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Abstract Current estimation techniques for the probability of decryp-
tion failures in Ring/Mod-LWE/LWR based schemes assume indepen-
dence of the failures in individual bits of the transmitted message to
calculate the full failure rate of the scheme. In this paper we disprove
this assumption both theoretically and practically for schemes based on
Ring/Mod-Learning with Errors/Rounding. We provide a method to es-
timate the decryption failure probability, taking into account the bit fail-
ure dependency. We show that the independence assumption is suitable
for schemes without error correction, but that it might lead to under-
estimating the failure probability of algorithms using error correcting
codes. In the worst case, for LAC-128, the failure rate is 248 times big-
ger than estimated under the assumption of independence. This higher-
than-expected failure rate could lead to more efficient cryptanalysis of
the scheme through decryption failure attacks.

Keywords: Lattice cryptography, Ring-LWE, Error Correcting Codes,
Decryption Failures

1 Introduction

Due to the recent developments in quantum computing and its threat to current
asymmetric key schemes, the cryptographic community has increased its efforts
towards the development of post-quantum cryptography, resulting in the NIST
Post-Quantum Standardization Process. Several submissions to this process are
built on top of the Learning with Errors (LWE) hard problem. These are fre-
quently combined with the usage of polynomial matrix elements, resulting in
Ring-LWE or Mod-LWE schemes such as New Hope [1], LAC [11], LIMA [13],
R.Emblem [12] and Kyber [2]. Some schemes further reduce their communica-
tion bandwidth by replacing the pseudorandomly generated errors terms with
rounding errors, resulting in Ring-LWR and Mod-LWR schemes as in Round2
[8] and Saber [3] respectively.

For most of the above encryption schemes there is a small probability of a
decryption failure, in which the decryption of the encoded message returns a
faulty result, where one or more message bits are flipped. As these failure events
depend on the secret key, they might compromise the security of the scheme.



Therefore, most candidates of the Post-Quantum Standardization Process aim
for a failure probability around 2−128. To reduce the failure rate, some schemes
utilize error correcting codes (ECC) to make the decryption resilient against a
certain number of errors. The NIST candidate LAC [11] relies on extensive error
correction, and Fritzmann et al. [6] made a study on the positive impact of the
usage of ECC’s on the security and bandwidth of lattice-based schemes.

A chosen ciphertext attack against Ring-Learning with Errors (Ring-LWE)
schemes exploiting decryption failures was reported by Fluhrer [5]. This attack
uses knowledge of failing ciphertexts to retrieve the secret. D’Anvers et al. [4] an-
alyzed a decryption failure attack on (Ring/Mod)-LWE/LWR schemes that have
protection against chosen ciphertext attacks. The security risk of decryption fail-
ures is also reflected in the post-quantum versions [9,10] of the Fujisaki-Okamoto
transformation [7], which converts a chosen plaintext secure encryption scheme
in a chosen ciphertext secure key encapsulation mechanism (KEM). The security
bound of these transformations contains a term considering decryption failures.
As this term is quadratic in the failure rate of the underlying scheme, it has an
important effect on the security bound.

Consequently, the failure probability is an important factor in the security
of these schemes and should be determined precisely. The common approach
for computing this probability is calculating the failure rate for one bit of the
message, from which the full failure rate is determined assuming the failures
between the individual bits are independent.

In this paper, we examine this independence assumption. First we show both
theoretically as well as experimentally that this assumption is not correct for
Ring/Mod-LWE/LWR based schemes. Then, we develop a method to handle
the dependency issue in the failure rate calculation. We calculate the failure rate
for variants of LAC and validate our method using experimental data. Finally,
we discuss the implications of the dependency in different scenarios: for schemes
without error correcting codes, we reason that the assumption of independence
leads to a slight overestimation of the failure probability. Looking into schemes
using error correcting codes to reduce the failure rate, we show that the indepen-
dence assumption can lead to an underestimation of the failure rate, and thus
an overestimation of the security of the underlying scheme. In the most extreme
case for LAC-128, the failure rate is overestimated by a factor 248.

