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Abstract

A time-release protocol enables one to send secrets into a future release time. The main
technical challenge lies in incorporating timing control into the protocol, especially in the
absence of a central trusted party. To leverage on the regular heartbeats emitted from decen-
tralized blockchains, in this paper, we advocate an incentive-based approach that combines
threshold secret sharing and blockchain based smart contract. In particular, the secret is split
into shares and distributed to a set of incentivized participants, with the payment settlement
contractualized and enforced by the autonomous smart contract. We highlight that such ap-
proach needs to achieve two goals: to reward honest participants who release their shares
honestly after the release date (the “carrots”), and to punish premature leakage of the shares
(the “sticks”). While it is not difficult to contractualize a carrot mechanism for punctual
releases, it is not clear how to realise the stick. In the first place, it is not clear how to identify
premature leakage. Our main idea is to encourage public vigilantism by incorporating an
informer-bounty mechanism that pays bounty to any informer who can provide evidence of
the leakage. The possibility of being punished constitute a deterrent to the misbehaviour
of premature releases. Since various entities, including the owner, participants and the in-
formers, might act maliciously for their own interests, there are many security requirements.
In particular, to prevent a malicious owner from acting as the informer, the protocol must
ensure that the owner does not know the distributed shares, which is counter-intuitive and
not addressed by known techniques. We investigate various attack scenarios, and propose
a secure and efficient protocol based on a combination of cryptographic primitives. Our
technique could be of independent interest to other applications of threshold secret sharing
in deterring sharing.

1 Introduction

A time-release protocol allows a secret to be sent into the future. The secret is encrypted in
such a way that it remains so until a particular release time to come, which is predefined by
the secret owner. Time-release protocols have found plenty of real-world applications such
as sealed-bid auctions, electronic auctions, scheduled payment methods, and lotteries.

There are extensive studies on time-release protocols. One approach relies on a trusted
authority to control the timing of the decryption [39, 16, 6, 28, 37]. Another approach binds
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the decryption of the secret to a computational puzzle that is assumed to require a specific
amount of time to solve. Examples of this approach include constructions by Rivest et al.
[39], Bellare et al [4], Boneh et al [7] and other subsequent works [35, 19, 20]. Nevertheless,
it is not easy to predict the amount of time needed to solve a given computational puzzle,
due to variances in hardware design and their performances. Consequently, it is difficult to
tune the system to fit into the intended release time.

A recent line of works explore an integration of blockchain-based computational puzzles
in time-release protocols [29, 31, 32]. This approach is motivated by the emergence of public
blockchains such as Bitcoin and Ethereum, and their block chaining mechanism that emits
regular heartbeats. More specifically, in these prominent blockchains, mechanism are in-
place to maintain constant expected block time (i.e., the time it takes to mine a block)
over time. For instance, the “difficulties” of Bitcoin are adjusted according to the present
computing power, so as to have expected block time of ten minutes. One can treat the
issuance of a new block in the blockchain as its heartbeat. Potentially, these heartbeats
can provide a secure and reliable timing control for time-release protocol, obliviating the
need of a trusted third party. Liu et al. [31] suggested combining Bitcoin blockchain and
witness encryption to implement time-release protocol. In particular, one could encrypt a
secret using a “public key” extracted from the current state of the Bitcoin blockchain, while
the corresponding “decryption key” is extracted from the chain of blocks that are to be
created in the future. However, existing constructions of witness encryption (e.g., [22, 24])
are based on cryptographic multilinear maps [21] and currently, which have high performance
overhead [14, 23, 15].

In this work, we consider a practical, incentive-based approach that implements a time-
release protocol using threshold secret sharing and smart contract. In particular, the secret
owner divides the secret into n shares using a (t, n) threshold secret sharing scheme [40], and
distributes the shares to n participants where each participant is entrusted with one share.
The participants are expected to reveal the shares on the release time, allowing the recon-
struction of the secret. To encourage participation, monetary incentive (or carrot) is provided
by the secret owner, and the rewarding of such incentive to the participants is enforced by
the smart contract. More specifically, based on the secure and reliable heartbeats emitted
by the blockchain, the smart contract is able to verify the required conditions regarding the
release time, and its autonomous execution enforces the fulfilment of contractual obligations
for all parties. Further, the security of (t, n) threshold secret sharing scheme guarantees that
if no more than t − 1 participants collude (i.e., pool their shares together), no single entity
(except the secret owner) is able to obtain the secret before the release time.

Nonetheless, the above “carrot-only” incentive overlooks a potential threat arising from
the prevalent sharing behaviours in social media. While it is very unlikely to have a large
number of mutually trusting participants to collude (e.g., a set of t or more independent
participants pool their shares to reconstruct the secret at will, or there is a single entity
capable of gaining control over all of them), other weaker forms of sharing misbehaviours
exist. For instance, some participants could post their shares on social media platforms (e.g.,
Twitter or Facebook), either broadcast to the public or to a smaller social media group, to
show off their involvement in the time-release protocol. While many participants might value
their social media reputation and refrain from the behaviour, the deterrence based on social
responsibility is arguably weak and thus additional mechanisms are required.

We propose incorporating monetary penalty as “stick” so as to further deter sharing.
In particular, the participants are required to pay a certain security deposit prior to taking
part in the protocol. Should the participants faithfully follow the protocol, they are refunded
with their deposit and awarded with a reward provided by the secret owner (i.e., the carrot).
Conversely, if there is evidence of a participant’s wrongdoing (e.g., leaking his share prema-
turely on social platform), his deposit will be slashed. The slashed deposits constitute a pool
of bounties that are paid to individuals or entities, called informers that present the wrong-
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doing evidences. The penalties, together with the rewards, constitute a carrots-and-sticks
approach. Since any entity can be the informer, this bounty-informer mechanism encourages
online vigilantism and can be viewed as a form of crowdsourcing, which enlists the online
community to assist in identifying leakage. To an indiscreet participant, the possibility of
having an informer in the participant’s social group constitutes a deterrent to dishonest pub-
lishing. Note that the bounty-informer mechanism provides deterrence, which is a weaker
security requirement compares to the assurance that any premature publishing is guaranteed
to be punished.

Realising the carrot-and-stick mechanism is not straightforward, due to the suspicions
among the owner, participants and the informers, who might selfishly act for their own in-
terests. For instance, a greedy owner may play as the informer in order to claim the bounty.
To prevent that, the mechanism must assure that the owner does not know the distributed
shares, even though the owner knows the secret, and is involved in the shares distribution.
Additionally, the owner might maliciously release wrong shares, so as to deny the participants
from receiving their deserved award. On the other hand, a dishonest participant, instead
of prematurely publish the exact share it received, might jointly publish some transformed
data together with other participants. Thus, the informer-bounty mechanism would not be
effective if it gives out bounty only when the exact share is presented as evidence. Further-
more, there are stringent computation requirements, imposed by the expensive cost of smart
contract execution.

To address the challenges, we first give a threat model that investigates various attack
scenarios. We consider a form of collusion whereby a large number of cliques, each consists
of (t− 1) or fewer mutually trusting participants, broadcast their transformed shares. This
form of collusion captures scenarios where a large number of participants colluded and further
posted information in social media. Note the crucial difference from the classical threshold
secret sharing which considers a small group (less than t) of mutually trusting participants,
and our more general model which considers a large number of small tightly-knit groups who
are allowed to publish information on public bulletin board once. In other words, instead
of stopping at allowing groups of (t − 1) colluders, our model further allows the groups to
broadcast some information. The security goal here is to track and penalise the malicious
participant(s) via their broadcast behaviours. Our model also consider other scenarios, for
instance, a greedy owner who plays the role of the informer, another informer who attempt
to “steal” evidence from others, etc.

