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Abstract. In this work, we present generalization and optimization of Dilithium,
which is one of the promising lattice-based signature candidates for NIST post-
quantum cryptography (PQC) standardization. This is enabled by new insights
in interpreting the design of Dilithium, in terms of key consensus presented in
the KCL key encapsulation mechanism (KEM) proposal submitted to NIST PQC
standardization. Based on OKCN developed in KCL, we present a generic and
modular construction of lattice-based signature, and make analysis as it is de-
ployed in reality. We thoroughly search and test a large set of parameters in or-
der to achieve better trade-offs among security, efficiency, and bandwidth. On
the recommended parameters for about 128-bit quantum security, compared with
Dilithium, our scheme is more efficient both in computation and in bandwidth.
This work also further justifies and highlights the desirability of OKCN as the
same routine can be used for both KEM and signatures, which is useful to sim-
plify system complexity of lattice-based cryptography. Of independent interest is
a new estimation of the security against key recovery attacks in reality.

1 Introduction

Given the current research status in lattice-based cryptography, it is commonly sug-
gested that lattice-based signature could be subtler and harder to achieve. For instance,
there are more than twenty lattice-based KEM proposals to NIST PQC standardiza-
tion, but only five lattice-based signature proposals [NIST]. Among them, Dilithium
[DLL+17, LDK+17] is one of the most promising lattice-based signature candidates,
for its simplicity, efficiency, small public key size, and resistance against side channel
attacks. Its design is based on a list of pioneering works (e.g., [Lyu09,Lyu12,BG14] and
more), with careful and comprehensive optimizations in implementation and parame-
ter selection. Whether better trade-offs on the already remarkable performance can be
achieved is left in [CRYSTALS] as an interesting open question.

In this work, we present generalization and optimization of Dilithium. This is en-
abled by new insights in interpreting the design of Dilithium, in terms of key consensus
presented in the KCL KEM proposal to NIST PQC standardization [KCL,JZ16]. Based
on the reconciliation mechanism, named optimal key consensus with noise (OKCN),
developed in KCL, we present a generic and modular construction of lattice-based sig-
nature. The construction is generic and versatile, in the sense that we could choose
parameters in a much broader range. We generalize the security analysis of Dilithium
into its realistic setting, where the public key is only a part of the module-LWE (MLWE)
? Corresponding author: Yunlei Zhao, ylzhao@fudan.edu.cn



sample. Of independent interest is a new estimation of the security against key recovery
attacks in reality.

We made efforts to thoroughly search and test a large set of parameters in order
to achieve better trade-offs among security, efficiency, and bandwidth. On the recom-
mended parameters for about 128-bit quantum security, compared with Dilithium our
scheme is more efficient both in computation and in bandwidth. This work further jus-
tifies and highlights the desirability of OKCN as the same routine can be used for both
KEM and signatures, which is useful to simplify system complexity of lattice-based
cryptography.

2 Preliminaries

Without loss of generality, every string in this work is a binary one; for a (binary)
string s ∈ {0, 1}∗, let |s| denote its length by default. For any real number x ∈ R, let
bxc denote the largest integer that is no more than x, and bxe := bx + 1/2c. For any
i, j ∈ Z such that i < j, denote by [i, j] the set of integers {i, i+ 1, · · · , j − 1, j}. For
the positive integers r, α > 0, let r mod α denote the unique integer r′ ∈ [0, α−1] such
that α | (r′ − r), and let r mod± α denote the unique integer r′′ ∈ [−

⌊
α−1

2
⌋
,
⌊
α
2
⌋
]

such that α | (r′′ − r). For an element x ∈ Zq , we write ‖x‖∞ for |x mod± q|.
For a finite set S, |S| denotes its cardinality, and x ← S denotes the operation of

picking an element uniformly at random from the set S. We use standard notations
and conventions below for writing probabilistic algorithms, experiments and interactive
protocols. For an arbitrary probability distribution D, x ← D denotes the operation of
picking an element according to the pre-defined distribution D. If α is neither an al-
gorithm nor a set, then x ← α is a simple assignment statement. If A is a probabilistic
algorithm, thenA(x1, x2, · · · ; r) represents the result of running A on inputs x1, x2, · · ·
and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at random
and outputting y := A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E] we denote the probabil-
ity of event E, after the ordered execution of random processes R1, · · · , Rn.

We say that a function f(λ) > 0 is negligible in λ, if for every c > 0 there exists
a positive λc > 0 such that f(λ) < 1/λc for all λ > λc. Two distribution ensembles
{X(λ, z)}λ∈N,z∈{0,1}∗ and {Y (λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguish-
able, if for any probabilistic polynomial-time (PPT) algorithm D, and for sufficiently
large λ and any z ∈ {0, 1}∗, we have |Pr[D(X(λ, z)) = 1]− Pr[D(Y (λ, z)) = 1]| is
negligible in λ.

2.1 Digital Signature Scheme and Its Security

Definition 1. A digital signature scheme Π consists of three probabilistic polynomial-
time algorithms (KeyGen,Sign,Verify):

• KeyGen is the key generation algorithm that, on input the security parameter 1λ,
outputs (pk, sk).
• Sign is the signing algorithm that, on input the message µ ∈ {0, 1}∗ to be signed

as well the secret key sk, outputs the signature σ.
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• Verify is the deterministic verification algorithm that, on input the public key pk
and the message/signature pair (µ, σ), outputs b ∈ {0, 1}, indicating whether it
accepts the incoming message/signature pair (µ, σ) as a valid one or not.

We say a signature scheme Π = (KeyGen,Sign,Verify) is correct, if any sufficiently
large λ, any (pk, sk)← KeyGen(1λ) and any µ ∈ {0, 1}∗, it holds

Pr[Verify(pk, µ,Sign(sk, µ)) = 1] = 1.

Definition 2 ((Strong) Existential unforgeability under adaptive chosen message
attack, (S)EU-CMA). The security for a signature schemeΠ = (KeyGen,Sign,Verify),
is defined with respect to the following security game between a challenger and an ad-
versary A.

• Setup. On the security parameter λ, the challenger runs (pk, sk) ← KeyGen(1λ).
The public key pk is given to adversaryA (while the secret key sk is kept in private).

• Challenge. Suppose A makes at most s signature queries. Each signature query
consists of the following steps: (1) A adaptively chooses the message µi ∈ {0, 1}∗,
1 ≤ i ≤ s, based upon its entire view, and sends µi to the signer; (2) Given the
secret key sk as well as the message µi to be signed , the signer generates and sends
back the associated signature, denoted σi, to A.

• Output. Finally,A outputs a pair of (µ, σ), and wins if (1) Verify(pk, µ, σ) = 1 and
(2) (µ, σ) 6∈ {(µ1, σ1), · · · , (µqs

, σqs
)}.

We define AdvSigseu-cma
Π,A (1λ) to be the probability that A wins in the above game,

taken over the coin tosses of KeyGen, A and of the challenger (as well as that of the
random oracle). We say the signature scheme Π is strongly existentially unforgeable
under adaptive chosen-message attack, if AdvSigseu-cma

Π,A (1λ) = negl(λ) holds for any
probabilistic polynomial-time adversary A.