2 Preliminaries

2.1 Notation

Let Zq denote the ring of integers modulo q, letRq represent the ring Zq[X]/(Xn+
1) and let Rl1×l2

q designate the ring of l1× l2 matrices over Rq. Polynomials will
be written using lowercase letters, vectors with bold lowercase, and matrices with
bold uppercase. The l2-norm of a polynomial x is defined as ‖x‖2 =

√∑
i x

2
i

and the l2-norm of a vector xxx as ‖xxx‖2 =
√∑

i ‖xi‖22. The rounding operation
bxeq→p for x ∈ Zq, is calculated as bp/q · xe ∈ Zp. The abs() function takes the
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Algorithm 1: PKE.KeyGen()

1 seedAAA ← U({0, 1}256)

2 AAA← gen(seedAAA) ∈ Rl×l
q

3 sssA ← χs(Rl×1
q ), eeeA ← χe(Rl×1

q )
4 bbb = bAAAsssA + eeeAeq→p

5 return (pk := (bbb, seedAAA), sk := sssA)

absolute value of its input. These operations are extended coefficient-wise for
polynomials and vectors. Let ai, with a ∈ Rq denote the ith coefficient of a, and
denote with aaai for aaa ∈ Rl×1

q the (i mod l)th coefficient of the bi/lcth polynomial
of aaa.

Let x← χ(Rq) indicate sampling the coefficients of x ∈ Rq according to dis-
tribution χ. The sampling operation is extended coefficient-wise for vectors xxx ∈
Rl×1

q as xxx← χ(Rl×1
q ). Let Binom(k, n, p) be the cumulative binomial distribution

with n draws and probability p, so that Binom(k, n, p) =
∑bkc

i=0

(
n
i

)
pi(1 − p)n−i

and let hypergeom(k,N,K, n) be the hypergeometric distribution with popula-
tion size N , success states K and draws n as defined by:

hypergeom(k,N,K, n) =

(
K
k

)(
N −K
n− k

)
(
N
n

) , (1)

where:

(
a
b

)
=

a!

b!(a− b)!
. (2)

2.2 Ring/Mod-LWE/LWR based encryption

A general framework for Ring/Mod-LWE-LWR based encryption schemes is pro-
vided in Algorithms 1 to 3. The algorithm uses the function gen to generate the
pseudorandom matrix AAA from a seed seedAAA, the function enc to encode the
message m into an element of Rq and the inverse function dec to decode a
polynomial back into a message bitstring. The latter decodes coefficients of the
polynomial correctly if the deviation from the initial encoded polynomial coef-
ficient is at most ±q/4. If error correcting codes are used in the scheme, the
function ecc enc adds extra redundancy to the bitstring m to enable error cor-
rection, while ecc dec recovers the original message if the number of flipped
bits between mecc and m′ecc is less than a threshold d, which depends on the
chosen error correcting code (ECC). When no error correcting codes are used,
the functions ecc enc and ecc dec act as the identity and return their input.
The encryption algorithm PKE.Enc uses the seed r to pseudorandomly generate
sss′B , eee

′
B and e′′B .

By choosing l = 1, one obtains a Ring based scheme, while a bigger value of l
indicates a module (Mod) based scheme. In Mod/Ring-LWE based schemes, the
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Algorithm 2: PKE.Enc(pk = (bbb, seedAAA),m, r)

1 AAA← gen(seedAAA) ∈ Rl×l
q

2 sss′B ← χs(Rl×1
q ), eee′B ← χe(Rl×1

q )
3 e′′B ← χe(Rq)
4 bbbr = bbbbep→q

5 bbb′ = bAAATsss′B + eee′Beq→p

6 mecc = ecc enc(m)

7 v′ = bbbbTr sss′B + e′′B + enc(mecc)eq→t

8 return c = (v′, b′b′b′)

Algorithm 3: PKE.Dec(sk = sssA, c = (v′, b′b′b′))

1 bbb′r = bbbb′ep→q

2 v′r = bv′et→q

3 v = bbb′Tr sssA
4 m′ecc = dec(v′r − v)
5 m′ = ecc dec(m′ecc)
6 return m′

error distribution χe is nonzero, in contrast to Mod/Ring-LWR based schemes
where χe = 0. In the latter case, parameters p and t are smaller than q, so that the
rounding operations b·eq→p and b·eq→t introduce the errors necessary for security.
The rounding additionally compresses the ciphertexts. The rounding operations
b·ep→q and b·et→q decompress the input back to approximately the original value.
The error introduced by these rounding and reconstruction operations will be
denoted as follows:

uuuA = AAAsssA + eeeA − bbbr, (3)

uuu′B = AAATsss′B + eee′B − bbb′r, (4)

u′′B = bbbTr sss
′
B + e′′B + enc(mecc)− v′r . (5)

As a first step in determining the error probability of the encryption scheme,
we can calculate the value of v′r − v as follows:

v′r − v = (bbbTr sss
′
B + e′′B + bq/2cenc(mecc) + u′′B)− bbb′Tr sssA (6)

= enc(mecc) + (eeeA + uuuA)Tsss′B − (eee′B + uuu′B)TsssA + (u′′B + e′′B) (7)

