 (the class of constant depth, polysize circuits where each output
bit depends on at most 4 input bits), under widely believed standard assumption for the case of PRG
with sublinear stretch (such as factorization, or discrete logarithm), and under a specific intractability
assumption related to the hardness of decoding “sparsely generated” linear codes, for the case of PRG
with linear stretch. While this essentially settled the question of the existence of linear stretch PRGs in
NC0, an intriguing open question remained: could PRGs in NC0 have polynomial stretch, m = poly(n)?

Some early negative results were given by Cryan and Miltersen [CM01] (who ruled out the existence
of PRGs in NC0

3 with stretch m > 4n) and Mossel, Shpilka, and Trevisan [MST03] (who ruled out the
existence of PRGs in NC0

4 with stretch m > 24n). The authors of [CM01] also conjectured that any
candidate PRG with superlinear stretch in NC0 would be broken by simple, linear distinguishing tests2;
this conjecture was refuted in [MST03], who gave a concrete candidate PRG in NC0, by instantiating
a random local function with d = 5, and the predicate

P5 : (x1, x2, x3, x4, x5) 7→ x1 + x2 + x3 + x4x5 .

where the + denotes the addition in F2 i.e. the xor.
They proved that this PRG fools linear tests, even when m is a (sufficiently small) polynomial

in n. By the previously mentioned negative result on PRGs in NC0
4, this candidate PRG, which has

locality 5, achieves the best possible locality. Recently, there has been a renewed interest in the study
of this local PRG, now commonly known as Goldreich’s PRG, and its generalizations [BQ09, App12,
OW14, CEMT14, App15, ABR16, AL16, IPS08, LV17, BCG+17].

1.1 Implications of Polynomial-Stretch Local Pseudorandom Generators

The original motivation for the study of local pseudorandom generators was the intriguing possibility
of designing cryptographic primitives that can be evaluated in constant time, using polynomially many
cores. While this is already a strong motivation in itself, it was observed in several works that the
existence of (poly-stretch) local PRGs had a number of non-trivial implications, and is at the heart of
feasibility results for several high-end cryptographic primitives. We provide below a brief overview.

– Secure computation with constant computational overhead. In the recent work [IKOS08], the au-
thors explored the possibility of computing cryptographic primitives with essentially optimal ef-
ficiency, namely, constant overhead over a naive insecure implementation of the same task. One

1 The subsets form an expander graph if for some k, every k subsets cover k + Ω(n) elements of [n]. In practice, it
suffices to pick once for all the subsets (σ1, . . . , σm) at random to guarantee that they will be expanding except with
o(1) probability.

2 A linear test attempts to distinguish a string from random by checking whether the xor of a subset of the bits of the
string is biased toward either 0 or 1.
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of their main results establishes the existence of constant-overhead two-party computation pro-
tocols for any boolean circuit, assuming the existence of poly-stretch local PRGs (and oblivious
transfers). In a recent work [ADI+17a], this result was extended to arithmetic circuits, using an
arithmetic generalization of local PRGs.

– Indistinguishability obfuscation (iO). Introduced in the seminal paper of Barak et al. [BGI+01], iO
is a primitive that has received a considerable attention from the crypto community in the past
years, as a long sequence of works starting with [SW14] has demonstrated that iO had tremendous
theoretical implications, to the point that it is often referred to as being a “crypto-complete”
primitive. All known candidate constructions of iO rely, directly or indirectly, on a primitive called
k-linear map, for some degree k. Recently, a sequence of papers (culminating with [LT17]) has
attempted to find out the minimal k for which a k-linear map would imply the existence of iO
(with the ultimate goal of reaching k = 2, as bilinear maps are well understood objects). These
works have established a close relation between this value k and the existence of pseudorandom
generators with poly-stretch, and locality k.1

– MPC-friendly primitives. Historically, the design of symmetric cryptographic primitives (such as
block ciphers, pseudorandom generators, and pseudorandom functions) has been motivated by ef-
ficiency considerations (memory consumption, hardware compatibility, ease of implementation,...).
The field of multiparty computation (MPC), where parties want to jointly evaluate a function on se-
cret inputs, has led to the emergence of new efficiency considerations: the efficiency of secure evalua-
tion of symmetric primitives is strongly related to parameters such as the circuit depth of the prim-
itive, and the number of its AND gates. This observation has motivated the design of MPC-friendly
symmetric primitives in several recent works (e.g. [ARS+15, CCF+16, MJSC16, GRR+16]). Local
pseudorandom generators make very promising candidate MPC-friendly PRGs (and lead, through
the GGM transform [GGM84], to promising candidates for MPC-friendly pseudorandom func-
tions). Secure evaluation of such symmetric primitives enjoys a wide variety of applications.

– Cryptographic capsules. In [BCG+17], Boyle et al. studied the recently introduced primitive of
homomorphic secret sharing (HSS). An important implication of HSS is that, assuming the ex-
istence of a local PRG with poly-stretch, one can obtain multiparty computation protocols in
the preprocessing model2 where the amount of communication between the parties is consider-
ably smaller than the circuit size of the function, by constructing a primitive called cryptographic
capsule which, informally, allows to compress correlated (pseudo-)random coins. MPC protocols
with low-communication preprocessing have numerous appealing applications; however, the effi-
ciency of the constructions of cryptographic capsule strongly depends on the locality and seed size
of the underlying local PRG (both should be as small as possible to get a reasonably efficient
instantiation).

In addition to the above (non-exhaustive) overview, we note that the existence of poly-stretch local
pseudorandom generators also enjoys interesting complexity-theoretic implications. For example, they
have been shown in [AIK08] to imply strong (tight) bounds on the average-case inapproximability of
constraints satisfactions problems such as Max3SAT.

1.2 On the Security of Goldreich’s PRG

In this section, we provide a brief overview of the state-of-the-art regarding the security of local
pseudorandom generators. For a more detailed and well-written overview dating from 2015, we refer
the reader to [App15].

Positive Results: Security against Class of Attacks. The seminal paper of Goldreich [Gol00]
made some preliminary observations on necessary properties for a local one-way function. Namely, the

1 The locality requirement can in fact be weakened to a related notion of block locality.
2 In this model, n parties securely compute a function f on private inputs (x1, . . . , xn); in the preprocessing phase, the

parties have access to f (but not to the input), and generate some preprocessing material. Then, in the online phase,
the parties execute an information-theoretically secure protocol to compute f(x), using the preprocessed material.
MPC protocols in the preprocessing model are among the most promising candidates for getting practical solutions
to the multiparty computation problem.
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predicate P must satisfy some non-degeneracy properties, such as being non-linear (otherwise, one
could inverse the function using Gaussian elimination). It also noted that to avoid a large class of
natural “backtracking” attacks, which make a guess on the values of bit inputs based on local obser-
vations and attempt to combine many local solutions into a global solution, the subsets (S1, . . . , Sm)
should be sufficiently expanding : for some k, every k subsets should cover k + Ω(n) elements of [n].
The security of Goldreich’s candidate one-way function against a large class of backtracking algorithm
was formally analyzed in [AHI05, CEMT14], where it was proven that two restricted types of back-
tracking algorithms (called “drunk” and “myopic” backtracking algorithms) take exponential time to
invert the function (with high probability). They also ran experiments to heuristically evaluate its
security against SAT solvers (and observed experimentally an exponential increase in running time as
a function of the input length).

The pseudorandomness of random local functions was originally analyzed in [MST03]. They proved
(among other results) that the random local function instantiated with the predicate P5 fools F2-linear
distinguishers for a stretch up to m(n) = n1.25−ε (for an arbitrary small constant ε). This result was
later extended to a larger stretch n1.5−ε in [OW14]. In the same paper, the authors proved that this
candidate PRG is also secure against a powerful class of attacks, the Lasserre/Parrilo semidefinite
programming (SDP) hierarchy, up to the same stretch. Regarding security against F2-linear attacks,
a general dichotomy theorem was proven in [ABR12], which identified a class of non-degenerate pred-
icates and showed that for most graphs, a local PRG instantiated with a non-degenerate predicate is
secure against linear attacks, and for most graphs, a local PRG instantiated with a degenerate predi-
cate is insecure against linear distinguishers. In general, to fool F2-linear distinguishers, the predicate
should have high algebraic degree (in particular, a random local function instantiated with a degree-`
predicate cannot be pseudorandom for a stretch ` (m ≡ n`), as it is broken by a straightforward
Gaussian elimination attack).

Being pseudorandom seems to be a much stronger security property than being one-way. Never-
theless, in the case of random local functions, it was shown in [App12] that the existence of local
pseudorandom generators follows from the existence of one-way random local functions (with suffi-
ciently large output size).

Negative Results. The result of O’Donnell and Witmer [OW14] regarding security against SDP
attacks is almost optimal, as attacks from this class are known to break the candidate for a stretch
Θ(n1.5 log n). More generally, optimizing SDP attacks leads to a polytime inversion algorithm for
any predicate P which is (even slightly) correlated with some number c of its inputs, as soon as
the output size exceeds m ∈ Ω(nc/2 + n log n) [OW14, App15]. Therefore, a good predicate should
have high resiliency (i.e. it should be k-wise independent, for a k as large as possible). This result
shows, in particular, that a random local function with a constant locality d and with an output size
m > poly(d) · n is insecure when instantiated with a uniformly random predicate P . Combining this
observation with the result of Siegenthaler [Sie84], which studied the correlation of d-ary predicates,
gives a polytime inversion algorithm for any random local function implemented with a d-ary predicate,
and with an output size m ∈ Ω(n1/2b2d/3c log n).

Bogdanov and Qiao [BQ09] studied the security of random local functions when the output is
sufficiently larger than the input (i.e., m ≥ Dn, for a large constant D). They proved that for
sufficiently large D, inverting a random local function could be reduced to finding an approximate
inverse (i.e. finding any x′ which is close to the inverse x in Hamming distance), by showing how to
invert the function with high probability given an advice x′ close to x. For random local function with
an output size polynomial in n, m = ns for some s, this leads to a subexponential-time attack [App15]:
fix a parameter ε, assign random values to the (1−2ε)n first inputs, and create a list that enumerates
over all possible 2εn assignments for the remaining variables. Then the list is guaranteed to contain
a value x′ that agree with the preimage x on a (1/2 + ε)n fraction of the coordinates with good
probability. By applying the reduction of [BQ09], using each element of the list as an advice string,
one recovers the preimage in time poly(n) · 22εn provided that m = Ω(n/ε2d) (d is the arity of the
predicate P ). In the case of the 5-ary predicate P5, this leads to an attack in subexponential-time

2O(n1−(s−1)/2d) (e.g. using s = 1.45 gives an attack in time 2O(n0.955)).
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By the previous observations, we know that the predicate of a random local function must have
high resiliency and high algebraic degree to lead to a pseudorandom function. A natural question is
whether this characterization is also sufficient; this question was answered negatively in [AL16], who
proved that a predicate must also have high bit-fixing degree to fool linear attacks.1 In particular,
this observation disproved a previous conjecture of Applebaum that XOR-AND predicates (which are
natural generalizations of the predicate P5) could lead to local PRGs with stretch greater than 2 that
fools all linear tests (see [AL16, Corollary 1.3]).

In the same work, Applebaum and Lovett considered the class of algebraic attacks on local pseu-
dorandom function, which are incomparable to linear attacks. An algebraic attack against a function
f : {0, 1}n 7→ {0, 1}m starts with an output y and uses it to initialize a system of polynomial equa-
tions over the input variables x = (x1, . . . , xn). The system is further manipulated and extended until
a solution is found or until the system is refuted. Applebaum and Lovett proved that a predicate
must also have high rational degree to fool algebraic attacks (a predicate P has rational degree e if
it is the smallest integer for which there exist degree e polynomials Q and R, not both zero, such
that PQ = R). Indeed, if e < s then P is not s-pseudorandom against algebraic attacks (see [AL16],
Theorem 1.4). In the symmetric cryptography community, the rational degree denotes the well-known
algebraic immunity criterion on Boolean function that underlies the so-called algebraic attacks on
stream ciphers [CM03, Cou03]. An algebraic immunity of e implies an r-bit fixing degree greater than
or equal to e− r ([DGM05], Proposition 1), giving that an high algebraic immunity guarantees both
high rational degree and high bit fixing degree. The algebraic degree is equivalent to the 0-bit fixing
degree, then it leads to the following characterization: a predicate of a random local function must have
high resiliency and high algebraic immunity. In light of this characterization, the authors of [AL16]
suggested the XOR-MAJ predicate as a promising candidate for building high-stretch local PRGs, the
majority function having optimal algebraic immunity [DMS05].

Security against Subexponential Attacks. While there is a large body of work that studied
the security of random local functions, leading to a detailed characterization of the parameters and
predicates that lead to insecure instantiations, relatively little is known on the exact security of local
PRGs instantiated with non-degenerated parameters. In particular, most papers only prove that some
classes of polytime attacks provably fail to break candidates local PRGs; however, these results do
not preclude the possible existence of non-trivial subexponential attacks (specifically, these polytime
attacks do not “degrade gracefully” into subexponential attacks when appropriate parameters are
chosen for the PRG; instead, they do always and provably not succeed). To our knowledge, the only
results in this regard are the proof from [AHI05, CEMT14] that many backtracking-type attacks require
exponential time to invert a random local function, and the subexponential-time attack arising from
the work of Bogdanov and Qiao [BQ09]. However, as we saw above, the latter attack only gives a

slightly-subexponential algorithm, in time 2O(n1−(s−1)/2d) for a d-ary predicate, and an ns-stretch local
PRG.