A slightly weaker definition could be defined in the similar manner, where the security
game is almost the same as the foregoing one, except that it is only required that µ 6∈
{µ1, · · · , µqs

}. And the signature scheme is called (standard) existentially unforgeable
under adaptive chosen-message attack, if no probabilistic polynomial-time adversary
can win in this modified security game with non-negligible advantage.

2.2 Module-LWE and Module-SIS

In this work, let n ≥ 8 be a power-of-two integer, and let q > 17 denotes a positive
rational prime such that 2n | (q−1). In our signature scheme, we always have n = 256
and q = 4191233. Also, letR andRq denote the rings Z[x]/〈xn+1〉 and Zq[x]/〈xn+
1〉, respectively. For the element w =

∑n−1
i=0 wix

i ∈ R, its `∞-norm is defined as
‖w‖∞ := max

i
‖wi‖∞. Likewise, for the element w = (w1, · · · , wk) ∈ Rk, its `∞-

norm is defined as ‖w‖∞ := max
i
‖wi‖∞. In particular, Let Sη denote all elements

w ∈ R such that ‖w‖∞ ≤ η.
The hard problems underlying the security of our signature scheme are Module-LWE

(MLWE) and Module-SIS (MSIS). They were well studied in [LS15] and could be seen
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as a generalization of the Ring-LWE [LPR10] and Ring-SIS problems [LM06, PR06],
respectively.

Fix the parameter ` ∈ N. The Module-LWE distribution (induced by s ∈ R`q) is the
distribution of the random pair (ai, bi) over the support R`q × Rq , where ai ← R`q
is uniform and bi := aTi s + ei with s ← S`η common to all samples and ei ← Sη
fresh for every sample. Given arbitrarily many samples drawn from the Module-LWE
distribution induced by s ← S`η , the (search) Module-LWE problem asks to recover s.
And the associated Module-LWE assumption states that given A ← Rk×`q and b :=
As + e where k = poly(λ) and (s, e) ← S`η × Skη , no probabilistic polynomial-time
algorithm can succeed in recovering s with non-negligible probability, provided that
the parameters are appropriately chosen. Likewise, given A ← Rh×`q and t ← Rhq
where h = poly(λ), the Module-SIS problem parameterized by β > 0 asks to find
a pre-image x ∈ Rh+`

q such that [A | I] · x = t and ‖x‖ ≤ β. And the associated
Module-SIS assumption states that no probabilistic polynomial-time algorithm can find
a desired pre-image x with non-negligible probability, provided that the parameters are
appropriately chosen.

2.3 Rejection Sampling

Lemma 1 (Rejection Sampling #1). Let f : Zn → R be a probability distribution.
Given a subset V ⊆ Zn, let h : V → R be a probability distribution defined on V . Let
gv : Zn → R be a family of probability distributions indexed by v ∈ V such that for
almost all v’s from h, there exists a universal upper bound M ∈ R such that

Pr
z←f

[M · gv(z) < f(z)] = negl(λ).

Then the output distribution of the following two algorithms have negligible statistical
difference:

1: v← h;
2: z← gv;
3: Output (z, v) with probability min

(
1, f(z)

M·gv(z)

) 1: v← h;
2: z← f ;
3: Output (z, v) with probability 1

M

The following corollary follows immediately from Lemma 1.

Corollary 1 (Rejection Sampling #2). Let f : Zn → R be a probability distribution.
Given a subset V ⊆ Zn, let h : V → R be a probability distribution defined on V . Let
gv : Zn → R be a family of probability distributions indexed by v ∈ V such that for
almost all v’s from h there exists a universal upper bound M ∈ R such that

Pr
z←f

[M · gv(z) < f(z)] = negl(λ).

Then the output distribution of the following two algorithms have negligible statistical
difference:

1: v← h;
2: z← gv;
3: Repeat with probability 1−min

(
1, f(z)

M·gv(z)

)
;

4: Output (z, v);

1: v← h;
2: z← f ;
3: Repeat with probability 1− 1

M ;
4: Output (z, v);
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Corollary 2 (Rejection Sampling #2’). Let f : Zn → R be a probability distribution.
Given a bounded subset V ⊆ Zn, let h : V → R be a probability distribution defined on
V . Define Bv to be a positive integer such that Prv←h[‖v‖∞ > Bv] < 2−κ, where κ is
a parameter indicated the level of precision of Bv . After sampling v← h, we reject v if
‖v‖∞ > Bv , suppose this process of tailoring only happens with negligible probability.
Let gv : Zn → R be a family of probability distributions indexed by v ∈ V such that for
almost all tailored v there exists a universal upper bound M ∈ R such that

Pr
z←f

[M · gv(z) < f(z)] = negl(λ).

Then the output distribution of the following two algorithms have negligible statistical
difference:

1: v← h;
2: repeat if ‖v‖∞ > Bv;
3: z← gv;
4: Repeat with probability 1−min

(
1, f(z)

M ·gv(z)

)
;

5: Output (z, v);

1: v← h;
2: repeat if ‖v‖∞ > Bv;
3: z← f ;
4: Repeat with probability 1− 1

M ;
5: Output (z, v);

2.4 Extendable Output Function

The notion of extendable output function follows that of [DLL+17, LDK+17]. An
extendable output function Sam is a function on bit string in which the output can be
extended to any desired length, and the notation y ∈ S := Sam(x) represents that the
function Sam takes as input x and then produces a value y that is distributed according
the distribution S (or uniformly over a set S). The whole procedure is deterministic in
the sense that a given x will always output the same y. For simplicity we assume that
the output distribution of Sam is perfect, whereas in practice it will be implemented
using cryptographic hash functions (modelled as random oracle) and produce an output
that is statistically close to the perfect distribution.

2.5 Hashing

Our signature scheme to be introduced can be proved secure in the random oracle
model. Let Bw ( Rq denote the set of elements in Rq that have exactly w coefficients
that are either -1 or 1 and the rest are 0. It is always the case that w = 60 in this paper,

since the set B60 ⊆ Rq is of size 260 ·
(
n

60

)
≈ 2256. Let H : {0, 1}∗ → B60 be a hash

function that is modeled as a random oracle in this work. In practice, to pick a random
element in B60, we can use an inside-out version of Fisher-Yates shuffle.

3 Building Tools of Our Signature Scheme

In this section, we give the definition of deterministic symmetric key consensus
(DKC). Then we construct and analyze a DKC called the rounded symmetric key
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consensus with noise (RKCN) (Algorithm 1), which is a variant of the optimal key
consensus with noise (OKCN) scheme presented in [JZ16]. Based on RKCN, we pro-
pose several algorithms and develop some of their properties. For space limitation, the
proofs of the theorems and properties developed in this section are listed in Appendix
??. Jumping ahead, our signature scheme to be introduced in Section 4 is built upon
these algorithms. Note that these algorithms can be naturally generalized to vectors in
the component-wise manner.

Definition 3. A DKC scheme DKC = (params,Con,Rec), is specified as follows.

