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Abstract. We present an optimized implementation of the Fan-Vercauteren
variant of the scale-invariant homomorphic encryption scheme of Brak-
erski. Our algorithmic improvements focus on optimizing decryption and
homomorphic multiplication in the Residue Number System (RNS), us-
ing the Chinese Remainder Theorem (CRT) to represent and manipu-
late the large coefficients in the ciphertext polynomials. In particular, we
propose efficient procedures for scaling and CRT basis extension that do
not require translating the numbers to standard (positional) representa-
tion. Compared to the previously proposed RNS design due to Bajard et
al. [3], our procedures are simpler and they do not introduce any addi-
tional noise. We implement our optimizations in the PALISADE library
and evaluate the runtime performance for the range of multiplicative
depths from 1 to 50. Our results show that the homomorphic multipli-
cation for the depth-20 setting can be executed in 63 ms on a modern
server system, which is already practical for some outsourced-computing
applications. Our algorithmic improvements can also be applied to other
scale-invariant homomorphic encryption schemes, such as YASHE.

Keywords: Lattice-Based Cryptography · Homomorphic Encryption · Scale-
Invariant Scheme · Residue Number Systems · Software Implementation

1 Introduction

Homomorphic encryption has been an area of active research since the first
design of a Fully Homomorphic Encryption (FHE) scheme by Gentry [9]. FHE
allows performing arbitrary secure computations over encrypted sensitive data
without ever decrypting them. One of the potential applications is to outsource
computations to a public cloud without compromising data privacy.

A salient property of contemporary FHE schemes is that ciphertexts are
“noisy”, where the noise increases with every homomorphic operation, and de-
cryption starts failing once the noise becomes too large. This is addressed by
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setting the parameters large enough to accommodate some level of noise, and
using Gentry’s “bootstrapping” technique to reduce the noise once it gets too
close to the decryption-error level. However, the large parameters make homo-
morphic computations quite slow, and so significant effort was devoted to con-
structing more efficient schemes. Two of the the most promising schemes in
terms of practical performance have been the BGV scheme of Brakerski, Gentry
and Vaikuntanathan [6], and the Fan-Vercauteren variant of Brakerski’s scale-
invariant scheme [5,8], which we call here the BFV scheme. Both of these schemes
rely on the hardness of the Ring Learning With Errors (RLWE) problem.

Both schemes manipulate elements in large cyclotomic rings, modulo integers
with many hundreds of bits. Implementing the necessary multi-precision modular
arithmetic is expensive, and one way of making it faster is to use a “Residue
Number System” (RNS) to represent the big integers. Namely, the big modulus q
is chosen as a smooth integer, q =

∏
i qi, where the factors qi are same-size,

pairwise coprime, single-precision integers (typically of size 40-60 bits). Using
the Chinese Remainders Theorem (CRT), an integer x ∈ Zq can be represented
by its CRT components {xi = x mod qi ∈ Zqi}i, and operations on x in Zq can
be implemented by applying the same operations to each CRT component xi in
its own ring Zqi .

Unfortunately, both BGV and BFV feature some scaling operations that can-
not be directly implemented on the CRT components. In both schemes there is
sometimes a need to interpret x ∈ Zq as a rational number (say in the interval
[−q/2, q/2)) and then either lift x to a larger ring ZQ for Q > q, or to scale
it down and round to get y = dδxc ∈ Zt (for some δ � 1 and accordingly
t� q). These operations seem to require that x be translated from its CRT rep-
resentation back to standard “positional” representation, but computing these
translations back and forth will negate the gains from using RNS to begin with.

While implementations of the BGV scheme using CRT representation are
known (e.g., [10,11]), implementing BFV in this manner seems harder. One dif-
ference is that BFV features more of these scaling operations than BGV. Another
is that in BGV the scaling factors are usually just single-precision numbers, while
in BFV these factors are often big, of order similar to the multi-precision mod-
ulus q. An implementation of the BFV scheme using CRT representation was
recently reported by Bajard et al. [3], featuring significant speedup as compared
to earlier implementations such as in [14]. This implementation, however, uses
somewhat complex procedures, and moreover these procedures incur an increase
in the ciphertext noise.

In the current work we simplify the CRT-based scaling and lifting procedures
of [3]. Our procedures are all quite elementary, and while they are not much
faster than the ones of Bajard et al., they are simpler to implement and do not
introduce additional noise. Hence the noise behavior of our implementation is
the same as in the original BFV scheme. The same techniques are also applicable
to other scale-invariant homomorphic encryption schemes, such as YASHE and
YASHE’ [4].
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We implemented our procedures in the PALISADE library [16]. We evaluate
the runtime performance of decryption and homomorphic multiplication in the
range of multiplicative depths from 1 to 50. For example, the runtimes for depth-
20 decryption and homomorphic multiplication are 3.0 and 63 ms, respectively,
which can already support outsourced-computing applications with latencies up
to few seconds, even without bootstrapping.

Our implementation pre-computes some tables, consisting of single-precision
integers as well as floating-point numbers, then uses these pre-computed values to
implement fast operations. When using the IEEE 754 double-precision floating-
point format (with 53 bits of precision), the limited accuracy entails a bound on
the size of the moduli qi that we can use, limiting them to around 47 bits. We
note that the moduli size can be easily increased by storing the floating-point
numbers with higher precision (e.g., storing two double-floats for each number).
The floating-point operations take only a minuscule fraction of the computation
time, hence such modification will not slow down the computation.

2 Notations and Basic Procedures

For an integer n ≥ 2, we identify below the ring Zn with its representation in
the symmetric interval Z ∩ [−n/2, n/2). For an arbitrary rational number x, we
denote by [x]n the reduction of x into that interval (namely the real number
x′ ∈ [−n/2, n/2) such that x′ − x is an integer divisible by n). We also denote
by bxc, dxe, and dxc the rounding of x to an integer down, up, and to the
nearest integer, respectively. We denote vectors by boldface letters, and extend
the notations bxc, dxe, dxc to vectors element-wise.

Throughout this note we fix a set of k co-prime moduli q1, . . . , qk (all integers

larger than 1), and let their product be q =
∏k

i=1 qi. For all i ∈ {1, ..., k}, we
also denote

q∗i = q/qi ∈ Z and q̃i = q∗i
−1 (mod qi) ∈ Zqi , (1)

namely, q̃i ∈
[
− qi

2 ,
qi
2

)
and q∗i · q̃i = 1 (mod qi).

Complexity measures. In our setting we always assume that the moduli qi are
single-precision integers (i.e. |qi| < 263), and that operations modulo qi are in-
expensive. We assign unit cost to mod-qi multiplication and ignore additions,
and analyze the complexity of our routines just by counting the number of the
multiplications. Our procedures also include floating-point operations, and here
too we assign unit cost to floating-point multiplications and divisions (in “double
float” format as per IEEE 754) and ignore additions.