1.3 Our Goals and Results

In this work, we continue the study of the most common candidate local pseudorandom generators.
However, we significantly depart from the approach of previous works, in that we wish to analyze
the concrete security of local PRGs. To our knowledge, all previous works were only concerned about
establishing asymptotic security guarantees for candidate local PRGs, without providing any insight
on, e.g., which parameters can be conjectured to lead to a primitive with a given bit-security. Our
motivations for conducting this study are twofold.

– Several recent results, which we briefly overviewed in Section 1.1, indicate that (poly-stretch) lo-
cal PRGs enjoy important theoretical applications. However, the possibility of instantiating these
applications with concrete PRG candidates remains unclear, as their efficiency quickly deterio-
rates with the parameters of the underlying PRG. For example, the iO scheme of [LT17], which

1 A predicate P has r-bit fixing degree e if the minimal degree of the restriction of P obtained by fixing r inputs is e
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requires low-degree multilinear maps and therefore might be a viable approach to obtain efficiency
improvements in iO constructions (as candidate high-degree multilinear maps are prohibitively
expensive); however, it has a cost cubic in the seed size of a poly-stretch local PRG, which renders
it practical only if we can safely use local PRGs with reasonably small seeds. Overall, we believe
that there is a growing need for a better understanding of the exact efficiency of candidate local
PRGs, and providing concrete estimations can prove helpful for researchers willing to understand
which efficiency could potentially be obtained for local-PRG-based primitives.

– At a more theoretical level, previous works on (variants of) Goldreich’s PRG have identified criteria
which characterize the predicates susceptible to lead to secure local PRGs. Identifying such criteria
is particularly relevant to the initial goal set up by Goldreich in [Gol00], which is to understand what
characteristics of a function is the source of its cryptographic hardness, by designing the simplest
possible candidate that resists all attacks we know of. However, existing criteria only distinguish
predicates leading to insecure instances from those leading to instances for which no polynomial-
time attack is known. We believe that it is also of particular relevance to this fundamental question
to find criteria which capture in a more fine-grained way the cryptographic hardness of random
local functions.

Our Results. We provide new cryptanalytic insights on the security of Goldreich’s pseudorandom
generator.

– A new subexponential attack on Goldreich’s PRG. We start by devising a new attack on Gol-
dreich’s PRG. Our attack relies on a guess-and-determine technique, in the spirit of the recent
attack [DLR16] on the FLIP family of stream ciphers [MJSC16]. The complexity of our attack is
2O(n2−s) where s is the stretch and n is the seed size. This complements O’Donnel and Witmer’s
result [OW14] showing that Goldreich’s PRG is likely to be secure for stretch up to 1.5, with a
more fine-grained complexity estimation. We implemented our attack1 and provide experimental
results regarding its concrete efficiency, for various seed size and stretch parameters.

– Generalization. We generalize the previous attack to a large class of predicates, which are divided
into two parts, a linear part and a non-linear part, XORed together. This captures all known
candidate generalizations of Goldreich’s PRG. Our attack takes subexponential time as soon as
the stretch of the PRG is strictly above one. Importantly, our attack does not depend on the
locality of the predicate, but only on the number of variables involved in the non-linear part. In a
recent work [AL16], Applebaum and Lovett put forth an explicit candidate local PRG (of the form
XOR-MAJ), as a concrete target for cryptanalytic effort. Our attack gives a new subexponential
algorithm for attacking this candidate.

– Extending the Applebaum-Lovett polynomial-time algebraic attack. Applebaum and Lovett recently
established that local pseudorandom generators can be broken in polynomial time, as long as the
stretch s of the PRG is greater than the rational degree e of its predicate. We extend this result as
follows: we show that the seed of a large class of local PRGs (which include all existing candidates)
can be recovered in polynomial time whenever s ≥ e− logNe/ log n, where e is the rational degree,
n is the seed size, and Ne is the number of independent annihilators of the predicate (or of its
conjugate) 2 of degree at most e.

– Linearization and Gröbner attack. We complement our study with an analysis of the efficiency
of algebraic attacks à la Gröbner on Goldreich’s PRG. While it is known that Goldreich’s PRG
(and its variants) provably resists such attacks for appropriate choices of (asymptotic) parame-
ters [AL16], little is known about its exact security against such attacks for concrete choices of
parameters. We evaluated the concrete security of Goldreich’s PRG against a degree-two lineariza-
tion attack. The existence of such an attack allows to derive bounds on Gröbner basis performance.
Using an implemented proof of concept, we introduce heuristic bounds for vulnerable parameters.

As illustrated by our attacks, both the number of annihilators of the predicate and the r bit fixing
algebraic immunity play an important role in the security of Golreich’s PRG. These criteria were

1 Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG.
2 An annihilator of a predicate P is a non-zero polynomials Q such that Q · P = 0, the conjugate of a predicate P is

the predicate P + 1

https://github.com/LuMopY/SecurityGoldreichPRG
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overlooked in all previous works on local PRGs. Last but not least, our concrete analysis indicates
that Gröbner basis attacks, although provably “ruled out” asymptotically, matters when studying the
vulnerabilities of Goldreich’s PRG, and the security of concrete instances.

1.4 Organization of the Paper

Section 2 introduces necessary preliminaries on predicates and local pseudorandom generators. Sec-
tion 3 describes a guess-and-determine attack on Goldreich’s PRG instantiated with the predicate P5

and analyzes it. Section 4 investigates algebraic cryptanalysis of Goldreich’s PRG with P5, presenting
a degree 2 linearization attack, and an attack using Gröbner basis approach. In Section 5 are developed
attacks relatively to other predicates, with a particular focus on all predicates of the form XOR-MAJ.
Section 6 improves the theorem of [AL16], by taking into account the number of annihilators of the
predicate. Finally, Appendix B considers the case of using Goldreich’s PRG with ordered subset (as
was initially advocated in [Gol00]) and provides indications that this weakens its concrete security.

2 Preliminaries

Throughout this paper, n denotes the size of the seed of the PRGs considered. A probabilistic polyno-
mial time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the parameter
n. A positive function f is negligible if for any polynomial p there exists a bound B > 0 such that, for
any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on n occurs with overwhelming probability
when its probability is at least 1− negl(n) for a negligible function negl. Given an integer k, we write

[k] to denote the set {1, . . . , k}. Given a finite set S, the notation X
$← S means a uniformly random

assignment of an element of S to the variable X. Given a string x ∈ {0, 1}k for some k and a subset
σ of [k], we let x[σ] denote the subsequence of the bits of x whose index belongs to σ. Moreover, the
i-th bit of x[σ] will be denoted by xσi .

2.1 Hypergraphs

Hypergraphs generalize the standard notion of graphs (which are defined by a set of nodes and a set
of edges, an edge being a pair of nodes) to a more general object defined by a set of nodes and a set of
hyperedges, each hyperedge being an arbitrary subset of the nodes. We define an (n,m, d)-hypergraph
G to be a hypergraph with n vertices and m hyperedges, each hyperedge having cardinality d. The
hyperedges are assumed to be ordered from 1 to m, and each hyperedge {i1, i2, . . . , id} is ordered and
satisfies ij 6= ik for all j ≤ d, k ≤ d, j 6= k. We will consider hypergraphs satisfying some expansion
property, defined below.

Definition 1 (Expander Graph). An (n,m, d)-hypergraph G, denoted (σ1, . . . , σm), is (α, β)-ex-
panding if for any S ⊂ [m] such that |S| ≤ α ·m, it holds that | ∪i∈S σi| ≥ β · |S| · d.

2.2 Predicates

The constructions of local pseudorandom generators that we will consider in this work rely on predi-
cates satisfying some specific properties. Formally, a predicate P of arity d is a function P : {0, 1}d 7→
{0, 1}. We define below the two properties that were shown to be necessary for instantiating local
PRGs:

– Resiliency. A predicate P is k-resilient if it has no non-trivial correlation with any linear com-
bination of up to k of its inputs. An example of predicate with maximal resiliency is the parity
predicate (i.e. the predicate which xors all its inputs).

– Algebraic Immunity. A predicate P has algebraic immunity e, referred to as AI(P ) = e, if the
minimal degree of a non-null function g such that Pg = 0 (or (P + 1)g = 0) on all its entries is
e. A local PRG built from an AI-e predicate cannot be pseudorandom with a stretch ne due to
algebraic attacks.
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Note that the algebraic immunity (also referred as rational degree in [AL16]) implies a lower bound
on the degree and on the bit-fixing degree. Moreover, a high algebraic immunity implies at least the
same degree. Hence, for now on, those two criteria are considered as the relevant criteria for evaluating
the security of Goldreich’s PRG.

We define a particular family of predicates which have been considered as a potential instantiation:

Definition 2 (XOR`Mk predicates). We call XOR`Mk predicate a predicate P of arity ` + k such
that M is a predicate of arity k and:

P (x1, . . . , x`, z1, . . . , zk) =
∑̀
i=1

xi +M(z1, . . . , zk) .

We also define a subfamily of XOR`Mk predicates, which have been considered in [AL16]:

Definition 3 (XOR`MAJk predicates). We call XOR`MAJk predicate a predicate P of arity ` + k
such that P is a XOR`Mk predicate such that M is the majority function in k variables:

M(z1, . . . , zk) = 1⇔ wH(z1, . . . , zk) ≥
⌈
k

2

⌉
,

where wH denotes the Hamming weight.

2.3 Pseudorandom Generators

Definition. A pseudorandom generator is a deterministic process that expands a short random seed
into a longer sequence, so that no efficient adversary can distinguish this sequence from a uniformly
random string of the same length. Formally,

Definition 4 (Pseudorandom Generator). A m(n)-stretch pseudorandom generator, for a polyno-
mial m, is an efficient uniform deterministic algorithm PRG which, on input a seed x ∈ {0, 1}n, outputs

a string y ∈ {0, 1}m(n). It satisfies the following security notion: for any probabilistic polynomial-time
adversary Adv,

Pr[y
$← {0, 1}m(n) : Adv(pp, y) = 1]

≈Pr[x
$← {0, 1}n, y ← PRG(x) : Adv(pp, y) = 1]

Here ≈ denotes that the absolute value of the difference of the two probabilities is negligible in the
security parameters, and pp stands for the public parameters of the PRG. For any n ∈ N, we denote
PRGn the function PRG restricted to n-bit inputs. A pseudorandom generator PRG is d-local (for a
constant d) if for any n ∈ N, every output bit of PRGn depends on at most d input bits.

Goldreich’s Pseudorandom Generator. Goldreich’s candidate local PRGs form a family FG,P of
local PRGs: PRGG,P : {0, 1}n 7→ {0, 1}m, parametrized by an (n,m, d)-hypergraph G = (σ1, . . . , σm)

(where m = m(n) is polynomial in n), and a predicate P : {0, 1}d 7→ {0, 1}, defined as follows: on
input x ∈ {0, 1}n, PRGG,P returns the m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm

1
, . . . , xσm

d
)).

Conjecture 1 (Informal). If G is a sufficiently expanding (n,m, d) hypergraph and P is a predicate
with sufficiently high resiliency and high algebraic immunity, then the function PRGG,P is a secure
pseudorandom generator.

Note that picking an hypergraph G uniformly at random suffices to ensure that it will be expanding
with probability 1−o(1). However, picking a random graph will always give a non-negligible probability
of having an insecure PRG. To see that, observe that when the locality d is constant, a random
hypergraph G will have two hyperedges containing the same vertices with probability 1/poly(n); for
any such graph G, the output of PRGG,P on a random input can be trivially distinguished from random.
Therefore, the security of random local functions is usually formulated non-uniformly, by stating that
for a 1 − o(1) fraction of all hypergraphs G (and appropriate choice of P ), no polytime adversary
should be able to distinguish the output of PRGG,P from random with non-negligible probability.



On the Concrete Security of Goldreich’s PRG 9

Fixed hypergraph versus random hypergraphs. Goldreich’s candidates local pseudorandom gen-
erators require to use a sufficiently expanding hypergraph. Unfortunately, building concrete graphs
satisfying the appropriate expansion properties is a non-trivial task. Indeed, all known concrete con-
structions of expanding bipartite hypergraphs fail to achieve parameters which would allow to con-
struct a PRG with constant locality. Therefore, to our knowledge, in all works using local PRG (see
e.g. [IKOS08, App13, Lin17, ADI+17b, BCG+17]), it is always assumed (implicitly or explicitly) that
the hypergraph G of the PRG is picked uniformly at random (which makes it sufficiently expanding
with probability 1− o(1), even in the constant-locality setting) in a one-time setup phase. Therefore,
this is the setting we assume for our cryptanalysis.

Notations. In the first part of this work, we focus on the predicate P5, assuming that the subsets
σ1, ..., σm are random subsets. The predicate P5 can be regarded as a Boolean function of five variables:

P5(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 .

The predicate P5 has algebraic degree 2 and an algebraic immunity of 2, and is 2-resilient. Let n
be the size of the input, i.e. the number of initial random bits. We define the stretch s and denote the
size m of the output as m = ns. Let x1, . . . , xn ∈ F2 be the input random bits and y1, . . . , ym ∈ F2 be
the output bits. The m public equations Ei for 1 ≤ i ≤ m are drawn as follows:

– a subsequence of [n] of size 5 is chosen uniformly at random. Let us call it

σi = [σi1, σ
i
2, σ

i
3, σ

i
4, σ

i
5] .