• params = (q, k, g, d, aux) denotes the system parameters, where q, k, g, d are posi-
tive integers satisfying 2 ≤ k, g ≤ q, 0 ≤ d ≤ b q2c, and aux denotes some auxiliary
values that are usually determined by (q, k, g, d) and could be set to be a special
symbol ∅ indicating “empty".

• (k1, v) ← Con(σ1, params): On input of (σ1 ∈ Zq, params), the deterministic
conciliation algorithm Con outputs (k1, v), where k1 ∈ Zk is the shared-key, and
v ∈ Zg is a hint signal that will be publicly delivered to the communicating peer to
help the two parties reach consensus.

• k2 ← Rec(σ2, v, params): On input of (σ2 ∈ Zq, v, params), the deterministic
polynomial-time reconciliation algorithm Rec outputs k2 ∈ Zk.

Correctness: A DKC scheme is correct, if it holds k1 = k2 for any σ1, σ2 ∈ Zq such
that |σ1 − σ2|q ≤ d.

We give the construction and analysis of the rounded symmetric key consensus with
noise (RKCN), the illustration diagram of which is given in Algorithm 1. We sometimes
omit “params” for simplicity. Note that RKCN is DKC according to Theorem 1, if we
set parameters properly.

Algorithm 1 RKCN: Rounded Symmetric KC with Noise
1: params = (q, k, g, d, aux), aux = {q′ = kq, α = k, β = q}, q is prime
2: procedure CON(σ1, params) . σ1 ∈ [0, q − 1]
3: v = kσ1 mod± q
4: if kσ1 − v = kq then
5: k1 = 0
6: else
7: k1 = (kσ1 − v)/q
8: end if
9: return (k1, v)

10: end procedure
11: procedure REC(σ2, v, params) . σ2 ∈ [0, q − 1]
12: k2 = b(kσ2 − v)/qe mod k
13: return k2
14: end procedure

Theorem 1. Suppose that the system parameters satisfy 2kd < q where k ≥ 2 and
g ≥ 2. Then, the RKCN scheme is correct.
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Before proving Theorem 1, we first review the following lemma proved in [JZ16].

Lemma 2 ( [JZ16]). For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x− y|t ≤ l, then
there exists θ ∈ Z and δ ∈ [−l, l] such that x = y + θt+ δ.

Proof. (of Theorem 1) Suppose |σ1 − σ2|q ≤ d, by Lemma 2, there exist θ ∈ Z and
δ ∈ [−d, d] such that σ2 = σ1 +θq+δ. From Line 3 to 7 in Algorithm 1, we know that
there exists θ′ ∈ Z such that kσ1 = (k1 + kθ′) · q+ v. Taking these into the formula of
k2 in Rec ( Line 12), we have

k2 = b(kσ2 − v)/qe mod k (1)
= bk(σ1 + θq + δ)/q − v/qe mod k (2)
= bk1 + kδ/qe mod k (3)

From the assumed condition 2kd < q, we get that |kδ/q| ≤ kd/q < 1/2, thus
k2 = k1. ut

Based on RKCN, we propose several algorithms as follows. HighBitsq,k is the rou-
tine that extracts r1, from the output of Con(r) of RKCN. Given r, z ∈ Zq , in order
to derive HighBitsq,k(r + z) from r, q, k, we propose a procedure MakeHintq,k to pro-
duce a 1-bit hint h. The procedure UseHintq,k shows how to use the hint h to recover
HighBitsq,k(r + z).

1: procedure HIGHBITSq,k(r)
2: (r1, r0)← Con(r)
3: return r1
4: end procedure
5:
6: procedure MAKEHINTq,k(z, r)
7: r1 := HighBitsq,k(r)
8: v1 := HighBitsq,k(r + z)
9: if r1 = v1 then

10: return 0
11: else
12: return 1
13: end if
14: end procedure

1: procedure USEHINTq,k(h, r)
2: (r1, r0) := Con(r)
3: if h = 0 then
4: return r1
5: else if h = 1 and r0 > 0 then
6: return (r1 + 1) mod k
7: else
8: return (r1 − 1) mod k
9: end if

10: end procedure

Proposition 1. For every r, z ∈ Zq such that ‖z‖∞ < bq/(2k)c, we have

UseHintq,k(MakeHintq,k(z, r), r) = HighBitsq,k(r + z).

Proof. The outputs of (r1, r0)← Con(r), (r′1, r′0)← Con(r + z) satisfy 0 ≤ r1, r
′
1 <

k, and ‖r0‖∞ , ‖r′0‖∞ ≤ q/2. Since ‖z‖∞ < bq/(2k)c, by Theorem 1, we have
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Rec (r, r′0) = r′1 = HighBitsq,k(r + z). Let h def= MakeHintq,k(z, r). Since r′1 =
Rec (r, r′0) = b(kr−r′0)/qe mod k = br1+(r0−r′0)/qe mod k ∈ {r1−1, r1, r1+1}.
When r0 > 0, we have Rec (r, r′0) ∈ {r1, r1 + 1}; when r0 < 0, we have Rec (r, r′0) ∈
{r1 − 1, r1}. Recall that by definition, h = 0 if and only if r1 = r′1. The correctness of
HighBitsq,k(r + z) = r′1 = Rec (r, r′0) = UseHintq,k(h, r) is thus established. ut

Proposition 2. For r′1 ∈ Zk, r ∈ Zq , h ∈ {0, 1}, if r′1 = UseHintq,k(h, r), then
‖r − bq · r′1/ke‖∞ ≤ q/k + 1/2.

Proof. It is routine to see that for (r1, r0)←Con(r), we have r1∈Zk, r0∈(−q/2, q/2),
and there exists θ ∈ {0, 1} such that k · r = (r1 + kθ) · q + r0. If h = 0, then
r′1 = r1, and hence ‖r − bq · r′1/ke‖∞ ≤ q/(2k) + 1/2. If h = 1 and r0 > 0, then
r′1 = r1 + 1 mod k, and hence ‖r − bq · r′1/ke‖∞ ≤ q/k + 1/2. Finally, if h = 1 and
r0 < 0, then r′1 = r1 − 1 mod k, and therefore ‖r − bq · r′1/ke‖∞ ≤ q/k + 1/2. ut

Proposition 3. For r, z ∈ Z such that ‖z‖∞ < U . If ‖r′0‖∞ < q/2 − kU where
(r1, r0)← Con(r), (r′1, r′0)← Con(r + z), then r1 = r′1.

Proof. Since k · r = q · (r1 + kθ) + r0 and k · (r + z) = q · (r′1 + kθ′) + r′0 for some
integers θ, θ′, it is easy to verify r1 = bkr/qe mod k = bk(r + z − z)/qe mod k =
br′1 + (r′0 − kz)/qe mod k = r′1. ut

4 Construction of Lattice-Based Signature Based on RKCN

In this work, we have n = 256, q = 4191233,R = Z[x]/〈xn + 1〉, and Rq =
Zq[x]/〈xn+1〉. Also, Sη = {a ∈ Rq | ‖a‖∞ ≤ η}, andB60 ⊆ Rq is the set of elements
in Rq that have exactly 60 coefficients that are either -1 or 1 and the rest are 0. Let
H : {0, 1}∗ → B60 be a hash function that is modeled as a random oracle in our
signature scheme. Let Sam(·) be an extendable output function (Appendix 2.4). Finally,

for every a =
∑n−1
i=0 ai · xi ∈ Rq , ai ∈ Zq , define Power2Roundq,d (a) def=

∑
a′i · xi,

where a′i
def=
(
ai −

(
ai mod± 2d

))
/2d. This definition can be naturally generalized in

the component-wise manner.
The signature scheme is parameterized by q, k, n, h, `, d, ω, η, U. The key generation,

signing, and verification algorithms are described in Algorithms 2, 3 and 4, respectively.