2.1 CRT Representation

We denote the CRT representation of an integer x ∈ Zq relative to the CRT basis
{q1, . . . , qk} by x ∼ (x1, . . . , xk) with xi = [x]qi ∈ Zqi . The formula expressing x

in terms of the xi’s is x =
∑k

i=1 xi · q̃i · q∗i (mod q). This formula can be used

3



in more than one way to “reconstruct” the value x ∈ Zq from the xi’s. In this
work we use in particular the following two facts:

x =
( k∑
i=1

[xi · q̃i]qi · q∗i︸ ︷︷ ︸
∈Zq

)
+ υ · q for some υ ∈ Z, (2)

and x =
( k∑
i=1

xi · q̃i · q∗i︸ ︷︷ ︸
∈[− qiq

4 ,
qiq

4 )

)
+ υ′ · q for some υ′ ∈ Z. (3)

2.2 CRT Basis Extension

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and suppose we want
to extend the CRT basis by computing [x]p ∈ Zp for some other modulus p > 1.

Using Eq. 2, we would like to compute [x]p =
[(∑k

i=1[xi · q̃i]qi · q∗i
)

+ υ · q
]
p
.

The main challenge here is to compute υ (which is an integer in Zk). The formula
for υ is:

υ =

⌈( k∑
i=1

[xi · q̃i]qi · q∗i
)
/q

⌋
=

⌈
k∑

i=1

[xi · q̃i]qi ·
q∗i
q

⌋
=

⌈
k∑

i=1

[xi · q̃i]qi
qi

⌋
.

To get υ, we compute for every i ∈ {1, . . . , k} the element yi := [xi · q̃i]qi (using
single-precision fixed-point arithmetic), and next the rational number zi := yi/qi
(in floating-point). Then we sum up all the zi’s and round them to get υ. Once
we have the value of υ, as well as all the yi’s, we can directly compute Eq. 2

modulo p to get [x]p =
[(∑k

i=1 yi · [q∗i ]p
)

+ υ · [q]p
]
p
.

In our setting p and the qi’s are parameters that can be pre-processed. In
particular we pre-compute all the values [q∗i ]p’s and [q]p, so the last equation
becomes just an inner-product of two (k + 1)-vectors in Zp.

Complexity analysis. The computation of υ requires k fixed-point single-
precision multiplications to compute the yi’s, then k floating-point division oper-
ations to compute the zi’s, and then some additions and one rounding operation.
In total it takes k fixed-point and k + 1 floating-point operations. When p is a
single-precision integer, the last inner product takes k + 1 fixed-point multipli-
cations, so the entire procedure takes 2k+ 1 fixed-point and k+ 1 floating-point
operations.

For larger p we may need to do k + 1 multi-precision multiplications, but

we may be able to use CRT representation again. When p =
∏k′

i=1 pi for single-
precision co-prime pj ’s, we can compute υ only once and then compute the last
inner product for each pi (provided that we pre-computed [q∗i ]pj

’s and [q]pj
for

all i and j). The overall complexity in this case will be kk′ + k +m fixed-point
and k + 1 floating-point operations.

Correctness. The only source of errors in this procedure is the floating-point
operations when computing υ: Instead of the exact values zi = yi/qi, we compute
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their floating-point approximations z∗i (with error εi), and so we obtain υ∗ =
d
∑

i(zi + εi)c which may be different from υ = d
∑

i zic.
Since the zi’s are all in [− 1

2 ,
1
2 ), then using IEEE 754 double floats we have

that the εi’s are bounded in magnitude by 2−53, and therefore the overall mag-
nitude of the error term ε :=

∑
εi is bounded, |ε| < k · 2−53. Since we always

have k ≤ 32, then this gives us |ε| < 2−48.
When applying the procedure above, we must check that the resulting υ∗

that it returns is outside the possible-error region Z + 1
2 ± ε. If υ∗ falls in the

error region, then we have to re-run this procedure using higher precision (and
hence smaller ε) until the result is outside the error region.

Alternatively, in our setting we can (a) argue that the the probability to
fall in the error region is small, and (b) re-randomize the input x and re-run
the procedure if the output does fall in that region. This yields a Las Vegas
Algorithm that terminates in expected 1 + ε′ runs (for some ε′ related to ε), see
more details in Section 4.5.

Comparison to other approaches for computing υ. Two exact approaches
for computing υ are presented in [19] and [13]. The first approach introduces an
auxiliary modulus and performs the CRT computations both for p and the extra
modulus, thus doubling the number of fixed-point operations and also increasing
the implementation complexity [19]. The second approach computes successive
fixed-point approximations until the computed value of υ is outside the error
region (in one setting) or computes the exact value (in another setting with
higher complexity) [13] . Both of these techniques incur higher computational
costs than our method. But either of them can be used to handle the possible-
error region condition, which would occur for our algorithm with a probability
comparable to |ε|, i.e., close to 2−48.

2.3 Simple scaling in CRT representation

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and let t ∈ Z be an
integer modulus t ≥ 2. We want to “scale down” x by a t/q factor, namely to
compute the integer y = dt/q · xc ∈ Zt. We do it using Eq. 3, as follows:

y :=

⌈
t

q
· x
⌋

=

⌈( k∑
i=1

xi · q̃i · q∗i ·
t

q

)
+ υ′ · q · t

q

⌋

=

⌈( k∑
i=1

xi · (q̃i ·
t

qi
)
)⌋

+ υ′ · t =

[⌈( k∑
i=1

xi · (q̃i ·
t

qi
)
)⌋]

t

.(4)

The last equation follows since the two sides are congruent modulo t and are
both in the interval [−t/2, t/2), hence they must be equal.

In our context, t and the qi’s are parameters that we can pre-process (while
the xi’s are computed on-line). We pre-compute the rational numbers tq̃i/qi ∈
[−t/2, t/2), separated into their integer and fractional parts:

tq̃i/qi = ωi + θi, with ωi ∈ Zt and θi ∈ [− 1
2 ,

1
2 ).
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With the ωi’s and θi pre-computed, we take as input the xi’s, compute the two
sums w := [

∑
i xiωi]t and v := d

∑
i xiθic , (using fixed-point arithmetic for w

and floating-point arithmetic for v), then output [w + v]t.

Complexity analysis. The procedure above takes k floating-point multiplica-
tions, some additions, and one rounding to compute v, and then an inner product
mod t between two (k+1)-vectors, the single-precision vector (x1, . . . , xk, 1) and
the mod-t vector (ω1, . . . , ωk, v). When the modulus t is a single-precision integer,
the ωi’s are also single-precision integers, and hence the inner product takes k
fixed-point multiplications. The total complexity is therefore k+1 floating-point
operations and k single-precision modular multiplications.

For a larger t we may need to do O(k) multi-precision operations to compute
the inner product. But in some cases we can also use CRT representation here:

For t =
∏k′

j=1 tj (with the tj ’s co-prime), we can represent each ωi ∈ Zt in the
CRT basis ωi,j = [ωi]tj . We can then compute the result y in the same CRT basis,
yj = [y]tj by setting wj = [

∑
i xiωi,j ]tj for all j, and then yj = [v+wj ]tj . This will

still take only k + 1 floating-point operations, but kk′ modular multiplications.

Correctness. The only source of errors in this routine is the computation of
v := d

∑
i xiθic: Since we only keep the θi’s with limited precision, we need to

worry about the error exceeding the precision. Let θ̃i be the floating-point values
that we keep, while θi are the exact values (θi = tq̃i/q−ωi) and εi are the errors,
εi = θ̃i − θi. Since |θ̃i| ≤ 1

2 , then for IEEE 754 double floats we have |εi| < 2−53.
The value that our procedure computes for v is therefore ṽ := d

∑
i xi(θi + εi)c,

which may be different from v := d
∑

i xiθic.
We can easily control the magnitude of the error term

∑
xiεi by limiting the

size of the qi’s: Since |xi| < qi/2 for all i, then |
∑

i xiεi| < 2−54 ·
∑

i qi. In our
implementation we always have k < 32, so for example as long as all our moduli
satisfy qi ≤ 247 < 254/4k, we are ensured that |

∑
xiεi| < 1/4.

