
Batching Techniques for Accumulators

with Applications to IOPs and Stateless Blockchains

Dan Boneh, Benedikt Bünz, Benjamin Fisch
Stanford University

Abstract

We present batching techniques for cryptographic accumulators and vector commitments
in groups of unknown order. Our techniques are tailored for decentralized settings where no
trusted accumulator manager exists and updates to the accumulator are processed in batches.
We develop techniques for non-interactively aggregating membership proofs that can be verified
with a constant number of group operations. We also provide a constant sized batch non-
membership proof for a large number of elements. These proofs can be used to build a positional
vector commitment with constant sized openings and constant sized public parameters. As a
core building block for our batching techniques we develop several succinct proofs for groups of
unknown order. These include a proof that an exponentiation was done correctly and a zero-
knowledge proof of knowledge of an integer discrete logarithm between two group elements. We
use these new constructions to design a stateless blockchain, where nodes only need a constant
amout of storage. Further we show that our vector commitment can be used to significantly
reduce the size of IOP instantiations, such as STARKs.

1 Introduction

A cryptographic accumulator [Bd94] is a primitive that produces a short binding commitment to
a set of elements together with short membership/non-membership proofs for any element in the
set. These proofs can be publicly verified against the commitment. In a dynamic accumulator,
the commitment and proofs can be updated efficiently as elements are added or removed from the
set. The typical way in which an accumulator is used is as a communication-efficient authenticated
data structure (ADS) for a remotely stored database where users can retrieve individual items
along with their proofs and efficiently verify the integrity of the database. Accumulators have been
suggested for many applications within this realm, including accountable certificate management
[NN98, BLL00], timestamping [Bd94], revocable anonymous credentials [CL02], computations on
authenticated data [ABC+12], privacy-preserving data outsourcing [Sla12], updatable signatures
[PS14, CJ10], anonymous e-cash [STS99, MGGR13], and decentralized bulletin boards [FVY14,
GGM14].

Several accumulator variants exist. One major distinction is between a static and dynamic
accumulator. A dynamic accumulator supports addition and deletion of elements at unit cost,
independent of the number of accumulated elements. A universal accumulator is one that is
dynamic and also supports both membership and non-membership proofs.

Our present work is motivated by two specific applications of accumulators: stateless blockchains
and short interactive oracle proofs.

1

Stateless blockchains. The Bitcoin blockchain operates a ledger-based payment system, in
which peer-to-peer payment transactions are asynchronously broadcasted and recorded in an or-
dered ledger that is replicated across all nodes in the network. Every transaction has one or more
input source addresses and one or more output target addresses. The transaction completely trans-
fers all the funds associated with the source addresses to the output addresses. It is only valid if
every source address is the output of a previous transaction that has not been used before as the
input to another transaction. These are called the unspent transaction outputs (UTXOs). There-
fore, checking the validity of a transaction amounts to verifying that every input address in the
transaction is a member of the current UTXO set. It is important that all nodes agree on the
this UTXO set, which evolves with every new transaction. An ADS is useful as a communication
efficient way to verify that all nodes in the network agree on the UTXO set by only comparing the
commitment to the set.

Currently Bitcoin uses a hash chain as a short commitment to the transaction history. Every
node in the system stores the entire UTXO set in order to verify incoming transactions. An ADS
that additionally uses an accumulator for membership proofs would alleviate this need. A node
validating a transaction would not need to store the entire UTXO set. Instead, it would verify that a
transaction is in the current UTXO set by verifying a membership proof. In fact, given the advanced
capabilities of dynamic accumulators, no single node in the network would be required to maintain
the entire UTXO set. As long as all the nodes agree on the accumulator commitment, individual
nodes can maintain UTXOs of interest along with their membership proofs. They can efficiently
update the UTXO set commitment and membership proof with every new batch of transactions.
The same idea can be applied to blockchains with more complex data representations, such as a
key-value store (e.g. in Ethereum), given an ADS with similar capabilities for a key-value store as
accumulators offer for a set. This design concept is referred to as a stateless blockchain [Tod16].

Interactive oracle proofs (IOPs). Our second application is construct short IOPs. Mi-
cali [Mic94] showed how probabilistically checkable proofs (PCPs) can be used to construct succinct
non-interactive arguments. In this construction the prover commits to a long PCP using a Merkle
tree and then uses a random oracle to generate a few random query positions. The prover then
verifiably opens the proof at the queried positions by providing Merkle inclusion paths. This tech-
nique has been generalized to the broader class of interactive oracle proof [BCS16]. In an IOP
the prover sends multiple proof oracles to a verifier which responds with challenges. The verifier
then queries the oracles for small subsets of the proof and afterwards accepts or rejects. If the
oracle is replaced with a Merkle tree commitment and the verifier is public coin then an IOP can
be transformed into a short non-interactive proof of knowledge that is secure in the random oracle
model [BCS16]. For every oracle query to the proof oracles the prover provides a Merkle inclusion
path which ensures that the returned value was indeed a particular part of the proof.

A Merkle tree [Mer88] is a special example of an accumulator: a commitment to a set is con-
stant size (i.e., independent of the size of the set) and membership/non-membership proofs are
logarithmic in the size of the set. A Merkle tree can also be used as a vector commitment (VC).
A VC is similar to an accumulator, but it is a position binding commitment (i.e. to a vector or
ordered list rather than a set). A VC does not have membership/non-membership proofs per se,
but can be opened at any position to a unique value with a short opening proof. Both IOPs and
stateless blockchains can be constructed using a Merkle tree: IOPs use Merkle trees as vector com-
mitments and stateless UTXO-blockchains use them as accumulators. However, Merkle trees have

2

two significant drawbacks for these applications. The first is that the membership proofs (equiv.
position openings) are not constant size. This is an issue for large UTXO sets and contributes
substantial overhead to IOP proof size. The second is that the multiple membership proofs (equiv.
position openings) cannot be compressed into a single proof. The ability to aggregate multiple
proofs would have clear advantages for both applications: it would amortize the communication
cost for verifying a large batch of transactions and verifying many positions of an IOP.

Our contributions. In this paper we provide several batching and aggregation techniques for
accumulators and vector commitments. We generally refer to batching when a single action is
applied to n items instead of one action per item. For example n proofs can be batch verified faster
than n times verifying a single membership proof. Aggregation, is a batching technique that is used
when non-interactively combining n items to a single item. For example, n membership proofs can
be aggregated to a single constant sized proof.

Wesolowski [Wes18] recently introduced a constant sized and efficient to verify proof that a
triple (u,w, t) satisfies w = u2t , where u and w are elements in a group of unknown order. The
proof extends to exponents that are not a power of two and still provides significant efficiency gains
over direct verification by computation.

We first expand this technique to provide a new proof of knowledge of exponent, i.e. a proof that
a computationally bounded prover knows the discrete logarithm between two elements in a group
of unknown order. The proof is succinct in that the proof size and verification time is independent
of the size of the discrete-log. We prove security in the generic group model. The use of generic
groups seems necessary to bypass certain impossibility results for proofs in groups of unknown
order [BCK10, TW12]. We also extend the protocol to obtain a zero-knowledge Σ-Protocol that
is an argument of knowledge of a pre-image of a homomorphism from Zq to a group of unknown
order. This protocol is the first succinct Σ-protocol for these groups.

Next, we extend current RSA-based accumulators [CL02, LLX07] to create a universal accu-
mulator for a decentralized setting where no single trusted accumulator manager exists and where
updates are processed in batches. Despite this we show how membership proofs can be efficiently
aggregated. Moreover, items can efficiently be removed from the accumulator without a trapdoor
or even knowledge of the accumulated set. Since the trapdoor is not required for our construc-
tion we can extend Lipmaa’s [Lip12] work on accumulators in groups of unknown order without a
trusted setup by adding dynamic additions and deletions to the accumulator’s functionality. Class
groups of imaginary quadratic order, is a candidate group of unknown order without a trusted
setup[BH01].

We next show how our techniques can be amplified to create a succinct and efficiently verifiable
batch membership and batch non-membership proofs. We then use these batch proofs to create the
first vector commitment construction with constant sized batch openings (recently called subvector
commitments [LM18]) and O(1) setup. This improves on previous work [CF13] which required su-
perlinear setup time and linear public parameter size. It also improves on Merkle tree constructions
which have logarithmic sized non-batchable openings. The efficient setup allows us to create sparse
vector commitments which can be used as a key-value map commitment.

Our techniques have applications to a new blockchain design where users provide correctness
proofs for their transactions and verifiers are not required to store any state. Additionally, we
propose to use our vector commitment as a replacement for Merkle trees in interactive oracle
proofs (IOPs). This significantly reduces the proof size for several IOP constructions. Additionally,

3

we can leverage the proof of exponentiation to reduce the verification time. This comes at the cost
of increasing the prover’s work.

Soundness lower bounds in groups of unknown order. [BCK10] proved that a certain
family of sigma protocols in a generic group of unknown order can achieve at most soundness 1/2
per challenge. [TW12] further extend these impossibility results. Our work gives protocols in a
generic group of unknown order that have negligible soundness error, appearing to contradict these
lower bounds. The reason there is no contradiction is two-fold. First, our protocols are not in the
family of protocols considered by [BCK10]. Second, and more importantly, the lower bound proof
of [BCK10] shows that an extractor operating in a generic group cannot extract a witness from a
successful prover. In contrast, we show how to extract from a successful prover that is restricted
to the generic group model. While proving extraction from an arbitrary prover is preferable, the
lower bounds suggest that this cannot be done.