We give a protocol that achieves our proposed security requirements. One of the key
constructions is a mechanism that ensures the owner is not aware of the distributed shares.
Our main idea is to let the participant i chooses a secret sample point si, and then through
some specialised secure 2-party computation, distribute f(si) to the participant while hiding
si from the owner. Our protocol also incorporates a form of verifiable secret sharing and
commitment scheme to prevent various forms cheating. The underlying cryptographic prim-
itives in our protocol could be relevant to other applications of threshold secret sharing in
deterring large scale causal sharing.

Our protocol requires only one exponentiation to be carried out per share (for claiming
the deposit and reward). In our implementation in Solidity and Ethereum, the computation
of each share costs 40,000 gas1 per share for effective key size of 128 bits. Our construc-
tion focuses on the essential interactions between involved parties. We abstract away from
subtle configuration details such as deposit and reward composition, bounties structures, or
potential role of brokerage. We remark that their dispositions are critical to ensure incentive-
compatibility and sustainability of the system and would be interesting extensions.

In summary, this work makes the following contributions:

1As of July 2018, Ethereum averaged USD450 per ETH. With gas price set to 5Gwei, 40,000 gas amounts to
roughly 9 cents.
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• We advocate combining threshold secret sharing and smart contract to keep time-
release secrets. We highlight the threat of causal social-media sharing and propose an
incentive-based carrot-and-stick approach.

• We investigate various attack scenarios for the proposed approach, and further present
the corresponding threat model.

• We propose an efficient protocol that realises the proposed approach. The protocol
provides deterrence to causal sharing and requires only one on-chain exponentiation
per share.

The remaining of the paper is structured as follows. In Section 2, we briefly summarize
preliminaries on smart contract and secret sharing scheme. We then state our problem
definition and its security requirements in Section 3, before presenting our proposed protocol
in Section 4. The security analysis of the proposed protocol is presented in Section 5. We
discuss implementation details and performance optimization of our solution in Section 6,
and survey the related works in Section 7. Finally, we conclude our work in Section 8.

2 Preliminaries

In this section, we give a brief overview smart contracts. Although our discussion focuses on
the Ethereum platform, the solution and security arguments presented in this work are also
applicable to other smart contract platforms.

2.1 Smart Contract

A smart contract (or contract) in the Ethereum blockchain is an “autonomous agent” whose
private storage and executable code are stored on the blockchain. The contract’s storage is
private in a sense that data or variables stored within the storage can only be manipulated
by the contract’s executable code. The read access, however, is publicly available, due to the
public nature of the blockchain. A contract is created by a “creation transaction” posted
to the blockchain, and uniquely identified by a contract address. In addition to the private
storage, the contract state also consists of a balance, which is essentially an amount of native
virtual coins (i.e., ETH) that it holds.

The code of an Ethereum contract is typically written in high-level programming lan-
guages, such as Solidity [2] or Serpent [1], and then compiled into a low-level, stack-based
bytecode language known as Ethereum Virtual Machine (EVM) code. To invoke a con-
tract at address addr, one sends a transaction tx to addr with payload typically containing
payment (in ETH) for the contract execution, and input data for the invocation [33]. The
security of the Ethereum blockchain guarantees that as long as a majority of its miners be-
have honestly following the Ethereum protocol, the contract code is executed properly, and
its state is recorded correctly on the blockchain. In other words, contract execution integrity
is guaranteed.
Gas System. Since the Ethereum smart contact execution consumes certain computational
expense, to ensure fair compensation, Ethereum pays miners a certain fee which is propor-
tional to the computation expended. This fee is paid for by the user who wishes to invoke
the contract. In particular, each instruction in the EVM code has a pre-set amount of gas.
When a user sends a transaction tx to invoke a contract, she has to specify the gasPrice

indicating how much she is willing to pay for each gas (in the native virtual coin ETH), and
the gasLimit indicating how much she is willing to spend for the entire smart contract exe-
cution. A miner who “mines” tx (i.e., executes the computation that tx entails, and includes
tx and the updated state resulted from such computation in his proposed block) is paid the
transaction fee proportional to the amount of gas required by the execution multiplied by
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gasPrice, subject to a condition that such a fee is within the limit set by gasLimit. If
the contract invocation consumes a fee larger than gasLimit, the execution is halted, and
the contract state is reverted to the initial state prior to the invocation. It is worth not-
ing that the transaction fee is still collected by the miner to compensate for the expended
but then rolled back computation. This mandatory payment is also a means to mitigate
resource-exhaustion attacks [34].

2.2 Shamir’s (t, n) Secret-Sharing Scheme

Adi Shamir [40] introduced a threshold secret sharing scheme. The scheme is parameterized
by two value, namely n and t. Under this scheme, a secret s is split into n “shares” such
that any set of t shares is sufficient to reconstruct s. The security of the scheme dictates
that no adversary that possesses fewer than t shares could reveal any information about s.

3 Time-release Mechanism via Smart Contract and Se-
cret Sharing

In this section, we first state the system model and assumptions that we make in designing a
time-release protocol, before giving an overview of our proposed carrots-and-sticks approach.
We then discuss the adversary model, as well as the security and performance requirements
that justify and motive our protocol design.

3.1 Setting and Assumptions

3.1.1 Entities

Our time-release protocol assumes a model that comprises three main entities:

• Secret owners would like to seal their secrets such that they can only be revealed at
some predefined times in the future. A owner of the secret s delegates its safe keeping
to a set of n participants using a threshold secret sharing scheme. The secret owner
provides a reward to incentivise the participants in upholding the safe keeping. It is
important to note that the secret owner may not involve in the reveal or reconstruction
of the secret s. That is, after distributing the shares, he could go offline and might not
rejoin the system.

• Participants make financial gain by keeping the shares issued by the secret owner private
until the prescribed release time. At the release time, the participants reveal their share,
claiming the reward provided by the secret owner. The obligation of a participant is
to safe keep and not revealing its share, and back online on the release date to reveal
the secret.

• Informers police the system, earning bounties by exposing malicious participants (i.e.,
they capture and report evidences of participants’ wrongdoings). The secret owner and
the participants can also play the role of informer.

We assume that participants may form cliques, and there could be multiple cliques. All
members of a clique mutually trust each other2. Further, a member is aware of internal
states and shares held by other members of the clique. Consequently, if an adversary is able
to control one member of the clique, it will know the internal states of all clique’s members.
In other words, a clique can be deemed as a single entity that possesses multiple shares. We

2We assume that trust is transitive, and that cliques are non-overlapping.
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assume that the size of each clique is not larger than a threshold t. One can imagine a worst
case scenario where every clique is of size (t− 1).

The main motivation of grouping participants into cliques in our formulation is to model
a scenario where a malicious entity is able to gather a small group of mutually trusting col-
luders or a small group of colluders who are willing to carry out expensive secure multiparty
computation protocol. The reason of considering secure multiparty computation protocol
is that, it is possible for the malicious entity to orchestrate a secure multi-party computa-
tion [26] among mutually distrusting participants to jointly compute any function on their
individual input data without revealing it. However, such computation requires a large num-
ber of interaction rounds, incurs a significant overhead, and cannot scale to large number of
participants (at a relatively low cost). Thus, it is reasonable to assume that the malicious
entity can only gather a small group (less than t) of such participants.

