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Abstract. With the fast development of quantum computation, code-
based cryptography arises public concern as a candidate of post quan-
tum cryptography. However, the large key-size becomes a main drawback
such that the code-based schemes seldom become practical although they
performed pretty well on the speed of both encryption and decryption al-
gorithm. Algebraic geometry codes was considered to be a good solution
to reduce the size of keys, but because of its special construction, there
have lots of attacks against them. In this paper, we propose a public key
encryption scheme based on elliptic codes which can resist the known
attacks. By using automorphism on the rational points of the elliptic
curve, we construct quasi-cyclic elliptic codes, which reduce the key size
further. We apply the list-decoding algorithm to decryption thus more
errors beyond half of the minimum distance of the code could be correct,
which is the key point to resist the known attacks for AG codes based
cryptosystem.

Keywords: code-based cryptography, post quantum cryptography, quasi-
cyclic code, elliptic code, list-decoding

1 Introduction

Since the introduction of public key cryptography in 1976 [12], many cryptosys-
tems have been proposed. Most of the commonly used public key cryptosystems
are based on the hardness of factoring or the presumed intractability of the dis-
crete logarithm problem. However, with the discovering of Shor Algorithm [43]
and the rapid development of quantum computer, the above problems together
with many other problems which are thought to be difficult to solve, become not
hard any more. Thus, how to build cryptosystems that can resist the attack from
quantum computer, i.e. post-quantum cryptosystems, raises the researchers con-
cern. There are several kinds of post-quantum cryptography, and the principal
available techniques are code-based cryptography, lattice-based cryptography,
multivariate cryptography and hash-based cryptography etc. Among them, the
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original McEliece encryption scheme is a very strong candidate as one of the
future post-quantum standards for public-key encryption.

The code-based McEliece system [29], whose security relies on the hardness of
decoding a random linear code, is one of the best-known public key cryptosystem,
and has already resisted 40 years of cryptanalysis since its proposing in 1978.
Niederreiter [34] gave a variant of McEliece, and a significant amount of research
went into analysing and improving them. One line of research was concerned
with improving the direct decoding attacks that McEliece had outlined in his
original paper, and with choosing the parameters that would maximize resistance
against these attacks. Another line of research was concerned with modifying
McEliece’s construction in order to obtain a more powerful system. A third line
was concerned with structural analysis, i.e. the study of the structure of the
underlying codes in order to devise attacks against such cryptosystems [31].

There are many hard problems in coding theory, including general decoding
problem, syndrome decoding problem, finding the minimum distance of a code,
finding the minimum weight codeword and so on. [5] showed that the general
decoding problem for linear codes and the general problem of finding the min-
imum weight codeword are both NP-complete. The problem of computing the
minimum distance of a binary linear code is NP-hard, and the corresponding
decision problem is NP-complete according to [47]. In addition, [20] prove that
maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes.
Besides, it has been proved that for elliptic codes, minimum distance problem
and maximum likelihood decoding problem are NP-hard [8].

The code-based cryptography presents many advantages: it is very fast for
both encryption and decryption and the best known attacks are exponential in
the length of the code. However, due to the large key size required to reach
a good security level, no practical application of codes-based cryptography is
known to us. Nowadays, a very popular trend in code-based cryptography is
to decrease the public-key size by focusing on subclasses of alternant/Goppa
codes which admit a very compact public matrix, typically quasi-cyclic(QC) or
quasi-dyadic(QD) generator matrices.

The first proposal who use quasi-cyclic codes can be traced back to [16] by
Gaborit where quasi-cyclic BCH codes are suggested. This proposal was broken
in [35], essentially because the number of possible keys was too low. There are
also many other proposals based on quasi-cyclic codes and attacks against them.
Usually, the attacks first build an algebraic model of the key recovery attack
and using the Groebner basis techniques to drastically reduce the number of
variables in the system when compares to the polynomial system associated to
unstructured alternant or Goppa codes [2]. However, the security of the quasi-
cyclic codes does not been break totally. In fact, the security closely rely on the
chosen codes. In the submissions of NIST Post-Quantum cryptography standard,
many code-based proposals use quasi-cyclic codes to reduce the key size and can
still keep secure.

Algebraic geometry (AG) code was proposed by Goppa [17] in 1977 and was
introduced into cryptography in 1996 by Janwa and Moreno [24]. Their original
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idea to use AG codes was to decrease the so large block length of public key of
McEliece scheme. Meanwhile, the AG codes not only contain the Goppa codes as
a subclass but give immense choice because now one can vary the field, the genus,
the curves of particular genus, and the rational points that are constituents of
the divisors generation the codes. Besides, AG codes have structure that can be
constructed by the divisor and the rational point set other than the generator
matrix, which can decrease their storage space [7, 23,31,36,42].

Unfortunately, when it comes to the AG codes, their special structure be-
comes a drawback as well, which results in many cryptanalysis towards it. In
1992, Sidelnikov and Shestakov [44] discovered a deterministic polynomial time
structural attack against Niederreiter’s proposal to use Reed-Solomon codes, i.e.
AG codes with genus g = 0. In 2007, Minder [31] analysed the codes defined
on elliptic curve whose genus g = 1 is not safe. Faure [15] then generalized this
work into hyperelliptic curve, i.e. g = 2. Thus the codes defined on curves with
genus g ≤ 2 seems are all broken. However, their attack needs to find the min-
imum weight word in the giving code in the first step, which is considered to
be a hard problem [8] if the code is not a maximum distance separable code.
In 2014, Márquez-Corbella et al. proved that the structure of the curve can be
recovered from the only knowledge of a generator matrix of the code [27,28], but
the corresponding decoding algorithm is lacked. Recently, Pellikaan et al. [10]
proposed a decoding attack use Error-Correct-Pairing (ECP) decoding algorith-
m and is efficient on codes from curves of arbitrary genus based on their previous
work [9,22,38]. These attacks seems to warning us, AG code is not a good choice
to construct cryptosystem.

However, after study all the attacks above, we find the fact that they all
hold on the assumption that there is no more than half of the minimum distance
errors occur. This may rise from that most decoding algorithm has error correct
bounding (d− 1)/2 where d denotes the minimum distance of the code. In 1999,
Guruswami and Sudan [19] proposed a list decoding algorithm for both RS and
AG codes which can correct more than (d− 1)/2 errors in polynomial time. At
the same time, we noticed that the information-set-decoding (ISD) algorithm
which inspired nearly all general decoding algorithms, has a complexity bound
connect tightly with the weight of errors [33]. Thus, as long as we choose rational
parameters, especially the number of error weights, we can build a security code-
based cryptosystem.

Our contributions: In this paper, we reconsider the application of algebraic
geometry codes, especially elliptic codes, in cryptography, and propose a public-
key encryption scheme based on elliptic codes. We introduce list decoding of
elliptic codes into our scheme to prevent it from the known attacks. Moreover,
we apply Tong’s construction of quasi-cyclic elliptic codes [46] into our scheme
to decrease the public key size further.