– Ei is the quadratic equation of the form

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi .

The public system Σ that we consider is then defined with the m equations, that is (Ei)1≤i≤m.

Ordered and unordered. There are two different cases to consider:

1. (Ordered case) σi is ordered, i.e. σi1 < σi2 < σi3 < σi4 < σi5.
2. (Unordered case) The order σi’s elements is arbitrary.

However, in the core of the paper, we will consider the unordered case, as we will provide evidence
that the vulnerabilities are even more important for the ordered case in Appendix B.

Matrix inversion complexity. Our attacks of Section 3 require a sparse matrix inversion algorithm.
We consider the Wiedemann’s algorithm [Wie86], the complexity of which is O(n2) in this context,
since there are less than d · n non-zero elements of our matrices. Other algorithms could be used,
but the complexity of our attacks would have to be modified accordingly. For other Sections, with
arbitrary matrices, we denote by ω the exponent for matrix inversion complexity O(nω).

3 Guess and Determine Cryptanalysis of Goldreich’s PRG with P5

3.1 The Attack - Asymptotic Description

We first describe a distinguishing attack, where our adversary outputs 1 when the challenged bit-
stream is considered as the PRG’s output and 0 when it is considered as a random string.

At a high level, the attack works by collecting a large number of linear equations, by guessing
well-chosen bits of the seed, seen as a vector x of n variables. When enough equations have been
collected, two cases can occur.

– Either sufficiently many equations are linearly independent (as much as the number of variables);
in this case, the attacker can invert a large subsystem of equations, obtain a candidate seed, and
check it against the PRG output (therefore finding out whether the guesses were correct in the
first place).
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– Either most of the equations are linearly dependent. In this case, we show that this implies that
the PRG output must pass a large number of linear tests, which a random string would be unlikely
to all pass. We use this observation to mount a distinguishing attack.

We now proceed with the formal description of the attack. Our algorithm has the description of
the PRG hardcoded (namely, an (n,m, 5)-hypergraph G = (σ1, · · · , σm), where m = ns, and each
σi = (σi1, · · · , σi5) is a size-5 subset of [n]). It takes as input an m-bit string y = y1 · · · ym, and must
distinguish whether y is a random string, or whether it is in the image of PRGG,P5 . The algorithm
starts by considering the following list of quadratic equations for i = 1 to m:

P5(xσi
1
, · · · , xσi

5
) = yi.

We denote Q this list. The algorithm will proceed by constructing O(m) linear equations from Q.

Selection Phase. The algorithm dynamically determines a “selected” subset of the quadratic equa-
tions and a subset Σ of [m], which it will use in the guessing phase. The sets are constructed using
the following greedy approach: set j ← 1 and mark all equations of Q as “unselected”. In the jth
step, find the variable that appears in the largest number of quadratic terms over all equations in Q
which are marked “unselected”. Mark all the equations in which this variable appears in a quadratic
term as “selected”, and add their indexes in Q to Σ, also add the linear equation corresponding to the
affectation of this variable and count it as a “selected” equation. If the number s of equations marked
as “selected” satisfies s ≥ n+ j, set `← j, y′ ← y[Σ], and proceed to the guessing phase. Otherwise,
set j ← j + 1 and continue.

Guessing Phase. In the previous phase, the algorithm has identified a subset of ` variables which
appear overall in the quadratic term of s ≥ n+` selected quadratic (and linear) equations. In this step,
the algorithm will enumerate over all 2` possible assignments for these variables, in some arbitrary
fixed order. In each step, for i = 1 to 2`, the algorithm obtains a system s linear equations by assigning
a value in {0, 1} to each of the ` variables across all selected quadratic equations. Let Ai denote the
matrix of this system. We distinguish two cases:

– Case 1. rank(Ai) = n. In this case, there is an n × n invertible submatrix of Ai. The algorithm
extract this submatrix, let us denote it Ei. We also denote by y′i the subsequence of y′ indexed
by the position of the rows of Ei in Ai. Let Fi ← E−1i . The algorithm computes a candidate seed
x′i ← Fiy

′
i, and checks whether PRGG,P5(x′i) = y. If it holds, it outputs 1 and halts. Else, it sets

i← i+ 1.

– Case 2. rank(Ai) < n. In this case, there exists at least ` + 1 linearly dependent rows of Ai. Let
Bi denote the row echelon form of Ai, obtained through Gaussian elimination, and let Gi denote
the (invertible) matrix of this transformation; that is, Bi = GiAi. Let (vᵀ1 , . . . , v

ᵀ
`+1) denote the

last `+ 1 rows of Gi. The algorithm checks whether vᵀky
′ = 0 for k = 1 to `+ 1. If all checks pass,

it outputs 1 and halts. Else, it sets i← i+ 1.

If the algorithm reaches i = 2` + 1, it outputs 0 and halts.

3.2 Complexity Analysis

We now analyze the complexity of the algorithm. We first estimate the average value of ` obtained in
the selection phase. We consider the list Q of all quadratic equations. For all i such that 1 ≤ i ≤ n let
denote N1

i the number of occurrences of xi in degree-two monomials.

Proposition 1 (Number of guesses). For any instance with n variables, m equations and c col-
lisions, an upper bound on the sufficient number of guesses required to build n − c linear equations
is:

` ≤
⌊
n2

2m
+ 1

⌋
. (1)
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Proof. Let us choose the variable with more occurrences, denoted w.l.o.g. x1, as there are m equations,∑n
i=1N

1
i = 2m, and therefore N1

1 ≥ 2mn . Fixing the value of x1 we get N1
1 linear equations (plus the

linear equation fixing the value of x1). Since the value of x1 is fixed, the remaining quadratic system
of equations consists of m − N1 equations in n − 1 unknowns (x2, . . . , xn). We recursively use this
strategy:

For all j (2 ≤ j ≤ n) we denote N j
i the number of occurrences of xi in a degree-two monomial in

the system of equations obtained after fixing the j − 1 first most appearing variables (as previously
described) w.l.o.g. x1, . . . , xj−1. Then, choosing the variable with higher N j

i , w.l.o.g. xj , the remaining

quadratic system of equations consists of m −N1
1 −N2

2 − · · · −N
j
j equations in n − j unknowns. So

for all 1 ≤ j ≤ n:

N j
j ≥ 2

m−N1
1 −N2

2 − · · · −N
j−1
j−1

n− j + 1
≥ 2

m

n
,

and we get N1
1 +N2

2 + · · ·+N j
j + j linear equations at this step with the value of x1, x2, . . . , xj being

fixed.

Take ` as the first value of j such that N1
1 +N2

2 + · · ·+N j
j + j ≥ n+ j (which is correctly defined

as we only consider cases where 2m ≥ n). Then,

N1
1 +N2

2 + · · ·+N `−1
`−1 + `− 1 < n+ `− 1 .

As for all 1 ≤ j ≤ `, we have N j
j ≥ 2m2 we get

2(`− 1)
m

n
< n .

So, the number of variables to guess ` is at most:⌊
n2

2m
+ 1

⌋
.

Note that since we consider the regime of superlinear stretch (m = ns with s > 1), the above implies
that ` = o(n) (in fact, ` = O(n2−s)). ut

We show further in Section 3.6 that experimental results are much better. It is worth noticing that
the value obtained at Proposition 1 is the extreme case for the attacker and does not reflect the average
case. However, this frequency of appearance is linked to a well-known problem of combinatorics in the
context of balls-into-bins. At the second order, the maximum load (i.e. the number of occurrences of
the variable that appears the most) follows:

Θ

(√
m lnn

n
+
m

n

)
,

where m corresponds to the number of balls and n to the number of bins (e.g. [JK77, KSC78]), which
means we gain nothing asymptotically in average. This is related to us, but is not exactly the same,
as in one monomial, one variable cannot be taken twice. However, we can lower the maximum that
one variable appears with the classical setting of balls and bins by only considering the first variable,
but also upper bound our exact probability distribution using twice the maximum load. Eventually,
we can say that in average, the number of guesses is asymptotically the same as the worst case for the
attacker.

Cost of the Selection Phase. The lemma below follows immediately:

Lemma 1. The selection phase has complexity O(` ·m) which is O(n2) with Equation 1 estimation.
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Cost of the Guessing Phase. For each i ∈ {1, . . . , 2`}, the algorithm executes either the procedure
of case 1 or the procedure of case 2; finding out which case to execute requires computing the rank of
an s× n matrix, with s ≈ n+ `. The cost of case 1 is dominated by the inversion of an n× n matrix
(since this cost is at least n2, it dominates the cost of evaluating PRGG,P5 , which is O(m)); the cost
of case 2 is dominated by the Gaussian elimination step. Observe that by construction, the matrix Ai
(hence the submatrix Ei as well) is very sparse: each of its rows contains at most four nonzero entries.
Therefore, we can apply Wiedemann algorithm [Wie86] and compute the rank of Ai, the inverse of
Ei, or the row echelon form of Ai, in time O(n · (n + `)) = O(n2) (since they can all be computed
by making a constant number of black-box calls to an algorithm solving a sparse system of linear
equations).

Combining the above calculations, the cost of the entire algorithm is dominated by

O(n2 · 2`) = 2O(n2−s).

Lemma 2. The asymptotic complexity of the attack is

O

(
n22

n2−s

2

)
.

3.3 Success Probability

We now analyze the success probability of the algorithm. Let us first assume that y is in the image
of the PRG; that is, there exists x such that y = PRGG,P5(x). In this case, during the guessing phase,
since the algorithm enumerates over all possible values for the ` selected variables, there must be an
index i such that the selected variables have been assigned the correct value. Let i∗ denote this index.

– If rank(Ai∗) = n (case 1), the algorithm exactly recovers the right seed x by inverting the n × n
subsystem, hence the check that PRGG,P5(x′i) = y necessarily passes, hence the algorithm outputs
1 and halts with probability 1.

– If rank(Ai∗) < n (case 2), observe that by construction, the last ` + 1 rows of Bi∗ are identically
zero (since the number of zero rows at the end of the row echelon form of the matrix Ai∗ is equal
to the co-rank of Ai∗ , which is at least `+ 1). By assumption y is in the image of the PRG and i∗

is the right guess, hence we have

Gi∗y
′ = Gi∗(Ai∗x) = Bi∗x,

which implies that Gi∗y
′ ends with at least ` + 1 zeroes (since the last ` + 1 rows of Bi∗ are

identically zero). Therefore, all checks of the algorithm necessarily pass, and it outputs 1 and halts
with probability 1.

Hence, if y is in the image of the PRG, the algorithm always outputs 1. Let us now assume that y is a
uniformly random m-bit string. Let us fix an arbitrary i between 1 and 2`. We analyze the probability
that the algorithm outputs 1 on this i, where the probability is over the uniformly random choice of
y. As previously, two cases can happen.

– If rank(Ai) = n (case 1), the algorithm extracts a candidate seed x′i. Note that this extraction is
entirely independent of the choice of y. There are 2n possible values of x′i, hence 2n possible values
of PRGG,P5(x′i). The probability (over a random choice of the m-bit string y) that y hits one of
those values is equal to 2n/2m = 1/2m−n. Hence, the probability that the algorithm outputs 1 at
step i, conditioned on case 1 happening, is upper bounded by 1/2m−n.

– If rank(Ai) < n (case 2), the algorithm obtains `+ 1 vectors (v1, . . . , v`+1). Note that since the vi
are rows of Gi, and Gi is invertible, the vi are all linearly independent. Now, the probability that
a uniformly random bit-vector y passes ` + 1 linearly independent linear tests is at most 1/2`+1;
therefore, the probability that the algorithm outputs 1 at step i, conditioned on case 2 happening,
is upper bounded by 1/2`+1.
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Since `+ 1 = O(n2/m) = o(m− n), for a sufficiently large n we have

1

2`+1
>

1

2m−n
,

from which we get that for each i, the probability (over a random choice of y) that the algorithm
outputs 1 is at most 1/2`+1. Taking a union bound over all possible choices of i, we get that the
probability that there exists an index i for which the algorithm outputs 1 is at most 2` · 1/2`+1 = 1/2.
Hence, with probability at least 1/2, the algorithm outputs 0.

Overall, the algorithm correctly distinguishes between y = PRGG,P5(x) and random y with proba-
bility at least 1/2(1 + 1/2) = 3/4. Note that the success probability of the adversary can be made as
close to 1 as one wishes, by collecting n + ` + λ − 1 linear equations instead of n + `, for a security
parameter λ; it is easy to check that this does not change the asymptotic complexity of the algorithm,
and by the same analysis, the algorithm correctly outputs 0 when y is random with overwhelming
probability at least 1− 1/2λ.

3.4 Seed Recovery

The attack which we described above is a distinguishing attack: it breaks the pseudorandomness of the
PRG in subexponential time 2O(n2−s). Observe that when y = PRGG,P5(x) for some x, if case 1 happens
at the step i∗ corresponding to the right guess, the attack gives something stronger: it actually breaks
the one-wayness of the PRG, by recovering the seed. Furthermore, our experimental evaluations (which
we will discuss in Section 3.6) show that this is actually always the case: the algorithm systematically
ends up in case 1, and case 2 never happens, leading to a seed recovery attack. In this section, we
provide some theoretical support for this observation:

– we put forth a combinatorial assumption and prove that, under this assumption, there is a seed
recovery algorithm which is a slight variation of our algorithm (and has the same complexity);

– we provide heuristic support for our combinatorial conjecture by relating it to existing results in
mathematics.