3.1.2 Smart Contract

We assume that all entities have access to a public blockchain-based smart contract system
such as Ethereum [8]. They can submit transactions to the smart contract, and see all
transactions in the system. Similar to earlier works [31, 32], our formultation assumes that
the underlying consensus protocol of the blockchain on which the smart contract runs attains
both safety and liveness. At the time of writing, the underlying consensus protocol in
Ethereum essentially implements a replicated state machine, wherein the smart contracts
and their transactions are to be executed by every miner in the network. Further, each
transaction execution entails a transaction fee that correlates with the execution’s complexity.
Hence, it is desirable to minimize on-chain cost by moving as many expensive computations
off the blockchain as possible.

3.1.3 Communication models

We consider three communication models. The first model features highly interactive commu-
nications among a small group of colluders. The second model features posting the blockchain
transactions, whereas the third model captures causal sharing or broadcast (e.g., posting to
a social media platform such as Twitter or Facebook) of information. In our formulation,
participants within a clique can access each other’s internal state, and their communications
assume the highly interactive model. The communication models are illustrated in Figure 1.

To model the more restrictive causal sharing, we assume that participants can post anony-
mous messages to a public bulletin after they have received their shares. In this restrictive
model, we assume that there is no out-of-band communication channel. Consequently, cross-
clique communications can be performed by having the senders posting the messages to the
bulletin, follows by reading from the builletin. One may argue that in practice, interactions
can be carried out without the public bulletin. We treat these forms of communication as
interaction within the clique, and thus there is no loss of generality.

For the purpose of capture the scenario that participants are performing casual sharing,
we restrict user to posting once and then read transactions.

3.2 Carrots-and-Sticks Approach

We advocate an incentive-based approach, which we call carrots-and-sticks, to reward honest
participants and penalise dishonest participants. This approach requires all participants to
pay deposits prior to participating in the protocol. If a participant behaves honestly, the
deposit will be refunded, and a reward (provided by the secret owner) will be allotted to
him. On the other hand, if there exists evidence of his wrongdoings, his deposit is slashed.
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Figure 1: Overview of communication model. The solid arrows represent sending transactions
to the smart contract, and the dashed arrows represent posting messages to the public bulletin.

The slashed deposits of dishonest participants constitute a pool of bounties that informers
who police the system3.

The approach consists of three phases:

• Handshake phase. The purpose of this phase is for the secret owner to initiate the
protocol, recruiting participants and distributing the shares computed using the (t, n)
secret sharing scheme. This phase could be carried out in multiple rounds. Upon the
completion of this phase, the secret owner and the recruited participants would have
made their deposits into the smart contract.

• Waiting phase. During this phase, any informer can report malicious behaviour by
submitting transactions containing wrongdoing evidences to the smart contract. The
smart contract verifies the transactions. If a transaction is valid, the smart contract
extracts the identities of the dishonest participant(s) from the transaction’s payload,
slashes their deposits, and pays the informer a bounty.

• Reveal phase. This phase starts at the release date. In this phase, each participant is to
submit its share, and other meta information if any, to the smart contract system. An
honest participant will get back the deposit and the deserved reward. With sufficient
number of shares submitted, anyone can retrieve the shares from the smart contract
system and recover the secret. Slashed deposits and unclaimed rewards can also be
redistributed to other honest entities during this phase.

Remarks.
(1) Implementing the carrots and sticks approach that rewards the honest and punishes the
dishonest is challenging. A simple implementation may reward any entity who submits a
share with a valid authentication tag signed by the secret owner on the release date. Unfor-
tunately, this simple implementation cannot prevent a malicious secret owner from framing
the participant by presenting a participant’s share and the corresponding authentication tag
as evidence to steal the informer bounty. Coding conditions of the penalty of pre-mature
release is arguably even more challenging. Section 3.3 investigates the attack scenarios and
Section 4 proposes a protocol that realise the carrots and sticks approach.
(2) It is essential to codify the conditions of rewards and bounties settlements in the smart
contract. This is to enforce autonomous fulfillment of contractual obligations, especially

3The slashed deposits can also be redistributed to other honest participants. We leave the concrete compositions
of the deposits and structures of the bounties to future investigations.
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in a scenario where the secret owner goes offline after the handshaking phase. In such
situation, the smart contract autonomously and automatically enforces and carries out the
owner’s obligations, such as payment to honest participants on release data, even in the
secret owner’s absence.
(3) The obligations of the participants include keeping their shares private until the release
date, and publishing it on such a date. Security deposit made by a participant remains
“locked” in the smart contract until the participant claims it after the release date, or being
slashed in case of misbehaviour. A participant might decide to act as the informer giving
evidence against itself to receive the informer bounty, at a cost of losing its own deposit.
This would lead to a negative or zero net return and damaged reputation, if any, depending
on the protocol design. Although such action seems counter-intuitive, the participant may
opt to so behave in case of urgent liquidity need. Hence, the act of committing a security
deposit and joining the protocol is somewhat analogous to making a fixed-rate deposit with
guaranteed interest earned on maturity date, with a prerequisite that early withdrawal is
subject to a penalty.

3.3 Adversary model and security

An entity might deviate from the protocol so as to maximise its monetary return. Generally,
we need to consider the following three major security invariants in the presence of malicious
secret owner and/or participants.

• Confidentiality of the secret before the release date.

• Guaranteed reward for honest participants.

• Rightful claim on informer’s bounty.

Note that the above three goals correspond to the interests of the secret owner, par-
ticipants and informers, respectively. The remaining of this section articulates the attack
scenarios and their counter measures as well as the security requirements of our protocol.

3.3.1 Confidentiality of shared secret

The shares held in any clique (of at most (t−1) participants) must not reveal any information
of the secret. More specifically, consider the scenario where all participants first carry out the
handshaking phase honestly, and then the participants in a clique attempt to jointly extract
some information of the secret. Clearly, the protocol needs to protect the confidentiality of
the secret from such attempts.

3.3.2 Deterrence against premature release

Here, we consider the scenario where participants in a clique might jointly post a message to
the public bulletin board. As highlighted earlier, deterrence against such dishonest sharing
is implemented using a combination of bounties given to informers who assist in policing
the system, and penalties imposed on the dishonest participants. From the perspective of
a participant tempted to share its data, the possibility that the receiving end leverages the
shared data against him (i.e., using the data to claim the informer bounty at the cost of the
sharer’s deposit being slashed) constitutes the deterrence. Note that the receiving end (who
is the informer) could be any other participants, or even the secret owner. In the worst case
scenario to the sharer, the receiving end is the rest of the system.

To this end, we need to formulate the requirements of the deterrence mechanism. Such
formulation needs to handle cases wherein the posted messages are transformations of the
shares and they could contain only partial information of the original. To achieve deterrence,
we require that if a clique C0 posts a message x that contains useful information, then there
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exists a mechanism to trace x to some participants in the clique C0. Intuitively, a piece of
data x is useful if it can be combined with some other data y to reconstruct the secret, while
the secret cannot be derived from either x or y alone.

In our security analysis, we capture the above intuition under a game between a challenger
and an adversary. The game comprises the following steps:

1. Handshake phase is honestly carried out by the challenger who acts as honest secret
owner and participants.

2. The adversary chooses (t − 1) participants to form a clique C0 and is given access to
the randomness and the internal state of each participant in C0. Next, the adversary
plays the role of the participants in C0 and posts a message x.