Organization: The rest of paper is organized as follows. In section 2, we
review some preliminaries that will be used later. In section 3, we present our
cryptosystem based on quasi-cyclic elliptic code. In section 4, we show the se-
curity analysis together with the parameters we recognized. In section 5, we
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analyse the efficiency of our scheme. Last but not the least, section 6 draws the
conclusion to this paper.

2 Preliminaries

In this section, we present the notions of coding theory that are prerequisite for
the following chapters as well as basic knowledge about code-based cryptography.

2.1 Linear Codes and Code-Based Cryptography

We now recall some basic definitions for linear codes and code-based cryptogra-
phy.

An [n, k]q linear error-correcting code C is a linear subspace of a vector space
Fnq , where Fq denotes the finite field of q elements, and k denotes the dimension
of the subspace. The generator matrix for a linear code is a k × n matrix with
rank k which defines a linear mapping from Fkq (called the message space) to Fnq .
Namely, the code C is

C = C(G) = {xG | x ∈ Fkq}.

If C is the kernel of a matrix H ∈ F(n−k)×k
q , we call H a parity check matrix of

C, i.e.
C = C⊥(H) = Ker(H) = {y ∈ Fnq |Hy = 0}

We call a vector in C a codeword.
Given a codeword c = (c1, c2, . . . , cn) ∈ Fnq , its Hamming weight wt(c) is

defined to be the number of non-zero coordinates, i.e. wt(c) = |{i | ci 6= 0, 1 ≤
i ≤ n}|. The distance of two codewords c1, c2, denoted by d(c1, c2) counts the
number of coordinates in which they differ. The minimum distance d(C) of code
C is the minimal value of the distance between any two different codewords. By
the linearity of C, we know that d(C) is determined by the minimum Hamming
weight among all non-zero codewords in C, i.e.

d(C) = min{wt(c) | c ∈ C \ {0}}.

If a linear [n, k]q code has d as the minimum distance, then C is called a [n, k, d]q
linear code.

If c is a codeword and c + e is the received word, then we call e the error
vector and {i|ei 6= 0} the set of error positions and wt(e) is the number of errors
of the received word. If r is the received word and the distance of r to the code C
is t′, then there exists a codeword c′ and an error vector e′ such that r = c′+e′

and wt(e′) = t′. If the number of errors is at most (d− 1)/2, then it is sure that
c = c′ and e = e′. In other words, the nearest codeword to r is unique when r
has distance at most (d− 1)/2 to C.

Nowadays, most code-based cryptography are variants of either McEliece [29]
public-key encryption system or Niederreiter [34]. We give a brief introduction
of them together with the security assumptions here.
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The McEliece system was proposed in 1978. Although in the original descrip-
tion, the secret key of the McEliece public-key encryption scheme is a Goppa
code , the secret key could be drawn from any subclass of the class of the al-
ternate codes. The trapdoor for the McEliece cryptosystem is the knowledge of
an efficient error correcting algorithm for the chosen code class together with a
permutation. Algorithm 1 shows the McEliece PKE scheme as follows:

Fig. 1. McEliece Public-key Encryption Scheme
Key Generation:
G: k × n generator matrix of code C
with error correcting capability t
S: k × k random non-singular matrix
P: n× n random permutation matrix

Gpub ← SGP
C.Decode: decoding algorithm for C
pk ←< Gpub, t >
sk ←< S,P,C.Decode >

Encryption:

plaintext m ∈ Fk
e←$ Fn of weight t

c←mGpub ⊕ e

Decryption:
cP−1 = (mS)G⊕ zP−1

mSG = C.Decode(cP−1)
m = C.Decode(cP−1)S−1G−1

The Niederreiter’s public-key cryptosystem [34], which can be seen as the dual
variant of the McEliece PKC, was proposed in 1986. In difference to the McEliece
cryptosystem, instead of representing the message as a codeword, Niederreiter
proposed to encode it into the error vector. We summarize it in Figure 2.

Fig. 2. Niederreiter Public-key Encryption Scheme
Key Generation:
H: n× (n− k) check matrix of code C
with error correcting capability t
P: n× n random permutation matrix
M: k × k matrix such that MHP is
systematic

Hpub ← MHP
C.SDecode: syndrome decoding algori-
thm for C
pk ←< Hpub, t >
sk ←< M,P,C.SDecoding >

Encryption:
e← φn,t(m) ∈ {0, 1}n, wt(e) = t

c = Hpube

Decryption:
M−1c = HPeT

PeT = C.SDecode(M−1c)
eT = P−1 · C.SDecode(M−1c)

The advantage of this dual variant is the smaller public key size since it is
sufficient to store the redundant part of the matrix Hpub. The disadvantage is
the fact that the mapping φn,t slows down encryption and decryption.

2.2 Algebraic Geometry Code and Corresponding List-Decoding
Algorithm

Algebraic geometry (AG) code was invented by Goppa [17] in 1977 as a natural
generalization of the Reed-Solomon codes. We now give some notions will be used
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below. Let Fq be a finite field with q elements and X be a smooth projective
geometrically connected curve over a finite field Fq of genus g. The function field
of X is denoted by Fq(X ).

A divisor D on a curve X is a formal sum of points D = ΣPnPP on the
curve X , where nP ∈ Z \ {0} for a finite number of points on X . Here nP
denotes the multiplicity of the point P on the curve. The degree of a divisor
D = ΣPnPP is defined as the sum of nP , i.e., deg(D) := ΣPnP . The support
of a divisor supp(D) is the set of points with non-zero coefficients. A divisor is
called effective if all coefficients are non-negative.

For each point P ∈ X and any f ∈ Fq(X ) \ {0}, we can abstract the notion
of evaluation of f at P (denoted by vP (f)) by local parameter and discrete
valuation function vP : Fq(X ) → Z ∪ {∞}. A point P is said to be a zero of
multiplicity m if vP (f) = m > 0, a pole of multiplicity −m if vP (f) = m < 0.

Any function f ∈ Fq(X ) \ {0} can be associated with a so-called principal
divisor. The principle divisor of f ∈ Fq(X ) is defined as div(f) := ΣP vP (f)P .

Let G = ΣPnPP be any divisor of degree k on X . Denote by L(G) all rational
functions f ∈ Fq(X ) such that the divisor div(f) +G is effective, together with
the zero function, i.e.,

L(G) := {f | div(f) +G is effective ∪ {0}}.

By the Riemann-Roch theorem, L(G) is a vector space over Fq of finite dimension
and its dimension is given by dim(L(G)) := k − g + 1, where g is the genus of
X .