Additional related work Dynamic accumulators can be constructed from the strong RSA as-
sumption in groups of unknown order (such as an RSA group or the class group) [BP97, CL02,
LLX07, Lip12], from bilinear maps [DT08, CKS09, Ngu05], and from Merkle hash trees [Mer88,
CHKO08]. These accumulators very naturally support batching of membership proofs. Vector com-
mitments based on similar techniques [LY10, CF13, LRY16] have constant size openings, but large
setup parameters. The ability to aggregate constant-size position openings of vector commitments,
or non-membership proofs in accumulators, has not yet been thoroughly explored.

Accumulators traditionally utilize a trusted accumulator manager which possesses a trapdoor
to efficiently delete elements from the accumulator. This trapdoor also allows the manager to
create membership witnesses for arbitrary elements. Lipmaa [Lip12] first considered the setting
of accumulators without a trusted setup from groups of unknown order. His construction does
not require an accumulator manager but it provides only a static accumulator. We extend the
construction to get a universal accumulator without trusted setup. In concurrent work [CPZ18] also
observed that accumulators and vector commitments can be used to build stateless blockchains.
They propose a new vector commitment based on bilinear maps and multivariate polynomials.
Their scheme, however, requires linear public parameters, does not have a trusted setup and does
not support batching of inclusion proofs. Class groups as a group of unknown order, have recently
regained attention in the study of verifiable delay functions [Pie18b, Wes18, BBF18].

2 Preliminaries

Notation.

• a ‖ b is the concatenation of two lists a, b

• a is a vector of elements and ai is the ith component

• [`] denotes the set of integers {0, 1, . . . , `− 1}.

• negl(λ) is a negligible function of the security parameter λ

• Primes(λ) is the set of integer primes less than 2λ

4

• x $← S denotes sampling a uniformly random element x ∈ S.

x
$← A(·) denotes the random variable that is the output of a randomized algorithm A.

• GGen(λ) is a randomized algorithm that generates a group of unknown order in a range [a, b]
such that a, b, and a− b are all integers exponential in λ.

2.1 Assumptions

The adaptive root assumption, introduced in [Wes18], is as follows.

Definition 1. We say that the adaptive root assumption holds for GGen if there is no efficient
adversary (A0,A1) that succeeds in the following task. First, A0 outputs an element w ∈ G and
some state. Then, a random prime ` in Primes(λ) is chosen and A1(`, state) outputs w1/` ∈ G.
More precisely, for all efficient (A0,A1):

AdvAR
(A0,A1)(λ) := Pr

[
u` = w 6= 1 :

G $← GGen(λ), (w, state)
$← A0(G),

`
$← Primes(λ), u

$← A1(`, state)

]
≤ negl(λ) .

We will also need the strong RSA assumption for general groups of unknown order. The adaptive
root and strong RSA assumptions are incomparable. The former states that it is hard to take a
random root of a chosen group element, while the latter says that it is hard to take a chosen root
of a random group element.

Definition 2 (Strong RSA assumption). GGen satisfies the strong RSA assumption if for all
efficient A:

Pr

[
u` = g and ` is an odd prime :

G $← GGen(λ), g
$← G,

(u, `) ∈ G× Z $← A(G, g)

]
≤ negl(λ) .

2.2 Generic group model for groups of unknown order

We will use the generic group model for groups of unknown order as defined by Damgard and
Koprowski [DK02]. The group is parameterized by two integer public parameters A,B. The order
of the group is sampled uniformly from [A,B]. The group G is defined by a random injective function
σ : Z|G| → {0, 1}`, for some ` where 2` � |G|. The group elements are σ(0), σ(1), . . . , σ(|G| − 1).
A generic group algorithm A is a probabilistic algorithm. Let L be a list that is initialized with
the encodings given to A as input. The algorithm can query two generic group oracles:

• O1 samples a random r ∈ Z|G| and returns σ(r), which is appended to the list of encodings L.

• When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈ {1, . . . , q} and a sign
bit, and returns σ(xi ± xj), which is appended to L.

Note that unlike Shoup’s generic group model [Sho97], the algorithm is not given |G|, the order of
the group G.

5

2.3 Argument systems

An argument system for a relation R ⊂ X×W is a triple of randomized polynomial time algorithms
(Pgen,P,V), where Pgen takes an (implicit) security parameter λ and outputs a common reference
string (crs) pp. If the setup algorithm uses only public randomness we say that the setup is
transparent and that the crs is unstructured. The prover P takes as input a statement x ∈ X ,
a witness w ∈ W, and the crs pp. The verifier V takes as input pp and x and outputs 0 or
1. We denote the transcript between the prover and verifier by 〈V(pp, x),P(pp, x, w)〉 and write
〈V(pp, x),P(pp, x, w)〉 = 1 to indicate that the verifier accepted the transcript. If V uses only public
randomness we say that the protocol is public coin.

Definition 3 (Completeness). We say that an argument system (Pgen,P,V) for a relation R is
complete if for all (x,w) ∈ R:

Pr
[
〈V(pp, x),P(pp, x)〉 = 1 : pp

$← Pgen(λ)
]

= 1.

We now define soundness and knowledge extraction for our protocols. The adversary is modeled
as two algorithms A0 and A1, where A0 outputs the instance x ∈ X after Pgen is run, and A1

runs the interactive protocol with the verifier using a state output by A0. In slight deviation from
the soundness definition used in statistically sound proof systems, we do not universally quantify
over the instance x (i.e. we do not require security to hold for all input instances x). This is due
to the fact that in the computationally-sound setting the instance itself may encode a trapdoor
of the crs p (e.g. the order of a group of unknown order), which can enable the adversary to
fool a verifier. Requiring that an efficient adversary outputs the instance x prevents this. In our
soundness definition the adversary A1 succeeds if he can make the verifier accept when no witness
for x exists. For the stronger argument of knowledge definition we require that an extractor with
access to A1’s internal state can extract a valid witness whenever A1 is convincing. We model this
by enabling the extractor to rewind A1 and reinitialize the verifier’s randomness.

Definition 4 (Arguments (of Knowledge)). We say that an argument system (Pgen,P,V) is sound
if for all poly-time adversaries A = (A0,A1):

Pr
[
〈V(pp, x),A1(pp, x, state)〉 = 1 and @w (x,w) ∈ R : pp

$← Pgen(1λ), (x, state)← A0(pp)
]

= negl(λ) .

Additionally, the argument system is an argument of knowledge if for all poly-time adversaries A1

there exists a poly-time extractor Ext such that for all poly-time adversaries A0:

Pr

 〈V(pp, x),A1(pp, x, state)〉 = 1 and (x,w′) 6∈ R :
pp

$← Pgen(1λ)
(x, state)← A0(pp)

w′
$← Ext(pp, x, state)

 = negl(λ) .

Any argument of knowledge is also sound. In some cases we may further restrictA in the security
analysis, in which case we would say the system is an argument of knowledge for a restricted class
of adversaries. For example, in this work we construct argument systems for relations that depend
on a group G of unknown order. In the analysis we replace G with a generic group and restrict A
to a generic group algorithm that interacts with the oracles for this group. For simplicity, although
slightly imprecise, we say the protocol is an argument of knowledge in the generic group model.

6

Groth [Gro16] recently proposed a SNARK system for arbitrary relations that is an argument of
knowledge in the generic group model in a slightly different sense, where the generic group is used
as part of the construction rather than the relation and the adversary is a generic group algorithm
with respect to this group generated by the setup.

Definition 5 (Zero Knowledge). We say an argument system (Pgen,P,V) for R has statistical
zero-knowledge if there exists a poly-time simulator Sim such that for (x,w) ∈ R the following
two distribution are statistically indistinguishable:

D1 =
{
〈P(pp, x, w),V(pp, x)〉, pp

$← Pgen(λ)
}

D2 =
{
Sim(pp, x,V(pp, x)), pp

$← Pgen(λ)
}

Definition 6 (Non interactive arguments). A non-interactive argument system is an argument
system where the interaction between P and V consists of only a single round. We then write the

prover P as π
$← Prove(pp, x, w) and the verifier as Vf(pp, x, π).

The Fiat-Shamir heuristic [FS87] and its generalization to multi-round protocols [BCS16] can
be used to transform public coin argument systems to non-interactive systems.

3 Succinct proofs for hidden order groups

In this section we present several new succinct proofs in groups of unknown order. The proofs
build on a proof of exponentiation recently proposed by Wesolowski [Wes18] in the context of
verifiable delay functions [BBBF18]. We show that the Wesolowski proof is a succinct proof of
knowledge of a discrete-log in a group of unknown order. We then derive a succinct zero-knowledge
argument of knowledge for a discrete-log relation, and more generally for knowledge of the inverse
of a homomorphism h : Zn → G, where G is a group of unknown order. Using the Fiat-Shamir
heuristic, the non-interactive version of this protocol is a special purpose SNARK for the pre-image
of a homomorphism.

3.1 A succinct proof of exponentiation

Let G be a group of unknown order. Let [`] := {0, 1, . . . , `− 1} and let Primes(λ) denote the set of
odd prime numbers in [0, 2λ]. We begin by reviewing Wesolowski’s (non-ZK) proof of exponentia-
tion [Wes18] in the group G. Here both the prover and verifier are given (u,w, x) and the prover
wants to convince the verifier that w = ux holds in G. That is, the protocol is an argument system
for the relation

RPoE =
{(

(u,w ∈ G, x ∈ Z); ⊥
)

: w = ux ∈ G
}
.