The adversary wins if there exists a polynomial time algorithm that can recover the secret
on input x, internal states of other (t − 1) participants that are not in C0 and the public
parameters, and yet there does not exists an informer algorithm that can provide evidence
against at least one of the participant in C0. A precise description of this game is presented
in Section 5.

3.3.3 Framing and Reward stealing

To encourage participation, it is crucial to have strong protection of the participants’ inter-
ests. To protect a honest participant, we have to ensure that no other entities, including
other participants and the secret owner, can claim or or prevent the honest participants from
claiming the reward on the release date. It turns out that this requirements can be easily
achieved in smart contract by ensuring that only the identity who made the deposit can claim
the reward during reveal phase. Nevertheless, such requirement should be explicitly stated,
since there could be some constructions which attempt to dis-associate identities involved in
both phases.

Likewise, it is important to prevent framing of honest participants, that is, forging ev-
idence against the honest participant during the waiting phase. In a certain sense, this
requirement is on authenticity of the share, in contrast to the previous two requirements.

Our security analysis (Section 5) models this security invariant using a game between a
challenger and a strong adversary who controls the owner and all the participants except
for one honest participant (i.e., victim). In such a game, all entities behave honestly during
handshaking. Next, the adversary practicing control over the secret owner and all other
participants’ internal states attempts to forge the share to claim the victim’s deposit and
reward.

3.3.4 Unclaimable shares

Recall that participants can only reclaim their deposits by submitting valid shares on the re-
lease data. A malicious secret owner may sabotage honest participants’ deposits by creating
and distributing inconsistent or corrupted shares that cannot be verified on the release date.
In such an attack scenario, the honest participants lose their deposits, which could be redis-
tributed to the owners and its colluders depending on the reward and deposit compositions
of the system.

3.3.5 Evidences stealing

A common attack surface inherent to blockchains, in particular Ethereum, involves transaction-
ordering dependence (TOD)4 and front-running5. In particular, if there are two competing

4https://consensys.github.io/smart-contract-best-practices/known_attacks/
5http://swende.se/blog/Frontrunning.html
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transactions submitted to the blockchain (e.g., two informers submitting wrongdoing evi-
dences of the same dishonest participant, but only one of them can claim the bounty), which
of them is executed/settled is at miners’ discretion. Worse yet, if an adversary is aware of
an honest informer’s evidence submission transaction before such transaction is mined, it
can front-run the latter by submitting a transaction containing the exact same evidence “in
front” (i.e., associating the transaction with higher gas price, colluding with the miners to
prioritize its transaction or censoring that of the informer). In light of these potential attack
scenarios, the protocol must be designed to be robust against TOD and front-running so as
to guarantee fairness in the system.

3.4 Performance requirement

In addition to the security requirements discussed above, the protocol should attain effi-
ciency at scale. We detail in the following desired properties that benefit performance of the
protocol:

3.4.1 Low on-chain costs

Given the scalability barrier of the blockchain system [18], and the cost of on-chain smart
contract execution, the proposed mechanism needs to move as many expensive computations
off the blockchain as possible.

3.4.2 Non-reliance of direct communication channels

Since the participants and the owner may not be online throughout the handshaking phase,
solutions that require real-time communication channels between the involved parties should
be avoided. Such direct communication might compromise the participants’ privacy (for
instance, revealing ip-address) in the absence of additional layer of protection.

4 The proposed protocol

This section presents a protocol realising the carrots-and-stick approach.

4.1 Main Idea

Similar to Shamir’s secret sharing scheme, in our protocol, each participant Pi holds a share
〈bi, fs(bi)〉 where fs() is a (t − 1)-degree polynomial with fs(0) = s, and bi is the sample
point associated to the participant Pi. However, to protect from a malicious owner who
attempts to use the shares as evidences against the participants, the tuple 〈bi, fs(bi)〉 has to
be hidden from the secret owner, which is challenging since the shares are to be generated
by the secret owner.

Our solution is to let a participant’s share to be jointly determined by the secret owner
and the participant himself. Specifically, we let the participant choose a secret sample point
as bi that is unknown to the secret owner. By doing so, besides preventing the malicious
owner from withholding the reward, we can also show that if the participant has dishonestly
posted useful information, then the value bi can be extracted from the posted message. Any
informer who has successfully extracted bi from the posted message can submit bi to open a
“commitment” previously made by the participant and obtain the informer’s bounty. Since
the shares 〈bi, fs(bi)〉 are to be computed between the participant and secret owner who are
suspicious of each other, cryptographic primitives such as additive homomorphic encryption
are employed to preserve confidentiality and consistency of the data.
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Figure 2: Summary of the proposed protocol.

Note that there are a number of requirements and cryptographic primitives involved in
the above description, which have to be neatly incorporated without compromising each
other.

4.2 Notation

Every entity in the smart contract system has an identity. Without loss of generality, let us
assign the participants the identity 1, 2, . . . , n and the secret owner the identity 0. Let us
denote the participant with identity i as Pi for each i. An informer can create new unique
identity.

Each transaction submitted to the smart contract is represented in this format:

〈TransType, pars, coins(M)〉,

where TransType specifies the transaction type, pars are the list of paramenters, and coins(M)
specifies M coins to be transferred to the smart contract system.

Each transaction is bound to the sender’s identity. We assume that authenticity of the
sender is protected, that is, it is difficult to forge the sender of the transaction.

We define [t1, t2] = {t1, t1 + 1, ..., t2} for t1, t2 ∈ N.

4.3 Proposed Protocol

We denote by HE a public key additive homomorphic encryption which provides semantic se-
curity against chosen-plaintext attacks (abbreviated IND-CPA), and by H a collision-resistant
hash function. Let G be a group of prime order p, such that the discrete logarithm problem
is hard in this group. Let g be the group generator of G, which is the public parameter of the
protocol. The secret sharing scheme in used is parameterized by (t, n), in which n indicates
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the number of shares to be created, and by its extension, number of participants necessitated
in the secret safe keeping, whereas t indicates the number of shares needed to reconstruct
the secret. Let Mi denote a security deposit made by participant Pi prior to participating
in the protocol, and Mo denote the reward provided by the secret owner to compensate the
participants for the safe keeping of his secret. For simplicity, we assume that all participants’
deposits are equal. We abuse the notation and refer to participant’s deposit by M .

Our proposed protocol comprises three phases, namely Handshake, Waiting, and Reveal.
It relies on a smart contract to enforce contractual obligations fulfillment of all entities. The
entities interact with the smart contract using seven types of transactions: Ohello, Phello,
Oconfirm, Pwithdraw, reportHello, report and claim. We depict in Figure 2 a summary
of our protocol.

4.3.1 Handshake phase

The handshake phase consists of the following rounds:

• (Owner’s hello) The secret owner first chooses random s, α ∈ Zp and computes h = gα.
Let hs be the secret to be shared and h be the public parameter of the protocol. The
secret owner then submits a transaction Ohello to recruit participants. The secret
owner chooses random r1, ..., rt−1 ∈ Zp and submits a transaction:〈

Ohello, {Ri = gri}i∈[0,t−1], coins(Mo)
〉

Let fs() be the polynomial

fs(x) =

t−1∑
i=0

rix
i

where r0 = s.