Given an irreducible curve X and the function field Fq(X ) defined over X ,
let P1, P2, . . . , Pn be distinct rational points on X . The n points determine a
divisor D := P1 + P2 + . . . + Pn. Let G be an arbitrary divisor on X such that
{P1, P2, . . . , Pn}∩ supp(G) = ∅. An AG code C(D,G) is defined by the following
injective mapping ev : L(G)→ Fnq with

ev(f) := (f(P1), f(P2), . . . , f(Pn))

Hence C(D,G) = image(ev). If G = ΣPnPP is a divisor of degree k, then C(D,G)
is an [n, k − g + 1, d]q code and d ≥ n − k + 1 − g. The basic properties of AG
codes can be found in [23].

List decoding is a powerful decoding algorithm with a long history. For any
[n, k, d] linear code, a well-known fact is that if the number of errors t satis-
fies t ≤ d(d − 1)/2e, then there must exist a unique codeword within distance
d(d−1)/2e from the received vector. Meanwhile, if t > (d−1)/2, unique decoding
is usually impossible. In 1999, Guruswami and Sudan [18] proposed a list de-
coding algorithm for both RS and AG codes. The algorithm is able to efficiently
output a list of codewords which lie in the sphere of radius up to t = n −

√
nk

centered around the received vector. More precisely, the list decoding algorith-
m C.ListDecode takes as input a linear [n, k] code C, a received vector r and a
parameter t ≤ n −

√
nk, and it outputs a list of codewords whose Hamming

distances to r are at most t. Up to now, the list decoding algorithm is one of
the most powerful decoding methods for AG codes.
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The Guruswami-Sudan list decoding consists of three steps: initialization,
interpolation and root finding. The details can be find in [18] and [19]. Here we
give a brief description refer to [48].

The Guruswami-Sudan List Decoding Algorithm: C.ListDecode

- Input:
An AG-code CL(D,G) determined by curve X over Fq and divisors G = αQ and
D, a received vector r = (r1, . . . , rn) and an error bound t, which determines the
maximal number of coordinates in which a codeword disagrees with vector r in
order for the codeword to be included on the output list.

- Output:
A list Ωr of codewords such that dis(r, c) ≤ t.

- Initialization:
0.1 Ωr := ∅.
0.2 Compute list decoding parameters l from n, t and g, where l ≥ α.
0.3 Fix a pole basis {φj1 : 1 ≤ j1 ≤ l− g+ 1} of L(lQ) such that φj1 has at most
j1 + g − 1 poles at Q.
0.4 For each Pi, 1 ≤ i ≤ n, find a zero basis {ψj3,Pi : 1 ≤ j3 ≤ l− g+ 1} of L(lQ)
such that Pi is a zero of ψj3,Pi with multiplicity (or at least) j3 − 1.
0.5 Compute the set {aPi,j1,j3 ∈ Fq : 1 ≤ i ≤ n, 1 ≤ j1, j3 ≤ l − g + 1} such that
for every i and every j1, we have ψj1 = Σj3aPi,j1,j3ψj3,Pi .

- Interpolation:
Set s = l−g

α
. Find a non-zero polynomial H ∈ L(lQ)[T ] of the form

H[T ] =

s∑
j2=0

l−g+1−αj2∑
j1=1

hj1,j2φj1T
j2

- Root Finding:
Find all roots h ∈ L(αQ) ⊆ L(lQ) of H[T ]. For each h, check if h(Pi) = ri for at
least n− t values of i ∈ {1, 2, . . . , n}, and if so, put h in Ωr.

- Return Ωr.

2.3 The Construction of Quasi-Cyclic Elliptic Code

Consider the curve defined by the projective solutions to the Weierstrass equa-
tion E : Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6. If the parameters ai are
such that the curve is smooth, then it is an elliptic curve. If char(Fq) 6= 2, 3, the
Weierstrass equation can be taken in the form

E : Y 2 = x3 + aX + b

up to a coordinate transformation of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + w

with r, s, u, w ∈ Fq, u 6= 0. Specifically, if the equation has form Y 2 = X3 + b or
Y 2 = X3 + aX, their only automorphism are of the from (X,Y ) 7→ (u2X,u3Y )
with u6 = 1 and u4 = 1 respectively. More details in [45].
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Let E be an elliptic curve over Fq and Fq(E) be the elliptic function field, then
there exists an additive abelian group E(Fq) with the group operation defined
by the ”chord-and-tangent” rule on E .

Let P1, P2, . . . , Pn ∈ E(Fq). Define D := P1 + P2 + . . . + Pn be divisors
on E . Let G be another divisor on E such that 0 < deg(G) = k < n and
supp(D) ∩ supp(G) = ∅. The elliptic code C(D,G) is defined by G and D with

C(D,G) := {(f(P1), . . . , f(Pn) | f ∈ L(G)} ⊆ Fnq .

The construction of quasi-cyclic elliptic code is proposed by Tong and Ding
[46]. Here we summarize the needed facts as follows.

Let E be an elliptic curve over Fq with coefficients a, b. Let O be the infinity
point of E , Aut(E) be the automorphism group of E .

Let C be a linear code with length lm over Fq. Let

c = (c0,0, c0,1, . . . , c0,l−1, c1,0, . . . , c1,l−1, . . . , cm−1,0, . . . , cm−1,l−1)

denotes a codeword in C. Then

c′ = (c0,l−1, c0,1, . . . , c0,l−2, . . . , cm−1,l−1, cm−1,0, . . . , cm−1,l−2, ) ∈ C.

C is called a quasi-cyclic(QC) code over Fq of length lm and index l, and m is
called the co-index of C.

Let σ ∈ Aut(E), σ(O) = O. The action on the P1, P2, . . . , Pn ∈ E(Fq) gives
rise to orbits that contains ord(σ) elements, and some orbits which one contains
t elements, where t|ord(σ). From results of algebraic geometry codes, we have

Theorem 1 [46] Let σ ∈ Aut(E) with ord(O) = O . Let S1, . . . , Sl be l distinct
orbits of length ord(σ). The divisor D and G are defined by

D =

l∑
i=1

∑
Pi∈Si

Pi, , G = kO

where 0 < k < lord(σ). Algebraic geometry codes

CL(D,G) = (f(P1), f(P2), . . . , f(Pl), . . . ,

f(σord(σ)−1P1), f(σord(σ)−1P2), . . . , f(σord(σ)−1Pl)), f ∈ L(G)

are [lord(σ), k] QC NMDS codes with co-index ord(σ), where L(G) is the Riemann-
Roch space associated to G.

Obviously, every quasi cyclic code C must have a quasi cyclic generator ma-
trix. To find this QC generator matrix, we only need to find some codeword
c1, . . . , ct in C, such that their quasi cyclic shift are linear independent. Once
this QC generator matrix is found, we can use the first row of each block to re-
cover the generator matrix, and thus the n×k public generator can be decreased
into a n× (k/ord(σ)) matrix with compact from .
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3 The McEliece-Based Cryptosystem from Quasi-Cyclic
Elliptic Codes

In this section, we will propose our scheme based on the quasi-cyclic elliptic
codes and McEliece encryption scheme. We first give the construction of a basic
scheme, and then give a more efficient scheme with key-encapsulation mechanis-
m. Last but not least, we show how to transform the basic scheme into the dual
Niederriter version.