The verifier’s work should be much less than computing ux by itself. Note that x ∈ Z can be much
larger than |G|, which is where the protocol is most useful. The protocol works as follows:

7

Protocol PoE (Proof of exponentiation) for Relation RPoE [Wes18]

Params: G $← GGen(λ); Inputs: u,w ∈ G, x ∈ Z; Claim: ux = w

1. Verifier sends `
$← Primes(λ) to prover.

2. Prover computes the quotient q = bx/`c ∈ Z and residue r ∈ [`] such that x = q`+ r.
Prover sends Q← gq ∈ G to the Verifier.

3. Verifier computes r ← (x mod `) ∈ [`] and accepts if Q`ur = w holds in G.

The protocol above is a minor generalization of the protocol from [Wes18] in that we allow an
arbitrary exponent x ∈ Z, where as in [Wes18] the exponent was restricted to be a power of two.
This does not change the soundness property captured in the following theorem, whose proof is
given in [Wes18, Prop. 2] (see also [BBF18, Thm. 2]) and relies on the adaptive root assumption
for GGen.

Theorem 1 (Soundness PoE [Wes18]). Protocol PoE is an argument system for Relation RPoE

with negligible soundness error, assuming the adaptive root assumption holds for GGen.

For the protocol to be useful the verifier must be able to compute r = x mod ` faster than
computing ux ∈ G. The original protocol presented by Wesolowski assumed that x = 2T is a power
of two, so that computing x mod ` requires only log(T) multiplications in Z` whereas computing
ux requires T group operations.

For a general exponent x ∈ Z, computing x mod ` takes O((log x)/λ) multiplications in Z`. In
contrast, computing gx ∈ G takes O(log x) group operations in G. Hence, for the current groups of
unknown order, computing gx takes λ3 times as long as computing x mod `. Concretely, when ` is
a 128 bit integer, a multiplication in Z` is approximately 5000 time faster than a group operation
in a 2048-bit RSA group. Hence, the verifier’s work is much less than computing w = ux in G on
its own.

3.2 A succinct proof of homomorphism preimage

Next, we observe that the protocol PoE above can be generalized to a relation for any homomor-
phism φ : Zn → G for which the adaptive root assumption holds in G. Specifically, Protocol PoHP
below is a protocol for the relation:

Rφ,PoHP =
{(

(w ∈ G, x ∈ Zn); ⊥
)

: w = φ(x) ∈ G
}
.

This generalization will be useful in our applications.

Protocol PoHP (Proof of homomorphism preimage) for Relation Rφ,PoHP
Params: G $← GGen(λ), φ : Zn → G; Inputs: x ∈ Zn, w ∈ G; Claim: φ(x) = w

1. Verifier sends `
$← Primes(λ).

2. For i = 1, . . . , n: Prover finds integers qi and ri ∈ [`] s.t. xi = qi`+ ri.
Let q← (q1, ..., qn) ∈ Zn and r← (r1, ..., rn) ∈ [`]n.
Prover sends Q← φ(q) ∈ G to Verifier.

3. Verifier computes ri = (xi mod `) ∈ [`] for all i = 1, . . . , n, sets r = (r1, . . . , rn), and
accepts if Q`φ(r) = w holds in G.

8

Theorem 2 (Soundness PoHP). Protocol PoHP is an argument system for Relation Rφ,PoHP with
negligible soundness error, assuming the adaptive root assumption holds for GGen.

Proof. Suppose that φ(x) 6= w, but the adversary succeeds in making the verifier accept with non-
negligible probability. Let q and r be as defined in step (2) of the protocol and let Q be the prover’s
message to the verifier. Then [Q/φ(q)]` = [w/φ(r)]/[φ(x)/φ(r)] = w/φ(x) 6= 1. We thus obtain an
algorithm to break the adaptive root assumption for the instance ŵ := w/φ(x) by interacting with
the adversary, giving it the adaptive root challenge `, and outputting û := Q/φ(q) ∈ G, where Q
is the value output by the adversary.

3.3 A succinct proof of knowledge of a discrete-log

We next show how the protocol PoE can be adapted to provide an argument of knowledge of
discrete-log, namely an argument of knowledge for the relation:

RPoKE =
{(

(u,w ∈ G); x ∈ Z
)

: w = ux ∈ G
}
.

The goal is to construct a protocol that has communication complexity that is much lower than
simply sending x to the verifier. As a stepping stone we first provide an argument of knowledge
for a modified PoKE relation, where the base u ∈ G is fixed and encoded in a CRS. Concretely
let CRS consist of the unknown-order group G and the generator g. We construct an argument of
knowledge for the following relation:

RPoKE∗ =
{(
w ∈ G; x ∈ Z

)
: w = gx ∈ G

}
.

The argument modifies the PoE Protocol in that x is not given to the verifier, and the remainder
r ∈ [`] is sent from the prover to the verifier:

Protocol PoKE∗ (Proof of knowledge of exponent) for Relation RPoKE∗

Params: G $← GGen(λ), g ∈ G; Inputs: w ∈ G; Witness: x ∈ Z; Claim: gx = w

1. Verifier sends `
$← Primes(λ).

2. Prover computes the quotient q ∈ Z and residue r ∈ [`] such that x = q` + r. Prover
sends the pair (Q← gq, r) to the Verifier.

3. Verifier accepts if r ∈ [`] and that Q`gr = w holds in G.

Here the verifier does not have the witness x, but the prover additionally sends r := (x mod `)
along with Q in its response to the verifier’s challenge. Note that the verifier no longer computes r
on its own, but instead relies on the value from the prover. We will demonstrate an extractor that
extracts the witness x ∈ Z from a successful prover, and prove that this extractor succeeds with
overwhelming probability against a generic group prover. In fact, in the next section we will present
a generalization of Protocol PoKE∗ to group representations in terms of bases {gi}ni=1 included in
the CRS, i.e. a proof of knowledge of an integer vector x ∈ Zn such that

∏
i g
xi
i = w. We will prove

that this protocol is an argument of knowledge against a generic group adversary. The security of
Protocol PoKE∗ above follows as a special case. Hence, the following theorem is a special case of
Theorem 5 below.

Theorem 3. Protocol PoKE∗ is an argument of knowledge for relation RPoKE∗ in the generic group
model.

9

An attack. Protocol PoKE∗ requires the discrete logarithm base g to be encoded in the CRS.
When this protocol is applied to a base freely chosen by the adversary it becomes insecure. In
other words, Protocol PoKE∗ is not a secure protocol for the relation RPoKE.

To describe the attack, let g be a generator of G and let u = gx and w = gy where y 6= 1
and x does not divide y. Suppose that the adversary knows both x and y but not the discrete
log of w base u. Computing an integer discrete logarithm of w base u is still difficult in a generic
group (as follows from Lemma 3), however an efficient adversary can nonetheless succeed in fooling
the verifier as follows. Since the challenge ` is co-prime with x with overwhelming probability,
the adversary can compute q, r ∈ Z such that q` + rx = y. The adversary sends (Q = gq, r) to
the verifier, and the verifier checks that indeed Q`ur = w. Hence, the verifier accepts despite the
adversary not knowing the discrete log of w base u.

This does not qualify as an “attack” when x = 1, or more generally when x divides y, since
then the adversary does know the discrete logarithm y/x such that uy/x = w.

Extending PoKE for general bases. To obtain a protocol for the relation RPoKE we start
by modifying protocol PoKE∗ so that the prover first sends z = gx, for a fixed base g, and then
executes two PoKE∗ style protocols, one base g and one base u, in parallel, showing that the discrete
logarithm of w base u equals the one of z base g. We show that the resulting protocol is a secure
argument of knowledge (in the generic group model) for the relation RPoKE. The transcript of this
modified protocol now consists of two group elements instead of one.

Protocol PoKE (Proof of knowledge of exponent) for relation RPoKE

Params: G $← GGen(λ), g ∈ G; Inputs: u,w ∈ G; Witness: x ∈ Z; Claim: ux = w
1. Prover sends z = gx ∈ G to the verifier.

2. Verifier sends `
$← Primes(λ).

3. Prover finds the quotient q ∈ Z and residue r ∈ [`] such that x = q` + r. Prover sends
Q = uq and Q′ = gq and r to the Verifier.

4. Verifier accepts if r ∈ [`], Q`ur = w, and Q′`gr = z.

The intuition for the security proof is as follows. The extractor first uses the same extractor for
Protocol PoKE∗ (specified in Theorem 5) to extract the discrete logarithm x of z base g. It then
suffices to argue that this extracted discrete logarithm x is a correct discrete logarithm of w base u.
We use the adaptive root assumption to argue that the extracted x is a correct discrete logarithm
of w base u.

We can optimize the protocol to bring down the proof size back to a single group element. We
do so in the protocol PoKE2 below by adding one round of interaction. The additional round has
no effect on proof size after making the protocol non-interactive using Fiat-Shamir.

Protocol PoKE2 (Proof of knowledge of exponent) for Relation RPoKE

Params: G $← GGen(λ); Inputs: u,w ∈ G; Witness: x ∈ Z; Claim: ux = w

1. Verifier sends g
$← G to the Prover.

2. Prover sends z ← gx ∈ G to the verifier.

10

3. Verifier sends `
$← Primes(λ) and α

$← [0, 2λ).
4. Prover finds the quotient q ∈ Z and residue r ∈ [`] such that x = q` + r. Prover sends
Q = uqgαq and r to the Verifier.