Combinatorial Conjecture. We consider the following conjecture: set β ← bn2/2m + 1c, and
define, for i = 1 to 2β, Dn,i to be the distribution over Fn×n2 obtained by sampling the hypergraph of
Goldreich’s PRG at random (with d = 5), selecting ` variables that appear in n+` quadratic equations
using the selection phase algorithm (see Section 3.1), and outputting the n×n matrix Mn of the linear
system obtained by setting all ` selected variables to the values indicated by the ` first bits of i (note
that our analysis guarantees that ` ≤ β ). We truncate to n equations for simplicity.

Hypothesis 1 There exists a constant γ such that for every sufficiently large n ∈ N, for every i ≤ 2β,
the matrix Mi contains with overwhelming probability an invertible subsystem of γ ·n equations, where
the probability is taken over the coins of Mi

$← Dn,i.

Note that the conjecture is tailored to our particular attack, and could be easily generalized to more
general PRG distributions and variable selection methods – indeed, we do consider generalizations
and variants of this conjecture in the following Sections. We first show that if Hypothesis 1 is verified,
then there is a seed recovery attack on Goldreich’s PRG instantiated with P5. The attack is a simple
variation of our previous algorithm, where in the guessing phase we do not consider case 2. Instead,
the algorithm extracts a γn × γn invertible submatrix Ei of Ai (whose existence is guaranteed by
Hypothesis 1), and uses it to recover a subsequence of γn bits of the seed x. Now, by applying the
result of Bogdanov and Qiao [BQ09] on recovering a preimage from an approximate preimage of
Goldreich’s PRG, there exists a black-box polynomial-time reduction from an algorithm that recovers
(with no errors) O(n(7−s)/8)� γ · n bits of the seed to an algorithm that fully recovers the seed.

Supporting the Conjecture. Unfortunately, the distributions Dn,i are quite complex, and it seems
relatively difficult (and outside the scope of this paper) to prove our conjecture. However, we can
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provide some heuristic support for the conjecture: variants of our conjecture with respect to simpler
(and natural) distributions (which are close to the one we consider) follow from existing results in
mathematics and computer science. Note that the Dn,i are distributions of random very sparse ma-
trices, with at most 4 nonzero entries per row. We can consider two simpler natural distribution over
very sparse matrices:

– the distribution D obtained by setting each entry of the matrix to be 1 with probability 4/n, and
0 with probability (n− 4)/n (the Bernouilli distribution);

– the distribution D′ obtained by sampling 4 random positions between 1 and n in each row, setting
the entries at these positions to be 1, and setting all other entries of the row to be 0.

For the distribution D, simply looking at the entries that contain exactly a single 1 will give with high
probability a γn×γn invertible submatrix (indeed, a permutation matrix),with γ ≈ 5 · e−5. This gives
a very loose lower bound on γ, but in fact, much stronger bounds are known for this distribution, at
least in the case of random sparse symmetric matrices [BL10].

For the distribution D′, the conjecture is very close to problems which have been studied in
computer science under the name of Random XOR-SAT. In particular, the recent work of [PS16] gave
a precise threshold value of c such that a random c · n× n matrix contains an n× n invertible matrix
with probability 1; this result implies in particular a (loose) lower bound of γ = 1/c for our conjecture.

3.5 The Attack - Concrete Instantiation

We formulated our attack in an asymptotic sense, to obtain provable asymptotic efficiency guarantees.
However, it is possible to obtain a much better concrete efficiency than the one achieved by our
algorithm. A first observation is that even before the selection phase, we can collect several linear
equations “for free” by looking at all quadratic equations where the quadratic terms are equal, and
XORing them to cancel out the quadratic terms.

Finding All Collisions. We first define the notion of collisions between two quadratic equations.

Definition 5. A collision is a couple (i, j) ∈ [m]2 such that i 6= j and {σi4, σi5} = {σj4, σ
j
5}.

Observe that any collision leads to a linear equation “for free”: XORing the quadratic equations
indexed by σi and σj , the terms xσi

4
· xσi

5
and x

σj
4
· x

σj
5

cancel out, leading to a linear equation. The

algorithm first finds all collisions, and derives the corresponding linear equations. Let c be the number
of linear equations obtained with this step. While the asymptotic number of such collisions is small,
hence it does not change the asymptotic complexity, it turns out that this simple step already strongly
reduces the concrete cost of the attack. Let c denote the number of linear equations obtained this way.

Note that finding all collisions can be reached with a tweaked sorting algorithm. The idea is to
sort the equations (Ei)1≤i≤m according to an order1 on the quadratic term xσi

4
xσi

5
. And, each time

an equality between two quadratic terms is found, one equation is removed and a new linear equation
Ei + Ej is derived. The complexity is dominated by the sorting complexity O(m · log(m)).

Avoiding the Bogdanov and Qiao Algorithm. Furthermore, as we already mentioned, we observe
experimentally that case 2 never happens. In all our experiments, the algorithm always ends up in
case 1, with a value of γ > 0.90. Note also that applying the result of Bogdanov and Qiao to obtain
the seed from the approximate preimage is an overkill: this result actually only requires knowing an
approximate preimage (but not necessarily which of the bits of the preimage are correct), while our
attack gives us also the exact position of the correct bits of the preimage. Therefore, we can simply
inject directly these γn > 0.90n values in our list of quadratic equations, which will turn a large
fraction of them into linear equations, and hope to obtain the missing values directly from these linear
equations. Our experiments show that this is indeed the case: after recovering a large fraction of the
preimage, injecting the values in the quadratic equations always allows to recover the full seed. Our
experiments show that this is the case with a large confidence gap: injecting only a small fraction
γ > 0.20 of the preimage in the quadratic equations is sufficient to always recover the full seed.

1 The order does not matter since only equalities are necessary, one can take the lexicographic order for example.
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Collecting Less Equations. Lastly, since case 2 never happens, we do not need to collect n+` linear
equations: we can stop as soon as we collect n− c linear equations in the guessing phase (leading to a
total of n linear equations when adding the equations obtained through collisions – note that we were
already truncating the matrices Ai and ignoring the last ` equations when formulating Hypothesis 1).

Assessing the Number of Collisions. For completeness, we analyze the asymptotic number of
equations obtained through collisions. As previously noticed, collisions can be used to build linear
equations. For example, let us assume we have the following two equations in Σ:

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi (2)

x
σj
1

+ x
σj
2

+ x
σj
3

+ xσi
4
xσi

5
= yj (3)

then adding equation (2) and equation (3) gives us the following linear equation:

xσi
1

+ xσi
2

+ xσi
3

+ x
σj
1

+ x
σj
2

+ x
σj
3

= yi + yj

However, we stress that if we had a third colliding equation:

xσk
1

+ xσk
2

+ xσk
3

+ xσi
4
xσi

5
= yk (4)

then we could only produce a single other linear equation (w.l.o.g. (2) + (4)), since the other combi-
nation ((3) + (4)) would be linearly equivalent to the two previous linear equations.

Hence, this problem can be seen as a balls-into-bins problem: m balls are randomly thrown into(
n
2

)
bins and we want to know how many balls in average hit a bin that already contains at least one

ball. Indeed, this number will approximate the value c of the algorithm.

Proposition 2 (Average number of collisions). Let n be the number of variables, and m be the
number of equations, let C be the random variable counting the number of collisions on the degree-two
monomials in the whole system. Then, the average number of collisions is:

E(C) = m−
(
n

2

)
+

(
n

2

)((n
2

)
− 1(
n
2

) )m
∈ O(n2(s−1)) .

Proof. We first consider individually the
(
n
2

)
degree-two possible monomials. For each equation, the two

variables of the degree-two monomial are taken uniformly from the n variables (with replacement),
therefore the probability that the monomial indexed by i, j is taken follows a Bernouilli law with
parameter p = 1

(n2)
.

The random variable counting how many times the monomial indexed by i, j is selected follows a
binomial law of parameters m and p. As a collision happens when the monomial has already be taken,
we consider the random variable Ci,j counting 0 if the monomial has been taken 0 or 1 times, k − 1
otherwise. The expectation of Ci,j is therefore

E(Ci,j) =

m∑
k=2

P[B(m,p)=k] · (k − 1),

where P[B(m,p)=k] stands for the probability for a random variable following a binomial distribution of
parameters m and p to take the value k. The total number of collisions is obtained by summing the
expectations of all the Ci,j . The detailed calculations are in Appendix A. ut

Tab. 1 gives the evaluation of this formula for some set of parameters. Our experimental results
(see Section 3.6) corroborate these expectations and show that the number of collisions is always very
close to this expected average.



16 G. Couteau, A. Dupin, P. Méaux, M. Rossi and Y. Rotella
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Fig. 2. Number of guesses for n = 2048 and s = 1.3 with
2000 tests

3.6 Experiments

Distribution of the number of collisions. The theoretical results of Table 1 are verified in practice,
as shown in Fig. 1 for the particular case of n = 1024 and s = 1.4. As expected with the analytical
formula, the number of collisions is very close to 254 in average. Moreover, our experimental results
are very dense around the average, suggesting that the distribution has a low variance.

Implementation of the attack. Since the study of this paper is the concrete security of Goldreich’s
PRG, it is important to practically check if the attack presented in Section 3.4 can be efficient when
implemented. For this purpose, we provide a proof of concept in Python1.

We first analyzed experimentally Hypothesis 1 and observed that we always obtain an invertible
subsystem of at least 0.90 · n equations, for all tested parameters (28 ≤ n ≤ 214 and 1 < s < 1.5). We
also experimented that knowing only 20% of the seed allows to inject it in the quadratic system and
to recover the remaining 80%, showing a large gap of confidence in our hypothesis.

One can note that the practical attack should be on average more efficient than assessed theoreti-
cally. Indeed, the asymptotic complexity of Proposition 2 is estimated in the worst case and pessimistic
approximations were made on n − c and on the value of `. Hence, we experimented this attack for
different stretches and different values of n and we effectively noticed that the complexity in average
is much smaller than the expected complexity. Table 2 represents the theoretical number of guesses
necessary to recover the seed and Table 3 represents the average number of guesses actually needed
in the experiment. Moreover, we also noticed that the number of guesses needed to invert the system
has a very low variance, as shown in Fig. 2.

With this experiment, we were able to estimate the practical security of Goldreich’s PRG against
the guess and determine approach with 80 bits of security. Indeed, for one instance of the PRG, the
complexity of the seed recovery can be easily derived from the number ` of guesses as 2`nω. So to
assess the 80 bits security, one can evaluate the average number of guesses necessary for one choice of
(n, s) and check if the complexity is lower than 280. For that, for 30 values of n ∈ [27, 214], we delimited
the smallest stretch for which the average number of guesses allows a 80 bits attack. Each average has
been done on 1000 measurements because the variance was very small. Fig. 3 represents the limit on
vulnerable (n, s) parameters. Above the line, the parameters are on average insecure against the guess
and determine attack.

Candidate Non-Vulnerable Parameters. We were able to estimate the practical range of param-
eters that appear to resist this attack. To assess them, we estimated the number of guesses necessary
and deduced the bit security. With many measurements (1024 for each set of parameters), we could

1 Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG

https://github.com/LuMopY/SecurityGoldreichPRG
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Table 1. Average number of collisions

n 256 512 1024 2048 4096

s = 1.45 142 269 506 946 1771
s = 1.4 83 145 254 442 773
s = 1.3 28 42 64 97 147

Table 2. Theoretical number of guesses (worst case)

n 256 512 1024 2048 4096

s = 1.45 4 7 11 18 27
s = 1.4 9 15 23 37 58
s = 1.3 20 34 56 94 156

Table 3. Experimental number of guesses (average)

n 256 512 1024 2048 4096

s = 1.45 4 6 9 14 21
s = 1.4 6 11 17 27 44
s = 1.3 13 23 39 65 110

Table 4. Challenge parameters for seed recovery at-
tacks. The first line contains the parameter n and below
are represented the associated stretches s.

Elementary operations 512 1024 2048 4096

< 280 1.120 1.215 1.296 1.361
< 2128 1.048 1.135 1.222 1.295
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Fig. 3. Limit stretch for vulnerable instances. The grey zone above the curve denotes the insecure choices of parameters.

find the limit stretch for parameters that are, not vulnerable to our attack. The couples (n, s) that
possess the maximal s with an expected security of 80 or 128 bits1 are conjectured to be the limit for
non-vulnerable parameters. These couples2 are represented by the two lines in Fig. 4.

We also introduce certain parameters in Table 4 as challenges for improving the cryptanalysis
of Goldreich’s PRG. These parameters correspond to choices of the seed size and the stretch which
cannot be broken in less than 280 (resp. 2128) operations with the attacks of this paper. Further study
is required to assess confidence in the security level given by these parameters.

4 Algebraic Cryptanalysis of Goldreich’s PRG with P5

To complement the attacks of Section 3.1, we also provide an analysis of the efficiency of algebraic
attacks with Gröbner basis on Goldreich’s PRG. While it is known that Goldreich’s PRG (and its
variants) provably resists such attacks for appropriate choices of (asymptotic) parameters ( [AL16],
Theorem 5.5), little is known about its exact security against such attacks for concrete choices of
parameters.