When using the scaling procedure for decryption, we can keep y = dt/qxc
close to an integer by controlling the ciphertext noise. For example, we can
ensure that y (and therefore also v) is within 1/4 of an integer, and thus if we
also restrict the size of the qi’s as above, then we always get the correct result.
Using the scaling procedure in other settings may require more care, see the next
section for a discussion.

2.4 Complex scaling in CRT representation

The scaling procedure above was made simpler by the fact that we scale by a t/q
factor, where the original integer is in Zq and the result is computed modulo t.
During homomorphic multiplication, however, we have a more complicated set-
ting: Over there we have three parameters t, p, q, where q =

∏k
i=1 qi as before,

we similarly have p =
∏k′

j=1 pj , and we know that p is co-prime with q and p� t.

The input is x ∈ Z ∩ [−qp/2t, qp/2t) ⊂ Zqp, represented in the CRT basis
{q1, . . . , qk, p1, . . . , pk′}. We need to scale it by a t/q factor and round, and we
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want the result modulo q in the CRT basis {q1, . . . , qk}. Namely, we want to
compute y :=

[
dt/q · xc

]
q
. This complex scaling is accomplished in two steps: 4

1. First we essentially apply the CRT scaling procedure from Section 2.3 using
q′ = qp and t′ = tp, computing y′ := [dtp/qp · xc]p (which we can think of as
computing y′ modulo tp and then discarding the mod-t CRT component).
Note that since x ∈ [−qp/2t, qp/2t) then dtp/qp · xc ∈ [−p/2, p/2). Hence
even though we computed y′ modulo p, we know that y′ = dt/q · xc without
modular reduction.

2. Having a representation of y′ relative to CRT basis {p1, . . . , pk′}, we ex-
tend this basis using the procedure from Section 2.2, adding [y′]qi for all
the qi’s. Then we just discard the mod-pj CRT components, thus getting a
representation of y = [y′]q.

The second step is a straightforward application of the procedure from Sec-
tion 2.2, but the first step needs some explanation. The input consists of the CRT
components xi = [x]qi and x′j = [x]pj , and we denote Q := qp, Q∗i := Q/qi = q∗i p,

Q′j
∗

:= Q/pj = qp∗j , and also Q̃i = [(Q∗i )−1]qi and Q̃′j = [(Q′j
∗
)−1]pj

. Then by
Eq. 3 we have

t

q
·x =

t

q

( k∑
i=1

xiQ̃iQ
∗
i +

k′∑
j=1

x′jQ̃
′
jQ
′
j
∗
+υ′Q

)
=

k∑
i=1

xi ·
tQ̃ip

qi
+

k′∑
j=1

x′j ·tQ̃′jp∗j +tυ′p.

Rounding and reducing the above expression modulo one of the pj ’s, all but one
of the terms in the second sum drop out (as well as the term tυ′p), and we get:

[dt/q · xc]pj =
[⌈∑k

i=1 xi ·
tQ̃ip
qi

⌋
+ x′j · [tQ̃′jp∗j ]pj

]
pj

.

As in Section 2.3, we pre-compute all the values tQ̃ip
qi

, breaking them into their

integral and fractional parts, tQ̃ip
qi

= ω′i + θ′i with ω′i ∈ Zp and θ′i ∈ [− 1
2 ,

1
2 ).

We store all the θ′i’s as double floats, for every i, j we store the single-precision
integer ω′i,j = [ω′i]pj

, and for every j we also store λj := [tQ̃′jp
∗
j ]pj

. Then given
the integer x, represented as x ∼ (x1, . . . , xk, x

′
i, . . . , x

′
k′), we compute

v := d
∑

i θ
′
ixic , and for all j wj :=

[
λjx
′
j +

∑
i ω
′
i,jxi

]
pj

and y′j :=
[
v + wj ]pj

.

Then we have y′j = [dt/q · xc]pj , and we return y′ ∼ {y′1, . . . , y′k′} ∈ Zp.

Correctness. When computing the value v = d
∑

i θ
′
ixic, we can bound the

floating-point inaccuracy before rounding below 1/4, just as in the simple scal-
ing procedure from Section 2.3. However, when we use complex scaling during
homomorphic multiplication, we do not have the guarantee that the exact value

4 A somewhat different complex scaling procedure with similar complexity is presented
in Appendix A.1, which can handle arbitrary x ∈ Zqp. However we did not implement
that other procedure.
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before rounding is close to an integer, and so we may encounter rounding errors
where instead of rounding to the nearest integer, we will round to the second
nearest. Contrary to the case of decryption, here such “rounding errors” are
perfectly acceptable, as the rounding error is only added to the ciphertext noise.

Specifically, when analyzing the scaled ciphertext, we have a term of the form
〈sk∗, ε〉, where ε is the rounding error and we rely on it to be small (cf. Eq. 6
in Section A.2). Had we computed v with full accuracy, we could argue that
the coefficients of ε are bounded in magnitude below 1/2. But since we have an
additional floating-point error of up to 1/4, in our case some coefficients of ε
could be as large as 3/4. This adds less than one bit to the noise even in the
worst case; in our tests the actual effect on the noise was too small to be noticed.

We remark, however, that even in the context of homomorphic multiplication
we do need to watch out for rounding errors during the step of CRT basis
extension above; this is done as described in Section 2.2 above and in Section 4.5.

Complexity analysis. The complexity of the first step above where we com-
pute y′ = [dt/q · xc]p, is similar to the simple scaling procedure from Section 2.3.
Namely we have k floating-point multiplications when computing v, and then
for each modulus pj we have k + 1 single-precision modular multiplications to
compute wj . Hence the total complexity of this step is k floating-point multipli-
cations and k′(k + 1) modular multiplications.

The complexity of the CRT basis extension, as described in Section 2.2, is
k floating-point division operations and k′(k + 1) + k single-precision modular
multiplications. Hence the total complexity of complex scaling is 2k floating-
point operations and 2k′(k + 1) + k modular multiplications.

3 Background: Scale-Invariant Homomorphic Encryption

For self-containment we briefly sketch in Appendix A.2 the first “scale-invariant”
homomorphic encryption scheme, described by Brakerski in [5]. This section
discusses the Fan-Vercauteren variant of the scheme and some optimizations
due to Bajard et al. [3].

3.1 The Fan-Vercauteren Variant

In [8], Fan and Vercauteren ported Brakerski’s scheme to the ring-LWE setting,
working over polynomial rings rather than over the integers. Below we let R =
Z[X]/〈f (X)〉 be a fixed ring, where f ∈ Z[X] is a monic irreducible polynomial of
degree n (typically an m-th cyclotomic polynomial Φm (x) of degree n = φ (m)).
We use some convenient basis to represent R over Z (most often just the power
basis, i.e., the coefficient representation of the polynomials). Also, let Rt = R/tR
denote the quotient ring for an integer modulus t ∈ Z, represented in the same
basis.