Algorithm 2 Key Generation Algorithm
1: Input: 1λ
2: Output: (pk = (ρ, t1), sk = (ρ, s, e, t))
3: ρ, ρ′ ← {0, 1}256

4: A ∈ Rh×`q := Sam(ρ)
5: (s, e) ∈ S`η × Shη := Sam(ρ′)
6: t := As + e
7: t1 := Power2Roundq,d (t)
8: return (pk = (ρ, t1), sk = (ρ, s, e, t))
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Algorithm 3 The Signing Algorithm
1: Input: µ ∈ {0, 1}∗, sk = (ρ, s, e, t)
2: Output: σ = (z, c, h)
3: A ∈ Rh×`q := Sam(ρ)
4: t1 := Power2Roundq,d (t)
5: t0 := t− t1 · 2d
6: r ← {0, 1}256

7: y ∈ S`bq/kc−1 := Sam(r)
8: w := Ay
9: w1 := HighBitsq,k(w)

10: c← H(ρ, t1, bq · w1/ke , µ)
11: z := y + cs
12: (r1, r0) := Con(w− ce)
13: Restart if ‖z‖∞ ≥ bq/kc−U or ‖r0‖∞ ≥

q/2− kU or r1 6= w1
14: h := MakeHintq,k(−ct0,w− ce + ct0)
15: Restart if ‖ct0‖∞ ≥ bq/2kc or the num-

ber of 1’s in h is greater than ω
16: return (z, c, h)

Algorithm 4 Verification Algorithm
1: Input: pk = (ρ, t1), µ ∈ {0, 1}∗ , (z, c, h)
2: Output: b ∈ {0, 1}
3: A ∈ Rh×`q := Sam(ρ)
4: w′1 := UseHintq,k(h,Az− ct1 · 2d)
5: c′ ← H(ρ, t1, bqw′1/ke , µ)
6: if c = c′ and ‖z‖∞ < bq/kc − U and the

number of 1’s in h is ≤ ω then
7: return 1
8: else
9: return 0

10: end if

The key generation algorithm first chooses a random 256-bit seed ρ and expands it
into a matrix A ← Rh×`q by an extendable output function Sam(·) that is modeled
as a random oracle. Conversely, the crucial component in the secret key is (s, e) ∈
Rhq ×R`q , and each coefficient is drawn uniformly at random in the set [−η, η]. Finally,
we compute t := As + e ∈ Rhq . The public key is pk = (ρ, t1 = Power2Roundq,d (t)),
whereas the associated secret key is sk = (ρ, s, e, t).

Given the secret key sk = (ρ, s, e, t) as well as the message µ ∈ {0, 1}∗ to be
signed, the signing algorithm first recovers the public matrix A ∈ Rh×`q via the random
seed ρ in the secret key. After that, the signing algorithm picks a short y from the set
S`bq/kc−1 ⊆ R

`
q uniformly at random, and computes w1 := HighBitsq,k(w) where

w := Ay. The random oracle H(·), upon input (ρ, t1, bq · w1/ke , µ), returns a uniform
c from the set B60 ⊆ Rq (cf. Appendix 2.5). After obtaining c, the signing algorithm
conducts a rejection sampling process (cf. Appendix 2.3) to check if every coefficient of
z := y + cs ∈ R`q is “small” enough, if every coefficient of r0 is “small” enough, and if
r1 = w1, where (r1, r0)← Con(w−ce); otherwise, the signing algorithm restarts, until
all the foregoing conditions are satisfied. We should point out that if ‖ce‖∞ < U , then
by Proposition 3, ‖r0‖∞ < q/2− kU implies r1 = w1. We want ‖ce‖∞ < U happen
with negligible probability, such that the probability of using the last check (whether
r1 = w1) is negligible as well. Furthermore, the function MakeHintq,k(·) is invoked on
input (−ct0,w− ce + ct0) to generate the hint h, i.e., a binary vector in {0, 1}n·h. The
signing algorithm concludes by conducting the second reject sampling process, i.e., if
‖ct0‖∞ ≥ bq/2kc and if the number of nonzero elements in h ∈ {0, 1}n·h does not
exceed the pre-defined threshold ω; otherwise restart is carried out again. Here, the hint
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h corresponds to the fact that it is t1, not the whole t = t1 · 2d + t0, that is contained in
the public key. With the hint h, we can still carry out the verification, even without t0.

Given the public key pk = (ρ, t1), the message µ ∈ {0, 1}∗ and the claimed signature
(z, c,h), the verifying algorithm first recovers the public matrix A ∈ Rh×`q via the
random seed ρ. After that, it computes w′1 := UseHintq,k(h,Az− ct1 · 2d). If the given
(z, c,h) is indeed a valid signature of the message µ, then it is routine to see that every
coefficient of z is “small” enough, and the number of 1’s in h is no greater than ω; more
importantly, we have HighBitsq,k(Ay) = HighBitsq,k(Ay − ce) = w′1 and therefore
c = c′, where c′ ← H (ρ, t1, bqw′1/ke , µ). The verifying algorithm would accept the
input tuple if and only if the foregoing conditions are all satisfied.

Next, we show that our signature scheme is always correct, provided that the involv-
ing parameters are appropriately set. Roughly speaking, the correctness relies heavily
on Properties 1 - 3.

When the public/secret key pair (pk, sk) is fixed, for a valid message/signature pair
(µ, (z, c,h)), first it is routine to see that ‖z‖∞ < bq/kc−U and the number of nonzero
entries in h is no more than ω. Moreover, since ‖ct0‖∞ < q/2k and Az − ct1 · 2d =
Ay− ce + ct0, it follows directly from Proposition 1 that

UseHintq,k(h,Az− ct1 · 2d) = HighBitsq,k(Ay− ce).

Given that the signing algorithm forces HighBitsq,k(Ay − ce) = HighBitsq,k(Ay) by
rejection sampling, we thus have

UseHintq,k(h,Az− ct1 · 2d) = HighBitsq,k(Ay− ce) = HighBitsq,k(Ay),

and hence c = c′. This finishes the correctness analysis of our signature scheme.

5 Security Proof

In this section, we analyze the security of the RKCN-based signature scheme, in
terms of strongly existentially unforgeable under adaptive-chosen message attack (cf.
Appendix 2.1). The proof can be viewed as a generalization of that of Dilithium [DLL+17,
LDK+17], for the realistic setting where t0 is hidden to the attacker as well as to the
simulator. Roughly speaking, our security proof consists of two phases: In Phase I, we
show that the behavior of the signing oracle is indistinguishable from that of an efficient
simulator; In Phase II, we show that the any efficient attacker cannot forge a valid mes-
sage/signature pair, after interacting with the foregoing simulator polynomially many
times.