3.1 The Basic Scheme

Our PKE scheme based on QC elliptic codes can be summarized as follows:

– Set up(1λ)
Generates the global parameters param = (q, n, k, t), where q is the

size of the finite field, n is the length of the code and k is the dimension if
the code. Denote t = t0 + t1 as the number of errors that are add to the
codeword, where t0 = (d− 1)/2 = (n− k− 1)/2 and t1 < n−

√
nk− t0 such

that C.ListDecode can correct t errors.
– KeyGen(param)

Take param as input, and output the key pair (pk, sk).
Firstly construct a finite field Fq with q elements, where q is a prime

number. Afterwards randomly choose an element b ∈ Fq, then the elliptic
curve is given by E : Y 2 = X3 + b. The restriction on b is that there must
exist an automorphism function σ on E with ord(σ) = 6.

Secondly, choose l = n/6 rational points PD = {P1, P2, . . . , Pl | Pi 6= O}
on E on different orbits corresponding to σ. Set

D = Σl
i=1Σ

j=5
j=0σ

j(Pi)

and G = kO. Then C(D,G) is a quasi-cyclic elliptic curve code defined on E
over Fq. Let Gpub be the generator matrix of C with compact form.

pk← (Gpub, t)

sk← (E , PD, σ)

– Encrypt(pk,m)
Take the public key pk and message m ∈ Fkq as input, and output the

cipher-text c.
Firstly, randomly choose a vector r ∈ Fkq , and another random vector e

in Fnq of weight t.
Then the cipher-text is calculated as

c1 ← rG + e

c2 ←m + r

c← c1||c2
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– Decrypt(sk, c)
Take the secret key sk and cipher-text c as input, and output the message

m.
Once get the cipher-text, depart it into two parts with length n and k

respectively to get c1 and c2.
Then run the list-decoding algorithm to calculate

r ← C.ListDecode(c1)

And finally will get
m← c2 − r

Correctness: Notice that the correctness of our scheme relies on the success
of list decoding algorithm about C. To avoid the situation that there are more
than one codeword are returned in the list, we can add some redundancies to
the original message. There are many analysis about the number of codeword
in the output list, like [30] for Reed-Solomon codes and [48] for elliptic codes
etc. Acutually, as showed in [6], in CCA2-secure variants of McElieces system
there is no difficulty in identifying which codeword is a valid message. Once the
decoding algorithm success and a unique codeword is decided, then for a given
message m and its corresponding ciphertext c, we have

c2 − C.ListDecode(c1) = c2 − r = m + r − r = m,

i.e.
Decrypt(sk, (Encrypt(pk,m)) = m,

which shows the correctness of our scheme.
The quasi-cyclic generator matrix of the underlying code can be stored in

a brief from, which leads to a smaller size of the public key. Here we use list
decoding algorithm as a subroutine in the decryption algorithm, because the
traditional unique decoding algorithm is impossible to correct more than (d−1)/2
errors. Our basic scheme can be transformed into a CCA2-secure version by the
universal method as mentioned in [25].

3.2 A More Efficient Scheme

To make our scheme more practical, we propose the corresponding key encapsu-
lation mechanism (KEM) refer to [21] as follows.

Alice and Bob want to share a common session secret key K. Bob publishes
his public key pk = (Gpub, t), and his secret key is denoted as sk = (E , PD, σ).
Besides, choose security hash functions H,K,F .

– Encap:
Alice randomly chooses a vector m ∈ Fnq . Then run the Encrypt algo-

rithm with Bob’s public key pk and (m||H(m)). The output cipher-text is
denoted as c. Set

d← F(m)
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Alice sends (c,d) to Bob.
The session key is defined as

K ← K(m||c)

– Decap:
Bob receives (c,d). Then run the Decrypt algorithm with his secret

key pk and c. Denote the output as (m∗,H(m∗)). Bob computes c∗ ←
Encrypt(pk,m∗||H(m∗)) and d∗ ← F(m∗).

If c∗ = c and d∗ = d, Bob computes the session key

K ← K(m∗||c∗)

Else return false.

According to [21], the above KEM version of our scheme is IND-CCA2.

3.3 Transformation into Niederreiter Version

As mentioned before, Niederreiter encryption scheme is actually a dual version
of McEliece scheme, so we can easily transform our scheme into Niederreiter
version. It is well-known that a decoding algorithm can be transformed into a
syndrome decoding algorithm, and list decoding is no exception. [3] shows the
details for syndrome list decoding. We denote the syndrome decoding algorithm
for code C as C.SListDecoding.

– Set up(1λ)
Generates the global parameters param = (q, n, k, t,H), where q is the

size of the finite field, n is the length of the code, and k is the dimension if the
code. Denote t = t0+t1 as the number of errors that are add to the codeword,
where t0 = (d − 1)/2 = (n − k − 1)/2 and t1 < n −

√
nk − t0 such that

there exists an efficient syndrome list decoding algorithm C.SListDecoding
can correct t errors. A security hash functionH : {0, 1}∗ ← {0, 1}k is selected
as well.

– KeyGen(param)
Take param as input, and output the key pair (pk, sk).
Firstly construct a finite field Fq with q elements, where q is a prime

number. Afterwards randomly choose an element b ∈ Fq, then the elliptic
curve is given by E : Y 2 = X3 + b. The restriction on b is that there must
exist an automorphism function σ on E with ord(σ) = 6.

Secondly, choose l = n/6 rational points PD = {P1, P2, . . . , Pl | Pi 6= O}
on E on different orbits corresponding to σ. Set

D = Σl
i=1Σ

j=5
j=0σ

j(Pi)

and G = kO. Then C(D,G) is a quasi-cyclic elliptic curve code defined on E
over Fq. Let Hpub be the parity check matrix of C with compact form.

pk← (Hpub, t)

sk← (E , PD, σ)
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– Encrypt(pk,m)
Take the public key pk and message m ∈ Fnq as input, and output the

cipher-text c.
Choose a random vector z ∈ Fn−kq of weight t, and calculate

c1 = HzT

c2 = m +H(z)

c = c1||c2
– Decrypt(sk, c)

Take the secret key sk and cipher-text c as input, and output the message
m.

Once get the cipher-text c, depart it into to two parts with equal length
(c1 and c2). Then run the syndrome list-decoding algorithm to get

z ← C.SListDecode(c1)

And finally get
m← c2 −H(z).

Here we choose a random vector with weight t and add the hash of it on the
message instead of using the mapping φn,t to encode the message into a error
vector, thus the scheme will be more efficient.