The plaintext space of this variant is Rt for some t > 1 (i.e., a polynomial
of degree at most n − 1 with coefficients in Zt), the secret key is a 2-vector
sk = (1, s) ∈ R2 with ‖s‖ � q/t, ciphertexts are 2-vectors ct = (c0, c1) ∈ R2

q for
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another modulus q � t, and the decryption invariant is the same as in Brakerki’s

scheme, namely [
⌈
t
q [〈sk, ct〉]q

⌋
]t = [

⌈
t
q [c0 + c1s]q

⌋
]t = m · qt + e for a small noise

term e ∈ R, ‖e‖ � q/t.
For encryption, the public key includes a low-noise encryption of zero, ct0 =

(ct00, ct
0
1), and to encrypt m ∈ Rt they choose low-norm elements u, e1, e2 ∈ R

and set Encct0(m) := [u · ct0 + (e0, e1) + (∆m, 0)]q, where ∆ = bq/tc. Ho-
momorphic addition just adds the ciphertext vectors in R2

q , and homomorphic
multiplication is the same as in Brakerski’s scheme, except (a) the special form
of sk lets them optimize the relinearization “matrices” and use vectors instead,
and (b) they use base-w decomposition (for a suitable word-size w) instead of
base-2 decomposition. 5 In a little more detail:

(a) For the secret-key vector sk = (1, s), the tensor product sk ⊗ sk can be
represented by the 3-vector sk∗ = (1, s, s2). Similarly, for the two ciphertexts
cti = (ci0, c

i
1) (i = 1, 2), it is sufficient to represent the tensor ct1 ⊗ ct2 by

the 3-vector ct∗ = (c∗0, c
∗
1, c
∗
2) = [c10c

2
0, (c10c

2
1 + c11c

2
0), c11c

2
1]q.

(b) For the relinearization gadget, all they need is to “encrypt” the single element
s2 using sk. When using a base-w decomposition, they have vectors (rather
than matrices) Wi = (βi, αi), with uniform αi’s and βi = [wis2 − αis+ ei]q
(for low-norm noise terms ei).
After computing the three-vector ct∗ = (c∗0, c

∗
1, c
∗
2) as above during ho-

momorphic multiplication, they decompose c∗2 into its base-w digits, c∗2 =∑
i w

ic∗2,i. Then computing ct× =
∑

iWi × ct∗i only requires that they set

c̃0 := [

k∑
i=1

βic
∗
2,i]q, c̃1 := [

k∑
i=1

αic
∗
2,i]q, and then ct× := [(c∗0 + c̃0, c

∗
1 + c̃1)]q.

3.2 CRT representation and optimized relinearization

Bajard et al. described in [3] several optimizations of the Fan-Vercauteren vari-
ant, centered around the use of CRT representation of the large integers involved.
(They called it a Residue Number System, or RNS, but in this writeup we prefer
the term CRT representation.) Specifically, the modulus q is chosen as a product

of same-size, pairwise coprime, single-precision moduli, q =
∏k

i=1 qi, and each
element x ∈ Zq is represented by the vector (xi = [x]qi)

k
i=1.

One significant optimization from [3] relates to the relinearization step in
homomorphic multiplication. Recall that in that step we decompose the cipher-
text ct∗ into low-norm components ct∗i , such that reconstructing ct∗ from the
ct∗i ’s is a linear operation, namely ct∗ =

∑
i τict

∗
i for some known coefficients

τi. Instead of decomposing ct∗ into bit or digits, Bajard et al. suggested to
use its CRT components ct∗i = [ct∗]qi (which are also small), and rely on the
reconstruction from Eq. 3 (which is linear).

5 Fan and Vercauteren described in [8] a second relinearization procedure (which may
be more efficient), using a technique of Gentry et al. from [10]. We ignore this
alternative procedure here, since we did not implement it (yet).
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4 Our Optimizations

4.1 The scheme that we implemented

The scheme that we implemented is the Fan-Vercauteren variant of Brakerski’s
scheme, with the CRT-based relinearization step of Bajard et al.; we refer to this
variant as the “BFV scheme”. We begin with a concrete stand-alone description
of the functions that we implemented, then describe our simper/faster CRT-
based implementation of these functions.

Parameters. Let t,m, q ∈ Z be parameters (where the single-precision t deter-
mines the plaintext space, and m, |q| depend on t and the security parameter),

such that q =
∏k

i=1 qi for same-size, pairwise coprime, single-precision moduli qi.

Let n = φ(m), and let R = Z[X]/Φm(X) be the m-th cyclotomic ring, and
denote Rq = R/qR and Rt = R/tR to be quotient rings. In our implementation
we represent elements in R,Rq, Rt in the power basis (i.e., polynomial coeffi-
cients), but note that other “small bases” are possible (such as the decoding
basis from [15]), and for non-power-of-two cyclotomics they could sometimes re-
sult in better parameters. We let χe, χk be distributions over low-norm elements
in R in the power basis, specifically we use discrete Gaussians for χe and the
uniform distribution over {−1, 0, 1}n for χk.

Key generation. For the secret key, choose a low-norm secret key s← χk and
set sk := (1, s) ∈ R2. For the public encryption key, choose a uniform random
a ∈ Rq and e← χe, set b := [−(as+ e)]q ∈ Rq, and compute pk := (b, a).

Recall that we denote q∗i = q
qi

and q̃i =
[
q∗i
−1]

qi
. For relinearization, choose

a uniform αi ∈ Rq and ei ← χe, and set βi = [q̃iq
∗
i s

2 − αis + ei]q for each
i = 1, . . . , k. The public key consists of pk and all the vectors Wi := (βi, αi).

Encryption. To encrypt m ∈ Rt, choose u ← χk and e′0, e
′
1 ← χe and output

the ciphertext ct := [u · pk + (e′0, e
′
1) + (∆m, 0)]q.

Decryption. For a ciphertext ct = (c0, c1), compute x := [〈sk, ct〉]q = [c0+c1s]q
and output m := [dx · t/qc]t.
Homomorphic Addition. On input ct1, ct2, output [ct1 + ct2]q.

Homomorphic Multiplication. Given cti = (ci0, c
i
1)i=1,2, do the following:

1. Tensoring: Compute c′0 := c10c
2
0, c′1 := c10c

2
1 + c11c

2
0, c′2 := c11c

2
1 ∈ R without

modular reduction, then set c∗i = [dt/q · c′ic]q for i = 0, 1, 2.

2. Relinearization: Decompose c∗2 into its CRT components c∗2,i = [c∗2]qi , set

c̃0 := [
∑k

i=1 βic
∗
2,i]q, c̃1 := [

∑k
i=1 αic

∗
2,i]q, output ct× := [(c∗0 + c̃0, c

∗
1 + c̃1)]q.