The distribution of one coefficient of −(eee′B +uuu′B)TsssA+(eeeA+uuuA)Tsss′B +(u′′B +e′′B)
can be calculated exhaustively. For the sake of convenience, we will rewrite this
as cccTsss + g, where sss is the vector constructed as the concatenation of −sssA and
(eeeA + uuuA), where ccc is constructed similarly as the concatenation of (eee′B + uuu′B)
and sss′B , and where g = u′′B + e′′B :
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Algorithm 4: KEM.Encaps(pk)

1 m← U({0, 1}256)
2 r = G(m)
3 c = PKE.Enc(pk,m, r)
4 K = H(r)
5 return (c,K)

sss =

(
−sssA

eeeA + uuuA

)
, ccc =

(
eee′B + uuu′B
sss′B

)
, g = u′′B + e′′B . (8)

A coefficient of the polynomial v′r − v decodes correctly if the absolute value
of the corresponding coefficient of the error term cccTsss+ g is smaller than q/4. A
higher value results in a flipped bit after decoding, which will be called a bit error
and will be denoted with Fi with i the position of the bit in the message. If the
number of bit errors exceeds the threshold for error correction d, a decryption
failure occurs, which we will denote with the symbol F . A correct decryption
will be denoted with S, so that by definition P [S] = 1− P [F ].

In Table 1, the parameters for LAC-128 and LAC-256 [11] are given. These
schemes are used throughout this paper to validate our methodology, as their
high failure rate and significant error correction causes their failure rate calcula-
tion to be more sensitive to error dependencies. Due to the choices of the moduli
q, p and t, the rounding errors uuuA, uuu′B equal the zero vector and u′′B is the zero
polynomial.

q p t n l d

LAC-128 251 251 251 512 1 29
LAC-256 251 251 251 1024 1 55

Table 1: Parameters for LAC

2.3 Key Encapsulation Mechanism

From an IND-CPA secure encryption scheme, an IND-CCA secure Key Encap-
sulation Mechanism (KEM) can be constructed using a post-quantum version [9]
of the Fujisaki-Okamoto transformation. The key generation phase is the same
as Algorithm 1 and the Encapsulation and Decapsulation functions are defined
in Algorithms 4 and 5 respectively, with G and H hash functions that model
Random Oracles.
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Algorithm 5: KEM.Decaps(sk, pk)

1 m′ = PKE.Dec(sk, c)
2 r′ = G(m′)
3 c′ = PKE.Enc(pk,m′, r′)
4 if c = c′ then
5 return K = H(r)
6 else
7 return K =⊥

3 Error dependency

The typical method to calculate the failure rate, is to determine the error prob-
ability of a single bit of m′ecc, calculated as pb = P [|(cccTsss+ g)i| > q/4], and then
assume independence to extend this error probability to the full failure rate.
For a scheme that does not use any error correction, this can be expressed as
1− (1− pb)lm or 1− Binom(0, lm, pb), with lm the length of the encoded message
mecc. For schemes that deploy error correcting codes with a correction capability
of d errors, the failure rate amounts to 1− Binom(d, lm, pb).

However, this assumption of independence is not correct. In this section we
will show both theoretically and experimentally that there is a positive correla-
tion between the errors of the bits in m′ecc. Intuitively, one can make the following
reasoning: (cccTsss + g) with high norm for sss and ccc is more likely to produce bit
errors, and conversely, bit errors are also more likely to stem from high norm sss
and ccc. Therefore, a bit error at a certain location, increases the expected norm
of sss and ccc, therefore increasing the bit error probabilities at other locations. In
conclusion, bit errors are expected to be positively correlated.

In Figure 1, the probability of various number of bit errors in m′ecc is plot-
ted for LAC-256, both experimentally by running the protocol for approxi-
mately 231 times, and theoretically under the independence assumption as 1 −
Binom(0, lm, pb), where pb is determined experimentally. The choice for LAC
stems from the fact that the error probability of a bit of m′ecc is large compared
to other schemes, making it possible to experimentally obtain enough errors to
get accurate estimations. In Figure 1, one can see that the errors are clustered:
there are more messages without errors and more messages with a high number
of errors than predicted by the theoretical model, which confirms our hypothesis
that the bit errors are positively correlated. Note that the error probability of
a single bit is the same for the model and the experimental data, and that the
errors are just more clustered compared to the prediction of the model.

3.1 Handling the dependency

In this section, we will develop a methodology to calculate the failure rate taking
into account the dependency between the errors in the bits of m′ecc. For the sake
of simplicity, we will first assume that there is no error correcting code.