4 Security Analysis and Parameters

The two most important types of attacks against code-based cryptosystems are
structural attacks and decoding attacks. Structural attacks exploit structural
weaknesses in the construction, and then attempt to recover the secret key.
Decoding attacks are used to decrypt a given ciphertext. In this section, we will
show how our system resist the known attacks and then give our parameters.

4.1 Information-Set-Decoding

Information-Set-Decoding is an approach introduced by Prange [41]. The idea
is to find a set of coordinates of a garbled vector which are error-free and such
that the restriction of the codes generator matrix to these positions is invertible.
Then, the original message can be computed by multiplying the encrypted vector
by the inverse of the submatrix. Peters [10] generalised the ISD algorithm over
F2 to Fq, afterwards Niebuhr et al. [33] optimized it and show a lower bounds
for their ISD algorithm.

Let n be the length of the code C over Fq, k be the dimension and r = n− k
be the co-dimension. To correct t errors, the lower bound for the expected cost
in the binary operation of the algorithm is

WFqISD(n, k, t, q) = minp
1√
q − 1

·
2lmin

((
n
t

)
(q − 1)t, qr

)
λq
(
r−l
t−p
)(
k+l
p

)
(q − 1)t

·

√(
k + l

p

)
(q − 1)p
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with l = logq

(
Kqλq

√(
k
p

)
(q − 1)p−1 · ln(q)/2

)
and λq = 1 − exp(−1) ≈ 0.63.

Noticed that the functions above is associated with n, k and t very tightly. Thus
so long as we choose appropriate parameters such that the complexity of the
above algorithm is beyond the security level, our scheme will reach the security
level.

Example 1 To reach 2128 security level we choose parameters q = 809 and
[n, k] = [372, 156], then r = n − k = 216. Set t = 125 < n −

√
nk. Take them

into the equation above, we found that when p = 1 the right side of the equation
gets the minimum value.

WFqISD(372, 156, 125, 1021) =
1

q − 1
·

2l
(
n
t

)
λq
(
r−l
t−1
)(
k+l
1

) ·√(k + l

1

)
(q − 1)

=
1

808
·

2l
(
372
125

)
λq
(
215−l
124

) (156 + l) ·
√

(156 + l)808 ≈ 2128.955,

here l = logq

(
Kqλq

√(
k
p

)
(q − 1)p−1 · ln(q)/2

)
≈ 1.313.

4.2 Structure Attack

Because of the specially algebraic structure of AG codes, many researchers try
to recover the secret key from the parameters and public key.

Minder [31] claimed that they devised an effective structural attack against
the McEliece cryptosystem based on algebraic geometry codes defined over el-
liptic curves. This attack is inspired by an algorithm due to Sidelnikov and
Shestakov [44] which solves the corresponding problem for Reed-Solomon codes.

However, the first step of attack, i.e. recovering the group structure, whose
idea is to use the fact that minimum weight codewords correspond to functions
whose divisor is exactly known, is unlikely to be done. Although we have known
that the minimum distance of the used elliptic codes is n−k, as is said in [31], the
asymptotic (in n) approximation of the probability that a fixed word of weight
w shows still remains

2n[(1−R)Hq(
ω

1−R )−Hq(ω)]

where R = k/n, ω = w/n and

Hq(x) =

{
x logq(q − 1)− x logq(x)− (1− x) logq(1− x) if 0 < x < 1− q−1
0 if x = 0

which means finding the needed minimum weight words has a exponent complex-
ity. Moreover, Cheng [8] proved that the minimum distance problem is NP-hard.
Since a codeword of minimum weight uniquely determine the minimum distance
of this linear code, it indicated that it is unlikely to find a minimum weight
word in elliptic codes in polynomial time. As a result, their attack is not efficient
enough to break our scheme.
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In [28] and [27], Márquze-Corbella et al. showed an attack which can recover
an equivalent algebraic geometry code with the underlying one. They proved that
the structure of the code can be recovered from the only knowledge of a generator
matrix of the code. Although they showed efficient computational approach to
the rational points and divisor finding algorithm, decoding algorithm from the
obtained code’s representation is still lacking. Thus, this result does not lead to
an efficient attack.

4.3 Error Correcting Pair (ECP) Decoding

The attack with Error-Correcting-Pair was proposed by Pellikaan et al. in [10].
The ECP finding algorithm was able to be computed in O(n4) operations in Fq,
which allows the attacker to decrypt any encrypt message in O(n3) under the
assumption that the users also use error correcting pairs.

Given a positive integer t, a t-ECP for a linear code C ⊆ Fnq is a pair of linear
codes (A,B) in Fnq satisfying the following conditions:

(1) (A ∗B) ⊆ C⊥
(2) d(B⊥) > t
(3) k(A) > t
(4) d(A) + d(C) > n
where A ∗B denotes the Schur product of A and B.

For a public matrix of AG code CL(D,G)⊥, suppose D = P1 + · · ·+ Pn. one
can compute an ECP for CL(D − P,G − P ), where P ∈ {P1, . . . , Pn}, i.e. an
ECP for CL(D,G)⊥ punctured at one position. Thus the decoding can be can
be performed by first correcting errors on the punctured code and then correct
an erasure, with the help of P-Filtrations technique.

The decoding algorithm comes from [37]. We first give some definitions and
then show the algorithm.

Let C be a linear code over Fq. Define the syndrome map of the code C by

s : Fnq → (C⊥)∨

w 7→ (v 7→ 〈v,w〉)

where C∨ denotes the vector space of Fq linear functionals on C.
Let A, B and C be linear codes in Fnq . Define the error locating map Ew of

a received word w with respect to the code C, by

Ew : A→ B∨

a 7→ (b 7→ 〈w,a ∗ b〉)

Suppose I = i1, . . . , it, where 1 ≤ i1 < . . . < it ≤ n. Let A be a linear code
in Fnq . Define

A(I) = {a ∈ A | ai = 0for all i ∈ I}

Define the projection map
πI : Fnq → Ftq
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by πI(w) = (wi1 , . . . , wit). Define AI = πI(A). Let e ∈ Fnq . We will denote
πI(e ∗A) by eAI .

Define the inclusion map
iI : Ftq → Fnq

by inserting wj at the ijth coordinate for all j = 1, . . . , t and zeros everywhere
else, for w ∈ Fnq . Note that πI ◦ iI is the identity map on Ftq. Define the restricted
syndrome map

sI : Ftq → (C⊥)∨

by the composition sI = s ◦ iI .

The ECP Decoding Algorithm [37]

(1.1) Compute Ker(Ew).
(1.2) If Ker(Ew) = 0, then goto (3.2).
(1.3) If Ker(Ew) 6= 0, then choose a non-zero element a of Ker(Ew). Let J =
z(a) = {i | ai = 0}.