4.2 Pre-computed values

When setting the parameters, we pre-compute some tables to help speed things
up later. Specifically:
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– We pre-compute and store all the values that are needed for the simple
CRT scaling procedure in Section 2.3: For each i = 1, . . . , k, we compute
the rational number tq̃i/qi, split into integral and fractional parts. Namely,

ωi :=
⌈
t · q̃iqi

⌋
∈ Zt and θi := t·q̃i

qi
− ωi ∈ [− 1

2 ,
1
2 ). We store ωi as a single-

precision integer and θi as a double float.
– We also choose a second set of single-precision coprime numbers {pj}k

′

j=1

(coprime to all the qi’s), such that p :=
∏

j pj is bigger than q by a large

enough margin. Specifically we will need to ensure that for c10, c
1
1, c

2
0, c

2
1 ∈ R

with coefficients in [−q/2, q/2), the element c∗ := c10c
2
1 + c11c

2
0 ∈ R (without

modular reduction) has coefficients in the range [−qp/2t, qp/2t). For our
setting of parameters, where all the qi’s and pj ’s are 47-bit primes and t is
up to 32 bits, it is sufficient to take k′ = k + 1. For smaller CRT primes or
larger values of t, a higher value of k′ may be needed.
Below we denote for all j, p∗j := p/pj and p̃j := [(p∗j )−1]pj

. We also denote

Q := qp, and for every i, j we have Q∗i := Q/qi = q∗i p, Q
′
j
∗

:= Q/pj = qp∗j ,

and also Q̃i = [(Q∗i )−1]qi and Q̃′j = [(Q′j
∗
)−1]pj .

– We pre-compute and store all the values that are needed in the procedure
from Section 2.2 to extend the CRT basis {q1, . . . , qk} by each of the pj ’s,
as well the values that are needed to extend the CRT basis {p1, . . . , pk′}
by each of the qi’s. Namely for all i, j we store the single-precision integers
µi,j = [q∗i ]pj

and νi,j = [p∗j ]qi , as well as φj = [q]pj
and ψi = [p]qi .

– We also pre-compute and store all the values that are needed for the complex
CRT scaling procedure in Section 2.4. Namely, we pre-compute all the values
tQ̃ip
qi

, breaking them into their integral and fractional parts, tQ̃ip
qi

= ω′i + θ′i
with ω′i ∈ Zp and θ′i ∈ [− 1

2 ,
1
2 ). We store all the θ′i’s as double floats, for

every i, j we store the single-precision integer ω′i,j = [ω′i]pj , and for every j

we also store λj := [tQ̃′jp
∗
j ]pj

.

4.3 Key-generation and encryption

The key-generation and encryption procedures are implemented in a straightfor-
ward manner. Small integers such as noise and key coefficients are drawn from χe

or χk and stored as single-precision integers, while uniform elements in a← Zq

are chosen directly in the CRT basis by drawing uniform values ai ∈ Zqi for all i.
Operations in Rq are implemented directly in CRT representation, often re-

quiring the computation of the number-theoretic-transform (NTT) modulo the
separate qi’s. The only operations that require computations outside of Rq are
decryption and homomorphic multiplications, as described next.

4.4 Decryption

Given the ciphertext ct = (c0, c1) and secret key sk = (1, s), we first compute the
inner product in Rq, setting x := [c0 + c1s]q. We obtain the result in coefficient
representation relative to the CRT basis q1, . . . , qk. Namely for each coefficient
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of x (call it x` ∈ Zq) we have the CRT components x`,i = [x`]qi , i = 1, . . . , k, ` =
0, . . . , n− 1.

We then apply to each coefficient x` the simple scaling procedure from Sec-
tion 2.3. This yields the scaled coefficients m` = [dt/q · x`c]t, representing the
element m = [dt/q · xc]t ∈ Rt, as needed.

As we explained in Section 2.3, in the context of decryption we can ensure
correctness by controlling the noise to guarantee that each t/q · x` is within 1/4
of an integer, and limit the size of the qi’s to 47 bits to ensure that the error is
bounded below 1/4.

Decryption complexity. The dominant factor in decryption is NTTs modulo
the individual qi’s, that are used to compute the inner product x := [c0 +c1s]q ∈
Rq. Specifically we need 2k of them, k in the forward direction (one for each [c1]qi)
and k inverse NTTs (one for each [c1s]qi). These operations require O(kn log n)
single-precision modular multiplications, where n = φ(m) is the degree of the
polynomials and k is the number of moduli qi. Once this computation is done,
the simple CRT scaling procedure takes kn floating-point multiplications and kn
integer multiplications modulo t. (The more sophisticated CRT scaling procedure
in [3] takes 2kn modular multiplications after the NTT computations.)

4.5 Homomorphic Multiplication

The input to homomorphic multiplication is two ciphertexts ct1 = (c10, c
1
1), ct2 =

(c20, c
2
1), where each cab ∈ Rq is represented in the power basis with each coefficient

represented in the CRT basis {qi}ki=1. The procedure consists of three steps,
where we first compute the “double-precision” elements c′0, c

′
1, c
′
2 ∈ R, then scale

them down to get c∗i := [dt/q · c′ic]q, and finally apply relinearization.

Multiplication with double precision. We begin by extending the CRT basis
using the procedure from Section 2.2. For each coefficient x in any of the cab ’s, we
are given the CRT representation (x1, . . . , xk) with xi = [x]qi and compute also
the CRT components (x′1, . . . , x

′
k′) with x′j = [x]pj

. This gives us a representation
of the same integer x, in the larger ring Zqp, which in turn yields a representation
of the cab ’s in the larger ring Rqp.

Next we compute the three elements c′0 := [c10c
2
0]pq, c′1 := [c10c

2
1 + c11c

2
0]pq and

c′2 := [c11c
2
1]pq, where all the operations are in the ring Rqp. By our choice of

parameters (with p sufficiently larger than q), we know that there is no modular
reduction in these expressions, so in fact we obtain c′0, c

′
1, c
′
2 ∈ R. These elements

are represented in the power basis, with each coefficient x ∈ Zqp represented by
(x1, . . . , xk, x

′
1, . . . , x

′
k′) with xi = [x]qi and x′j = [x]pj

.

Scaling back down to Rq. By our choice of parameters, we know that all
the coefficients of the c′`’s are integers in the range [−qp/2t, qp/2t), as needed
for the complex CRT scaling procedure from Section 2.4. We therefore apply
that procedure to each coefficient x ∈ Zqp, computing x∗ = [dt/q · xc]q. This
gives as the power-basis representation of the elements c∗` = [dt/q · c′`c]q ∈ Rq

for ` = 0, 1, 2.
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Relinearization. For relinearization, we use the same technique as Bajard et
al. [3]. Namely, at this point we have the elements c∗0, c

∗
1, c
∗
2 ∈ Rq in CRT rep-

resentation, c∗`,i = [c∗` ]qi (for ` = 0, 1, 2 and i = 1, . . . , k). To relinearize we use
the relinearization gadget vectors (βi, αi) that were computed during key gen-

eration. For each qi, we first compute c̃0,i :=
[∑k

j=1[βj ]qi · c∗2,j
]
qi

and c̃1,i :=[∑k
j=1[αj ]qi · c∗2,j

]
qi

, and then c×0,i := [c∗0,i + c̃0,i]qi and c×1,i := [c∗1,i + c̃1,i]qi .

This gives the relinearized ciphertext ct× = (c×0 , c
×
1 ) ∈ R2

q , which is the
output of the homomorphic multiplication procedure.

Correctness. Correctness of the CRT basis-extension and complex scaling pro-
cedures was discussed in Sections 2.2 and 2.4, respectively. As was explained in
Section 2.4, for homomorphic multiplication we need not worry about rounding
errors in the simple-scaling subroutine of the complex-scaling procedure. But we
do need to worry about them in both the CRT-extension from the qi’s to the pj ’s,
and the CRT-extension from the pj ’s back to the qj ’s inside the complex-scaling
procedure.