6



0 5 10 15 20 25
number of flipped bits in the message

2 26

2 23

2 20

2 17

2 14

2 11

2 8

2 5

2 2

pr
ob

ab
ilit

y

theoretical
experimental

Figure 1: The probability of a certain number of errors in m′ecc

1− P [F ] = P [S] (9)

= P [S0 · · ·Sn] (10)

Under the independence assumption, one can derive the formulas of the previous
section as follows:

1− P [F ] =
∏
i

P [Si] (11)

= (1− P [F0])n (12)

However step (11) is not valid if this assumption does not hold. To work around
this issue, we involve conditional information in the form of sss, ccc and g:

1− P [F ] =
∑
sss,ccc,g

P [S0 · · ·Sn |sss, ccc, g]P [sss, ccc, g] (13)

As the Si’s are fully determined conditioned on sss, ccc and g, the error or success
of other bits does not convey any extra information. Therefore, the bit successes
Si are independent conditioned on the extra information, so we can write:

1− P [F ] =
∑
sss,ccc,g

∏
i

(P [Si |sss, ccc, g])P [sss, ccc, g] (14)

=
∑
sss,ccc,g

(1− P [F0 |sss, ccc, g])
n
P [sss, ccc, g] (15)
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Unfortunately, this expression is not efficiently computable.
Note that the e′′B term of gj does not add any information to Si if j 6= i and

that its coefficients are independent. We will assume that this is also the case
for u′′B , so we can write:

P [Si|sss, ccc, g] ≈ P [Si|sss, ccc, gi] (16)

From this result we can see that g has little or no contribution to the de-
pendency between the Si. As discussed in Section 3, the norm of sss and ccc is an
important cause of dependency. For rings of the form Z[X]/(Xn + 1) we could
assume that this is the main cause of correlation, as different coefficients of cccTsss
are calculated with different combinations of elements of ccc and sss, which can be
formalized as follows:

Assumption 1. For sss, ccc and g as described in equation (8), where g and the
coefficients of sss and ccc are elements of the ring Z[X]/(Xn + 1), we can approx-
imate S0 · · ·Sn to be independent conditioned on ‖sss‖2, ‖ccc‖2, which is equivalent
to P [S0 · · ·Sn | ‖sss‖2, ‖ccc‖2] ≈

∏
i P [Si | ‖sss‖2, ‖ccc‖2].

Using this assumption we write:

1− P [F ] =
∑

‖sss‖2,‖ccc‖2

P [S0 · · ·Sn | ‖sss‖2, ‖ccc‖2]P [‖sss‖2, ‖ccc‖2] (17)

≈
∑

‖sss‖2,‖ccc‖2

∏
i

(P [Si | ‖sss‖2, ‖ccc‖2])P [‖sss‖2, ‖ccc‖2] (18)

≈
∑

‖sss‖2,‖ccc‖2

(P [S0 | ‖sss‖2, ‖ccc‖2])
n
P [‖sss‖2]P [‖ccc‖2] (19)

≈
∑

‖sss‖2,‖ccc‖2

(1− P [F0 | ‖sss‖2, ‖ccc‖2])
n
P [‖sss‖2]P [‖ccc‖2] (20)

Using a similar derivation, the failure rate for schemes with error correction
under Assumption 1 can be calculated as:

1− P [F ] ≈
∑

‖sss‖2,‖ccc‖2

(1− Binom(d, lm, pb))P [‖sss‖2]P [‖ccc‖2] (21)

where: pb = P [F0 | ‖sss‖2, ‖ccc‖2] (22)

To conclude, one has to calculate the failure rate for every value of ‖sss‖2 and
‖ccc‖2, after which the failure rate can be found by taking a weighted average. The
model from equation (20) can be seen as an intermediate between the model from
equation (12) that was constructed using the independence assumption, and the
exact but incalculable model from equation (15). In this intermediate model, the
main source of correlation between the Si, following Assumption 1, is taken into
account. In the next section we will experimentally assess our intermediate model
and observe that it closely represents the experimental data, thus validating our
assumption.
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3.2 Experiments

To validate the developed methodology, we ran LAC-256 approximately 231 times
to get experimental data on the probability of a certain number of failures in
m′ecc. We calculated the same probability using the assumption of independence
and our dependency aware model.