5. Verifier accepts if r ∈ [`] and Q`urgαr = wzα.

The intuition for the security proof is the same as for Protocol PoKE, but we additionally show
that (in the generic group model) a similar extraction argument holds when the prover instead
sends Q ← uqgq and r such that Q`urgr = wz. The extraction argument uses the fact that with
overwhelming probability the generic adversary did not obtain g from any of its group oracle queries
prior to forming w and therefore the adversary’s representation of w does not contain g as a base
with a non-zero exponent. The extractor is able to obtain an exponent x such that (gu)x = wz. This
alone does not yet imply that ux = w, however if the prover sends Q, r such that Q`urgαr = wzα,
then the extractor obtains a fixed x such that (gαu)x = wzα with high probability over the random
choice of α. This implies that either ux = w or w/ux is an element of low order, which breaks the
adaptive root assumption. We summarize this in the following theorem.

Theorem 4 (PoKE Argument of Knowledge). Protocol PoKE and Protocol PoKE2 are arguments
of knowledge for relation RPoKE in the generic group model.

Proof. See Appendix A.

3.4 A succinct proof of knowledge of a homomorphism preimage

The PoKE argument of knowledge can be extended to an argument of knowledge for the pre-image
of a homomorphism φ : Zn → G.

Rφ =
{(
w ∈ G; x ∈ Zn

)
: w = φ(x) ∈ G

}
.

For a general homomorphism φ we run into the same extraction challenge that we encountered
in extending Protocol PoKE∗ to work for general bases. The solution for Protocol PoKE was to
additionally send gx where g is either a base in the CRS or chosen randomly by the verifier and
execute a parallel PoKE for g 7→ gx. We can apply exactly the same technique here on each
component xi of the witness, i.e. send gxi to the verifier and execute a parallel PoKE that g 7→ gxi .
This allows the extractor to obtain the witness x, and the soundness of the protocol then follows
from the soundness of Protocol PoHP. However, as an optimization to reduce the communication
we can instead use the group representation homomorphism Rep : Zn → G defined as

Rep(x) =

n∏
i=1

gxii

for base elements gi defined in the CRS. The prover sends Rep(x) in its first message, which is a
single group element independent of n.

Protocol PoKHP (Proof of knowledge of homomorphism preimage) for relation Rφ
Params: G $← GGen(λ), (g1, ..., gn) ∈ Gn, φ : Zn → G; Inputs: w ∈ G; Witness: x ∈ Z;
Claim: φ(x) = w

1. Prover sends z = Rep(x) =
∏
i g
xi
i ∈ G to the verifier.

11

2. Verifier sends `
$← Primes(λ).

3. For each xi, Prover computes qi, ri s.t. xi = qi` + ri, sets q ← (q1, ..., qn) ∈ Zn and
r ← (r1, ..., rn) ∈ [`]n. Prover sends Qφ ← φ(q) ∈ G, QRep ← Rep(q) ∈ G, and r to
Verifier.

4. Verifier accepts if r ∈ [`]n, Q`φφ(r) = w, and Q`RepRep(r) = z.

In order to analyze the security of this protocol, it is helpful to first consider a special case
of Protocol PoKHP protocol for the homomorphism Rep : Zn → G, which is a generalization of
Protocol PoKE∗. In this case the prover of course does not need to separately send Rep(x) in the
first message. The protocol is as follows:

Protocol PoKRep (Proof of knowledge of representation) for relation Rφ where φ := Rep

Params: G $← GGen(λ), (g1, ..., gn) ∈ Gn; Inputs: w ∈ G; Witness: x ∈ Z; Claim:
Rep(x) =

∏n
i=1 g

xi
i = w

1. Verifier sends `
$← Primes(λ).

2. For each xi, Prover finds qi, ri s.t. xi = qi` + ri, sets q ← (q1, ..., qn) ∈ Zn and r ←
(r1, ..., rn) ∈ [`]n. Prover sends Q← Rep(q) =

∏
i g
qi
i ∈ G and r to Verifier.

3. Verifier accepts if r ∈ [`]n, Q`Rep(r) = w.

The following theorems prove security of the two protocols above.

Theorem 5 (PoKRep Argument of Knowledge). Protocol PoKRep is an argument of knowledge for
relation RRep in the generic group model.

Proof. See Appendix A.

Theorem 6 (PoKHP Argument of Knowledge). Protocol PoKHP is an argument of knowledge for
the relation Rφ in the generic group model.

Proof. See Appendix A.

3.5 A succinct zero-knowledge proof of discrete-log

Our succinct proof of knowledge for exponents and homomorphism preimages can further be made
zero-knowledge using a method similar to the classic Schnorr Σ-protocol for hidden order groups.
The Schnorr protocol for hidden order groups has the same structure as the standard Schnorr
protocol for proving knowledge of a discrete logarithm x such that ux = w in a group of known
order. Here, the prover first samples a blinding factor k ∈ [−B,B] and sends A = uk, obtains a
challenge c, and returns s = k + cx. The verifier checks that uz = awc. In hidden order groups, k
must be sampled from a range of integers [−B,B] such that |G|/B is negligible.

It is well known that the classical Schnorr protocol for hidden order groups is honest verifier
statistical zero-knowledge (HVSZK) and has soundness error of only 1/2 against a classical ad-
versary [BCK10]. Only for a small subclass of homomorphisms better soundness can be proven
[BCM05]. Unfortunately, [BCK10] proved that the soundness limitation is fundamental and cannot
be improved against a classical adversary, and therefore requires many rounds of repetition. How-
ever, we are able to show that we can prove much tighter soundness if the adversary is restricted
to operating in a generic group.

12

The protocol. Our ZK protocol applies Protocol PoKE to the last step of the Schnorr protocol,
which greatly improves the communication efficiency of the classical protocol when the witness is
large. In fact, we can interleave the first step of Protocol PoKE where the verifier sends a random
prime ` with the second step of the Schnorr protocol where the verifier sends a challenge c. This
works for the case when u is a base specified in the CRS, i.e. it is the output of a query to the generic
group oracle O1, however a subtlety arises when u is selected by the prover. In fact, we cannot even
prove that the Schnorr protocol itself is secure (with negligible soundness error) when u is selected
by the prover. The method we used for PoKE on general bases involved sending gx for g specified
in the CRS. This would immediately break ZK since the simulator cannot simulate gx without
knowing the witness x. Instead, in the first step the prover will send a Pedersen commitment gxhρ

where ρ is sampled randomly in some interval and h is another base specified in the CRS.
We will first present a ZK proof of knowledge of a representation in terms of bases specified in

the CRS and show that there is an extractor that can extract the witness. We then use this as a
building block for constructing a ZK protocol for the relation RPoKE.

Protocol ZKPoKRep for Relation Rφ where φ := Rep

Params: (g1, . . . gn) ∈ G, G $← GGen(λ); Inputs: w ∈ G, B > 2λ|G|;
Witness: x = (x1, . . . , xn) ∈ Zn; Claim: Rep(x) =

∏n
i=1 g

xi
i = w

1. Prover chooses random k1, . . . , kn
$← [−B,B], sends A =

∏n
i=1 g

ki
i to Verifier.

2. Verifier sends c
$← [0, 2λ], `

$← Primes(λ).
3. Prover computes si = ki + c ·xi∀i ∈ [1, n] and then derives quotients q ∈ Zn and residues
r ∈ [`]n such that qi · ` + ri = si for all 1 ≤ i ≤ n. Prover sends Q =

∏n
i=1 g

qi
i and r to

the Verifier.
4. Verifier accepts if ri ∈ [`] for all 1 ≤ i ≤ n and that Q`

∏n
i=1 g

ri
i = Awc.

Theorem 7 (Protocol ZKPoKRep). Protocol ZKPoKRep is an honest-verifier statistically zero-
knowledge argument of knowledge for relation RRep in the generic group model.

Proof. See Appendix A.

Finally, we use the protocol above to obtain a ZK protocol for the relation RPoKE. The protocol
applies (in parallel) the Σ-protocol for PoKRep to a Pedersen commitment gxhρ for g and h
specified in the CRS. The extractor for this protocol will invoke the PoKRep extractor to open
the commitment. The protocol works as follows:

13

Protocol ZKPoKE for Relation RPoKE

Params: (g, h) ∈ G, G $← GGen(λ); Inputs: u,w ∈ G, B > 2λ|G|;
Witness: x ∈ Z; Claim: ux = w
Let Com(x; r) := gxhr.

1. Prover chooses random k, ρx, ρk
$← [−B,B] and sends (z,Ag, Au) to the verifier where

z = Com(x; ρx), Ag = Com(k; ρk), Au = uk.

2. Verifier sends c
$← [0, 2λ], `

$← Primes(λ).
3. Prover computes sx = k + c · x and sρ = ρk + c · ρx and then derives quotients q1, q2 ∈ Z

and residues rx, rρ ∈ [`] such that qx · `+ rx = sx and qρ · `+ rρ = sρ.
Prover sends Qg = Com(qx; qρ), Qu = uqx and rx, rρ to the Verifier.

4. Verifier accepts if rx, rρ ∈ [`] and

Q`g · Com(rx; rρ) = Agz
c and Q`u · urx = Auw

c.

Theorem 8 (Protocol ZKPoKE). Protocol ZKPoKE is an honest verifier statistically zero-knowledge
argument of knowledge for relation RPoKE in the generic group model.

Proof. See Appendix A.