As explained in Section 2.2, the imprecision due to floating-point operations
in the CRT-extension procedure can be bounded in our case by ε ≤ 2−48. We
apply this procedure to ciphertexts, which are pseudo-random, and thus the
fractional part of the exact value before rounding is uniformly distributed in
[− 1

2 ,
1
2 ) (at least heuristically). This means that for each coefficient to which we

apply the CRT-extension, we have roughly an ε probability to be rounding to the
second-nearest integer instead of the the nearest one. And as opposed to the scal-
ing operation, incorrect rounding here is a real error, leading to the result being
invalid. With ε ≤ 2−48 and each ciphertext having less than 217 coefficients, the
probability of encountering an error when applying the CRT-extension proce-
dure to a ciphertext is bounded below 2−31. The implementation must watch out
for the computed values (before rounding) falling in the plausible-error regions
Z + 1

2 ± ε, and take corrective measures when it happens.
One possibility for correcting these errors is simply to repeat the calculation

with higher precision, thus shrinking the plausible-error regions. (Specifically,
we would need to compute the ratios yq/qi with higher precision.) Alternatively,
if we detect a possible error while processing some ciphertext ct = (c0, c1), we
can try adding to it the zero encryption pk from the public key, getting another
ciphertext ct′ = [ct + pk]q that encrypts the same value, then try again with
the new ciphertext.6 Since pk is pseudo-random, the result rerandomizes all the
coefficients. This yields a Las-Vegas type procedure, where the probability of
success in each trial is at least 1− 2−31, so the expected number of trials is very
close to one.

Multiplication complexity. As for decryption, here too the dominant factor
is the NTTs that we must compute when performing multiplication operations
in Rq and Rqp. Specifically we need to transform the four elements cab ∈ Rqp

after the CRT extension in order to compute the three c′` ∈ Rqp, then transform

6 When applying CRT-extension to the extended ciphertext ct∗, we can use the tensor
pk⊗ pk to rerandomize it if needed.
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back the c′`’s before scaling them back to Rq to get the c∗` ’s. For relinearization
we need to transform all the elements c∗2,i ∈ Rq before multiplying them by the
αi’s and βi’s, and also transform c∗0, c

∗
1 before we can add them. Each transform

in Rq takes k single-precision NTTs, and each transform in Rqp takes k + k′

NTTs, so the total number of single-precision NTTs is k2 +9k+7k′. Each trans-
form takes O(n log n) multiplications, so the NTTs take O(k2n log n) modular
multiplications overall. In our experiments, these NTTs account for 60-75% of
the homomorphic multiplication running time.

In addition to these NTTs, we spend 4(k + k′)n modular multiplications
computing the c′`’s in the transformed domain and 2k2n modular multipli-
cations computing the products c∗2,iβi and c∗2,iβi in the transformed domain.
We also spend 4n(kk′ + k + k′) modular multiplications and (k + 1)n floating-
point operations in the CRT-extension procedure in Section 4.5, and additional
3n(2k′(k+ 1) + k) modular multiplications and 2kn floating-point operations in
the complex scaling in Section 4.5. Hence other than the NTTs, we have a total
of (3k + 1)n floating point operations and (2k2 + 10kk′ + 11k + 14k′)n modular
multiplications. (The more sophisticated homomorphic multiplication procedure
in [3] has essentially the same complexity, i.e., same coefficient for the quadratic
term of k and similar coefficients for the linear terms of k and k′.)

5 Implementation Details and Performance Results

5.1 Implementation Details

Software Implementation. The BFV scheme based on the decryption and
homomorphic multiplication algorithms described in this paper was implemented
in PALISADE7, a modular C++11 lattice cryptography library that supports
several SHE and proxy re-encryption schemes based on cyclotomic rings [17]. The
results presented in this work were obtained for a power-of-two cyclotomic ring
Z[x]/ 〈xn + 1〉, which supports efficient polynomial multiplication using Fermat
Theoretic Transform [2]. For efficient modular multiplication implementation in
NTT, scaling, and CRT basis extension, we used the Number Theory Library
(NTL)8 function MulModPrecon, which is described in Lines 5-7 of Algorithm
2 in [12]. All single-precision integer computations were done in unsigned 64-bit
integers. Floating-point computations were done in IEEE 754 double-precision
floating-point format.

Our implementation of the BFV scheme is publicly accessible (included in
PALISADE starting with version 1.1).

Parameter Selection. To select the ciphertext modulus q, we used the correct-
ness constraints presented in Section 3.5 of [14]. The polynomial multiplication
expansion factor δR = sup {‖ab‖∞/‖a‖∞‖a‖∞ : a, b ∈ R} was set to

√
n by ap-

plying the Central Limit Theorem since all dominant polynomial multiplication
terms result from the multiplication of polynomials with zero-centered random

7 https://git.njit.edu/palisade/PALISADE
8 http://www.shoup.net/ntl/
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coefficients. We empirically confirmed the correctness of this average-case anal-
ysis by running a large number of experiments for various multiplicative depths.

To choose the ring dimension n, we ran the LWE security estimator9 (commit
58662bc) [1] to find the lowest security levels for the uSVP, decoding, and dual
attacks following the standard homomorphic encryption security recommenda-
tions [7]. We selected the least value of the number of security bits λ for all 3
attacks on classical and quantum computers based on the estimates for the BKZ
sieve reduction cost model.

The secret-key polynomials were generated using discrete ternary uniform
distribution over {−1, 0, 1}n. In all of our experiments, we selected the minimum
ciphertext modulus bitwidth that satisfied the correctness constraint for the
lowest ring dimension n corresponding to the security level λ > 128.

Loop parallelization. Multi-threading in our implementation is achieved via
OpenMP10. The loop parallelization in the scaling and CRT basis extension
operations is applied at the level of single-precision polynomial coefficients (w.r.t.
n). The loop parallelization for NTT and component-wise vector multiplications
(polynomial multiplication in the evaluation representation) is applied at the
level of CRT moduli (w.r.t. k).

Experimental setup. We ran the experiments in PALISADE version 1.1, which
includes NTL version 10.5.0 and GMP version 6.1.2. The evaluation environment
for the single-threaded experiments was a commodity desktop computer system
with an Intel Core i7-3770 CPU with 4 cores rated at 3.40GHz and 16GB of
memory, running Linux CentOS 7. The compiler was g++ (GCC) 5.3.1. The
evaluation environment for the multi-threaded experiments was a server system
with 2 sockets of 16-core Intel Xeon E5-2698 v3 at 2.30GHz CPU (which is a
Haswell processor) and 250GB of RAM. The compiler was g++ (GCC) 4.8.5.

5.2 Results

Single-threaded mode. Table 1 presents the timing results for the range of
multiplicative depths L from 1 to 50 for the single-threaded mode of operation.
It also demonstrates the contributions of CRT basis extension, scaling, and NTT
to the total homomorphic multiplication time (excluding the relinearization).