In general P [F0 | ‖sss‖2, ‖ccc‖2] can be calculated using a gaussian assumption
on the distribution of cccTsss + g as described in [4]. For our calculations of LAC
we use a more exact algorithm using the fact that the elements of ccc,sss and g
are ternary. Intuitively, we first calculate the probability that a certain number
l of nonzero coefficients of ccc and sss coincide during the multiplication, expressed
as P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2]. Then, we assume the term (cccTsss)0 given
(abs(ccc)T abs(sss))0 = l to be a sum of l elements randomly picked as plus or
minus 1. The full derivation can be expressed as follows:

pb = P [abs(cccTsss+ g)0 > q/4 | ‖sss‖2, ‖ccc‖2] (23)

=
∑
l

(
P [abs(cccTsss+ g)0 > q/4 | (abs(ccc)T abs(sss))0 = l, ‖sss‖2, ‖ccc‖2]·
P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2]

)
(24)

=
∑
l

(
P [abs(cccTsss+ g)0 > q/4 | (abs(ccc)T abs(sss))0 = l]·
P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2]

)
(25)

=
∑
l

∑
g0

(
P [abs(cccTsss+ g)0 > q/4 | (abs(ccc)T abs(sss))0 = l, g0]·
P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2] · P [g0]

)
(26)

We can model P [(cccTsss)0 > q/4 − g0 | abs(ccc)T abs(sss) = l, g0] as the survival

function of a binomial distribution, which can be calculated as Binom( l−q/4+g0
2 , l, 1/2).

Similarly, P [(cccTsss)0 < −q/4 − g0 | abs(ccc)T abs(sss) = l, g0] can be modelled as

Binom( l−q/4−g0
2 , l, 1/2), so that P [abs(cccTsss + g)0 > q/4 | (abs(ccc)T abs(sss))0 =

l, g0] is the sum of both probabilities. The distribution P [abs(ccc)T abs(sss) =
l | ‖sss‖2, ‖ccc‖2] can be seen as a hypergeometric distribution hypergeom(l, n, ‖sss‖2, ‖ccc‖2).

The probability of a decryption failure is plotted for various error correction
capabilities of the ECC in Figure 2. We can see that our new dependency aware
model outputs a much better estimate of the probabilities of a certain maximum
number of errors. Another observation to be made is that the independency
based model deviates further from the experimental data as the number of errors
increases, which is the case for codes with higher error correction capabilities.
This makes the dependency issue especially important for schemes with extensive
error correction.

4 Implications

As seen in previous sections, the errors in m′ecc are positively correlated, meaning
that an error at a certain position is more likely to happen if another error is
present. The inverse is also true: a correct bit of m′ecc enlarges the probability
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Figure 2: Probability of failure for various error correction capabilities of ecc enc

of other bits in m′ecc to be correct. Therefore, due to the dependency, there will
be more fully correct messages than one would expect under the assumption of
independence. However, as one can see in Figure 2, the impact of the dependency
is small for schemes without error correction. To conclude, an estimate using the
assumption of independence will slightly overestimate the failure rate, and thus
underestimate the security of the scheme with a small margin. As a result, the
approximation using an assumption of independence is legitimate for schemes
without an error correction step.

LAC-128 LAC-256

Independency model 2−233 2−114

Dependency model 2−185 2−92

Overestimation factor 248 222

Table 2: The failure rate of different versions of LAC under the different models

In the case of schemes with error correction, one has to be more careful.
As can be seen in Figure 2, the independence model gives an underestimation
of the failure rate, which corresponds to an overestimation of the security of
the scheme. This overestimation grows as d, the error correction capability of
the ECC, becomes larger. In Table 2, the estimated failure rate of different
versions of LAC is compared under both models. The discrepancy between both
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models reaches a factor 248 in case of LAC-128. Therefore, the assumption of
independence is not valid for schemes with error correction, and that it could
lead to a serious overestimation of the security of the underlying algorithm.

More specifically, a higher failure probability suggests that the scheme is more
vulnerable to a decryption failure attack as described by D’Anvers et al. [4],
where the secrets are estimated statistically based on failing ciphertexts. The
attack becomes more powerful with higher failure rate as it is easier to find these
ciphertexts. Note that the attack also includes a failure boosting technique that
further increases the decryption failure rate.

5 Conclusions

In this paper, we challenged the independency assumption of bit errors in mes-
sages encrypted with (Ring/Mod)-(LWE/LWR) based schemes. We showed both
theoretically and experimentally that the occurrence of errors is positively cor-
related. Then we devised a method to calculate the failure rate of a scheme,
taking into account the dependency of failures. Finally, we showed that the as-
sumption of independence is appropriate for schemes without error correcting
codes, but that it might lead to a substantial underestimation of the failure rate
for schemes with error correcting codes. This underestimation attains a factor
of 248 for LAC-128. A higher-than-expected failure rate could have a serious
impact on the security of the scheme through a decryption failure attack.
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