In this section, we study the existence of polynomial attacks for s < 1.5. In fact, with the current
literature, either s ≥ 1.5 and there is a polynomial inversion, or s < 1.5 and the only known attack is

1 We actually took a margin of 10% to take into account the possible improvements of our implementation.
2 This curve should not be extrapolated because outside of its range, Gröbner attacks seem more powerful, see Fig. 10
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Fig. 4. Limit stretch for conjectured non-vulnerable instances.

subexponential. The idea of this section is to offer some granularity on the parameters (n, s) instead of
this abrupt limit for polynomial inversion. For this, we opt for a different algebraic approach without
guess and determine. Instead of guessing values to transform the public system into a linear system in
the seed, one might want to generate enough equations in order to linearize. This standard method has
been introduced by Macaulay in [Mac64] and Lazard in [laz81]. The idea behind linearization is the
assignment of an unknown variable for each of the monomials appearing in the system. For example,
to each monomial xixj , a variable Xi,j will be assigned. Thereby, a linear system of equations with
more unknowns of type Xi,j remains to be solved. This linearization method has been improved in
Gröbner basis computations due to Buchberger [Buc76] and later by Faugère with F4 [Fau99] and
F5 [Fau02] algorithms.

Performance of a Gröbner basis strategy is hard to assess for the specific case of Goldreich’s
PRG with the existing theory (see [BFSyY] for complexity bounds on Boolean random quadratic
systems). Indeed, Goldreich’s PRG is far from a Boolean random quadratic system, it has a strong
structure and is very sparse. These features should make Goldreich’s PRG an easier target. In a first
step, in order to give an intuition on how Gröbner basis algorithms would behave on Goldreich’s
PRG with predicate P5, we provide an easy-to-understand degree-two linearization attack . This
polynomial attack leads to a practical seed recovery for certain parameters (n, s) and we can derive
a heuristic bound for vulnerable (n, s) for 80 bits of security1. The existence of such an attack allows
to estimate Gröbner basis algorithm complexity. Indeed, Gröbner basis algorithms use an optimized
method to generate polynomials. So, their performance is at least as good as our linearization attack.
Thus, from our linearization attack performance and complexity, we derive a heuristic bound on
vulnerable (n, s) parameters against a Gröbner basis technique. This heuristic bound shows that a
Gröbner basis approach may attack more parameters than the guess-and-determine technique (of
Section 3) for high values of n.

4.1 A Polynomial Attack with Degree-Two Linearization

For a degree-two linearization, the number of variables will highly increase in comparison to the
Section 3 case. Indeed, the total variables will include linear terms of shape xi and quadratic terms of
shape xixj where i 6= j. Thus, the total number of variables is

Nvar(n) = n+

(
n

2

)
.

1 The case of 128 bits of security is harder to assess because a degree-three linearization must then be considered. This
study is left for future work.
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To get a chance to invert a system with so many linearized variables, one needs to generate as many
quadratic equations as possible. Fortunately, Goldreich’s PRG with P5 predicate has such a structure
that allows any attacker to create a certain number of new equations from the original system. Before
showing how to generate these equations, in a first step, let us introduce the principle of the attack
assuming that a certain number of equations is drawn.

An attack and its complexity. Suppose that a Goldreich’s PRG is drawn with parameters (n, s)
and with c collisions. Suppose also that one can create a set of quadratic equations that contains
Nindep eqns linearly independent ones. Only equations of degree exactly 2 are counted in Nindep eqns.
We sketch a seed recovery attack assuming that

0 ≤ Nvar(n)−Nindep eqns ≤ c

and assess its complexity.

step 1 From the system of Nindep eqns, we create a linear system in matrix form.

step 2 We rewrite this system by separating the quadratic part and creating submatrices. Let qi be
the quadratic part of this new system and bi be its linear part and yi be its constant term.

q1 + b1 = y1
...

qNindep eqns
+ bNindep eqns

= yNindep eqns

The linearization consists in solving (qi + bi = yi)i∈[Nindep eqns] by replacing each monomial with
a variable and trying to invert a linear system of size Nindep eqns · Nvar(n). We then rewrite the

system in terms of matrices. Let Q ∈ FNindep eqns·(n2)
2 represent the coefficients of the quadratic

polynomials qi and B ∈ FNindep eqns·n
2 represent the coefficients of the linear part bi. Due to its

sparseness, B is full rank with high probability. By definition, rank(Q|B) = Nindep eqns. Figure 5
represents such matrices. The grey vector represents the list of quadratic variables of type (xixj),
the light-grey vector represents the linear and constant variables.

step 3 We compute the rank of matrix Q.

– If Q is full rank after deleting its columns of zero, then we invert the system by applying
Gaussian elimination on Q|B which is enough to recover the secret seed x1, . . . , xn.

– Else Q is not full rank but the rank defect is bounded because of the condition Nvar(n) −
Nindep eqns ≤ c. Indeed, the previous condition can be reformulated as Nvar(n) > rank(Q|B) ≥
Nvar(n)−c. With the addition of the c linear equations obtained by collisions (that are linearly
independant with high probability), the whole quadratic system becomes invertible.

Remark 1. In this precise case, we actually refined the computation in order to gain experimen-
tal complexity. For this, we rewrite the system differently as in Figure 6. We derive a matrix
Λ for left kernel of Q. We multiply the system in Figure 6 by Λ and obtain a linear system as
in Figure 7. With the addition of the c linear equations obtained by collisions, the inversion of
the remaining linear system in xi gives the secret seed with high probability.

Since the costliest step in attack is the inversion of a matrix of size
(
n
2

)
, the complexity is O(n2·ω).

It then leads to the following proposition.

BQ = y BQ = +y B
Λ

= y

Fig. 5. Linearized System Fig. 6. Rewritten linearized system Fig. 7. Linear system
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Proposition 3. Let Goldreich’s PRG be instantiated with n, s, and P5. Let c be the number of colli-
sions and Nindep eqns be the number of linearly independent quadratic polynomials generated with the
previous generation. If 0 ≤ Nvar(n) − Nindep eqns ≤ c the previous algorithm recovers the seed with
high probability with time complexity O(n2·ω).

Creating and counting quadratic equations. In order to satisfy Proposition 3’s hypothesis, one
must draw Nindep eqns linearly independent quadratic equations such that

Nindep eqns ≥ Nvar(n)− c .

In order to achieve it, in the following we introduce a (non exhaustive) list of ways to create new
quadratic polynomials. In each case, equations are grouped in a type. We denote by NTi the number
of equations following from Type i. Unfortunately, predicting the linear dependencies with these new
equations is a difficult task for a system with such a structure. For each type, we will remove all
redundant equations (also with other types) and assess the number. The linear independence will only
be conjectured from experiments.

Let us suppose that an instance of Goldreich’s PRG with (n, s) is drawn and gives m = ns equations
E1, . . . , Em evaluated in the secret seed x1, . . . , xn such that for i ∈ [m],

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi (Ei)

where y1, . . . , ym ∈ F2 is the output.

Type 0. The original system. The first quadratic equations are the system itself composed of ns

quadratic equations. If the system has linear dependencies between equations, then a distinguisher is
found and the PRG is broken. We then consider that all equations are linearly independent. All the
new quadratic equations will come from this system. To avoid redundancy in the next constructions,
we remove one equation from each collision, thus NT0 = ns − c.

Type 1. Generated individually. New quadratic polynomials can be derived directly from each
equation Ei with i ∈ [m]. Let us fix i ∈ [m]. In the field F2, the equation x2 = x gives

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi → xσi

1
xσi

5
+ xσi

2
xσi

5
+ xσi

3
xσi

5
+ xσi

4
xσi

5
= yixσi

5

→ xσi
1
xσi

4
+ xσi

2
xσi

4
+ xσi

3
xσi

4
+ xσi

4
xσi

5
= yixσi

4

Thus, the set of quadratic equations generated from Ei is

{zEi | ∀z ∈ {xσi
4
, xσi

5
}} .

Then, considering all i’s in [m], 2·NT0 = 2ns−2c new equations can be created. A linear dependence
in these equations would also lead to a distinguisher, then we consider that all these equations are
linearly independent, thus NT1 = 2ns − 2c.

Remark 2. If we combine equations of Type 0 with equations of Type 1, a small number of linear
equations can follow. Indeed, take the following example

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi → xσi

1
xσi

5
+ xσi

2
xσi

5
+ xσi

3
xσi

5
+ xσi

4
xσi

5
= yixσi

5
.

If the quadratic monomials xσi
1
xσi

5
, xσi

2
xσi

5
and xσi

3
xσi

5
also appear in Type 0 equations, then each

quadratic term can be replaced by the linear part. Thus, a new linear equation of weight up to 13 is
created. The expected number of such linear equations is

Nextra lin(n, s) = 2 · NT0 ·
(
NT0
n
(
n
2

) )3

≈ 24 · n4s−6 .

This number is low, so these equations are added to the linear equations coming from collisions. In
other words, from now on, c← c+Nextra lin(n, s) ≈ c.
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Type 2. From collisions. According to Definition 5, a collision is a couple (i, j) such that the sum
of Ei and Ej generates a linear equation of shape xσi

1
+ xσi

2
+ xσi

3
+ x

σj
1

+ x
σj
2

+ x
σj
3

= yi + yj . Thus,

the set of quadratic equations generated from a linear equation L is

{zL | ∀z ∈ {x1, . . . , xn}} .

Then, n · c quadratic equations can be created. A linear dependence in these equations would lead to
a distinguisher with success probability higher than 1/2, then we consider that all these equations are
linearly independent, thus NT2 = n · c.

Type 3. From semi-collisions. Let us first introduce the definition of a semi-collision.

Definition 6 (semi-collision). A semi-collision is a couple (i, j) ∈ [m]2 such that

– i 6= j
– (i, j) is not a collision
– there exists a k ∈ [n] such that

xk|xσi
4
xσi

5
and xk|xσj

4
x
σj
5

Example 1. The following equations,

x1 + x2 + x3 + x7x10 = y1 (E1)

x4 + x5 + x6 + x7x8 = y2 (E2)

induces (1, 2) as a semi-collision because x7|x7x10 and x7|x7x8 .

Lemma 3. When a semi-collision (i, j) occurs, an extra quadratic equation of shape x
σj
5 or 4

Ei +

xσi
4 or 5

Ej can be generated.

This can be easily seen on an example. In Example 1, one can generate a new quadratic equation:

x8x1 + x8x2 + x8x3 + x10x4 + x10x5 + x10x6 = x8 · y1 + x10 · y2 (x8 · E1 + x10 · E2)

Lemma 4. The total number of semi-collisions can be approximated by

Nsemi collisions = n

(
2n−1(ns − c)

2

)
.

Proof. Let p be the probability that a fixed variable xi appears in the quadratic term of a fixed Type 0
quadratic equation. Thus, p = 2

n . For a variable xi, there are on average (m − c)p = 2n−1(ns − c)
elements1 that have xi in their quadratic term. Inside this set of 2n−1(ns − c) elements, there are(
2n−1(ns−c)

2

)
couples. To get all the semi-collisions and collisions, we multiply the previous equation by

n. This multiplication is accurate because this counting does not imply simple intersections. ut

Removing redundant equations inside Type 3. If naively generated following Lemma 4’s proof,
many equations are redundant. To compute a correct assessment of the significant Type 3 equations,
we will remove several redundant equations. Let us study a phenomenon that is at the origin of many
redundancies. Look at the following example :

x1 + x2 + x3 + x10x11 = y1 (E1)

x4 + x5 + x6 + x11x12 = y2 (E2)

x7 + x8 + x9 + x10x12 = y3 (E3)

Among the three semi-collisions concerning x10, x11 and x12, one is exactly the sum of both other.
Then, when a “cycle” of size 3 appears in the quadratic terms, one semi-collision should be ignored.

1 This is a worst-case approximation
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This makes NT3 smaller than Nsemi collisions. Let Ncycles be the expected number of these “cycles” of
size 3 in a random instance Goldreich’s PRG . Ncycles can be approximated by the following:

Ncycles ≈
1((n2)
3

) · (n3
)
·
(
m

3

)
∈ O(n3s−3) .

Then, the remaining number of linearly independent equations is upper bounded by

Nsemi collisions −Ncycles .

One equation per cycle is removed and all other equations are kept and counted in NT3.

NT3 = Nsemi collisions −Ncycles

Proposition 4. The total number of linearly independent quadratic equations that can be generated
with the previous types of equations is upper-bounded by

Nindep eqns ≤ NT0 +NT1 +NT2 +NT3 := Neqn(n, s) ∈ O(n2s−1) .

Asymptotically, s < 1.5 =⇒ Neqn(n, s) < Nvar(n) which makes the linearization impossible. This
result comes with no surprise since it is part of the asymptotic security assumptions. However, for
many instances (when n < 214), Neqn(n, s) ≈ Nvar(n). In the next section, we provide conditions on
n and s such that a polynomial seed recovery is possible with non-negligible probability.

Conjectured bound on vulnerable parameters. Proposition 3 condition (Nvar(n)−Nindep eqns ≤
c) does not easily give a bound in terms of parameters. Indeed, Nindep eqns is hard to assess because
the linear independence of equations form types 0, 1, 2 and 3 is non-trivial to prove.
However, extensive experiments on small parameters support Neqn(n, s) ≈ Nindep eqns. That is what
allows us to make the following conjectured limit parameters for this polynomial attack:

Neqn(n, s) > Nvar(n)− c (Heuristical limit)

Experiment. We implemented this attack with a proof of concept using Magma CAS.1 For each value
n ∈ {100, 110, 120, . . . , 240}, we found out that if (n, s) are such that Neqn(n, s) � Nvar(n) − c, the
attack succeeds with high probability which corroborates the theory. For a given n, we measured the
limit stretch s for which the success probability goes under 50%. Indeed, in Fig. 8, the dots represent
the experiments, the line corresponds to the equality Neqn(n, s) = Nvar(n)−c (Heuristical limit) which
was computed discretely in another Magma code. The estimation of Heuristical limit was a worst-case
assessment, so it is not surprising that some experimental limits are actually slightly below the line.