3.6 Aggregating Knowledge of Co-prime Roots

Unlike exponents, providing a root of an element in a hidden order group is already succinct (it
is simply a group element). This can also be made zero-knowledge using the classic GQ protocol,
which is a special case of a homomorphism pre-image Σ-protocol (i.e., the xth root of an element
is a pre-image of the homomorphism g 7→ gx). We describe here a simple aggregation technique
for providing a succinct proof of knowledge for multiple coprime roots x1, ..., xn simultaneously.
If the roots are all for the same element α then this is trivial: the witness is a root α1/x∗ where
x∗ = x1 · · ·xn. From this witness one can publicly extract the xith root of α for each i. However, this
method does not generalize when the elements are distinct. We show a method where the elements
need not be the same, i.e. the witness is a list of elements w1, ..., wn for public elements α1, ..., αn
and public integers x1, ..., xn such that wxii = αi for each i and gcd(xi, xj) = 1∀i, j ∈ [1, n], i 6= j.
The size of the proof is still a single element. Concretely the PoKCR protocol is a proof for the
relation:

RPoKCR =
{(
α ∈ Zn; x ∈ Zn

)
: w = φ(x) ∈ G

}
.

The proof is simple: it is the product of witnesses, w ← w1 · · ·wn. We show that from this
product and the public xi’s and αi’s it is possible to extract an xith root of each αi. (This is
not necessarily the same as wi as roots are not unique). Moreover, the verification algorithm does

not need to run this extraction procedure in full, it only needs to check that wx
∗

=
∏
i α

x∗/xi
i .

This equation can be verifier with O(n log n) group exponentiations with exponents of size at most
maxi|xi| using the optimized recursive MultiExp algorithm shown below.

14

Protocol PoKCR for Relation RPoKCR

Input: G, α1, ..., αn ∈ G, x1, ..., xn ∈ Z s.t. gcd(x1, ..., xn) = 1;
Witness: w ∈ Zn s.t. wxii = αi

1. Prover sends w ←
∏n
i=1wi to the Verifier.

2. Verifier computes x∗ ←
∏n
i=1 xi, and y ←

∏n
i=1 α

x∗/xi
i using MultiExp(n,α,x). Verifier

accepts if wx
∗

= y.

MultiExp(n,α,x):
1. if n = 1 return α
2. αL ← (α1, ..., αn/2); αR ← (αn/2+1, ..., αn)
3. xL ← (x1, ..., xn/2); xR ← (xn/2+1, ..., xn)
4. x∗L ← x1 · · ·xn/2; x∗R ← xn/2+1 · · ·xn
5. L←MultiExp(n/2,αL,xL); R←MultiExp(n/2,αR,xR)
6. return Lx

∗
R ·Rx∗L

Lemma 1. Protocol PoKCR is an argument of knowledge.

Proof. We show that given any w such that wx
∗

= y =
∏n
i=1 α

x∗/xi
i it is possible to compute directly

an xith root of αi for all i. For each i and j 6= i let zij = x∗/(xixj). For each i, let Aj =
∏
j 6=i α

zij
i ,

then we can express y = Axij α
x∗/xi
i . This shows that the element u = w(x∗/xi)A−1

j is an xith root

of α
x∗/xi
i . Since gcd(x∗/xi, xi) = 1, there exist Bezout coefficients a, b such that a(x∗/xi) + bxi = 1.

Finally, uaαbi is an xith root of αi as (uaαbi)
xi = α

(ax∗/xi)+bxi
i = αi.

Non-interactive proofs All of the protocols PoE,PoKE∗,PoKE, PoKE2 and ZKPoKE can be made
non-interactive using the Fiat-Shamir heuristic. It is these non-interactive, succinct, and efficiently
verifiable proofs that are most useful for the applications discussed later in this paper. Figure 1
summarizes the non-interactive proofs that will be used later.

Aggregating PoKE proofs Several non-interactive PoE/PoKE/PoKE2 proofs can be aggregated
using the PoKCR protocol. The value Q sent to the verifier in this proof is the `th root of yg−r. As
long as the primes sampled in each proof instance are distinct then these proofs (specifically the
values Qi) are a witness for an instance of PoKCR. Since the primes are generated by hashing the
inputs to the proof they need not be included in the proof. This only works if there isn’t a collision
among the primes for distinct inputs, which happens with negligible probability.

4 Trapdoorless Universal Accumulator

In this section we describe a number of new techniques for manipulating accumulators built from the
strong RSA assumption in a group of unknown order. We show how to efficiently remove elements
from the accumulator, how to use the proof techniques from Section 3 to give short membership
proofs for multiple elements, and how to non-interactively aggregate inclusion and exclusion proofs.
All our techniques are geared towards the setting where there is no trusted setup. We begin by
defining what an accumulator is and what it means for an accumulator to be secure.

15

NI-PoE

{x, u, w : ux = w}
Prove(x, u, w) :

`← Hprime(x, u, w)

q ← bx/`c
r ← x mod `

Q← uq

Verify(x, u, w,Q) :

`← Hprime(x, u, w)

r ← x mod `

Check: Q`ur = w

NI-PoKE2

{(u,w;x) : ux = w}
Prove(x, u, w) :

g ← HG(u,w), z = gx

`← Hprime(u,w, z), α = H(u,w, z, `)

q ← bx/`c, r ← x mod `

π ← {z, (ugα)q, r}
Verify(g, y, π) :

{z,Q, r} ← π

g ← HG(u,w)

`← Hprime(u,w, z), α← H(u,w, z, `)

Check: Q`(ugα)r = wzα

NI-PoDDH

{(y1, y2, y3); (x1, x2) : gx1 = y1 ∧ gx2 = y2 ∧ yx2
1 = y3

Prove(x = (x1, x2),y = (y1, y2, y3)) :

`← Hprime(y)

(q1, q2)← (bx1/`c, bx2/`c)
(r1, r2)← (x1 mod `, x2 mod `)

π ← {(gq1 , gq2 , yq21), r1, r2}
Verify(y, π) :

`← Hprime(y)

{Qy1 , Qy2 , Qy3 , r1, r2} ← π

Check:

r ∈ [`]2 ∧Q`y1g
r1 = y1 ∧Q`y2g

r2 = y2 ∧Q`y3y
r2
1 = y3

NI-ZKPoKE

{(u,w;x) : ux = w}
Prove(x, u, w) :

k, ρx, ρk
$← [−B,B]; z = gxhρx ; Ag = gkhρk ; Au = uk;

`← Hprime(u,w, z, Ag, Au); c← H(`);

qx ← b(k + c · x)/`c; qρ ← b(ρk + c · ρx)/`c;
rx ← (k + c · x) mod `; rρ ← (ρk + c · ρx) mod `;

π ← {`, z, gqxhqρ , uqx , rx, rρ}
Verify() :

{c, z,Qg, Qu, rx, rρ} ← π

c = H(`) Ag ← Q`gg
rxhrρz−c; Au ← Q`uu

rxw−c

Check: rx, rρ ∈ [`]; ` = Hprime(u,w, z, Ag, Au)

Figure 1: Non-interactive succinct proofs for hidden order groups.

16

λ: Security Parameter
t: A discrete time counter
At: Accumulator value at time t
St: The set of elements currently accumulated
wtx, u

t
x: Membership and non-membership proofs

pp: Public parameters implicitly available to all methods
upmsg: Information used to update proofs
Setup(λ, z)→ pp, A0 Generate the public parameters
Add(At, x)→ {At+1,upmsg} Update the accumulator
Del(At, x)→ {At+1,upmsg} Delete a value from the accumulator
MemWitCreate(At, S, x)→ wtx Create an membership proof
NonMemWitCreate(At, S, x)→ utx Create a non-membership proof
MemWitUp(At, w

t
x, x,upmsg)→ wt+1

x Update an membership proof
NonMemWitUp(At, w

t
x, x,upmsg)→ ut+1

x Update a non-membership proof
VerMem(At, x, w

t
x)→ {0, 1} Verify membership proof

VerNonMem(At, x, u
t
x)→ {0, 1} Verify non-membership proof

Figure 2: A trapdoorless universal accumulator.

Our presentation of a trapdoorless universal accumulator mostly follows the definitions and
naming conventions of [BCD+17]. Figure 4 summarizes the accumulator syntax and list of associ-
ated operations. One notable difference in our syntax is the presence of a common reference string
pp generated by the Setup algorithm in place of private/public keys.

Correctness and security We omit a correctness definition as it is natural and equivalent to
previous schemes. It ensures that additions and deletions correspond to additions and deletions of
items in the underlying set and that valid (non)membership witnesses can be created and updated
at the appropriate times.

For our security definition we follow [Lip12], who formulates an undeniability security property.
[DHS15] later showed that for universal accumulators this property implies the collision free prop-
erty from [CL02]. For background on how this definition relates to others that have been proposed
see [BCD+17], which gives generic transformations between different accumulators with different
properties and at different security levels.

The following definition states that an accumulator is secure if an adversary cannot construct an
accumulator, an element x and valid proofs wtx and utx where wtx shows that x is in the accumulator
and wtx shows that it is not.

Definition 7 (Accumulator Security).

Pr

 pp, A0 ∈ G $← Setup(λ, z)

(A, x,wx, ux)
$← A(pp, z, A0)

VerMem(A, x,wtx) ∧VerNonMem(A, x, utx)

 = negl(λ)

17

ShamirTrick(π1, π2, x, y): [Sha83]
1. if πx1 6= πy2 return ⊥
2. a, b← Bezout(x, y)
3. return πb1π

a
2

Hprime(x):
1. y ← H(x)
2. while y is not odd prime:
3. y ← H(y)
4. return y

RootFactor(g, x1, . . . , xn):
1. if n = 1 return g
2. n′ ← bn2 c
3. gL ← g

∏n
j=n′+1 xj

4. gR ← g
∏n′
j=1 xj

5. L←RootFactor(gL, x1, . . . , xn′)
6. R←RootFactor(gR, xn′+1, . . . , xn)
7. return L ‖ R

Figure 3: Sub-procedures used in the accumulator construction.