(2.1) Compute the space of solutions of sJ(x) = s(w).
(2.2) If sJ(x) = s(w) has no or more than one solution then goto (3.2).
(2.3) If sJ(x) = s(w) has the unique solution x0, then compute wt(x0).
(2.4) If wt(x0) > t, then goto (3.2).

(3.1) Print: ”The received word is decoded by:”; Print w− iJ(x0); then goto (4.1).
(3.2) Print: ”The received word has more than t errors ”.

(4.1) End.

Simply speaking, one sets up a system of linear equations with the help
of the vector space A and B. The set of zeros of a non-zero solution of these
equation contains the error positions. Solving a set of linear equations involving
the syndrome of the received word gives the error values.

A t-error correcting pair can correct any word with at most t errors. However,
there is a limitation to t that t ≤ (d∗ − 1)/2 where d∗ is the design distance for
the code, which means that if there are more than (d∗ − 1)/2 errors added to
the codeword, the ECP decoding algorithm will fail because the dimension of
A is exactly the maximum number of errors, and dim(A) = t + g < n − k − t
by definition. [37] also proved a corollary that if a linear code C has a t-ECP,
then t ≤ b(d(C) − 1)/2c. Having noticed that, we add more than (d∗ − 1)/2
random errors in the encryption algorithm to defence the ECP attack, and use
List-Decoding algorithm in the decryption algorithm to recover the codewords.

Then there comes another combined attack that first exhaustive search for
the added errors, then use ECP-attack, i.e. split the error e into e1 and e2 such
that e1 + e2 = e and wt(e1) = d∗−1

2 = t0. Denote the weight of e2 by t1 with
t1 = t− t0. The random errors may happen on any position, then there are

(
n
t1

)
possibilities for the error position, and (q − 1)t1 possibilities for the error value,
which inspire us to make sure our parameters will hold(

n

t1

)
(q − 1)t1
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beyond the security level.

4.4 Other attacks

Exhaustive search to recover the structure of codes There are 3 param-
eters are needed to recover the code, i.e. b for elliptic curve, D and σ for elliptic
code. Another divisor G = kO is actually public.

The elliptic curve has one parameter in Fq, there are at most 6 automorphism
functions, and at least 1+ q−2

√
q points on a curve over Fq and can be sort out

by the orbits of automorphism σ. Hence to recover the AG code, the attacker
has to try

6q

(
(1 + q − 2

√
q)/6

n/6

)
times.

Attacks against quasi-cyclic codes There are also some attacks against
QC codes. [14] gives algebraic cryptanalysis using Groebner basis of the QC
McEliece variant based on [4] for the special structure of both Goppa codes and
large order of quasi cyclicity. This attack relies on the construction of a specific
party-check matrix of the underlying code, which differs from our QC elliptic
codes. [35] attacks cryptosystems based on QC-BCH codes and QC-LDPC codes,
mainly because those codes provide a low number of possible keys. We can choose
appropriate parameters to make sure the key space is large enough to defence
this attack.

4.5 Proposition of Parameters

In the following tables we use notations

1λ: security level;

q: the prime to generate the finite field;

n: length of the quasi-cyclic code;

k: dimension of the quasi-cyclic code;

t0: t0 = (d− 1)/2 is the basic weight of error vector;

t1: the added weight of error vector;

t: t = t0 + t1 is the total weight of error vector, which can be decode by a
list-decoding algorithm;

We give our suggested parameters in Table 1.
Now we give a example with security level 2128 to show that how our scheme

resist the known attacks.

Example 2 We choose q = 811, n = 372, k = 156 and t = 125, the corre-
sponding quasi-cyclic elliptic codes has minimum distance d = n− k = 216, the
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Table 1. Parameters for Quasi-Cyclic Elliptic Codes based PKE

1λ q n k t0 t1 t
2128 811 372 156 108 17 125
2196 1103 564 228 168 28 196
2256 1493 714 342 180 32 212

extra number of errors is t0 = 17 < n−
√
nk − (d− 1)/2. We choose the elliptic

curve parameter b = 13, and there are 793 points on the curve

E : Y 2 = X3 + 13

There are six automorphism functions on E , and we choose σ : (X,Y ) 7→
(130X, 810Y ) with ord(σ) = 6. Choose rational points
PD = {(368 , 704 ), (788 , 245 ), (660 , 84 ), (14 , 18 ), (98 , 88 ), (364 , 808 ), (92 , 366 ), (214 ,

400 ), (784 , 627 ), (37 , 437 ), (536 , 354 ), (112 , 794 ), (717 , 338 ), (268 , 305 ), (209 , 717 ), (800

, 149 ), (446 , 438 ), (52 , 72 ), (335 , 102 ), (516 , 136 ), (627 , 283 ), (686 , 764), (456 , 213 ), (541

, 226 ), (642 , 613 ), (506 , 410 ), (741 , 103 ), (142 , 188 ), (83 , 171 ), (550 , 532 ), (569 , 361 ),

(546 , 298 ), (421 , 191 ), (226 , 481 ), (152 , 512 ), (462 , 474 ), (257 , 53 ), (377 , 489 ), (519 , 25

), (7 , 60 ), (790 , 22 ), (320 , 619 ), (340 , 549 ), (416 , 667 ), (716 , 26 ), (658 , 385 ), (10 , 536 ),

(682 , 64 ), (729 , 526 ), (325 , 131 ), (286, 692 ), (698 , 286 ), (323 , 577 ), (397 , 439 ), (515 , 231

), (484 , 534 ), (168 , 718 ), (197 ,781 ), (148 , 628 ), (67 , 742 ), (571 , 157 ), (70 , 631)}

then set

D = Σl
i=1Σ

j=5
j=0σ

j(Pi), G = kO.

Thus we construct a QC code C(D,G) with a 372 × 26 generator matrix in
compact from

G
pub

=



649 595 743 199 761 229 303 525 703 330 . . . 632 621 172 661
583 30 682 702 66 721 126 287 630 358 . . . 386 422 372 110
554 97 576 368 463 586 102 229 676 331 . . . 398 182 261 251
581 314 479 365 293 700 292 43 449 436 . . . 78 465 18 693

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
197 139 785 12 89 264 388 209 398 254 . . . 500 656 807 193
552 252 149 181 510 88 5 522 777 670 . . . 338 130 617 3


The public key is pk = (Gpub, t) and secret key is sk = (b, PD, σ).
Randomly generates a vector

r =(691, 260, 260, 508, 152, 171, 101, 324, 323, 691, 577, 58, 423, 231, 21, 500, 235, 491, 63, 72, 57,

774, 676, 187, 687, 254, 67 , 263, 21, 761, 505, 603, 442, 43, 534, 559, 750, 667, 805, 600, 15, 736,

431, 723, 708, 736, 404, 378, 84, 32, 403, 318, 338, 259, 439, 348, 351, 463, 604, 73, 195, 398, 626, 10,