5.1 Security Proof in Phase I: the Simulator

Recall that in [DLL+17], when the simulation is conducted, the public key is as-
sumed to be (ρ, t) so as to simplify the analysis. However, this is too conservative,
since in [DLL+17] the real public key is (ρ, t1), without t0 = t − t1 · 2d at all. As we
shall see later, it is very difficult for the efficient adversary to obtain some information
regarding t0.

10



For our signature scheme, the construction of the simulator in Phase I follows that
of [DLL+17], with a key modification or generalization: in our construction, the public
key given to the simulator is the real public key, i.e., (ρ, t1), instead of (ρ, t).

To do so, we define an oracle Ot0,params,H(·)(·) parameterized by t0 = t − t1 · 2d ∈
Sh2d−1 , params = (t1, q, n, k, h, `, d, U, ρ, ω) as well as the random oracle H(·). Fix
an efficient adversary A against the oracle Ot0,params,H(·)(·). For simplicity, we assume
that A makes qs = poly(λ) queries to Ot0,params,H(·)(·). Upon the ith query with mes-
sage µi from the adversary A, where 1 ≤ i ≤ qs, the oracle Ot0,params,H(·)(·) first
chooses c(i) ← B60 and z(i) ← S`bq/kc−U−1 uniformly at random. Then it computes(

r(i)
1 , r(i)

0

)
←Con

(
Az(i) − c(i)t

)
. The whole process restarts until

∥∥∥r(i)
0

∥∥∥
∞
<q/2−kU

and
∥∥c(i)t0

∥∥
∞ < q/2k. Finally, the oracle programs c(i) = H(ρ, t1,

⌊
q · r(i)

1 /k
⌉
, µi),

computes h(i) = MakeHintq,k
(
−c(i)t0,Az(i) − c(i)t1 · 2d

)
, restarts if necessary, and

finally outputs (z(i), c(i),h(i)).
Similar to [DLL+17], the resulting

(
z(i), c(i)) output by the oracle Ot0,params,H(·)(·)

follows the same distribution as that of the real signing oracle in the standard security
game, provided that collision occurs with negligible probability. It remains to show that
for each query µi, 1≤ i≤qs, the probability thatH

(
ρ, t1,

⌊
q · r(i)

1 /k
⌉
, µi

)
was already

programmed previously is negligible. In fact, this follows directly from the following
lemma, whose proof is similar to that of [KLS18] and thus is omitted for simplicity.

Lemma 3.

Pr
A←Rh×`

q

[
∀w∗1 : Pr

y←S`
bq/kc−1

[
HighBitsq,k(Ay)=w∗1

]
≤
(

q/k+1
2 · bq/kc−1

)n]
>1−(n/q)h`.

ut

It should be stressed that, both
(

q/k+1
2bq/kc−1

)n
� 2−128 and (n/q)h` � 2−128 holds,

for our recommended parameters in Table 1. This justifies our correctness analysis re-
garding the oracle Ot0,params,H(·)(·) as well as our choice of parameters.

Remark The proof of Phase-1 is a generalization of that for Dilithium [DLL+17,
LDK+17], where the oracle Ot0,params,H(·)(·) is not needed if t0 is given to the sim-
ulator.

5.2 Security Proof in Phase II

In this section, we finish the Phase II of our security proof. Specifically, we argue that
it is very difficult for every efficient adversary to forge a signature, after interacting poly-
nomially with the aforementioned simulator in the security game. To do so, we define
two related problems, i.e., the Oracle-SelfTargetMSIS problem and the Oracle-MSIS
problem, which could be seen as variants of the SelfTargetMSIS problem and the MSIS
problem proposed in [KLS18], and might be of independent interest. We remark that,
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the security proof of Dilithium is also based on similar problems, if t0 is hidden from
the adversary in reality.

First comes the definition of Oracle-SelfTargetMSIS problem. Informally, this prob-
lem is the underlying hard problem upon which the new message forgery is based. Re-
call that Ot0,params,H(·)(·) is an oracle defined in Section 5.1, and H : {0, 1}∗ → B60 is
a cryptographic hash function that is modeled as a random oracle in our security game.
In the Oracle-SelfTargetMSIS problem, given a random matrix A← Rh′×`q for positive
integer h′ as well as access to the random oracle H(·) and the oracle Ot0,params,H(·)(·),

the solver is asked to output a pair
(

y :=
[

r
c

]
, µ

)
such that 0 ≤ ‖y‖∞ ≤ γ and

c = H (ρ, t1, [I |A] · y, µ). Equivalently, for an efficient adversary A, its advantage in
solving the Oracle-SelfTargetMSIS problem is defined as follows:

AdvO-SelfTargetMSIS
H,O,`,h′,γ (A)def= Pr

 A←Rh′×`
q ; t←Rh′

q ;
t1 :=Power2Roundq,d (t) ; t0 := t−t1 ·2d;(
y :=
[

r
c

]
,µ

)
←A

H(·),Ot0,params,H(·)(·)(A)
: 0≤‖y‖∞≤γ, and
c=H (ρ, t1, [I |A]·y, µ)


Likewise, the Oracle-MSIS problem is defined as follows: given a random matrix

A ← Rh′×`q and t ← Rh′q as well as access to the random oracle H(·) and the oracle
Ot0,params,H(·)(·), the problem asks to find a pre-image x ∈ Rh′+`q such that ‖x‖∞ ≤ β
and more importantly, [A | I] · x = 0.

To be precise, for an efficient adversary A, its advantage in solving the Oracle-MSIS
problem is defined as follows:

Advo-msis
h′,h′+`,β(A) def= Pr

[
A← Rh′×`

q ; t← Rh
q ;

t1 := Power2Roundq,d (t) ; t0 := t− t1 · 2d;
x← A

H(·),Ot0,params,H(·)(·)(A)
:

x ∈ Rh′+`, and
[A | I] · x = 0, and
‖x‖∞ ≤ β

]
.

The following analysis shows that for an efficient adversary, to forge a valid mes-
sage/signature pair implies that she can solve the Oracle-SelfTargetMSIS problem.

In the standard security game of our signature scheme, to forge a signature implies
that the adversary receives a random (A, t1) and outputs a valid message/signature pair
(µ, (z, c,h)) such that

• ‖z‖∞ < bq/kc − U ; and
• the number of nonzero entries in h is no more than ω; and
• c = H

(
ρ, t1,

⌊
q · UseHintq,k(h,Az− ct1 · 2d)/k

⌉
, µ
)
.

By Proposition 2, we have⌊
q · UseHintq,k(h,Az− ct1 · 2d)/k

⌉
= Az− ct1 · 2d + u,

where ‖u‖∞ ≤ q/k + 1/2. Given that t = t1 · 2d + t0 where ‖t0‖∞ ≤ 2d−1, the
foregoing equality can be rewritten as

Az− ct1 · 2d + u = Az− ct + (ct0 + u) = Az− ct + u′.