Table 1 suggests that the relative contribution of CRT basis extension and
scaling operations to the homomorphic multiplication runtime (without relin-
earization) grows from 34% at L = 1 up to 46% for L = 50. The remaining
execution time is dominated by NTT operations. Our complexity and profil-
ing analysis indicated that this increase in relative execution time is due to
the O(k2n) modular multiplications needed for CRT basis extension and scaling
operations, which start contributing more than the O(kn log n) modular multi-
plications in the NTT operations for polynomial multiplications as k increases.

Our profiling analysis of CRT basis extension and scaling showed that the
contribution of floating-point operations to each of these functions was under 5%,

9 https://bitbucket.org/malb/lwe-estimator
10 http://www.openmp.org/
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which corresponded to at most 2.5% of the total homomorphic multiplication
time (for most settings, this contribution did not exceed 1%). This result justifies
the practical use of our much simpler algorithms, as compared to [3], considering
that both approaches have approximately the same computational complexity.

Table 1 also shows that the contribution of the relinearization procedure to
the total homomorphic multiplication time grows from 10% (L = 1) to 45% (L =
50) due to the quadratic dependence of the number of NTTs in the relinearization
procedure on the number of coprime moduli k.

The profiling of the decryption operation showed that only 6% (L = 50)
to 10% (L = 10) was spent on CRT scaling while at least 75% was consumed
by NTT operations and up to 10% by component-wise vector products. This
supports our analysis, asserting that the decryption operation is dominated by
NTT, and the effect of the scaling operation is insignificant.

Since the performance is dominated by NTTs (for which there is no difference
between our implementation and the one in [3]), the runtimes of decryption and
homomorphic multiplication are very similar between the two implementations.

Table 1: Timing results for decryption, homomorphic multiplication, and relin-
earization in the single-threaded mode; t = 2, log2 qi ≈ 47, λ > 128

L n log2 q k Dec. [ms] Mul. [ms] Relin. [ms]
Multiplication [%]

CRT ext. Scaling NTT
1 212 94 2 0.76 15.9 1.76 27 7 60
5 213 141 3 2.30 46.3 7.42 26 8 62
10 214 235 5 7.79 158 39.8 24 9 62
20 214 376 8 13.0 258 91.6 25 12 59
30 215 564 12 42.3 858 476 26 14 56
50 216 940 20 149 3,339 2,705 28 18 51

Multi-threaded mode. Table 2 illustrates the runtimes for L = 20 on a 32-core
server system when the number of threads is varied from 1 to 32. The highest
runtime improvement factors for decryption and homomorphic multiplication
(with relinearization) are 4.5 and 6.0, respectively.

The decryption runtime is dominated by NTT, and the NTTs are paral-
lelized at the level of CRT moduli (parameter k, which is 8 in this case). Ta-
ble 2 shows that the maximum improvement is indeed achieved at 8 threads.
Any further increase in the number of threads increases the overhead related to
multi-threading without providing any improvement in speed. The theoretical
maximum improvement factor of 8 is not reached most likely due to the distri-
bution of the load between the cores of two sockets in the server. A more careful
fine-tuning of OpenMP thread affinity settings would be needed to achieve a
higher improvement factor, which is beyond the scope of this work.

The runtime of homomorphic multiplication (without relinearization) shows
a more significant improvement with increase in the number of threads: it contin-
ues improving until 32 threads and reaches the speedup of 7.4 compared to the
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Table 2: Timing results with multiple threads for decryption, multiplication, and
relinearization, for the case of L = 20, n = 214, k = 8 from Table 1

# of threads Dec. [ms] Mul. [ms] Relin. [ms] Mul. + Relin. [ms]
1 13.59 266.8 107.4 374.2
2 7.53 155.0 57.0 212.0
3 5.95 112.1 46.4 158.5
4 4.45 90.7 34.0 124.7
5 4.61 79.3 35.2 114.5
6 4.68 72.0 35.9 107.9
7 4.61 67.5 36.0 103.5
8 3.04 58.5 24.5 83.0
9 3.19 49.8 25.1 74.9

16 3.46 46.6 25.7 72.3
17 3.42 40.6 25.8 66.4

32 3.47 35.9 26.9 62.7

single-threaded execution time. This effect is due to the CRT basis extension and
scaling operations, which are parallelized at the level of polynomial coefficients
(parameter n = 214). However, as the contribution of NTT operations is high
(nearly 60% for the single-threaded mode, as illustrated in Table 1), the bene-
fits of parallelization due to CRT basis extension and scaling are limited (their
relative contribution becomes smaller as the number of threads increases).

The relinearization procedure is NTT-bound and, therefore, shows approxi-
mately the same relative improvement as the decryption procedure, i.e., a factor
of 4.4, which reaches its maximum value at 8 threads.

In summary, our analysis suggests that the proposed CRT basis extension
and scaling operations parallelize well (w.r.t. ring dimension n) but the over-
all parallelization improvements of homomorphic multiplication and decryption
largely depend on the parallelization of NTT operations. In our implementa-
tion, no intra-NTT parallelization was applied and thus the overall benefits of
parallelization were limited.

6 Conclusion and Future Work

In this work we described simpler alternatives to the CRT basis-extension and
scaling procedures of Bajard et al. [3], and implemented them in the PALISADE
library [16]. There is still plenty of room for improving this implementation; a
few directions that we plan to experiment with include the following:

– Better relinearization. Fan and Vercauteren described in [8] an alternative re-
linearization procedure, using techniques similar to the BGV-relinearization
in [10]. Implementing this method could save a significant number of NTTs.

17



– Larger moduli. We also plan to use higher-precision floating-point numbers to
support larger CRT moduli. Switching from 47-bit moduli to 60-bit moduli
would result in fewer moduli and hence fewer operations.

We hope that using the above approaches, we can obtain an implementation of
the BFV scheme with performance close to the BGV implementation from [11].
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A Appendices

A.1 Alternative variant of complex scaling in CRT representation

This section presents an alternative (slightly more efficient) variant of complex
scaling in CRT representation. This variant has a reduced size requirement for
p (by a factor of t) and very similar computational complexity.

The input is x ∈ Zqp, represented in the CRT basis {q1, . . . , qk, p1, . . . , pk′}.
We need to scale it by t/q and round, and we want the result modulo q in
the CRT basis {q1, . . . , qk}. Namely, we want to compute

[
dt/q · xc

]
qi

for all i.

We combine techniques from the two procedures above, computing the ratio υ
as in Section 2.2, then computing Eq. 3 modulo each of the qi’s similarly to
Section 2.3. Let us denote: Q := qp, Q∗i := Q/qi = q∗i p, Q

′
j
∗

:= Q/pj = qp∗j ,

and also Q̃i = [(Q∗i )−1]qi and Q̃′j = [(Q′j
∗
)−1]pj

. Then by Eq. 3 we have

t

q
· x =

t

q

( k∑
i=1

[xiQ̃i]qiQ
∗
i +

k′∑
j=1

[x′jQ̃
′
j ]pjQ

′
j
∗

+ υQ
)

=

k∑
i=1

[xiQ̃i]qi · tp/qi +

k′∑
j=1

[x′jQ̃
′
j ]pj
· tp∗j + υtp, (5)

and the ratio υ is computed as

υ =

⌈∑k
i=1[xiQ̃i]qiQ

∗
i +

∑k′

j=1[x′jQ̃
′
j ]pj

Q′j
∗

Q

⌋
=


k∑

i=1

[xiQ̃i]qi
qi

+

k′∑
j=1

[x′jQ̃
′
j ]pj

pj

 .
We thus compute yi := [xiQ̃i]qi and zi = yi/qi for all i, and y′j := [x′jQ̃

′
j ]pj

and

z′j = y′j/pj for all j, and set υ :=
⌈∑

i zi +
∑

j z
′
j

⌋
.