• (Participant’s hello) A participant indicates interest in joining by submitting a transac-
tion Phello. Suppose participant Pi wants to join, Pi first chooses random bi, ci ∈ Zp
as its secret and computes

{Bi,j = gb
j
i , Ci,j = hcib

j
i }j∈[1,t−1], C = gci .

Pi then initializes an instance of the additive homomorphic encryption scheme HE. Let
pki be the public parameters of HE instaniated by Pi. Next, Pi computes

{Ei,j = HE.Enc(bji )}j∈[1,t−1]
where HE.Enc() is the encryption algorithm of HE. Finally, Pi submits the transaction:

〈Phello, pki, {Bi,j , Ci,j , Ei,j}j∈[1,t−1], C, coins(M)〉

• (Owner’s confirmation) The secret owner selects a set of n participants, and submits a
transaction Oconfirm for each of them. Without loss of generality, let us assume the
selected participants are {Pi}[1,n]. For each Pi, the secret owner computes

S1,i = gs
t−1∏
j=1

(Bi,j)
rj ,

S2,i = Cαs
t−1∏
j=1

(Ci,j)
rj ,

Ti = HE.Enc(s) +

t−1∏
j=1

rjEi,j

12



and submits the transaction:

〈Oconfirm, S1,i, S2,i, Ti〉.

• (Participant’s confirmation) The participant Pi verifies whether the values (S1,i, S2,i, Ti)
submitted by the secret owner is consistent. If not, Pi submits a transaction Pwithdraw.
Specifically, using the corresponding secret key of pki, Pi checks whether the following
two equalities both hold:

gHE.Dec(Ti) ?
= S1,i,

hHE.Dec(Ti) ?
= S2,i, and

t−1∏
j=0

(Rj)
bji

?
= S1,i

where HE.Dec() is the decryption algorithm of HE. If not, Pi submits the transaction

〈Pwithdraw〉

to withdraw. In response to this transaction, the smart contract returns the deposit
back to Pi.
If both equalities hold, Pi does not submit any transaction. Note that in this case, the
participant can obtain the value fs(bi) by decrypting Ti:

HE.Dec(Ti) = fs(bi).

Hence, at this point, Pi has the share

〈bi, fs(bi)〉.

• (Restart if necessary) If less than n participants remain at this round, the smart contract
returns all deposits and restarts handshaking.

4.3.2 Waiting phase

During this phase, any entity may submit evidence to the smart contract to report dishonest
sharing. Suppose an informer knows the value of y = fs(bi) hold by participant Pi. The
informer claims the informer’s bounty in two rounds. First, the following transaction is
submitted:

〈reportHello,H(i, y)〉

After the transaction is processed by the smart contract, the informer submits:

〈report, (i, y)〉

In response to the transaction, the smart contract verifies that the digest in reportHello

matches the (i, y) in report. If so, verify that the evidence is valid by checking the equality

gy
?
= S1,i.

If the equality holds, informer bounty is transferred to the informer.
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4.3.3 Reveal Phase

During this phase, the participant Pi can submit a claim transaction to reveal the share
and claim the reward. Let fi = fs(bi) which Pi obtained during the handshaking phase. Pi
submits the following transaction:

〈claim, (bi, fi)〉

In response to the transaction, the smart contract verifies the following conditions:

• Pi has not been reported during the waiting phase.

• The equalities

gfi
?
= S1,i,

If both conditions hold, then the deposit and reward is released to Pi.

Note that the secret hs can be obtained if more than t− 1 participants have successfully
claimed their deposits.
Remark.
(1) Our exposition thus far has abstracted away from subtle configuration details of the
system, for examples concrete deposit and reward composition, or bounties structures. We
also have not discussed in details how the slashed deposits are to be distributed. Such
dispositions are critical to ensure incentive-compatibility and sustainability of the system.
We believe that their thorough analysis require economics and game theory expertise, which
is beyond the scope of this work. Nonetheless, for completeness, we include in our discussion
one intuitive setting.

Recall that Mo denotes the reward provided by the secret owner to compensate the safe
keeping the secret s, and M denotes a deposit made by a participant prior to participating
in the protocol. If the participant behaves honestly, at the end of the protocol, he should
receive his deposit together with a portion of the reward Mo (i.e., M + (Mo/n)). On the
contrary, if he commits a wrongdoing whose evidence is presented to the smart contract, his
deposit is slashed, and the informer is paid a bounty of value M/2. The remaining portion of
the slashed deposits can be equally distributed to all honest participants who have faithfully
participated in the protocol.
(2) During the waiting phase, only the first informer to submit the valid evidence of some
wrongdoing obtains the informer bounty. Nonetheless, should there be two informers sub-
mitting evidence of the same wrongdoing to the smart contract, the order by which those
submissions are processed depends on various factor (e.g., gasPrice, network connectivity
and propagation mechanisms), and thus is potentially subject to adversarial manipulation.
Even worse, the adversary can even hijack the informer bounty by front-running the evidence
submission transaction as discussed in Section 3.3.

Our construction resolves this attack scenario by including the reportHello step. Nonethe-
less, it brings forth attack scenario wherein a participant submits reportHello against itself,
without further submitting the report transaction. In so doing, it denies other informers
of the smart contract’s inform-function. This can be deterred by imposing a deposit on the
first reportHello transaction, and a time limit to complete the second transaction.
(3) To illustrate how an informer can obtain the evidence, let us consider the following
example. Assume a participant Pi dishonestly posted a message M on the public bulletin.
If M is useful (i.e., there exists an algorithm B that, on input M and (t − 1) other shares,
outputs s), the informer can carry out the following steps to determine fs(bi):

(a) Randomly chooses t − 1 sample points. Feed B with M and the chosen t − 1 points,
and obtain the secret s1 whose value is f1(0) where f1 is the polynomial fitting the
randomly chosen points and s1.
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(b) Repeats Step (a) obtain f2, ..., fd (d ≥ 2), until there is only one common intersection
point(s) among the curves f, f1, ..., fd.

The common intersection point must be at the Pi’s secret sample point, which the in-
former can present to the smart contract as evidence.

5 Security Analysis

5.1 Confidentiality of shared secret

First of all, for the secret owner’s interest, the proposed protocol in Section 4 must address
the confidentiality of shared secret. The requirement for preventing the leakage of secret
from shares is essentially the security requirement of the underlying Shamir’s (t, n) Secret
Sharing scheme. That is, the secret cannot be recovered as long as at most t−1 participants
are compromised. Nevertheless, some messages submitted by the secret owner might leak
information on the secret s, and thus we need to investigate the protocol carefully.

To model the prevention of the leakage of secret from shares, we define a security model
based on a security game GameSC between a challenger and an adversary. The phases of the
game are the following:

• Handshake: The challenger acts as honest secret owner and participants in this phase.

• Waiting phase: During the Waiting phase, the challenger and the adversary interact
as follows:

– Collude query: The adversary sends a Collude query to the challenger. The chal-
lenger sends t− 1 participants’ shares and internal random coins to the adversary.

– Challenge: The adversary outputs a challenge secret S.

We define that the adversary wins the GameSC game if S equals the secret chosen by the
secret owner. We say that the proposed protocol in Section 4 achieves the confidentiality of
shared secret if no PPT adversary can win the GameSC game.

Lemma 1 If the computational Diffie-Hellman assumption holds and HE is IND-CPA se-
cure, the shared secret of the proposed protocol in Section 4 is computationally hidden.