4.1 Accumulator construction

Figure 4.1 summarizes several subprocedures that are used heavily in the construction. Bezout(x,y)
refers to a sub-procedure that outputs Bezout coefficients a, b ∈ Z for a pair of co-prime integers
x, y (i.e. satisfying the relation ax + by = 1). ShamirTrick uses Bezout coefficient’s to compute
an (xy)-th root of a group element g from an x-th root of g and a yth root of g. RootFactor is
a new procedure that given an element y = gx and the factorization of the exponent x = x1 · · ·xn
computes an xi-th root of y for all i = 1, . . . , n in total time O(n log(n)). Naively this procedure
would take time O(n2). It is related to the MultiExp algorithm described earlier.

Groups of unknown order The accumulator requires a procedure GGen(λ) which samples a
group of unknown order in which the strong root assumption (Definition 2) holds. One can use an
RSA group, which may require a trusted setup to generate the modulus, or a class group which
eliminates the trusted setup.

The basic RSA accumulator. Figure 4.1 presents the classic RSA accumulator [CL02, Lip12],
where we omit all the procedures that require trapdoor information, such as the size of the group.
All accumulated values are small odd primes. Arbitrary data values can be hashed to small primes,
e.g. using the algorithm in Figure 4.1. It is also assumed that no item is added twice to the
accumulator.

The core procedures for the basic dynamic accumulator are the following:

• Setup generates a group of unknown order and initializes the group with a generator of that
group.

• Add takes the current accumulatorAt, an element from the odd primes domain, and computes
At+1 = At.

• Del does not have such a trapdoor and therefore needs to reconstruct the set from scratch.
The RootFactor algorithm can be used for pre-computation. Storing 2k elements and doing

n · k work, the online removal will only take (1− 1
2

k
) · n steps.

• A membership witness is simply the accumulator without the aggregated item.

18

Setup(λ):

1. GRSA
$← GGen(λ)

2. g
$← GRSA

3. return GRSA, g

Add(At, S, x):
1. if x ∈ S : return At
2. else :
3. S ← S ∪ {x}
4. upmsg← x
5. return Axt ,upmsg

Del(At, S, x):
1. if : x 6∈ S : return At
2. else :
3. S ← S \ {x}
4. At+1 ← g

∏
s∈S s

5. upmsg← {x,At, At+1}
6. return At+1,upmsg

MemWitCreate(A,S, x) :
1. wtx ← g

∏
s∈S,s 6=x s

2. return wtx

NonMemWitCreate(A,S, x) :
1. s∗ ←

∏
s∈S s

2. a, b← Bezout(x, s∗)
3. d← ga

4. return utx ← {d, b}

VerMem(A,wx, x) :
1. return 1 if (wx)x = A

VerNonMem(A, ux, x) :
1. {d, b} ← ux
2. return 1 if dxAb = g

Figure 4: The basic RSA accumulator

• A membership non-witness, proposed by [LLX07], uses the fact that for any x 6∈ S, gcd(x,
∏
s∈S s) =

1. The Bezout coefficients (a, b)← Bezout(x,
∏
s∈S s) are therefore a valid membership wit-

ness. The actual witness is the pair (ga, b) which is short because |b| ≈ |x|.

• Membership and non-membership witnesses can be efficiently updated as in [LLX07]

Theorem 9 (Security accumulator [Lip12]). Assume that the strong RSA assumption (Definition 2)
holds in GRSA. Then the accumulator satisfies the deniability definition and is therefore secure.

Distributed accumulator updates In the decentralized/distributed setting, the accumulator
is managed by a distributed network of participants who only store the accumulator state and a
subset of the accumulator elements along with their membership witnesses. These participants
broadcast their own updates and listen for updates from other participants, updating their local
state and membership witnesses appropriately when needed. We discuss separately how this can
be done efficiently for additions and deletions:

• BatchAdd Anyone who knows the current state At can add an element x to the accumulator
and update its state appropriately to At+1 ← Axt without knowing any other information
about the accumulated set. Furthermore, a network participant who sees (At, At+1, x) can
verify that the update was done correctly. An NI-PoE proof can be used to improve the
amortized verification efficiency of a batch of updates that add elements x1, ..., xm at once
and update the accumulator to At+1 ← Ax

∗
t . A network participant need only check that

x∗ =
∏
i xi and verify the proof rather than compute the m exponentiations.

19

• BatchDel Deleting elements is not as simple, however we describe how it can be done given
membership witnesses. The membership witness for an element x is equivalent to the value
of the accumulator without x. Therefore, updating the state of the accumulator to delete
a single element given its member witness is trivial. A set of elements could be removed
in sequence in this manner, where after each removal all other membership witnesses are
updated using the standard witness update algorithm. A more efficient method is to use the

ShamirTrick to a compute A
1/

∏n
i=1 xn

t given the set of tuples {(x1, w
t
x1), . . . , (xn, w

t
xn)} and

an accumulator At such that (wxit)xi = At. This algorithm works as long as all the xi are
co-prime. Finally, an NI-PoE proof improves the verification efficiency of this batch update.

Add(At, x):
1. return Axt

BatchAdd(At, {x1, . . . , xm}):
1. x∗ ←

∏m
i=1 xi

2. At+1 ← Ax
∗
t

3. return At+1,NI-PoE(x∗, At, At+1)
DelWMem(At, w

t
x, x):

1. if VerMem(At, π, x) = 1
2. return π

BatchDel(At, (x1, w
t
x1) . . . , (xm, w

t
xm)):

1. At+1 ← wtx1
2. x∗ ← x1

3. for i← 2, i ≤ m
4. At+1 ← ShamirTrick(At+1, w

t
xi , x, xi)

5. x∗ ← x∗ · xi
6. return At+1,NI-PoE(x∗, At+1, At)

CreateAllMemWit(S) :
1. return RootFactor(g, S)

Aggregating membership witnesses Creating a single membership witness for many elements
at once is straightforward given either the entire set or membership witnesses for each item (and
using ShamirTrick). However, verification of this membership witness uses a linear in the number
of group operations. We utilize the succinct proof of exponentiation (NI-PoE) for hidden order
groups to produce a single membership witness for a set of elements that can be verified in constant
time.

Aggregating existing membership witnesses for elements in several distinct accumulators (that
use the same setup parameters) can be done as well. The algorithm MemWitX simply multiplies
together the witnesses wx for an element x ∈ A1 and wy for y ∈ Ay to create an inclusion proof π.
The verification checks πx·y = Ay1A

x
2 . If x and y are coprime1 then this suffices to directly recover

wx and wy from the witness. In particular wx = ShamirTrick(Ay1, A1, π
yA−1

2 , y, x) and wy =
ShamirTrick(Ax2 , A2, π

xA−1
1 , x, y). The witness aggregation methods are presented in Figure 4.1.

Batching non-membership witnesses A non-membership witness ux for x in an accumulator
with state At for a set S is ux = {ga, b} such that ax+b

∏
s∈S s = 1. The verification checks gaxAbt =

g. Since gcd(x, s) = 1 ∧ gcd(y, s) = 1 ↔ gcd(xy, s) = 1, to batch non-membership witnesses we
could simply construct an exclusion proof for xy. A prover computes a′, b′ ← Bezout(xy,

∏
s∈S s)

and sets uxy ← ga
′
, b′. Unfortunately, |a′| ≈ |xy| so the size of the witness is therefore no smaller

than giving non-membership witnesses for x and y separately. A natural idea is to set uxy =
(v, d)← (ga

′
, Ab

′
t) ∈ G2 instead of (g, b′) ∈ G× Z as the former has constant size. The verification

1The condition that gcd(x, y) = 1 is minor as we can simply use a different set of primes as the domains for
each accumulator. Equivalently we can utilize different collision resistant hash functions with prime domain for each
accumulator. The concrete security assumption would be that it is difficult to find two values a, b such that both
hash functions map to the same prime. We utilize this aggregation technique in our IOP application (Section 7.2).

20

AggMemWit(A,wx, wy, x, y) :
1. wx·y ← ShamirTrick(A,wx, wy, x, y)
2. return wx·y,NI-PoE(wx·y, x · y,A)

MemWitCreate*(A, x) :
1. wx ←MemWitCreate(A, x)
2. return x,PoE(x,wx, A)

MemWitX(A1, A2, wx, wy, x, y) :
1. return π ← wx · wy

VerMemWitX(A1, A2, π, x, y) :
1. if gcd(x, y) 6= 1
2. return ⊥
3. else
4. return πx·y ← Ay1A

x
2

Figure 5: Witness aggregation techniques. MemWitX,VerMemWitX are the prover and the
verifier of the PoKCR Protocol

would check that dxyv = g. This idea doesn’t quite work as an adversary can simply set v = gd−xy

without knowing a discrete logarithm between At and d. Our solution is to use the NI-PoKE2
protocol to ensure that v was created honestly. Intuitively, soundness is achieved because the
knowledge extractor for the NI-PoKE2 can extract b′ such that (v, b′) is a standard non-membership
witness for xy.

The new membership witness is d, v, π ← NI-PoKE(A,v;b). The size of this witness is indepen-
dent of the size of the statement. We can further improve the verification by adding a proof of
exponentiation that the verification equation holds: NI-PoE(x · y, d, g · v−1). Lastly, recall from
Section 3 that the two independent NI-PoKE2 and NI-PoE proofs can be aggregated into a single
group element.
We present the non-membership protocol bellow as NonMemWitCreate*. The verification al-
gorithm VerNonMem* simply verifies the NI-PoKE2 and NI-PoE.