Heuristic 1 Extrapolation for higher n.
For any set of parameters (n, s) such that Equation Heuristical limit is verified, we conjecture that

there is a polynomial seed recovery attack for Goldreich’s PRG with P5 with cost O(n2ω).

We can notice that if n < 214 then the complexity is lower than 280.
In Fig. 9, we represent the extrapolated heuristic bound on (n, s). Above the line, the sets of

parameters are conjectured to be vulnerable to this polynomial attack.

4.2 Gröbner Approach

An efficient alternative algebraic attack is using Gröbner basis algorithms such as Faugères F4 [Fau99]
and F5 [Fau02]. It consists in a succession of linearization attempts where the degree of the linearization
is incremented at each step. For each linearization attempt, all polynomial combinations are exhausted
in a smart way in order to generate as many new equations as possible. However hard to assess

1 The Magma code can be found at https://github.com/LuMopY/SecurityGoldreichPRG

https://github.com/LuMopY/SecurityGoldreichPRG
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(see Bardet, Faugère, Salvy and Yag’s work [BFSyY]), Gröbner basis computation’s complexity is
dominated by Gaussian elimination on the smallest invertible Macaulay matrix. This Macaulay matrix
contains coefficients associated with the monomials of a fixed degree. We denote by degree of regularity
or Dreg, the degree of the monomials associated with the invertible Macaulay matrix. In [BFSyY],
under certain hypotheses, the degree of regularity for a random Boolean quadratic system is upper
bounded by

−ns +
n

2
+
n

2

√
2n2s−2 − 10ns−1 − 1 + 2(ns−1 + 2)

√
ns−1(ns−1 + 2) .

This bound is too generic and does not represent what happens for practical (n, s). Goldreich’s
PRG structure allows to drastically reduce the degree of regularity. We conjecture an upper bound on
the degree of regularity for certain parameters based on Section 4.1 attack results and that is observed
to be true in our experiments.

Claim. If the attack of Section 4.1 recovers the secret for one instance of Goldreich’s PRG , the degree
of regularity Dreg is 3 and drops to 2 for the resolution on this instance.

The performance of Faugères F4 or F5 algorithm on Goldreich’s PRG is strictly superior to the
attack presented in Section 4.1. Indeed, the three types of equations found in Step 1 form a subset
of the equations derived from Gröbner basis algorithm up to degree 3. Then, if the subsystem is
invertible with a degree-two linearization, Gröbner basis algorithm will also be able to invert it with a
degree-two linearization. There is a subtlety because when computing the Gröbner basis, the maximal
degree of polynomials involved is actually 3: for finding semi-collisions, the quadratic polynomials need
to be multiplied by a monomial. But then, once enough semi-collisions are found, the Gröbner basis
algorithm falls back into solving a degree-two system. This phenomenon is called a degree fall.

Experimental results. To experiment the performance, we used the Gröbner basis algorithms of
Magma CAS. The Magma code is then very simple as it consists in computing GroebnerBasis(System,3)
which calls a Boolean variant of Faugère F4 algorithm. For each computation, we checked that the
degree fall happened and the inversion was done with a degree 2. For each value n ∈ {100, 110, . . . , 240}
and the conjectured limit stretch for 50% success, we ran 100 seed recoveries and Gröbner basis
algorithm was able to recover around than 90% of the seeds. We finally conclude that according to
the conducted experiments, Heuristic 1 is observed to be true for small values of n.

Remark 3. Gröbner basis performance was able to attack more parameters with lower stretches (often
below s = 1.25) with degree of regularity 2. So, some parameters below the heuristic bound may also
be vulnerable.

Increasing the degree of regularity. Since we consider 80 bits of security, we want the cost of
a degree Dreg linearization to be doable with at most 280 operations. A degree Dreg linearization
corresponds to a Gaussian elimination on a system with

(
n

n−Dreg

)
variables. Then, Dreg should verify:(

n

n−Dreg

)ω
< 280 .

This implies that Dreg cannot be higher than 2 for n > 512. For n ≤ 512, a degree-three lineariza-
tion might solve more (n, s) instances. We leave this study as future work.

4.3 Conclusion

We described in Section 3 a guess-and-determine attack against Goldreich’s PRG. In this section,
we complement this result with an analysis of the security of Goldreich’s PRG against a degree-two
linearization attack (à la Gröbner). We represent on Figure 10 the range of parameters for which
Goldreich’s PRG is conjectured to have 80 bits of security against those two attacks. As illustrated in
the graph, the guess-and-determine approach targets more parameters for low n while the linearization
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Fig. 10. Limit stretch for vulnerable parameters with 80 bits of security against both guess and determine (Section 3)
and degree-two linearization attacks (See Appendix 4). The grey zone above the curves denotes the insecure choices of
parameters.

attack performs better for n > 4000. Although Goldreich’s PRG is conjectured to be theoretically
secure for a stretch approaching 1.5 by an arbitrary constant, our analysis shows that a very large
seed must be used to achieve at least 80 bits of security with such a stretch. In particular, if a stretch
of 1.4 is needed, no seed smaller than 5120 bits should be used. Similarly, for a stretch as small as 1.1,
the seed must be at least 512 bits long.

5 Generic Attacks against Goldreich’s PRG

Beyond the predicate P5 we investigate the security of other predicates for higher stretches, and show
that the considered criteria are not sufficient to determine the security. In Section 6, we prove that
the number of independent annihilators of the predicate has to be taken into account. Hence, the
algebraic immunity is not enough, as we provide a new bound on the stretch that refines the theorem
of Applebaum and Lovett [AL16]. On the other side, we provide in this section an improvement of the
guess-and-determine technique, combined with an algebraic attack. This generalization can be seen as
a hybrid attack as defined in [Bet11].

5.1 A Subexponential-Time Algorithm

The theorem of Applebaum and Lovett for polynomial-time algorithms regarding algebraic attacks
can be improved, as shown in Section 6. In this section, we focus on subexponential-time algorithms.
The idea here is to generalize the seed recovery attack of Section 3 against the PRG instantiated with
the predicate P5, to all other considered predicates. Therefore we generalize the attack to all XOR`Mk

predicates and then more particularly to the XOR`MAJk predicates.

Combinatorial Conjecture. As for Section 3, the success of the seed recovery attack will depend
on the inversibility of a large subsystem of equations related to the variables. We give a generalization
of the combinational conjecture of Section 3, and of Hypothesis 1. For each attack, we will refer to
the particular parameters of this conjecture and hypothesis.

We consider the following conjecture, parametrized by the bound β, the locality d, and j the order
of linearization. Define, for i = 1 to 2β, Dn′,i to be the distribution over Fn

′×n′
2 obtained by sampling

the hypergraph of Goldreich’s PRG at random (with locality d), taking a subset of ` variables which
suffices to recover n′ + ` linear equations in the n′ linearized variables (n′ =

∑j
i=1

(
n
j

)
) (using a
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straightforward generalization of the selection phase algorithm (see Section 3.1)), and outputting the
n′ × n′ matrix Mn′ of the linear system obtained by assigning bit values to the selected linearized
variables (according to an arbitrary injection of {0, 1}` into [1..2β], which exists when β ≥ `). We
truncate to n′ equations for simplicity).

Hypothesis 2 There exists a constant γ such that for every sufficiently large n′ ∈ N, for every i ≤ 2β,
the matrix Mi contains with overwhelming probability an invertible subsystem of γ ·n′ equations, where
the probability is taken over the coins of Mi

$← Dn′,i.

Remark 4. Note that for the attack of Section 3, the specific parameters of the conjecture are β =
bn2/2m + 1c for the bound, d = 5 for the locality, and j = 1 for the order of linearization, meaning
that no linearization is applied.

The principle. Let n be the size of the seed of the PRG with stretch s, and let P be a predicate with
locality d. The general idea is to guess r variables of the seed, and solve the corresponding system of
equations for each possible value of those r bits. For each equation obtained, an equation of smaller
or equal degree can be derived using the principle of the algebraic immunity. Then, the complexity of
the attack mainly depends on the values of r and the algebraic immunity of the functions we obtain.
It corresponds to the general principle of algebraic attacks with guess and determine ([MJSC16]),
for which we can affine the complexity in the particular case of XOR`Mk predicates. We begin by
considering the complexity of an attack targeting the degree of the M predicate after guessing some
bits, based on the following remark:

Remark 5. As soon as k − 1 variables among the k variables of M are fixed, a linear equation can be
found, as the output of M depends on only one variable and as XOR` is linear.

The attack. Our subexponential time algorithm works as follows:

step 1 Fix r variables of the seed (xi1 , . . . , xir), with r ∈ O
(
n

k−s
k−1

)
.

step 2 For all 2r possible values of xi1 , . . . , xir , recover the corresponding linear system of equations.
step 3 Solve the system in (n−r)ω operations; if there is a contradiction, go back to step 2, otherwise

add the solution to the list.
step 4 Return the list of solutions.

This attack works as long as the system of linear equations obtained in Step 3 above contains
an invertible subsystem of size sufficiently large to recover the seed. It is equivalent to assuming

Hypothesis 2 relatively to the parameters β ∈ O
(
n

k−s
k−1

)
, d = k + `, and j = 1.

Complexity analysis. The complexity is dominated by Step 3, as we repeat this step 2r times
(we have to solve a system of linear equations of size n− r for each possible values of the r bits), the
complexity of this algorithm is subexponential: O(nω2r). Eventually, the final complexity is determined
by the following proposition:

Proposition 5. For an overwhelming proportion of Goldreich’s PRG instantiated with a XOR`Mk

predicate, under Hypothesis 2 with parameters
(
O
(
n

k−s
k−1

)
, d = k + `, j = 1

)
on step 2 system, the

complexity order of the previous algorithm can be approximated by :

2n
k−s
k−1 · nω .

Proof. First, we need to approximate the number of linear equations we can get: for a given output
bit, the probability that at least k − 1 over the k bits of M are fixed is given by:(

r
k−1
)(
n−r
1

)(
n
k

) +

(
r
k

)(
n−r
0

)(
n
k

) ,
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as to get j over k bits of M fixed there are
(
r
j

)
possibilities to select these fixed bits,

(
n−r
k−j
)

to select

the k − j non-fixed bits, over the
(
n
k

)
possibilities. Multiplying this probability by ns gives us the

average number of linear equations that we get using this technique. As soon as the number of those
equations linearly independent is greater than or equal to n, we can solve the corresponding linear
system (which is the case when we assume that a negligible fraction of those equations are linearly
dependent, see Hypothesis 2). If there is no solution the guess is refuted, otherwise it is compared to
the PRG’s output (Note that it is sufficient to compare O(n) output bits, as no more than one seed
gives this exact output with overwhelming probability).

As k is smaller than the locality (remember that d = k+ `), and by taking r ' n
k−s
k−1 we can make

the following approximations:
(
r

k−1
)
' rk−1,

(
r
k

)
' rk, and

(
n
k

)
' nk. Hence, the number of linear

equations that we get is approximately:

ns ·
(
rk−1(n− r) + rk

nk

)
= ns ·

(
rk−1

nk−1

)
.

Hence, the number of variables that we need to guess is roughly n
k−s
k−1 , giving the corresponding

complexity for the algorithm. ut

Remark 6. It is important to notice that the parameter of this attack does not rely directly on the local-
ity, but only on the number k of variables that appear in the non-linear part M, hence, it improves the
complexity of [BQ09]. Indeed, the generic complexity of Bogdanov and Qiao is roughly O(2n

1−(s−1)/2d
)

where d denotes the locality, as our algorithm has a complexity that is in O
(
nω · 2n1−(s−1)/(k−1)

)
, with

k − 1 < d, by definition of k.

Moreover, the predicate requires a high resiliency to avoid linear attacks, and one of the most
natural constructions to build a resilient function is to add an independent linear part to a function. It
corresponds to the XOR`Mk predicates, which have a resiliency of at least `− 1 given by the xor part.
It is also possible to build resilient functions differently, which seems to be a better choice regarding
this attack. For the case of P5, we have k = 2, that gives us an attack in O(nω2n

2−s
).

Possible improvement. This algorithm only relies on the number of variables of the non-linear part,
but not on its algebraic immunity. Instead of fixing variables in order to obtain linear equations in
the non-linear part of a XOR`Mk predicate, an attacker can fix variables in order to recover equations
of degree greater than 1. Indeed, using the algebraic immunity of the M predicate, the attacker can
recover such equations by fixing less than k bits in the M part. By doing so, it appears that the
relevant criterion regarding this attack is no longer the algebraic immunity, neither the r-bit fixing
degree defined in [AL16], but a generalization of the two. The efficiency of the attack will depend on
the algebraic immunity of the predicates obtained after doing some guesses, and on the probability of
getting predicates (in fewer variables) with this algebraic immunity (or smaller). A lower bound on the
algebraic immunity that can be obtained with r guesses is given by the r-bit fixing algebraic immunity
(introduced first in terms of recurrent algebraic immunity in [MJSC16] to bound the complexity of
algebraic attacks combined with guess and determine) defined in the following sense:

Definition 7. (r-bit fixing algebraic immunity) Let f be a Boolean function with d variables. For any
0 ≤ r ≤ d, and b = (b1, . . . , br) ∈ {0, 1}r, i = (i1, . . . , ir) ∈ [d]r such that i1 < i2 < · · · < ir, we note
f(b,i) the restriction of f where the r variables indexed by i1, . . . , ir are fixed to the value b1, . . . , br.
Then f has r-bit fixing algebraic immunity a if

min
(
AI(f(b,i)) : i = (i1, . . . , ir) ∈ [d]r, i1 < i2 < · · · < ir, b ∈ {0, 1}r

)
= a

where AI denotes the algebraic immunity.