The proof sketch of this lemma is given Appendix A.1.

5.2 Deterrence against premature release

In case of participants in a clique post a message to the public bulletin board, the proposed
protocol provides a deterrence mechanism. We define the security model for deterrence
against premature release via a security game GameDPR between a challenger and an adver-
sary. The phases of the game are the following:

• Handshake: The challenger acts as honest secret owner and participants in this phase.

• Waiting phase: During the Waiting phase, the challenger and the adversary interact
as follows:

– Collude query: The adversary sends a Collude query to the challenger. The chal-
lenger sends t− 1 participants’ shares and internal random coins to the adversary.

– Challenge: The adversary posts a message on the public bulletin board. An in-
former reports this malicious behaviour via submitting reportHello and report

transactions to the smart contract. The smart contract identifies the colluded
participants through the reportHello and report transactions.
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The adversary wins the above GameDPR game if no participant(s) it colluded can be
identified by the smart contract. The proposed protocol in Section 4 achieves deterrence
against premature release if no PPT adversary can win the GameDPR game.

Lemma 2 If the computational Diffie-Hellman assumption holds and HE is IND-CPA se-
cure, the proposed protocol in Section 4 achieves deterrence against premature release.

The proof of this lemma is given in Appendix A.2.

5.3 Framing and Reward stealing

The proposed protocol ensures that a honest participant’s deposit can only be claimed by
the participant itself. That is, no entities (including other participants and the secret owner)
can claim its deposit via submitting a claim transaction with an incorrect share. We called
the entity who submits a claim transaction with an incorrect share the incorrect-share en-
tity. The security model for security against incorrect-share entity for the above protocol is
described by a security game GameISE between a challenger and an adversary. The phases
of the game are the following:

• Handshake: The challenger acts as honest secret owner and participants in this phase.

• Waiting phase: The challenger acts as honest participants in this step.

• Reveal phase: During the Reveal phase, the challenger and the adversary interact as
follows:

– Collude query: The adversary sends a Collude query along with a deposit coins(M)
to the challenger, where M equals to the number of coins that a participant needs
to join a secret share game. The challenger sends the secret owner and all par-
ticipants’ share and internal random coins to the adversary, excepting for one
participant P .

– Challenge: The adversary submits a claim transaction with an incorrect share,
which aims to claim P ’s deposit and the corresponding reward.

We define that the adversary wins the GameISE game if the “net profit(s)” of the ad-
versary is greater than 0. That is, the adversary can claim his (or other participant’s)
deposit if it wins the GameISE game. The proposed protocol in Section 4 is secure against
incorrect-share entity if no PPT adversary can win the GameISE game.

Lemma 3 If l-Strong Diffie-Hellman assumption holds and HE is IND-CPA secure, the
proposed protocol in Section 4 is secure against incorrect-share entity.

The proof of this lemma is given in Appendix A.3.

5.4 Unclaimable Shares

For economic benefit, a malicious secret owner may issue fake shares to participants. The
proposed protocol provides a mechanism that ensures the security against such malicious
secret owner. We formalize its security below. Specifically, the security against malicious
secret owner for the above protocol is described by a security game GameMSO between a
challenger and an adversary. The game proceeds as follows.

• Handshake:

1. (Owner’s hello) The adversary acts as a malicious secret owner in this step.

2. (Participant’s hello) The challenger acts as honest participants in this step.
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Table 1: Comparison of price for different method 1

Method Effective Key Size Gas Consumption Price in Ether USD Price

MM 56 600,000 0.003 1.35
ACE 128 480,000 0.0024 1.08

ECCC 128 40,000 0.0002 0.09
1 MM stands for Montgomery Multiplication, ACE stands for Assembly Code Exponentiation, and ECCC

stands for ECC Cryptography on alt bn128.

3. (Owner’s confirmation) The adversary acts as a malicious secret owner in this
step.

4. (Participant’s confirmation) The challenger acts as honest participants in this step.

We define that the adversary wins GameMSO if the participants accept the fake shares
issued by the adversary during the Handshake phase.

Lemma 4 If computing discrete log is hard in G and HE is IND-CPA secure, the proposed
protocol in Section 4 is secure against malicious secret owner.

The proof of this lemma is given in Appendix A.4.

6 Implementation

6.1 Prototype Implementation

We implemented a prototype of the proposed smart contract in Solidity [2], and then compiled
it into EVM. The proposed smart contract is straight forward to implement, except for the
exponentiation function. Even though Ethereum includes a built-in contract that supports
large number exponentiation6, it lacks high-level language support. We sidestep this issue
by implementing a wrapper for the exponentiation function using assembly code shown in
Listing 1.

1function largeExpMod(bytes base , bytes expn , bytes modn) public returns (bytes

result){

2 // ... details hidden for simplicity

3 // setup the input array to the correct format

4 bytes memory inputArray = new bytes(totalInputLength);

5 assembly{

6 inputPtr := add(inputArray , 0x20) // start of the array value

7 mstore(inputPtr , lenBase)

8 mstore(add(inputPtr , 32), lenExp)

9 mstore(add(inputPtr , 64), lenMod)

10 }

11 uint tempLoc = 96;

12 uint value;

13 // copy the base to the memory

14 for(i = tempLoc; i < lenBase + tempLoc; i++){

15 value = uint(base[i - tempLoc ]);

16 assembly{

17 mstore8(add(inputPtr , i), value)

18 }

19 }

20 // copy other values also ...

21 // a function call to the EVM code for exponentiation

22 assembly{

6This is available in the Byzantium upgrade.
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Figure 3: Comparison of the gas consumption by different implementation of large number
exponentiation.

23 let res := call(costExp , 0x05 , 0, inputPtr , mul(totalInputLength , 0x20

), add(result ,0x20), lenMod)

24 }}

Listing 1: The code snippet for exponentiation

Optimizing share verification. In order to verify the validity of each participant’s share,
the smart contract has to perform O(t) exponentiations (i.e., the threshold of the secret
sharing scheme). Recall that each operation that the smart contract executes consumes a
certain amount of gas. Given the current Ethereum’s block gas limit of 8 million7, each
function call can perform no more than 20 exponentiations. (Figure 1 plots gas consumption
of different implementation of the large number exponentiation). In order to overcome
this problem, we have derived a zero-knowledge proof system that reduces the number of
necessary checks per each share to one, regardless of the threshold of the underlying secret
sharing scheme. This not only overcome the block gas limit issues, but also reduces the
transaction fee by a factor of t.

The zero-knowledge proof effectively proves that the Bi values published by the partici-
pants follows the specified relation. As a result, in the claim phase, the contract only needs
to check whether gb = B1.

• Participant chooses a random number n and send to owner T1 = gn, T2 = Bn1 , ..., Tt =
Bnt−1;

• The secret owner chooses a random c and send to participant c;

• Participant sends over bc+ n;

• Owner verifies: gs = Bc1T1, B
s
1 = Bc2T2, ..., B

s
t−1 = BctTt;

• If owner verifies, he proceeds with sending a share to the participant, otherwise he
aborts and the participants withdraws the deposit back.

Notice that the verification can be done off-chain to reduce transaction fee incurred by
on-chain execution, but at a cost of anonymity. A detailed proof of the correctness and
zero-knowledge properties of the proof system are included in Appendix A.5.