NonMemWitCreate*(A, x) : // (|x| much greater than λ)
1. a, b← Bezout(x,

∏
s∈S s)

2. d← ga, v ← Ab

3. πd ← NI-PoKE2(A, v; b), πg ← NI-PoE(x, d, g · v−1)
4. return {d, v, πd, πg}

Soundness of batch non-membership witnesses We will prove that the batch non-membership
witnesses are sound, as they have a different structure from the standard non-membership witnesses.
The security proof is against generic group adversaries. The generic group model subsumes the
Strong-RSA assumption (i.e. Strong-RSA holds in the generic group model [DK02]). Our proof of
security applies to the interactive forms of PoE and PoKE. The membership witness for an element
x and an accumulator A therefore is wx and an interactive PoE(x,wx, A). The non-membership
witness ux consists of d, v ∈ G an interactive PoKE(A, v; b) and an interactive PoE(x, d, g · v−1)

Theorem 10. The accumulator with batch non-membership witnesses satisfies the undeniability
definition and is secure against generic efficient adversaries.

Proof. We construct an ARSA that given an AAcc for the accumulator breaks the strong RSA
assumption. ARSA receives a challenge c ∈ GRSA. Setup sets g ← c. AAcc outputs a tuple
(A, x,wx, ux) and performance an interactive PoKE. Using the efficient extractor from Theorem 4
we can with overwhelming probability extract a b ∈ Z such that Ab = v. By Corollary 1 and

21

Theorem 1 we have that PoE is overwhelmingly sound. We therefore have that dxAb = g and
wxx = A. As in Theorem 4.1, d · wbx is an xth root of g and by definition x is an odd prime.
This contradicts the Strong RSA assumption (Definition 2) which holds against generic adversaries
[DK02].

Aggregating non-membership witnesses Unlike for membership witnesses we do not have
an efficient algorithm for aggregating non-membership witnesses without knowing the committed
set S. The question is whether given A, x1, d1, b1 and x2, d2, b2 such that dx11 A

b1 = dx22 A
b2 = g

we can find d3, b3 such that dx1·x23 Ab3 = g. Aggregating non-membership witnesses has important
applications to aggregating openings for our vector and hash-map commitment from Section 5.

Accumulator unions Yet another application of our succinct proofs to accumulators is the abil-
ity to prove that an accumulator is the union of two other accumulators. Given three accumulators

A1 = g

∏
s∈S1

s

1 , A2 = g

∏
s∈S2

s

2 and A3 = A

∏
s∈S1

s

2 a prover can use the NI-PoDDH protocol to
convince a verifier that (A1, A2, A3) forms a valid DDH tuple. If S1 and S2 are guaranteed to be
disjoint, then A3 will be an accumulator of S1 ∪ S2. If they are not disjoint, then resulting accu-
mulator will be an accumulator for a multi-set as described in the next paragraph. The NI-PoDDH
is independent of the size of S1 and S2 in both the proof size and the verification time. This union
proof can be used to batch exclusion proofs over multiple accumulators. The prover verifiably
combines the accumulators and then creates a single aggregate non-membership proof in the union
of the accumulators. This is sound but only works if the domains of the accumulators are separate.

Multiset accumulator The stateless accumulator assumes that no item is added twice. This is
necessary because a stateless add algorithm cannot ensure that no duplicates are added. Usually
a centralized accumulator manager is responsible for this. In our scheme there is no such entity.
Despite this, there are several ways to circumvent this limitation. For some applications it may be
impossible to add the same item twice. For example, in many cryptocurrencies each transaction
refers to previous transaction outputs that are being spent. Creating a valid transaction that spends
a previously unspent output would require creating a collision in a cryptographic hash function.
In a similar generic transformation, we can use a collision resistant hash function Hprime to ensure
that each added item is unique. To do that the hash function hashes an element from an arbitrary
domain and the current update counter t to a large odd prime. Adding the same item twice,
again requires finding a collision for the hash function. Unfortunately, this procedure would render
exclusion proofs less useful as an exclusion proof can only be given for a fixed update point t. The
final proposal is to explicitly allow adding the same item twice. The resulting accumulator is an
accumulator for a mapping from items to a counter instead of a single set and has the following
properties:

• Each element in the domain is implicitly in the mapping with a counter of 0.

• Add increments the counter of the added element by 1

• Del decrements the counter of the added element by 1

• A membership witness for an element x and a counter k proves that the counter of x is at
least k

22

• A membership witness for xk and a non-membership witness for Ax
−k proves that the counter

for x is exactly k. Note that Ax
−k

is exactly the membership witness for xk.

To build the multi-set accumulator we again employ a hash function mapping an arbitrary domain
to an exponentially large set of primes. The Add and Del algorithms are as described in Section 4.1.
The membership witness change in that they now also contain a counter of how many times
a certain element has been added. That is if an element x is k times in the accumulator the
membership witness is the xkth root of the accumulator as well as k. VerMem,MemWitCreate,
MemWitUpAdd,MemWitUpDel are changed accordingly. The completeness definition also
needs to be updated to reflect the new multi-set functionalities.

5 Batchable Vector Commitments with Small Parameters

While cryptographic accumulators can be viewed as a commitment to a set, they are not (in general)
position binding. That is, one cannot claim that the ith element of the set is a particular value. It
is tempting to reason that elements could be inserted into the accumulator paired with a position,
i.e. (x, i) as the element x at position i. However, the problem is that one could insert many
elements (x, i) consisting of different values x paired with the same index i. A prover who claims
that the accumulator commits to a unique value at the ith index would need to provide not only
an inclusion proof of (x, i) but also a “range” exclusion proof that no other (x′, i) is in accumulator
any x′ 6= x. Otherwise, the accumulator does not bind the prover to a specific value, and it can
reveal any one of a (polynomial) number of values that it inserted.

A vector commitment (VC) [LY10, CF13, LRY16] is similar to an accumulator but is position
binding. More precisely, it is a commitment scheme with a Commit procedure that outputs a
compact commitment Φ to an ordered sequence of m values (x1, ..., xm) and an Open procedure
that outputs a succinct opening π at any given index, i.e. a proof that xi is the ith committed
value. The sizes of Φ and π are sublinear in m (ideally an independent constant). A VC is position
binding, which means that an adversary should not be able to open a commitment to two different
values at the same position. Vector commitments have many applications including IOPs [BCS16]
and proof-of-retrievability (PoR).

A Merkle tree is a simple example of a VC that is position binding. The size of a Merkle
tree commitment is constant and the opening proof at a given index for a vector of length m is
O(logm). To be a bit more precise, the commitment is λ bits and the opening is λ log2m where
λ is the security parameter for a collision resistant hash function. Catalano and Fiore [CF13] were
the first to give constructions of VCs achieving constant size openings, one based on the RSA
assumption and the other based on CDH in bilinear groups. These constructions were further
improved upon in [LRY16]. Another highly advantageous property of these constructions over a
Merkle tree is that the openings at several indices can be batched. This means that the prover can
produce a constant size proof π (i.e. the size of a proof for a single index) that a subset of k ≤ n
indices open to k particular values. While the communication between the prover and verifier may
still be linear in k if the prover needs to send the opened values, the communication is still greatly
reduced due to the fact that the size of a proof is generally larger than the value at a specific
index. Furthermore, in some applications the verifier may already have the values (e.g., proving
that several VCs all open at certain indices to specific values held by the verifier).

However, unlike a Merkle tree, these VC constructions each involve large public parameters
(linear in the length of the committed vector for RSA and quadratic for the CDH variant). This

23

requires the verifier of any commitment opening to either use at least linear storage or perform
linear work to generate the parameters on the fly during verification. Time/space tradeoffs are
possible as an optimization depending on the particular resource constraints of the verifier. While
reasonable for applications with short vectors, this quickly becomes impractical as the vector length
grows (e.g. a database application with a GB size vector). Naturally, this motivates the question as
to whether there is a VC scheme with O(1) openings and also O(1) parameters. We present a new
VC scheme that achieves this. Moreover, our new VC scheme also has batchable opening proofs
that use a constant number of expensive group operations. The scheme is based on the classical
RSA accumulator and uses several new techniques, including the succinct proofs for hidden order
groups presented in Section 3.

Lastly, we show how our new VC scheme can be used to realize a key-value map commitment
as a generalization of a vector commitment. A key-value map pairs with each key k a unique
value vk. A vector of fixed length N is a special case of a key-value map where the keys are the
integers in [0, N). While a standard vector commitment of exponential length could be used to
(inefficiently) implement a key-value map, to the best of our knowledge our scheme is the first
efficient construction.

5.1 VC Definitions

We review briefly the formal definition of a vector commitment. We only consider static commit-
ments that do not allow updates, but our scheme can naturally be modified to be dynamic.

Vector commitment syntax A VC is a tuple of four algorithms: VC.Setup, VC.Com, VC.Open,
VC.Verify.

1. VC.Setup(λ, n,M) → pp Given security parameter λ, length n of the vector, and message
space of vector componentsM, output public parameters pp, which are implicit inputs to all
the following algorithms.

2. VC.Com(m) → τ, com Given an input m = (m1, ...,mn) output a commitment com and
advice τ .

3. VC.Update(com,m, i, τ) → τ, com Given an input message m and position i output a com-
mitment com and advice τ .

4. VC.Open(com,m, i, τ)→ π On input m ∈M and i ∈ [1, n], the commitment com, and advice
τ output an opening π that proves m is the ith committed element of com.