Note that the worst-case upper-bound for u′ is

‖u′‖∞ ≤ ‖ct0‖∞ + ‖u‖∞ ≤ 60 · 2d−1 + q/k + 1/2.
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Thus an adversary who can forge a valid message/signature pair is able to find z, c, u′,
µ such that ‖z‖∞ ≤ bq/kc−U , ‖c‖∞ = 1, ‖u′‖∞ ≤ 60·2d−1+q/k+1/2, µ ∈ {0, 1}∗,
and more importantly

H

(
ρ, t1, [A | t | I] ·

[
z
c
u′

]
, µ

)
= c.

This is exactly the Oracle-SelfTargetMSIS problem defined previously. By the standard
forking lemma [BN06], it can be shown that an efficient adversary who can solve the
foregoing Oracle-SelfTargetMSIS problem can be adapted to solve the Oracle-MSIS
problem. Clearly the forking lemma suffers from its non-tightness. However, such loss
is usually ignored in practice when setting the parameters.

Similar to [DLL+17], the hardness of the Oracle-SelfTargetMSIS problem relies on
the following intuition. Given that H is a cryptographic hash function whose structure
is completely independent of the algebraic structure of its inputs, it seems the choice of
µ does not help in solving the equation. Thus, the problem would be equally hard if the
message µ was chosen and fixed. Furthermore, given the independence of H and the
algebraic structure of its inputs, it seems that the only plausible forgery attack appears
to first pick some w′, computeH(ρ, t1,w′, µ) = c, and then find z,u′ such that ‖z‖∞ ≤
bq/kc −U , ‖u′‖∞ ≤ 60 · 2d−1 + q/k+ 1/2, and furthermore, Az + u′ = w′ + ct. The
problem now can be reduced to finding z,u′ with `∞-norm less than 60·2d−1+q/k+1/2
such that

Az + u′ = t′

for the given A, t′, which is exactly the Oracle-MSIS problem defined previously. Note
that this is conservative because ‖z‖∞ < bq/kc−U < 60 · 2d−1 + q/k+ 1/2. Further-
more, only ω coefficients of u′ can be larger than bq/kc.

In sum, the hardness of our signature scheme is boiled down to the hardness of the
Oracle-MSIS problem. Again, if we assume t0 is public as in [DLL+17, LDK+17], the
security is reduced to the MSIS problem in the infinity Norm. The concrete hardness of
the Oracle-MSIS problem is analyzed in detail in Appendix B.2.

6 Recommended Parameters

To choose parameters, the following requirements or goals should be taken into ac-
count simultaneously.

• First, the parameters should be appropriately chosen so as to ensure the correctness
of our signature scheme.

• Second, the involved parameters should be chosen with the goal of achieving 128-
bit quantum security.

• Moreover, the parameters should be chosen such that the expected number of rep-
etitions in the signing algorithm should be as small as possible, so as to ensure the
efficiency of the signing algorithm.

• Finally, the parameters should be chosen such that the sum of the public key size
and the signature size should be as minimal as possible.
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q n (h, `) η d k U ω

Recomm. Para. 4191233 256 (5, 4) 2 13 16 118 96

Table 1. The recommended parameter set for our signature scheme.

Under such considerations, we recommend the following set of parameters for our
signature scheme in Table 1.

Note that in our signature scheme, the public key size is of 32+h ·32 · (dlog(q)e−d)
bytes, whereas the signature size is of ` · 32 · dlog(2 · bq/kc)e+ (32 + 8) + (ω+h− 1)
bytes. In regard to the expected number of repetitions, it depends on the probabilities
that the two rejection sampling steps happen. The probability that the first restart occurs
is roughly (

2(bq/kc − U)− 1
2 bq/kc − 1

)`·n
·
(

2(bq/2c − kU)− 1
q

)h·n
.

Here, the parameter U is carefully chosen such that Pr [‖ce‖∞ ≥ U ] < 2−128.
In regard to the second restart, experiments are carried to estimate the expected num-

ber of repetitions, and parameters are chosen such that in the experiments, the second
restarts are carried out with probability no more than 1%.

Table 2 is a brief comparison between our recommended signature scheme and (the
recommended version of) Dilithium [LDK+17]. Compared with Dilithium, the signa-
ture size is reduced, and the efficiency improvement is due to the smaller modulus q
and the smaller repetition times.

We have conducted computer experiments with our recommended implementation
to verify its efficiency in practice. Our implementation benefits much from that of
Dilithium [LDK+17]. The experiments are carried out on a computer equipped with
an Intel Core i7-8700T CPU running at 2.40GHz, which runs Ubuntu system (Linux
Kernel version 4.15.0, and gcc version 7.3.0). Briefly speaking, each invocation of our
key generation, signing, and verification algorithms takes on average 317K, 1,771K,
and 338K CPU cycles, respectively; this is roughly in consistency with our earlier esti-
mations.

7 Concrete Security Estimation

For our signature schemes, two types of important attacks should be taken into con-
sideration: the key-recovery attack which aims to recover the secret key, with the given
associated public key; the forgery attack which tries to forge a signature in the se-
curity game of SEU-CMA (cf. Definition 1). We use the same method proposed in
[DLL+17,LDK+17] for measuring the concrete security against forgery attack, and the
details are given in Appendix A and B.
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Recomm. Para. of our scheme Recomm. Para. of Dilithium
q 4191233 8380417
n 256 256

(h, `) (5, 4) (5, 4)
η 2 5

pk size (in byte) 1472 1472
sig. size (in byte) 2572 2701

expected # of repetitions 5.03 6.6
quantum bit-cost against

key recovery attack 119− 249.4 128

quantum bit-cost against
forgery attack 131.2 125

Table 2. Comparison between our signature and Dilithium.

7.1 Key-Recovery Attack and Module-LWE Problem with Hidden t0

The efficient adversary may also try to recover the crucial part of the secret key, i.e.,
(s, e) ∈ Rhq ×R`q , from the associated public key (A, t1 = Power2Roundq,d (As + e)).
This is in essence the key-recovery attack.

Of course, we can follow exactly the paradigm of Dilithium by assuming that in
addition to others, the adversary is given the t0 part as well; under this assumption,
standard method shows that our signature scheme with the recommended parameter
achieves 119-bit security quantumly. However, this assumption does not hold in reality:
in the actual key-recovery problem, the value t0 is not given to the adversary directly,
which makes the key-recovery problem intuitively harder than the standard Module-
LWE problem.

From the theoretical analysis perspective, this key-recovery problem in reality, i.e.,
recovering (s, e) given A and t1 = Power2Roundq,d (As + e), has not been well-studied
in the literature. Actually, to our knowledge, we explicitly formulate this problem for
the first time. Intuitively, from the observation As+(e− t0) = t1 ·2d this problem looks
more like a SIS problem in the infinity norm (rather than Module-LWE), and we could
have applied the paradigm suggested by Dilithium [DLL+17, LDK+17] to estimate its
hardness. However, computational experiments shows that this paradigm does not work
here any longer, mostly because its estimation is roughly > 1000-bit security level
quantumly,3 and is clearly far from reasonable.