We also note that one could implement the zero-knowledge proof and the commitment
scheme on alt bn128 elliptical curve. Implemented in elliptic curve groups, the required

7https://etherscan.io/blocks.
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exponentiations essentially reduced to multiplications, whose gas consumption is as low as
40,000 per operation. At the time of writing, Ethereum averaged USD450 per ETH, and
the recommended gas price is 5Gwei. We summarize the price (in both ETH and USD) of
different method in Table 1.

6.2 Performance Extensions

In this section, we discuss two performance extensions that potentially improve efficiency of
the proposed protocol.

Coordinating the choice of participants: Our protocol abstracts away from mechanism
by which secret owner discovers and recruits participants to take part in the safe keeping of
his secret. Our security guarantees hold regardless of such mechanism. To enable a scalable
and performant system, we propose to introduce an extra entity called broker. The broker
facilitates participant discovery, load balancing, and random assignment of participants to
secret safe keeping tasks.

The implementation of the broker is critical to the security of the underlying secret
sharing scheme. In particular, if an adversary can bias the assignment of participants to
secret safe keeping tasks, he could subvert the secret confidentiality by gaining control over
more than t of its shares. Fortunately, various techniques exist to ensure randomized and
fair assignments, including the use of cryptographic protocols [30, 25] or trusted execution
environment [17].

Leveraging Micro Payment Channel: Another avenue for improvement is a mechanism
by which deposits, rewards and bounties are transacted. Recall that each transaction on the
blockchain incurs a fee. If the protocol requires a large number of micro-transactions (i.e.,
transactions that carry micro payments) to transacts the deposits, rewards, and bounties, it
would incur unnecessary high transaction fee and overload the blockchain. We propose to
employ payment channels [38, 3, 27] to address this issue. In particular, payment channel
enables two parties to securely transact a large number of micro payments with minimal on-
chain transaction. The two parties first establish a channel by depositing a maximum amount
of value that they wish to be transacted into an escrow on the blockchain. Subsequently,
they can transact micro payments by issuing digitally signed and hash-locked transfers, called
payment promises, that are fully collateralized by the on-chain deposit. The parties can (uni-
laterally) decide to close the channel at anytime, settling the payment promises transacted
thus far using a single on-chain transaction. The payments can be routed through the broker
(discussed previously) so as to reduce the number of channels need to be established in the
entire system.

7 Related Works

May [36] introduced the notion of timed-release cryptography. Later, the notion of time-lock
puzzles was introduced by Rivest, Shamir, and Wagner [39] to further explore this problem.
Generally, there are two main techniques that served as the solution to the problem of sending
information into the future. One is mainly based on the time-lock puzzles [39, 4, 35, 7, 19,
20], where the receiver must perform expensive, non-stop computation to solve the relative
time problem and obtain a message. There is no trusted server involved in this approach,
but the receiver has to invest in a significant computational effort before recovering the
message. Recently, Bitansky et al. [5] showed that various flavors of randomized encodings
give rise to time-lock puzzles of varying strengths, and instantiated the construction with
different randomized encodings from the literature. The other one employs a trusted server
[16, 6, 11, 28, 9, 37], which is used to provide time reference to synchronize senders and
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receivers. Chalkias et at. [10] improved upon approaches introduced by [11, 9] by reducing
the number of bilinear pairings as well as by enabling additional pre-computations. Chow
et al. [12] proposed an encryption scheme in the standard model which can be used as
timed-release encryption, where only confidentiality is guaranteed. Chow et al. [13] later
demonstrated how to support pre-open capability, which is often desirable in applications of
timed-release encryption. In the context of secret sharing, Watanabe et al. [41] proposed a
construction of timed-release computational secret sharing, which is based on identity-based
key encapsulation mechanism (IB-KEM). However, in most of current works, the trusted
server needs to have lots of interaction with senders and receivers. It is desirable to reduce
the interactions to a ideal level. Recently, several works [29, 31, 32] showed how to build
time-release encryption from bitcoin and witness encryption. However, the efficiency is the
main concern of of these works. Indeed, they are impractical since they cannot be deployed
in the real bitcoin network efficiently.

8 Conclusion

In this paper, we have proposed a practical carrots-and-sticks approach that implements
a time-release protocol. Our protocol leverages threshold secret sharing scheme to dele-
gate safe keeping of time-release secrets to a large number of participants, and incorporates
incentive-based mechanism to encourage honest participation while deterring misbehaviour
by dishonest parties. The protocol attains timing control based on regular heartbeats emitted
by a blockchain, and enforces fulfillment of involved parties’ contractual obligations using
a smart contract. Although our study abstracts away from subtle protocol configuration
details such as deposit and reward compositions, bounties structures, and potential role of
brokerage, we remark that their dispositions are critical to ensure incentive-compatibility
and sustainability of the system. It would be an interesting future work to address these
elements from economics and game theory viewpoints.
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A Proof sketch

A.1 Proof of Lemma 1

To prove this lemma, we will assume that there exists a PPT adversary A that colludes with
t− 1 participants after the Handshake phase, which can win the GameSC game.
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Given gα and gβ , we will make use of A to obtain gαβ , where α, β are random. Let
h = gα and R0 = gβ . Let (b1, c1), ..., (bt−1, ct−1) be the secrets of the colluded participants.
This allow us to directly compute S1,i, S2,i for i = 1, ..., t − 1. We then randomly choose

(b′i, c
′
i) for i = t, ..., n, and sets {Bi,j = g(b

′
i)

j

, Ci,j = hc
′
i(b
′
i)

j}j∈[1,t−1], C = gc
′
i . Since HE is

IND-CPA secure, Ei,j can be simulated using dummy messages. The complete view of the
protocol is now defined (with the right distribution), which is consistent with the private
view of participants Pi for i = 1, ..., t − 1. Suppose that they are able to calculate hfs(0).
Since h = gα and R0 = gβ , we are able to obtain gαβ . This contradicts the computational
Diffie-Hellman assumption.

A.2 Proof of Lemma 2

Claim 1: Suppose I(t,n) is the Shamir’s secret sharing scheme used in the proposed protocol in
Section 4, Z is a premature release outputted by A, if there exists a PPT algorithm that takes
Z, t− 1 valid shares and public information can recover the secret of I(t,n), then there exists
a PPT algorithm that takes Z (with additional inputs) can output the underlying share(s)
that A takes.
Proof: Suppose there exists a PPT algorithm Z that takes Z, t− 1 valid shares and public
information can recover the secret of I(t,n), then we have that there exists a non-uniform
PPT algorithm B that takes Z, t− 1 valid shares and public information can output a curve
f , where f is a curve defined by the t − 1 valid shares and the underlying point(s) of Z.
Define Procedure (1) as:

(1) Randomly chooses t − 1 sample points. Feed B with Z and the chosen t − 1 points,
and obtain the secret s1 whose value is f1(0) where f1 is the polynomial fitting the
randomly chosen points and s1.

We then construct an extractor which works as follows:

• Run Procedure (1) repeatedly and obtain f2, ..., fd (d ≥ 2), until there is only one
common intersection point(s) among the curves f, f1, ..., fd.

We conclude that common intersection point(s) must be the underlying point(s) of Z.
That is, there exists an extractor that can extract the underlying point(s) of Z.

From Claim 1 and Lemma 1, we have that any A cannot win the the GameDPR game.

A.3 Proof of Lemma 3

To prove this lemma, we will assume that there exists a PPT adversary A that colludes with
the secret owner and n−1 participants after the Waiting phase (excepting for one participant
P ), which can win the GameISP game. Using this adversary we will build a PPT simulator

B that takes in the l-SDH challenge input g,D1 = gb, D2 = gb
2

, ..., Dt−1 = gb
t−1

can attack
the l-SDH assumption.