For the case of XOR`Mk predicates we prove in the next part an upper bound on the r-bit fixing
algebraic immunity. Thereafter, determining the number of predicates with this algebraic immunity
that could be reached guessing r variables will lead to other subexponential time algorithms. We give
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the description and analysis of this algorithm applied on XOR`Mk predicates. However, this algorithm
only generalizes the result given by the first algorithm as it considers systems of equations of degree
greater than one. But, it does not assume any property on the M predicate, and leads to consider
the maximum algebraic immunity that can be provided by this part when some variables are fixed.
Considering the principle of the r-bit fixing algebraic immunity, we can try to find guesses which lower
this algebraic immunity, leading to an attack with even better complexity.

5.2 Improvement of the subexponential-time algorithm

Proposition 6. Let P be a XOR`Mk predicate, let j ≤ k, then for all set of j variables of the M part,
zi1 , . . . , zij and all b ∈ {0, 1}j, the Boolean function f with d− j variables defined as:

f = P |zi1=b1,...,zij=bj ,

has an algebraic immunity smaller than or equal to
⌈
k−j
2

⌉
+ 1.

Proof. f = XOR`+g, where g is a Boolean function with k−j variables. Hence, its algebraic immunity

is upper bounded by the value of
⌈
k−j
2

⌉
. Let h be a non-null Boolean function that cancels g. Then h

is of degree at most
⌈
k−j
2

⌉
. It appears that the Boolean function h′ of `+ k − j variables defined by:

h′ = (1 + XOR`)h ,

is an annihilator of f . Indeed, if XOR` = 1, then h′ = 0. Else, if XOR` = 0, then h′ = h, and f = g, so
h′f = hg = 0, by definition of h. Moreover, as h is non-zero, and h′ is constructed using independent
variables, h′ is necessarily also non-zero. In the same way, if h is canceling g + 1, then h′ is canceling
f and is non-zero, finishing the proof. ut

Using Proposition 6, we can generalize the previous algorithm on all XOR`Mk predicates, generaliz-
ing the result of Proposition 5. For each value of the r-bit fixing algebraic immunity of the M predicate
we consider a subexponential time algorithm. However, this generalization is a slightly improvement
as it makes sense only if the stretch is sufficiently big.

Proposition 7. Let j be an integer such that 0 < j ≤ k and s > dk−j2 e+ 1, for an overwhelming pro-
portion of Goldreich’s PRG instantiated with a XOR`Mk predicate, under Hypothesis 2 with parameters(
O

(
n

1+j−s+d(k−j)/2e
j

)
, k + `, dk−j2 e+ 1

)
, the seed can be recovered in time complexity of order:

2rnω(d k−j
2 e+1) ,

where r ' n
1+j−s+d(k−j)/2e

j .

Proof. The proof is similar to the proof of Proposition 5:

First, we approximate the number of equations of degree at most
⌈
k−j
2

⌉
+ 1 we can get using

Proposition 6. The probability of recovering a predicate of degree at most
⌈
k−j
2

⌉
+ 1 when r variables

are fixed is at least:
k∑
i=j

(
r
i

)(
n−r
k−i
)(

n
k

) ,

as it corresponds to the probability of fixing j variables in the M part.
By multiplying this with ns, that is the total number of equations, we get the total number of

equations that we get in average of degree at most
⌈
k−j
2

⌉
+1. As soon as the number of those equations

linearly independent is greater than or equal to:

d k−j
2 e+1∑
i=1

(
n

i

)
,
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we can solve the corresponding linearized system (which is the case when we assume that a low
number of those equations are linearly dependent, i.e. assuming Hypothesis 3), giving a complexity

order of nω·(d
k−j
2 e+1).

If there is no solution the guess is refuted, otherwise it is compared to the PRG’s output.
As k is a constant, we can approximate the number of linearly independent equations as:

ns
k∑
i=j

ri(n− r)k−i

nk
.

Now taking r ' n
1+j−s+d(k−j)/2e

j , and as s > 1 + d(k− j)/2e, it allows us to approximate this expression
by:

ns
k∑
i=j

rink−i

nk
' ns r

j

nj

k−j∑
i=0

ri

ni
≥ ns r

j

nj
.

Replacing by the value of r, we obtain

ns
rj

nj
' nd

k−j
2
e+1 .

Hence, we get enough equations of degree at most
⌈
k−j
2

⌉
+1, that can be solved using the linearization

technique. ut

In the following, we show on the XOR-MAJ predicates how only taking into account specific values
of guessed bits (but changing the positions that we guess) enables to target a low algebraic immunity
with enough equations.

5.3 Application to XOR-MAJ Predicates.

In the previous algorithms, we fix r bits that never change, but we test all possible values for those
bits. However, it might be of interest to change the bits that we guess, by taking into account a specific
value for those bits, such that we decrease more drastically the degree of the equations that we get.
Using the notations of Definition 7, it boils down to finding values of b ∈ {0, 1}r such that AI(f(i,b)) is
low for enough i.

Let us consider the XOR`MAJk predicate (Definition 3), then the initial subexponential algorithm

breaks the construction with complexity O(nω2n
(k−s)/(k−1)

), and its generalization with complexity:

O

(
2n

1+j−s+d(k−j)/2e
j

nω(d k−j
2 e+1)

)
,

for all integers j such that 1 ≤ j ≤ k. Moreover, this algorithm is an improvement only for bigger
stretches. In the following, we change the way we make our guesses, in order to capture how the r-bit
fixing algebraic immunity is a relevant criterion.

In these algorithms, one can notice that fixing j bits among the k variables that appear in the
majority function can derive different degrees of equations, depending on the value of the bits that
are guessed: fixing

⌈
k
2

⌉
bits all to 0 (or all to 1) will derive directly linear equations. Indeed, for

the majority function, if strictly more than half of the bits are supposed to be all zero, then the
corresponding output has to be 0 by definition of the majority, and respectively 1 if all these bits are
ones. On the other side, fixing a quarter of bits to be ones and a quarter of bits to be zero will derive
another majority function taken other half of the bits, which is clearly non-linear for k big enough.

Hence, instead of fixing r bits and guess all possible values of those bits, we choose r bits, guessing
that all those bits are all one or all zero, and repeat this until the guess is right (the position of the r
guessed variables changes, not the value). This particular guess-and-determine is exactly what Duval,
Lallemand and Rotella investigated in [DLR16] on the FLIP family of stream ciphers (and which
complexity can be bounded through the r-bit fixing algebraic immunity, [MJSC16] Section 3.4).
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Description of the algorithm.

step 1 Fix randomly r variables of the seed (xi1 , . . . , xir).
step 2 Assume that all of them are equal to zero, solve the corresponding linear system, add the

solution to the list.
step 3 Assume that all the r variables are equal to one, solve the corresponding linear system, add

the solution to the list.
step 4 If in the solution list there is one with no contradiction with the PRG output, output the

solution as the seed. Otherwise, empty the list and go back to Step 1.

As for the other seed recovery attacks, the success depends on the invertibility of a large proportion
of a linear system. More particularly, the attack is effective here if a sufficiently important subpart of
the linear systems described in step 2 or step 3 are invertible. Note that this is not directly related
to Hypothesis 2, which focuses on distribution of systems where at most β variables are selected, and
where all the affectations of these variables are considered. Here, the affectation of the variables is
fixed, all 0 or all 1, and we focus on the systems given by randomly selecting β variables.

Combinatorial Conjecture. We consider the following conjecture, parametrized by the bound β,
the locality d, j the order of linearization, and V the set of affectations. Define, for i = 1 to |V |

(
n
β

)
,

D′n′,i to be the distribution over Fn
′×n′

2 obtained by sampling the hypergraph of Goldreich’s PRG
at random (with locality d), taking a subset of β over n variables, affecting to it a value of V , and
outputting the n′×n′ matrix Mn′ of the linearized system obtained (where n′ =

∑j
i=1

(
n
j

)
), according

to an arbitrary fixed ordering of all assignments.

Hypothesis 3 There exists a constant γ such that for every sufficiently large n′ ∈ N, for every
i ≤ |V |

(
n
β

)
, the matrix Mi contains with overwhelming probability an invertible subsystem of γ · n′

equations, where the probability is taken over the coins of Mi
$← D′n′,i.

Complexity analysis. The complexity is dominated by the number of repetitions of Step 2 and Step 3,
we determine it through the following proposition:

Proposition 8. For an overwhelming proportion of Goldreich’s PRG instantiated with a XOR`MAJk

predicate, assuming Hypothesis 3 with parameters β = O(n
1+ 1−s

d k2e+1 ), d = ` + k, j = 1, V = {0n, 1n}
for Step 2 and 3 systems, the seed can be recovered in time complexity of order:

nω2n
1− s−1

d k2e+1

.

Proof. Using the precedent proof, we need to have j =
⌈
k
2

⌉
+1. Hence, the probability that we recover

a linear equation is equal to
k∑
i=j

(
r
i

)(
n−r
k−i
)(

n
k

) .

Multiplying the expression above with ns, we get the number of linear equations. When the number
of those equations linearly independent is greater than or equal to n, we can invert the system. As k
is a constant, we can approximate this as

ns
k∑
i=j

ri(n− r)k−i

nk
.

Now taking r ' n
1+j−s

j allows us to approximate this expression to

ns
k∑
i=j

rink−i

nk
' ns r

j

nj

k−j∑
i=0

ri

ni
≥ ns r

j

nj
.



On the Concrete Security of Goldreich’s PRG 31

Replacing by the value of r we have, we get that

ns
rj

nj
' n .

Eventually, the number of positions that we have to guess is roughly n
1+j−s

j , with j =
⌈
k
2

⌉
+ 1.

Note that the probability that a guess is correct depends on the Hamming weight of the seed. We
circumvent this issue by considering the maximum over the probabilities of the two events the r fixed
variables are all 0 and the r fixed variables are all 1. As the seed has at least

⌈
n
2

⌉
0 or 1, the maximum

is at least: (dn/2e
r

)(
n
r

) ,

which is equal to 2−r when we approximate
(dn/2e

r

)
by (n/2)r and

(
n
r

)
by nr.

Hence, the final time complexity order is

nω2n
1− s−1

d k2e+1

.

ut

This algorithm captures something else than the previous ones, as it shows that one has to consider
all possible choices of guesses in order to evaluate exactly the security of such constructions. In other
words, it shows that the r-bit fixing algebraic immunity is exactly the relevant criterion to resist our
attack, as it defines the smallest algebraic immunity that can be considered for an attack. However,
one must also take the probability that a corresponding guess happens on the equations into account.
Hence there exists a trade-off between the choice of the good guesses, and the probability that the
corresponding equation of small degree can be derived.

6 Independent Annihilators and Polynomial Attack

6.1 On the number of independent annihilators

In [AL16, Theorem 1.4], Applebaum and Lovett showed that if the stretch s is strictly smaller than
the rational degree e (also called Algebraic Immunity), then there exists a polynomial-time refutation
attack.

In symmetric cryptography, the algebraic immunity is a relevant criterion, as it defines the com-
plexity of inverting a certain system of nonlinear equations, but the data complexity is often not an
issue for the attacker. However, the context of Goldreich’s PRG is very different. Indeed, the degree of
the equations is constant, but the constraint is the number of equations we aim at solving, and that
is why the stretch has to be smaller than the algebraic immunity.

Moreover, ever since the first attacks using algebraic immunity were found (see [Cou03, CM03]),
it has been pointed out that the number of annihilators of the corresponding degree can improve
the data complexity of (fast) algebraic attacks on stream ciphers. Since then, this criterion has been
studied: for example in [Car06], there are some results on the number of independent equations that
can be obtained by only one nonlinear equation. As we are very limited in the number of data here,
this criterion is in fact a more relevant one in our setting than the algebraic immunity only.

Example. In order to be more understandable, let us explain an example: we assume that we have
the following equation:

x1 + x2x3x4x5 = 0.

Noticing that 1 + x2 is an annihilator of x2x3x4x5: (1 + x2)(x2x3x4x5) = x2x3x4x5 + x2x3x4x5 = 0,
one can remark that the following equation can be derived multiplying by 1 + x2:

x1(1 + x2) = 0.
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As x2, x3, x4 and x5 are playing a symmetric role in the first equation, we get four equations of
degree 2 of the type x1(1 + xi) = 0. All those four equations are derived from the first one, but they
are all linearly independent, implying that one equation of degree 4 is hiding four equations of degree
2, linearly independent.

Remark 7. Note that in the attack of Section 4 we are already using the fact that a function can have
multiple linearly independent annihilators of the same degree. Indeed, the type-1 equations imply
degree-two annihilators of P5: for such equations of the type P5xj = Qi where Qi is a quadratic
polynomial, we get P5xj = P5Qi , implying that xj +Qi is a non-null annihilator of P5.