Instead, we seek to compare this key-recovery problem with other related problems.
It seems to us that this key-recovery problem resembles more like the SVP problem
in the infinity norm, and the hardness of this key-recovery problem is no more than

3 For the SIS instance handled by Dilithium, the upper bound for the `∞-norm of the desired
nonzero vector is roughly about 219. But the upper-bound for our SIS instance obtained from
the equality As + (e− t0)− t1 · 2d = 0 is approximately 212, which is much smaller than 219.
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the hardness of the associated SVP problem in the infinity norm. The latest theoreti-
cal progress [AM18] suggests that with our suggested parameter, the associated SVP
instance (in the infinity norm) achieves 249.4-bit security level quantumly; for the full
detail, see Section B.3. Thus, we argue that the concrete hardness of our key-recovery
instance is between 119 and 249.4-bit security level quantumly. It could be seen as one
of our contributions of this work that we relate the key-recovery problem to the SVP
problem in its infinity norm.

From the practical perspective, clearly it is hard to recover the whole t0 intact. It re-
mains unknown to us that in the worst case, how much information regarding t0 could
be recovered by the efficient adversary during the signing process. The following analy-
sis implies that the efficient adversary can obtain very little useful information regarding
t0 in practice. First, the most useful signatures in identifying t0 are those tuples (z, c,h)
such that ‖ct0‖∞ ≥ bq/2kc; however, those tuples are never output by the signing
oracle. In comparison, the other tuples, i.e., the valid signatures output by the signing
oracle, contain less information regarding t0, making the adversary very difficult to
recover t0. Furthermore, generally speaking, to obtain more information regarding t0,
more signing queries are needed. However, in practice the number of signing queries
is actually bounded. For example, in the NIST’s call for the post-quantum cryptosys-
tems, a qualified digital signature scheme should ensure that no adversary can forge a
successful forgery after making as many as 264 signing queries to the signing oracle.
As another instance, each honest signer in an blockchain-based system like the Bitcoin
can sign at most 230 messages in its life time. Consequently, when the efficient attacker
tries to recover t0 by collecting enough c’s, she cannot decide whether some specific c
cannot be output (because of the check ‖ct0‖∞ ≥ bq/(2k)c), or some specific c has not
been output (but will be output in the future) due to the practical limit on the number of
signing queries. It is thus reasonable to argue that very little information regarding t0 is
leaked to the adversary in practice.

Thus, our signature scheme with the recommended parameter achieves at least 119-
bit quantum security level (recall that Dilithium achieves 125-bit quantum security level
as claimed in [DLL+17, LDK+17]). In practice, it may be well above 128-bit quantum
security level. Since t0 is not given directly in the actual key-recovery attack, the forgery
attack is more practical than the key-recovery attack, and deserves more attention when
the recommended parameters are chosen. Note the 131.2 vs. 125 quantum bit security
between our signature scheme and Dilithium against forgery attack. In this sense, we
may suggest that our signature scheme could obtain a better trade-offs between security
and performance in practice, compared with Dilithium.

References

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange - a new hope. In Proceedings of the 25th USENIX Security Sympo-
sium. USENIX Association, 327-343.

AG11. Sanjeev Arora and Rong Ge. New Algorithms for Learning in Presence of Errors. In
ICALP 2011, Part I (LNCS), Luca Aceto, Monika Henzinger, and Jiri Sgall (Eds.),
Vol. 6755. Springer, Heidelberg, 403 - 415.

16



AM18. Divesh Aggarwal and Priyanka Mukhopadhyay. Improved algorithms for the Shortest
Vector Problem and the Closest Vector Problem in the infinity norm. Available at
http://arxiv.org/abs/1801.02358v2

BG14. Shi Bai and Steven D. Galbraith. An Improved Compression Technique for Signa-
tures Based on Learning with Errors. CT-RSA 2014, LNCS Vol. 8366, pages 28-47.
Springer, 2014.

BKW03. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4): 506-519 (2003).

BN06. Mihir Bellare and Gregory Neven Multi-Signatures in the Plain Public-Key Model
and a General Forking Lemma. Proceedings of the 13th Association for Computing
Machinery (ACM) Conference on Computer and Communications Security (CCS),
Alexandria, Virginia, 2006, pp. 390-399.

CRYSTALS. Presentation of CRYSTALS (Kyber and Dilithium) at 2018 NIST PQC
standardizaiton conference. https://csrc.nist.gov/CSRC/media/Presentations/
Crystals-Dilithium

DLL+17. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS - Dilithium: Digital Signatures from Module Lat-
tices. IACR Cryptology ePrint Archive, 2017/633, 2017.

JZ16. Zhengzhong Jin and Yunlei Zhao. Optimal Key Consensus in Presence of Noise. In
CoRR, Vol. abs/1611.06150, 2016. Available at http://arxiv.org/abs/1611.06150

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of
Fiat-Shamir signatures in the quantum random-oracle model. Advances in Cryptol-
ogy - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III, pages 552-586.

LDK+17. Vadim Lyubashevsky, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Peter Schwabe, Gre-
gor Seiler, and Damien Stehle. Crystals-dilithium. Technical report, National Institute
of Standards and Technology, 2017. Available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized Compact Knapsacks Are
Collision Resistant. In ICALP 2006, Part II (LNCS), Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener (Eds.), Vol. 4052. Springer, Heidelberg, 144-
155.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning
with Errors over Rings. In EUROCRYPT 2010 (LNCS), Henri Gilbert (Ed.), Vol.
6110. Springer, Heidelberg, 1-23.

LS15. Adeline Langlois and Damien Stehlé Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Cryptography 75, 3 (2015), 565-599.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. ASIACRYPT 2009: 598-616.

Lyu12. Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT 2012
(LNCS), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237. Springer, Hei-
delberg, 738-755.

NV08. Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector prob-
lem are practical. Journal of Mathematical Cryptology, 2(2):181õ207, 2008.

NIST. NIST. Post-Quantum Cryptography Standardization. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

PR06. Chris Peikert and Alon Rosen. Efficient Collision-Resistant Hashing from Worst-
Case Assumptions on Cyclic Lattices. In TCC 2006 (LNCS), Shai Halevi and Tal
Rabin (Eds.), Vol. 3876. Springer, Heidelberg, 145-166.

17

http://arxiv.org/abs/1801.02358v2
 https://csrc.nist.gov/CSRC/media/Presentations/Crystals-Dilithium
 https://csrc.nist.gov/CSRC/media/Presentations/Crystals-Dilithium
http://arxiv.org/abs/1611.06150
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization


KCL. Yunlei Zhao, Zhengzhong Jin, Boru Gong, and Guangye Sui. KCL. Technical report,
National Institute of Standards and Technology, 2017. Available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

A Remarks about the Parameter Estimation

First, as mentioned previously, we estimate the hardness of our recommended SIS in-
stances by following the general methodology proposed by [DLL+17,LDK+17]. Since
the associated estimation script in [DLL+17, LDK+17] was not made public, we de-
velop a simple estimation script by following the general methodology in [DLL+17,
LDK+17].