789, 602, 707, 302, 267, 301, 392, 239, 159, 195, 126, 702, 121, 71, 554, 316, 789, 536, 644, 160, 324,

386, 788, 160, 528, 693, 763, 198, 580, 469, 374, 538, 762, 795, 180, 427, 408, 511, 673, 715, 560, 165,

183, 65, 626, 572, 647, 645, 137, 672, 327, 365, 94, 752, 328, 437, 392, 291, 93, 728, 91, 513, 161, 94,

213, 237, 444, 473, 25, 202, 756, 478, 279, 377, 515, 444, 675, 681, 558, 281, 151, 532, 489, 489, 290,

331, 227, 272, 618, 410, 328, 357),

and a error vector of weight t
e =(83, 0, 237, 87, 327, 0, 534, 639, 0, 485, 0, 0, 434, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 614, 342, 0, 0, 435,

0, 126, 0, 542, 0, 547, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 185, 124, 21, 0, 0, 0, 0, 0, 65, 0, 0, 0, 0, 236, 0,

665, 0, 659, 0, 408, 465, 0, 0, 0, 0, 246, 0, 0, 0, 0, 0, 106, 782, 0, 0, 0, 563, 626, 0, 0, 0, 499, 746, 0,

0, 0, 0, 0, 0, 610, 651, 0, 307, 0, 0, 797, 0, 0, 0, 243, 0, 0, 0, 0, 0, 799, 0, 0, 0, 557, 53, 0, 314, 588,
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447, 258, 0, 379, 100, 714, 201, 0, 0, 0, 0, 0, 465, 0, 0, 487, 806, 0, 0, 186, 702, 0, 0, 267, 718, 635,

691, 0, 608, 185, 492, 0, 0, 33, 0, 0, 0, 631, 0, 560, 0, 536, 0, 0, 0, 0, 0, 0, 0, 96, 661, 354, 0, 0, 0, 0,

0, 491, 0, 0, 0, 262, 0, 451, 0, 7, 0, 444, 0, 0, 0, 0, 0, 0, 0, 0, 715, 0, 0, 0, 0, 361, 0, 0, 0, 0, 22, 509,

518, 0, 421, 618, 0, 792, 0, 0, 0, 0, 0, 95, 0, 0, 0, 0, 255, 0, 0, 391, 0, 0, 0, 0, 558, 0, 0, 63, 0, 542, 0,

0, 0, 0, 0, 800, 0, 0, 287, 0, 0, 768, 0, 0, 0, 0, 0, 297, 725, 0, 0, 0, 483, 72, 271, 0, 0, 0, 0, 0, 450, 0, 0,

132, 0, 149, 6, 0, 0, 0, 729, 0, 0, 0, 0, 229, 0, 0, 0, 0, 18, 0, 346, 0, 0, 0, 0, 0, 0, 0, 331, 0, 578, 0, 0,

0, 0, 224, 0, 0, 0, 0, 0, 0, 0, 0, 728, 0, 389, 440, 425, 0, 808, 0, 0, 0, 200, 707, 0, 0, 755, 0, 0, 426, 0,

0, 223, 0, 0, 0, 284, 627, 0, 94, 0, 0, 719, 0, 606, 65, 0, 0, 0, 0, 0, 0, 0, 0, 143, 0, 0, 0, 137, 0, 662, 0,

0, 0, 229, 0, 690, 0, 0, 0).

Suppose the message is
m =(458 , 740 , 766 , 174 , 543 , 45 , 15 , 746 , 343 , 151 , 801 , 644 , 566 , 59 , 481 , 435 , 228 , 603

, 313 , 164 , 547 , 426 , 728 , 720 , 705 , 664, 22 , 703 , 26 , 424 , 360 , 367 , 373 , 564 , 605 , 61 ,

109 , 490 , 436 , 368 , 706 , 497 , 773 , 73 , 398 , 70 , 295 , 553 , 255 , 433 , 173 , 439, 564 , 790 ,

281 , 718 , 746 , 659 , 723 , 538 , 606 , 225 , 60 , 215 , 748 , 387 , 286 , 551 , 47 , 725 , 305 , 496 ,

745 , 75 , 473 , 419 , 113 , 216, 1 , 611 , 85 , 559 , 114 , 186 , 384 , 790 , 52 , 430 , 551 , 68 , 431 ,

766 , 449 , 6 , 461 , 126 , 631 , 86 , 806 , 320 , 325 , 259 , 658 , 73 , 217 , 435, 719 , 398 , 563 , 289 ,

39 , 673 , 494 , 715 , 18 , 659 , 388 , 645 , 765 , 83 , 102 , 740 , 75 , 285 , 236 , 427 , 292 , 539 , 174

, 236 , 191 , 156, 371 , 701 , 568 , 4 , 164 , 576 , 337 , 416 , 67 , 450 , 560 , 497 , 281 , 118 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 0 , 0).

The cipher-text is
c = c1 || c2 = (rG + e) || (m + r)

= (127 , 340 , 695 , 400 , 601 , 406 , 608 , 21 , 765 , 536 , 109 , 568 , 791 , 329 , 690 , 520 , 708 , 555

, 578 , 462 , 751 , 317 , 532 , 471 , 141 , 478 88 , 709 , 776 , 296 , 505 , 638 , 567 , 420 , 115 , 667 ,

479 , 144 , 46 , 750 , 671 , 174 , 230 , 38 , 766 , 473 , 79 , 584 , 162 , 481 , 679 , 53 , 403 , 392 ,726 ,

80 , 577 , 425 , 37 , 711 , 611 , 140 , 497 , 649 , 719 , 41 , 572 , 707 , 169 , 261 , 626 , 508 , 687 , 731

, 618 , 577 , 708 , 320 , 708 , 188 , 61 , 191 , 199 , 537 , 419 , 508 , 493 , 253 , 798 , 139 , 231 , 610 ,

94 , 358 , 129 , 251 , 507 , 693 , 795 , 512 , 729 , 52 , 116 , 718 , 74 , 69 , 50 , 26 , 230 , 383 , 26 , 62

, 422 , 240 , 743 , 310 , 439 , 805 , 600 , 626 , 775 , 388 , 206 , 531 , 697 , 387 , 206 , 138 , 53 , 310 ,

505 , 131 , 691 , 170 , 625 , 244 , 638 , 269 , 455 , 465 , 147 , 547 , 274 , 329 , 175 , 71 , 716 , 93 ,

534 , 665, 470 , 71 , 747 , 376 , 4 , 254 , 706 , 651 , 445 , 178 , 505 , 526 , 579 , 474 , 363 , 693 , 335

, 167 , 745 , 782 , 605 , 361 , 109 , 377 , 83 , 479 , 103 , 55 , 455 , 800 , 549 , 163 , 158 , 738 , 15 ,