Generic attack. We focus on a construction that follows Goldreich’s idea: We take a predicate P
of locality d, of algebraic immunity e, n denotes the size of the seed, and s the stretch. Moreover, we
denote N0

a the number of independent annihilators of the predicate P of degree at most a, and N1
a

the number of independent annihilators of the predicate P + 1 of degree at most a. By definition, we
know that ∀a < e,N1

a = N0
a = 0.

Theorem 1. Consider a PRG following Goldreich’s construction with predicate P , let e be the alge-
braic immunity of P and for a ≥ e, let N0

a and N1
a be respectively the number of linearly independent

annihilators of P (respectively P + 1) of degree at most a, and Na = min(N1
a , N

0
a ). If

s ≥ a− log(Na)

log(n)
,

then assuming Hypothesis 2 with parameters β = O
(
c0N

0
a + c1N

1
a

)
, d, j = a, there exists a polynomial-

time algorithm that finds a preimage for a given output y ∈ {0, 1}ns
(or certifies that y has no preim-

age).

Proof. Let a ≥ e. For each output bit, the attacker can derive either N0
a or N1

a linearly independent
equations of degree at most a, depending on the value of this bit, let us denote c0 the number of zeros
and c1 the number of ones. Then the attacker can recover c0N

0
a + c1N

1
a equations.

Assuming Hypothesis 2 with parameters β = O
(
c0N

0
a + c1N

1
a

)
, d, j = a, we can solve the linearized

system, with a total time complexity of roughly O(na·ω).
To link this number to the stretch, recall that c0 + c1 = ns, then c0N

0
a + c1N

1
a ≥ nsNa. As soon as

this number of equations is greater than O(na), we can apply the linearization technique.
The condition nsNa ≥ na, implies directly the following condition

s log(n) + log (Na) ≥ a log(n) ,

finishing the proof. ut

However, when considering XOR`Mk predicates, we can improve this theorem with the following
proposition.

Proposition 9. Let P be a XOR`Mk predicate with ` > 0 then:

∀a, N0
a = N1

a = Na .

Proof. We have P (x1+1, . . . , xd) = 1+P (x1, . . . , xd). Let f be such that f(x1, . . . , xd)P (x1, . . . , xd) =
0, then:

f(x1 + 1, x2, . . . , xd)(P + 1) = f(x1 + 1, x1, . . . , xd)P (x1 + 1, x1, . . . , xd) = 0 ,

Which implies that if f(x1, . . . , xd) is an annihilator of P , then:

f ′ = f(x1 + 1, x2, . . . , xd) ,

is an annihilator of P + 1.
Moreover, f 6= f ′. Indeed, f is a non-null annihilator of P and f ′ of P + 1, so if f = f ′, we get

that f(P +P + 1) = 0 implying f = 0. Last but not least, the transformation x1 7→ x1 + 1 is bijective
and linear, so it preserves the degree, finishing the proof. ut
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Putting Theorem 1 and Proposition 9 together, we can improve the theorem of Applebaum and
Lovett for XOR`Mk predicates by taking e = a and considering only the annihilators of P , which gives
us the following corollary.

Corollary 1. Let P be a XOR`Mk predicate with ` > 0, let e be the algebraic immunity of P and Ne

the dimension of the vectorial space of the annihilators of P . Then if

s ≥ e− log(Ne)

log(n)
,

then there exists a polynomial-time algorithm that finds a preimage for the output or refute the output
as an image of the PRG.

Note that this attack uses a property of the predicate which is not exactly its algebraic immunity,
as for any function of n variables and algebraic immunity e we have 0 ≤ Ne ≤

(
n
e

)
. We study this

quantity Ne in the particular case of XOR`MAJk predicates:

Proposition 10. Let P be a XOR`MAJk predicate, then:

Nd k2e+1 ≥
(
k⌈
k
2

⌉).
Proof. Let consider first the function 1 + MAJk, this function is equal to 1 on all inputs of Hamming
weight lesser than

⌈
k
2

⌉
and equal to 0 on all other inputs. For any monomial function of degree

⌈
k
2

⌉
, the

product with 1+MAJk is then 0, as these functions are equal to 1 only on input with Hamming weight
greater than or equal to

⌈
k
2

⌉
. As these monomials are linearly independent, it gives for 1 + MAJk:

Nd k2e ≥
(
k⌈
k
2

⌉) .

Then, 1 + XOR` admits the linear function XOR` as annihilator, so the direct sum XOR`MAJk admits
as annihilators all the products of XOR` by a degree

⌈
k
2

⌉
monomial in the k variables of MAJk, which

are linearly independent functions of degree
⌈
k
2

⌉
+ 1, finishing the proof. ut

Putting all together, we can then bring the following corollary for XOR`MAJk predicates.

Corollary 2. Let a PRG following Goldreich’s construction with predicate XOR`MAJk with ` > 0,
then if

s ≥
⌈
k

2

⌉
+ 1−

log
( k
d k2e
)

log n
,

then there exists a polynomial-time algorithm that finds a preimage for a given output y ∈ {0, 1}ns
(or

certifies that y has no preimage).

6.2 Open Questions

The attacks and their variants described in this section and the precedent one ask many open questions.
For the polynomial time algorithm using the number of linearly independent annihilators, we do not
take into account some dependencies into different equations as explained in Section 4. Hence, the
condition on the stretch that we gave could be improved by considering dependencies on the subsets.

For the subexponential-time attack of Section 5 that uses the r bit fixing algebraic immunity, we
do not know if the bound given in Proposition 6 is tight, that is if there exist predicates, such that
fixing any bits will still derive Boolean functions with fewer variables that reach the maximal algebraic
immunity. In other words, is it possible to have a perfect predicate regarding the r bit fixing algebraic
immunity? Recalling that it is the relevant criterion in this context.

Moreover, this bound does not depend on the value of the bits that are guessed, whereas this
might have an influence, as shown on the XOR-MAJ predicate. For example, the Boolean function
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x0 + x1x2x3x4 is of algebraic immunity 2, but fixing x1 to be 1 will derive a Boolean function that is
still of algebraic immunity 2, but fixing x1 = 0 will bring directly a linear equation. Hence, all choices
of guess are not equivalent, implying that different choices of guesses could improve the complexity of
our subexponential-time algorithm, depending strongly on the predicate.

Last but not least, how the first idea of using different annihilators can improve the subexponential-
time algorithms using guess and determine?
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A Detailed calculations for the proof of Proposition 2

E(C) =

n∑
i=1

n∑
j=i+1

E(Ci,j) =

n∑
i=1

n∑
j=i+1

m∑
k=2

P[B(m,p)=k] · (k − 1)

=

(
n

2

) m∑
k=2

P[B(m,p)=k] · (k − 1)

=

(
n

2

) m∑
k=2

(
m

k

)
pk(1− p)m−k · (k − 1)

=

[(
n

2

) m∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]
−

[(
n

2

) 1∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]

=

[(
n

2

) m∑
k=0

(
m

k

)
pk(1− p)m−k · (k − 1)

]
+

(
n

2

)
p0(1− p)m

=

[(
n

2

) m∑
k=0

k

(
m

k

)
pk(1− p)m−k

]
−
(
n

2

)
+

(
n

2

)
(1− p)m

=

 m∑
k=0

k

(
m

k

)(
1(
n
2

))k−1((n2)− 1(
n
2

) )m−k− (n
2

)
+

(
n

2

)
(1− p)m since p =

1(
n
2

)
=

 m−1∑
k′=−1

(k′ + 1)

(
m

k′ + 1

)(
1(
n
2

))k′ ((n2)− 1(
n
2

) )m−1−k′− (n
2

)
+

(
n

2

)
(1− p)m

=

m−1∑
k′=0

m

(
m− 1

k′

)(
1(
n
2

))k′ ((n2)− 1(
n
2

) )m−1−k′− (n
2

)
+

(
n

2

)((n
2

)
− 1(
n
2

) )m

= m−
(
n

2

)
+

(
n

2

)((n
2

)
− 1(
n
2

) )m
.

Eventually this number can be estimated with a limited development:

E(C) = ns −
(
n

2

)
+

(
n

2

)(
1− 1(

n
2

))ns

= ns −
(
n

2

)
+

(
n

2

)
e
ln

(
1− 1

(n2)

)
ns

= ns −
(
n

2

)
+

(
n

2

)
e

(
− 1

(n2)
− 1

2(n2)
2+o

[
1

(n2)
3

])
ns

= ns −
(
n

2

)
+

(
n

2

)
e

(
−n1+s

(n2)
− n1+s

2(n2)
2+o

[
ns

(n2)
3

])

= ns −
(
n

2

)
+

(
n

2

)(
1− ns(

n
2

) − ns

2
(
n
2

)2 + o

[
ns(
n
2

)3
]

+
n2s

2
(
n
2

)2 + o

[
n2s(
n
2

)2
])

= ns −
(
n

2

)
+

(
n

2

)
− ns −

(
n
2

)
ns

2
(
n
2

)2 +

(
n
2

)
n2s

2
(
n
2

)2 + o

[(
n
2

)
n2s(
n
2

)2
]

= − ns

2
(
n
2

) +
n2s

2
(
n
2

) + o

[
n2s

2
(
n
2

)]
= O(n2(s−1)) .
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B The Case of Ordered Goldreich’s PRG with P5

In this section, we show that the additional structure given by an ordered Goldreich’s PRG brings a
lower security level than the unordered case.

B.1 Guess and Determine

Although the ordered case seems highly non-trivial to analyze from a theoretical point of view, we
give evidence that it brings a lower security level than the unordered case. Then, we also give some
experimental measures to support our studies. We remind that each subset is of the form:

σi = [σi1, σ
i
2, σ

i
3, σ

i
4, σ

i
5], where σi1 < σi2 < σi3 < σi4 < σi5 ,

and that the equations are of the form:

xσi
1

+ xσi
2

+ xσi
3

+ xσi
4
xσi

5
= yi .

In this particular case, the average number of collisions is much higher than in the unordered case,
since the lasts bits of the seed are drawn with a higher probability.

More formally, the average number of collisions is given by the following proposition:

Proposition 11 (Average number of collisions in the ordered case). Let n be the number of
variables, and m be the number of equations, let C be the random variable counting the number of
collisions on the degree-two monomials in the whole system. Then, the average number of collisions
is:

E(C) =
n−1∑
i=1

(n− i) (−1 +mpi + (1− pi)m) ,

where pi =
(i−1

3 )
(n5)

.

Proof. We first consider individually the
(
n
2

)
degree-two possible monomials. For each equation, the

two variables of the degree-two monomial are taken after the three degree-one monomials, therefore
the probability that the monomial indexed by i, j is taken follows a Bernouilli law with parameter

pi =
(i−1

3 )
(n5)

.

The random variable counting how many times the monomial indexed by i, j is selected follows a
binomial law of parameters m and pi. As a collision happens when the monomial has already been
taken, we consider the random variable Ci,j counting 0 if the monomial has been taken 0 or 1 times,
k − 1 otherwise. The expectation of Ci,j is therefore:

E(Ci,j) =
m∑
k=2

P[B(m,pi)=k] · (k − 1) ,

where P[B(m,pi)=k] stands for the probability for a random variable following a binomial distribution
of parameters m and pi to take the value k.



The total number of collisions is obtained by summing the expectations of all the Ci,j :

E(C) =
n−1∑
i=1

n∑
j=i+1

E(Ci,j) =

n−1∑
i=1

n∑
j=i+1

m∑
k=2

P[B(m,pi)=k] · (k − 1)

=
n−1∑
i=1

(n− i)
m∑
k=2

(
m

k

)
pki (1− pi)m−k · (k − 1)

=
n−1∑
i=1

(n− i)

[(
m∑
k=0

(
m

k

)
pki (1− pi)m−k · (k − 1)

)
+ (1− pi)m

]

=

n−1∑
i=1

(n− i)

[(
m∑
k=0

k

(
m

k

)
pki (1− pi)m−k

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i)

[(
m∑
k=0

m

(
m− 1

k − 1

)
pki (1− pi)m−k

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i)

[(
m

m−1∑
k′=0

(
m− 1

k′

)
pk
′+1
i (1− pi)m−1−k

′

)
− 1 + (1− pi)m

]

=
n−1∑
i=1

(n− i) [mpi − 1 + (1− pi)m]

The penultimate line is obtained by fixing k′ = k − 1. ut

In this very particular case, the average number of collisions and the number of guesses are hard to
determine. Intuitively, we expect the last bits of the seed to be drawn more often in the monomials of
degree two. As a consequence, the number of collisions is likely to be much higher. Also, the number
of guesses should be greatly reduced , since we guess the bits of the seed that appears the most.

Our experimental results, shown in Table 5 and Table 6, support this intuition. Even better, for
s = 1.45 we could not find a seed size n that forces the attacker to make at least one guess.

Table 5. Average number of collisions for the
ordered case

Table 6. Average number of guesses for the or-
dered case

n 256 512 1024 2048 4096

s = 1.45 458 890 1703 3251 6162
s = 1.4 271 488 873 1539 2709
s = 1.3 95 145 221 341 520

n 256 512 1024 2048 4096

s = 1.45 0 0 0 0 0
s = 1.4 0 1 2 5 9
s = 1.3 6 10 17 30 50

B.2 Algebraic attack on the ordered case

Algebraic attacks are also more efficient for the ordered case since there is an additional structure. One
can figure that, in that case, the number of equations derived from the three types method of Section
4.1 will find more collisions and semi-collisions. So, the limit stretch can be lowered in comparison to
the non ordered case.
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