However, computational experiments show that for the four sets of suggested param-
eters proposed in [DLL+17, LDK+17], the hardness estimation output by our script is
always slightly smaller than the claimed hardness estimation in [DLL+17, LDK+17];
see Table 3 below for the detailed comparison. We suggest the (slight) difference may
be reasonable. The possible reason for such difference could be that the underlying
subroutine, used by us to calculate the cumulative distribution function of the (contin-
uous) Gaussian distribution, is different from that of Dilithium. This, in turn, has no
elementary antiderivative, and numerical means must be used to evaluate the involving
integrals.

Nevertheless, this simple comparison in Table 3 implies that our estimation script
always works in a (slightly) more conservative manner than that of [DLL+17,LDK+17]
does; in particular, for those SIS instances in the infinity norm appeared in this work,
our estimation results on their hardness should be slightly smaller than the hardness
estimation results output by the estimation script appearing in [DLL+17, LDK+17].
This makes us feel more confident about our choice of parameters.

(h, `) = (3, 2) (h, `) = (4, 3) (h, `) = (5, 4) (h, `) = (6, 5)

Claimed quantum security in Dilithium 62 94 125 160

Our estimated quantum security 61.1 92.2 124.5 158.2

Table 3. Comparison of the SIS-hardness of those four sets of suggested parameters in Dilithium.
Specifically, for those four parameter sets we have q = 8380417, d = 14, k = 16.

B Concrete Security Analysis

For our signature schemes, two types of important attacks should be taken into con-
sideration: the key-recovery attack which aims to recover the secret key, with the given
associated public key; the forgery attack which tries to forge a signature in the security
game of SEU-CMA (cf. Definition 1). To our knowledge, the best known algorithms
to implement these two attack both involve the lattice basis reduction as well as the
Core-SVP problem.
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B.1 Lattice Basis Reduction, BKZ Algorithm, and Core-SVP Problem

Given our recommended parameter, in practice the best known algorithm for find-
ing a “short” nonzero vector in Euclidean lattices is the BKZ algorithm as well as its
variants, which outperforms the combinatorial attacks (e.g., the BKW attack [BKW03])
and algebraic attacks (e.g., the Arora-Ge algorithm [AG11]).

In order to solve the SVP problem in `2-norm, the BKZ algorithm solves a related
yet more generic problem, i.e., the lattice basis reduction problem. Generally speaking,
BKZ solves the lattice basis reduction problem by making polynomial calls to a SVP
oracle with block-size b. The hardness of lattice basis reduction problem is implied by
the following two facts: to obtain a “good” basis, the BKZ algorithm should be equipped
with a SVP oracle with a large block-size b; the cost of implementing the underlying
SVP oracle is exponential in the block-size b (in fact, the best known quantum SVP
solver [ADPS16] runs in time ≈ 2cQ·b, where cQ = log2

√
13/9 ≈ 0.265).

Since it is relatively difficult to analyze the upper-bound on the number of SVP calls,
the Core-SVP model is thus introduced [ADPS16], which identifies the cost of BKZ
algorithm with the cost of one single call to an SVP oracle with block-size b. This
pessimistic estimation implies that similar to [DLL+17,LDK+17], our security analysis
is pretty conservative.

B.2 Forgery Attack and Module-SIS Problem

As indicated in Section 5.2, the forgery attack could be boiled down to solving the
Oracle-SelfTargetMSIS problem. To solve the Oracle-SelfTargetMSIS problem, we
need either to break the security of H(·), or to solve the Oracle-MSIS problem with
input (A, t′, β). The hardness of breaking the security of H(·) is guaranteed by the as-
sumption that H(·) is modeled as a random oracle in our security proof and by the fact
that the range B60 of H(·) is roughly of size 2256. Hence, we concentrate our analysis
on the hardness of the Oracle-MSIS problem hereafter.

In essence, the Oracle-MSIS problem could be seen as a variant of the SIS problem in
the `∞-norm, which is in sharp contrast to the ordinary SIS problem endowed with the
`2-norm. Roughly speaking, a “short” vector in the `∞-norm is also a “short” solution
in the `2-norm, but the converse may not hold. (In fact, for our signature scheme with
our recommended parameter, the solution to our Oracle-SelfTargetMSIS problem has
Euclidean length above q, whereas the trivial vector (q, 0, · · · , 0)t has Euclidean length
q, but its infinity norm is far from satisfactory.) This indicates that the problem we are
confronting is intuitively much harder than the SIS problem in the `2-norm.

Since BKZ algorithm works only on the Euclidean lattice, we cannot directly turn
the Oracle-MSIS instance into a Core-SVP instance. Nevertheless, we shall follow the
general methodology proposed in [DLL+17, LDK+17] by sticking to using the BKZ
algorithm to determine the solution in the infinity norm.

To be specific, we first narrow down the range of our analysis by choosing a subset of
w columns, and zeroing the other dimensions of the targeted vector. Then we still seek
to choose a desired “short” vector by invoking the BKZ algorithm, but no longer the first
one in the output lattice basis, e.g., the shortest one in the Euclidean norm. Instead, we
aim to find a lattice vector whose projection in either direction is not very large, which is
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consistent with our purpose of finding a nonzero vector with small `∞-norm. When the
block-size in BKZ is determined, heuristic assumptions are made so as to estimate the
probability that such a desired lattice vector exists: we assume that for those dimensions
that are not affected by the BKZ algorithm, the associated coordinates follow the uni-
form distribution modulo q, whereas for those dimensions that are affected by the BKZ
algorithm, the associated coordinates follows the Gaussian distribution with appropri-
ate standard deviation. The cost estimate is the inverse of that probability multiplied by
the run-time of our b-dimensional SVP-solver [DLL+17, LDK+17].

B.3 The SVP Problem in the Infinity Norm

Recall that the BKZ algorithm solves the lattice basis reduction problem with the aid
of a b-dimensional SVP solver in Euclidean norm, which enables BKZ to solve the SIS
problem in the Euclidean norm. In Dilithium [DLL+17, LDK+17], this methodology
was generalized to estimate the hardness of the SIS problem in the infinity norm. In
particular, in one extreme case of the key-recovery problem in this work, where the
adversary is given (A, t1) and is asked to find (s, e−t0) such that As+(e−t0)−t1 ·2d =
0, it could be seen as an SIS instance with bound β = η + 2d−1. However, we fail to
apply the methodology proposed to estimate the quantum hardness of the foregoing
instance: the returned estimation hardness result is 1471.8-bit quantum security, which
is far from reasonable.

Instead, we turn to the state-of-the-art hardness result [AM18] on the SVP problem in
the infinity norm. Roughly speaking, in [AM18] a new sieving procedure is proposed,
which runs in time linear in the number N of randomly chosen samples in the underly-
ing lattice; thus, among other results, an improved algorithm for solving the SVP prob-
lem in the infinity norm is obtained. This new algorithm runs in time at least (4/3)n,
where n denotes the dimension of the incoming lattice. Also, it is implied in [AM18]
that this lower-bound on the space complexity of the SVP problem in the infinity norm
is almost optimal, in the sense that some theoretical breakthrough is necessary in order
to improve it further. Returning to our problem, the hardness of the SVP problem in the
infinity norm is estimated to be about 2249.4 based on the result in [AM18].
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