• Handshake:

1. (Owner’s hello) B chooses random α, r1, ..., rt−1 ∈ Zp and sets h = gα. Next, B
submits a transaction:〈

Ohello, {Ri = gri}i∈[0,t−1], coins(Mo)
〉
,

where fs() is the polynomial

fs(x) =

t−1∑
i=0

rix
i
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with r0 = s.

2. (Participant’s hello)
For each i ∈ [n− 1], B does as follows:
It first chooses a random bi, ci ∈ Zp and computes

{Bi,j = gb
j
i , Ci,j = hcib

j
i }j∈[1,t−1], C = gci .

It then initializes an instance of the additive homomorphic encryption scheme HE,
where pki is the public parameters of HE. Next, it computes

{Ei,j = HE.Enc(bji )}j∈[1,t−1]
where HE.Enc() is the encryption algorithm of HE. Finally, it submits the trans-
action:

〈Phello, pki, {Bi,j , Ci,j , Ei,j}j∈[1,t−1],
C, coins(M)〉

For the non-colluded participant P , B chooses random c∗ ∈ Zp and sets

{B∗j = Dj , C
∗
j = Dc∗h′

j }j∈[1,t−1], C∗ = gc
∗
.

B then chooses random b∗ ∈ Zp and initializes an instance of the additive homo-
morphic encryption scheme HE, where pk∗ is the public parameters of HE. Next,
it computes

{E∗j = HE.Enc((b∗)j)}j∈[1,t−1]
Finally, it submits the transaction:

〈Phello, pk∗, {B∗j , C∗j , E∗j }j∈[1,t−1],

C∗, coins(M)〉
3. (Owner’s confirmation) For each i ∈ [n− 1], B does as follows:

It computes

S1,i = gs
t−1∏
i=1

(Bi,j)
rj ,

S2,i = Cαs
t−1∏
i=1

(Ci,j)
rj ,

Ti = HE.Enc(s) +

t−1∏
j=1

rjEi,j

and submits the transaction:

〈Oconfirm, S1,i, S2,i, Ti〉.

For the non-colluded participant P , B computes

S∗1 = gs
t−1∏
i=1

(B∗j )rj ,

S∗2 = gs
t−1∏
i=1

(C∗j )rj ,

T ∗ = HE.Enc(s) +

t−1∏
j=1

(E∗j )rj
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and submits the transaction:

〈Oconfirm, S∗1 , S∗2 , T ∗〉.

4. (Participant’s confirmation) B does not submit any transaction.

• Waiting phase: During the Waiting phase, B behaviors honestly. No reportHello and
report transactions are submitted.

• Reveal phase: B and A interact as follows:

– Collude query: A sends a Collude query with a deposit coins(M) to B. B sends the
secret owner and all participants’ share and internal random coins to A, excepting
for the participant P .

– Challenge: A submits the following transaction:

〈claim, (b′i, f ′s(b′i))〉

which aims to claim the deposit and (the corresponding) reward of P .

If A can obtain a deposit, then we have that gf
′
s(b
′
i) = S∗ = gfs(b). Hence, B can obtain

the value of b and further compute gb
t

, breaking the l-SDH assumption.

A.4 Proof of Lemma 4

To prove this lemma, we will assume that there exists a PPT adversary A that controls the
secret owner, which can win the GameMSO game. Using this adversary we will build a PPT
simulator B that can compute discrete log in G.

• Handshake:

1. (Owner’s hello) A chooses random r1, ..., rt−1 ∈ Zp. Next, A submits a transac-
tion: 〈

Ohello, {Ri = gri}i∈[0,t−1], coins(Mo)
〉
,

where fs() is the polynomial

fs(x) =

t−1∑
i=0

rix
i

with r0 = s.

2. (Participant’s hello) For each i ∈ [n], B does as follows:
It first chooses a random bi, ci ∈ Zp and computes

{Bi,j = gb
j
i , Ci,j = hcib

j
i }j∈[1,t−1], C = gci .

It then initializes an instance of the additive homomorphic encryption scheme HE,
where pki is the public parameters of HE. Next, it computes

{Ei,j = HE.Enc(bji )}j∈[1,t−1]

where HE.Enc() is the encryption algorithm of HE. Finally, it submits the trans-
action:

〈Phello, pki, {Bi,j , Ci,j , Ei,j}j∈[1,t−1],

C, coins(M)〉
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3. (Owner’s confirmation) For each i ∈ [n], A randomly chooses S1,i, S2,i, Ti and
submits the transaction:

〈Oconfirm, S1,i, S2,i, Ti〉.

4. (Participant’s confirmation) For each i ∈ [n], B verifies the value Si, Ti submitted
by A, and submit a transaction Pwithdraw if otherwise. Using the corresponding
secret key of pki, B checks whether the following two equalities both holds:

gHE.Dec(Ti) ?
= S1,i,

hHE.Dec(Ti) ?
= S2,i, and

t−1∏
j=0

(Rj)
bji

?
= S1,i

If not, B submits the transaction

〈Pwithdraw〉

to withdraw. In response to this transaction, the smart contract returns the deposit
back to B. If both equalities hold, B does not submit any transaction.

Note that if a fake share is accepted by a participant, we have

gHE.Dec(Ti) = S1,i =

t−1∏
j=0

(Rj)
bji

Hence, B can compute the discrete log of S1,i.

A.5 Zero-Knowledge Proof

For the zero-knowledge proof involved in the protocol, we need to prove three properties:
Soundness, Completeness and (honest-verifier) Zero-knowledge.

• Soundness: We need to prove that if the B1, B2, ..., Bt−1 are indeed related in such
a way, and the prover (i.e., the participant) honestly follows the protocol, the verifier
(i.e, the secret owner) will verify his result. With the setting of the protocol,

Bsi = g(b
i)(bc+n) = g(b

i+1c+bin) = Bci+1Ti.

• Completeness: We need to prove that if B1, B2, ..., Bt−1 are not related in the way
stipulated by the protocol, with a large probability, the prover (i.e., the participant)
cannot be verified. We do a proof by induction. WOLG, denote logg B1 = g and
logg T1 = n, and assume that the prover follows the protocol for B1, ..., Bi−1, but

violate the protocol at the index i, which means either Bi 6= gb
i

. Notice that the
relation s = bc+ n must be true, otherwise the first equation cannot be verified.
Let us denote Bi = gx and Ti = gy, then the equation:

Bsi−1 = BciTi

must be satisfied. If we expand the equation, we get

gb
i−1(bc+n) = gxc+y,
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and we have a solution:
(bi − x)c = y − nbi−1,

which has a single solution for c if x 6= bi. Hence, the probability that the prover
successfully tricks the protocol with B1, B2, ..., Bt−1 with different relation is no more
than |G|−1, which is very low given a large group.

• Zero-knowledge: We show that there is a simulator generating a interactive proof pro-
cedure without the knowledge of b and with random B1, B2, ..., Bn. He first choose
random c, s, and then generate T1 = gsB−c1 , T2 = Bs1B

−c
2 , ..., and it is easy to verify

that the equations are all satisfied. To see the verification is indistinguishable from
a true interactive procedure, observe that by the extended diffie-hellman assumption,
T1, T2, ..., Tt are indistinguishable from random elements in the group G.
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