As in Section 2.3, we pre-compute all the values tp/qi
qi

, breaking them into

their integral and fractional parts, tp
qi

= ω′i+θ
′
i with ω′i ∈ Ztp and θ′i ∈ [− 1

2 ,
1
2 ). We

store all the θ′i’s as double floats, and for every i, i′ we store the single-precision
integer ω′i,i′ = [ω′i′ ]qi . In addition, and for every i, j we store ζi,j = [tp∗j ]qi , and
for every i we store λj := [tp]qi .

On inputs (x1, . . . , xk, x
′
1, . . . , x

′
k′) we compute υ and all the yi’s and y′j ’s as

above, then compute Eq. 5 modulo each of the qi’s, by setting

v′ := d
∑

i θ
′
iyic , and for all i w′i :=

[∑
i′ yi′ω

′
i,i′ +

∑
j y
′
jζi,j + υλj

]
qi
.

The complex scaling procedure returns [dt/q · xc]qi = [v′ + w′i]qi for all i.

Correctness. This procedure has two possible sources of errors, namely the
rounding operation when computing the ratio υ, and the rounding operation
when computing v′. The error when computing υ is handled just as in the CRT-
extension procedure from Section 2.2: The inaccuracy there is bounded for our
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parameters by ε ≤ 2−48, and we must check that the value before rounding does
not fall in the error region Z+ 1

2 ±ε and take some corrective measures if it does.
Regarding the error when setting the value v′ := d

∑
i θ
′
iyic, we can bound

the floating-point inaccuracy before rounding below 1/4, just as in the simple
scaling procedure from Section 2.3. However, when we use complex scaling during
homomorphic multiplication, we do not have the guarantee that the exact value
before rounding is close to an integer. We thus may encounter rounding errors
where instead of rounding to the nearest integer, we will round to the second
nearest.

For our purposes, when we use complex scaling in the context of homo-
morphic multiplication, such “rounding errors” are perfectly acceptable, as the
rounding error is only added to the ciphertext noise. Specifically, when analyz-
ing the scaled ciphertext, we have a term of the form 〈sk∗, ε〉, where ε is the
rounding error and we rely on it to be small (cf. Eq. 6 in Section A.2). Had
we computed v with full accuracy, we could argue that the coefficients of ε are
bounded in magnitude below 1/2. But since we have an additional floating-point
error of upto 1/4, in our case some coefficients of ε could be as large as 3/4. This
adds less than one bit to the noise even in the worst case, in our tests the actual
effect on the noise was too small to be noticed.

Complexity analysis. Computing υ and the yi’s and y′j ’s takes k+k′ modular
multiplications and k+k′+1 floating point operations. Then computing v′ takes
k + 1 more floating-point operations, and computing each w′i takes k + k′ + 1
modular multiplications. In total, complex CRT scaling therefore takes 2k +
k′ + 2 floating point operations and kk′ + k2 + 2k + k′ single-precision modular
multiplications.

A.2 Brakerski’s Scheme

The starting point for Brakerski’s scheme is Regev’s encryption scheme [18], with
plaintext space Zt for some modulus t > 1, where secret keys and ciphertexts are
dimension-n vectors over Zn

q for some other modulus q � t. (Throughout this
section we assume for simplicity of notations that q is divisible by t. It is well
known that this condition in superfluous, however, and replacing q/t by dq/tc
everywhere works just as well.)

The decryption invariant of this scheme is that a ciphertext ct, encrypting a
message m ∈ Zt relative to secret key sk, satisfies

[〈sk, ct〉]q = m · q/t+ e, for a small noise term |e| � q/t,

where 〈·, ·〉 denotes inner product. Decryption is therefore implemented by set-

ting m :=
[ ⌈

t
q · [〈sk, ct〉]q

⌋ ]
t
. 11 Homomorphic addition of two ciphertext vec-

tors ct1, ct2 consists of just adding the two vectors over Zq, and has the effect

11 We ignore the encryption procedure in this section, since it is mostly irrelevant for
the current work. For suitable choices, Regev proved that this encryption scheme is
CPA-secure under the LWE assumption.
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of adding the plaintexts and also adding the two noise terms. Homomorphic
multiplication is more involved, consisting of the following parts:

Key generation. In Brakerski’s scheme, the secret key sk must also be small,
namely ‖sk‖ � q/t. Moreover, the public key includes a “relinearization gadget”,

consisting of log q matrices Wi ∈ Zn×n2

q . Denoting the tensor product of sk with

itself (over Z) by sk∗ = sk⊗ sk ∈ Zn2

, the relinearization matrices satisfy

[sk×Wi]q = 2isk∗ + e∗i , for a small noise term ‖e∗‖ � q/t.

Homomorphic multiplication. Let ct1, ct2 be two ciphertexts, satisfying the
decryption invariant [〈sk, cti〉]q = mi · q/t + ei. Homomorphic multiplication
consists of:

1. Tensoring. Taking the tensor product ct1 ⊗ ct2 without modular reduction,
then scaling down by t/q, hence getting ct∗ :=

[
dt/q · ct1 ⊗ ct2c

]
q
.

2. Relinearization. Decomposing ct∗ into bits ct∗i ∈ {0, 1}n
2

(where ct∗ =∑
i 2ict∗i ), then setting ct× := [

∑
iWi × ct∗i ]q.

To see that ct× is indeed an encryption of the product m1m2 relative to sk,
denote the rational vector before rounding by ct′ = t/q · ct1 ⊗ ct2, and the
rounding error by ε (so ct∗ = ε+ ct′ + q · something), and we have

〈sk∗, ct′〉 =
〈
sk⊗ sk, t

qct1 ⊗ ct2

〉
= t/q · (〈sk, ct1〉 · 〈sk, ct2〉

= t/q · (m1 · q/t+ e1 + k1q)(m2 · q/t+ e2 + k2q)

= m1m2 · q/t+ e1m2 +m1e2 + e1e2t/q + t(k1 + k2)︸ ︷︷ ︸
e′�q/t

+q · something.

Including the rounding error, and since sk is small (and hence so is sk∗), we get

〈sk∗, ct∗〉 = 〈sk∗, ε+ ct′ + k∗q〉 = m1m2 · q/t+ e′ + 〈sk∗, ε〉︸ ︷︷ ︸
e′′�q/t

+q · something,

(6)
so ct∗ encrypts m1m2 relative to sk∗. After relinearization, we have〈

sk, ct×
〉

= sk×
∑
i

Wi × ct∗i =
∑
i

〈
(2isk∗ + e∗i ), ct∗i

〉
=
〈
sk∗,

∑
i

2ict∗i
〉

+
∑
i

〈e∗i , ct∗i 〉 = m1m2 · q/t+ e′′ +
∑
i

〈e∗i , ct∗i 〉︸ ︷︷ ︸
ẽ

(mod q).

Since the ct∗i ’s are small then so is the noise term ẽ, as needed.
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