402 , 261 , 759 , 682 , 142 , 320 , 802 , 176 , 561 , 599 , 640 , 479 , 6 , 667 , 671 , 431 , 605 , 246 ,

792 , 225 , 756 , 78 , 559 , 513 , 158 , 468 , 364 , 288 , 92 , 392 , 26 , 328 , 521 , 511 , 541 , 142 , 2 ,

510 , 179 , 424 , 314 , 0 , 648 , 481 , 326 , 241 , 758 , 479 , 592 , 366 , 22 , 289 , 232 , 444 , 176 , 211

, 575 , 137 , 146 , 432 , 62 , 127 , 187 , 282 , 781 , 274 96 , 83 , 722 , 5 , 576 , 33 , 530 , 563 , 784 ,

724 , 697 , 555 , 550 , 641 , 51 , 132 , 510 , 595 , 476 , 45 , 286 , 71 , 205 , 35 , 241 , 443 , 703 , 646 ,

68 , 316 180 , 501 , 27 , 370 , 753 , 580 , 106 , 260 , 243 , 440 , 224 , 477 , 478 , 544 , 346 , 655 , 133

, 133 , 266 , 340 , 274 , 501 , 3 , 549 , 179 , 685 , 210 , 53 142 , 410 , 560 , 130 , 286 , 523 , 645 , 187

, 361 , 127 , 751 , 12 , 763 , 449 , 265 , 749 , 80 , 798 , 678 , 174 , 719 , 284 , 312, 135 , 781 , 251 ,

322 267 , 196 , 640 , 387 , 124 , 390 , 509 , 784 , 582 , 611 , 355 , 473 , 389 , 705 , 466 , 701 , 15 , 95

, 389 , 410 , 522 , 263 , 762 , 405 , 779 , 92 640 , 372 522 , 590 , 341 , 616 , 808 , 348 , 233 , 179)

|| (338 , 189 , 215 , 682 , 695 , 216 , 116 , 259 , 666 , 31 , 567 , 702 , 178 , 290 , 502 , 124 , 463 , 283

, 376 , 236 , 604 , 389 , 593 , 96 , 581 , 107 , 89 , 155 , 47 , 374 , 54 , 159 , 4 , 607 , 328 , 620 , 48 ,

346 , 430 , 157 , 721 , 422 , 393 , 796 , 295 , 806 , 699 , 120 , 339 , 465 , 576 , 757 , 91 , 238 , 720 ,

255, 286 , 311 , 516 , 611 , 801 , 623 , 686 , 225 , 726 , 178 , 182 , 42 , 314 , 215 , 697 , 735 , 93 ,
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270 , 599 , 310 , 234 , 287 , 555 , 116 , 63 , 284 , 758 , 346 , 708 , 365 , 29 , 590 , 268 , 761 , 383 ,

153 , 218 , 475 , 24 , 664 , 582 , 70 , 175 , 747 , 733 , 770 , 520 , 788 , 777 , 600 , 91 , 463 , 378 , 50

, 686 , 507 , 631 , 576 , 345 , 213 , 482 , 586 , 282 , 520 , 494 , 220 , 168 , 202 , 327 , 129 , 453 , 633

, 387 , 473 , 635 , 629 , 396 , 92 , 513 , 482 , 443 , 142 , 41 , 49 , 742 , 320 , 307 , 778 , 432 , 650 ,

489 , 489 , 290 , 331 , 227 , 272 , 618 , 410 , 328 , 357 ).

Obviously we can get that Decrypt(sk, c) = m.
The lower bound of information set decoding is showed in Example 1 where

WFqISD > 2128.95.

To apply the structure attacks, one need to find the minimum weight codeword
of the underlying code, whose computational complexity is about

O(

(
n

n− k

)
) > 2360.

Meanwhile, the exhaustive search will cost

6q

(
(1 + q − 2

√
q)/6

n/6

)
> 2140.05.

Last but not least, the ECP decoding attack relies on the unique decoding algo-
rithm. Since we add more than t0 = (d− 1)/2 errors to the codeword, the direct
ECP-decoding algorithm will fail. The combined ECP attack will cost(

n

t1

)
(q − 1)t1 > 2260.54.

5 Efficiency Analysis

Here we show how the proposed scheme preforms in the size of key pairs, and
the speed of encryption and decryption.

The size of public key can be calculated as the size of first row of each block
and the size of error number. Each element of the matrix is an element of Fq
with log q bits, and for each block with 6 rows we only need 1 row to recover it,
thus we need (n · k/6) · log q + log t bits to save the public key. The secret key
is a triple of (E , D, σ), where E is a Weierstrass equation with one parameter,
D = Σl

i=1ΣPi∈Si
Pi is the divisor, and σ is an automorphism with order 6 of E .

There are n/6 orbits Si, and every orbit can be recover from one rational point
and the automorphism function σ. Since the E , i.e. the relationship between
the coordinates of points is known, we only need 1 coordinate to recover each
point, which leads to size of D is n log q/6 bits. The automorphism function is in
fact a mapping between the coordinates, and with the same reason, the mapping
between 1 coordinate with 1 parameters is enough to recover the whole mapping,
which only needs log q bits. Thus the size of secret key is 2 log q+ n log q/6 bits.

Thanks to the special structure of quasi-cyclic elliptic codes, we reduce the
size of both public key and secret key a lot compare to the other variants of
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McEliece based cryptosystem. Although the encryption algorithm is almost as
fast as the original scheme, the speed of decryption because of the using of
list-decoding is sacrificed.

Here we compare the key size (in bits) of our scheme with some proposals to
NIST Post-Quantum Cryptography Standardization in Table 2.

Table 2. Key-size(bits) for Quasi-Cyclic Elliptic Codes based PKE

1λ Scheme Public-key Secret-key KEM
message

2128
QC-EC 67709 448 5720

Big Quake 203856 118176 1608
RQC 11928 11928 12952

2192
QC-EC 150029 672 8408

Big Quake 673056 246880 3248
RQC 21928 21928 22952

2256
QC-EC 284891 847 10508

Big Quake 1198400 334432 3936
RQC 28080 28080 29140

6 Conclusion

We construct a public-key encryption system based on quasi-cyclic elliptic codes,
which can resist all attacks against algebraic geometry codes as far as we know.
The knowledge of building quasi-cyclic codes from elliptic curves helps us to
decrease the size of both public key and secret key. To resist the attacks, we add
errors beyond the half of the minimum distance of the code, and then use list-
decoding algorithm as a subroutine to decode the ciphertext. Our cryptosystem
performs good on the storage size, but the decrypt speed is sacrificed to ensure
the security. Obviously, with the development of list-decoding algorithm, espe-
cially list-decoding algorithm towards quasi-cyclic algebraic geometry codes, the
decryption speed of our scheme will be accelerate.

We noticed that many geometrically curves have automorphism with large
order, so it is worthwhile work to explore better schemes based on algebraic
geometry codes.
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