5. VC.Verify(com,m, i, π) → 0/1 On input commitment com, an index i ∈ [n], and an opening
proof π output 1 (accept) or 0 (reject).

If the vector commitment does not have an VC.Update functionality we call it a static vector
commitment.

Definition 8 (Static Correctness). A static vector commitment scheme VC is correct if for all
m ∈Mn and i ∈ [1, n]:

Pr

[
VC.Verify(com,mi, i, V C.Open(com,mi, i, τ)) = 1 :

pp← VC.Setup(λ, n,M)
τ, com← VC.Com(m)

]
= 1

24

The correctness definition for dynamic vector commitments also incorporates updates. Con-
cretely whenever VC.Update is invoked the underlying commited vector m is updated correctly.

Binding commitments The main security property of vector commitments (of interest in the
present work) is position binding. The security game augments the standard binding commitment
game

Definition 9 (Binding). A vector commitment scheme VC is position binding if for all O(poly(λ))-
time adversaries A the probability over pp← VC.Setup(λ, n,M) and (com, i,m,m′, π, π′)← A(pp)
the probability that VC.Verify(com,m, i, π) = VC.Verify(com,m′, i, π′) = 1 and m 6= m′ is negligible
in λ.

5.2 VC construction

For the following section we will disambiguate accumulator and vector commitment methods that
have the same name by writing A.Setup to signify an accumulator method and VC.Setup to signify
a vector commitment method. We first present a VC construction for bit vectors, i.e. using the
message spaceM = {0, 1}. We then explain how this can be easily adapted for a message space of
arbitrary bit length. We first provide an overview of the bit vector construction and the full details
in Figure 5.2.

Setup VC.Setup(λ, n, {0, 1}) sets up an accumulator acc as described in Section 4. It also fixes a
deterministic collision resistant (or free) function, PrimeGen from [0, n] to odd primes. Examples
include Hprime (described earlier), or alternatively the function that maps i to the next prime after
f(i) = 2(i + 2) · log2(i + 2)2, which maps the integers [0, N) to smaller primes than Hprime (in
expectation).2 Using this function a k bit input will map to a k + 2 log(k) bit value. Yet another
approach would map to large integers such that each integer has at least one unique prime factor.

Both the accumulator’s CRS as well as PrimeGen can be represented in constant space indepen-
dent of n. This means that the public parameters for the vector commitment are also independent
of n, unlike the previous vector commitments with O(1) size openings [CF13, LRY16].

Commit For any i ≥ 1 let pi ← PrimeGen(i). VC.Com(m) adds pi to acc for each mi ∈m where

mi = 1. Concretely the accumulator state after VC.Com is A = g
∏n
i=1,mi=1 pi ∈ GRSA where GRSA

is a hidden order group. Initializing a commitment is linear in the number of 1 bit’s in m, i.e.∑n
i=1mi. It is, therefore, feasible to commit to a long (even exponentially long) vector if only a

polynomial number of bit’s in m are set. We use this fact in the key-value map construction in
Section 5.4. The commitment can be updated later by adding/deleting pi’s from the accumulator.

Open & verify In order to show that the ith bit of the VC is 1 we generate a membership
witness for pi in acc. If mi is 0 then we generate a non-membership witness pi. The verification

2This map is collision free as long as there is alway a prime number between f(i) and f(i + 1) for all i. Note
the difference f(i + 1) − f(i) > 2 log(f(i))2. Asymptotically, Cramer’s conjecture states that the distance between
adjacent primes pn and pn+1 converges to log(pn)2, hence for sufficiently large i the interval f(i) to f(i+ 1) contains
a prime. It can be verified experimentally that this is true from 0 to 100 million. Furthermore, for polynomial size
N this can be verified by brute force, and for very large N one might as well use Hprime instead.

25

VC.Setup(λ):
• A← Accumulator.Setup(λ)
• return pp← (A,n)

VC.Com(m, pp) :
• P ← {pi|i ∈ [1, n] ∧mi = 1}
• A.BatchAdd(P)
• return A

VC.Update(b, b′ ∈ {0, 1}, i ∈ [1, n]):
• if b = b′ return A
• elseif b = 1
• return A.Add(pi)
• else
• return A.Del(pi)

VC.Open(b ∈ {0, 1}, i ∈ [1, n]) :
• if b = 1 return A.MemWitCreate(pi)
• else return
A.NonMemWitCreate(pi)

VC.BatchOpen(b ∈ {0, 1}m, i ∈ [1, n]m) :
• Ones← {j ∈ [1,m] : bj = 1}
• Zeros← {j ∈ [1,m] : bj = 0}
• pᵀ ←

∏
j∈Ones pi[j]; p

⊥ ←
∏
j∈Zeros pi[j]

• πI ← A.MemWitCreate*(pᵀ)
• πE ← A.NonMemWitCreate*(p⊥)
• return {πI , πE}

VC.Verify(A, b ∈ {0, 1}, i, π) :
• if b = 1 :
• return A.VerMem(π, pi)
• else :
• return A.VerNonMem(π, pi)

VC.BatchVerify(A, b, i, πI , πE) :
• Ones← {j ∈ [1,m] : bj = 1}
• Zeros← {j ∈ [1,m] : bj = 0}
• pᵀ ←

∏
j∈Ones pi[j]; p

⊥ ←
∏
j∈Zeros pi[j]

• return A.VerMem(pᵀ, πI) ∧
A.VerNonMem*(p⊥, πE)

Figure 6: Vector commitment scheme from accumulator with batchable membership and non-
membership witnesses.

of an opening checks these non-membership/membership witnesses using the accumulator witness
verification algorithms.

Extension to arbitrary message space To support arbitrary an message M it suffices to
consider the message space {0, 1}λ (for sufficiently large λ) and use a collision resistant hash function
H :M→ {0, 1}λ. The bit vector commitment can be generalized to {0, 1}λ by associating primes
{pj : j ∈ [iλ, (i+ 1)λ) with the ith index of the vector. To set the ith position to a λ-bit message
m = m1| · · · |mλ the primes p(j) are added for each j where mj = 1. On an update (where the
current value at the ith position is non-zero) then it is also necessary to delete the primes p(j′)
for each j′ where mj′ = 0. The opening of a message at the ith index could provide membership
witnesses for all the pj and non-membership witnesses for all the pj′ . However, if done naively
in this way then the opening of a λ-bit value is a factor λ larger than the bit vector opening
proofs, and considerably larger than Merkle openings for λ > log(n). This is where the batching
of membership witnesses come into play, and in particular, the new features of our accumulators
from Section 4. In classical RSA accumulators the membership witness for an integer product of
primes is independent from the size of the integer, but the non-membership witness grows linearly.

To open the ith index to a message m ∈ {0, 1}λ, we first set pᵀi to the product of all pλi+j
where mj = 1 and p⊥i to the product of all pλi+j′ where mj′ = 0 and then compute a membership
witness πI for pᵀi using A.MemWitCreate(pi) and a non-membership witness πE for p⊥i using
A.NonMemWitCreate*(pi). Both of these witnesses are constant size, independent of |m|, and
take only a constant number of group operations to verify. Concretely πI consists of 2 elements
in GRSA and πE of 5 elements in GRSA and 1 in Z2λ . In fact, we can use the same proofs to

26

prove inclusion for a whole vector. The verification time scales linear only in the number of Z2λ

operations.

Optimization The number of group elements can be reduced by utilizing a PoKCR for all of the
PoE and PoKE roots. It is important that all PoE and PoKE protocols use different challenges.
These challenges are then guaranteed to be co-prime. This reduces the number of opening proof
elements to 4 ∈ GRSA and 1 in Z2λ

5.3 Comparison

Table 5.3 compares the performance of our new VC scheme, the Catalone-Fiore (CF)[CF13] RSA-
based VC scheme, and Merkle trees. The table assumes the VC input is a length n vector of k bit
elements with security parameter λ. We note that the MultiExp algorithm from Section 3.6 also
applies to the CF scheme. In particular it can improve the Setup and Open time. The comparison
reflects these improvements.

Metric This Work Catalono-Fiore [CF13] Merkle Tree

Setup

Setup O(1) O(n · log(n) · λ) GRSA O(1)
|pp| O(1) O(n) GRSA O(1)

Com(m)→ c, |m| = n O(n · log(n) · k) GRSA O(n · k) GRSA O(n) H
|c| 1 GRSA 1 GRSA 1 |H|

Proofs

Open(m, i)→ π O(n log(n) · k) GRSA O(n · (k + λ)) GRSA. O(log(n)) H
Verify(m, i, π) O(λ) GRSA+ log(n) · k Z2λ O(k + λ) GRSA O(log(n)) H

|π| O(1) |GRSA| 1 |GRSA| O(log(n)) |H|
Open(m, i), |m| = t O(n(log(n) · k)) GRSA O(n log(n) · (k + λ)) GRSA O(t · log(n)) H
Verify(m, i, πm) O(λ) GRSA + O(t log(n)k) Z2λ O(tk) GRSA O(t · log(n)) H

|πm| 4 |GRSA|+ 1 |Z2λ | 1 |GRSA| O(t · log(n)) |H|

Table 1: Comparison between Merkle trees, Catalone-Fiore RSA VCs and the new VCs presented
in this work. |GRSA|, |Z2λ |, |H| are the size of a hidden order group element, a λ bit field element
and a hash. GRSA is a group operation,Z2λ a multiplication in a field of size roughly 2λ and H a
hash operation. Group operations are generally far more expensive than hashes which are more
expensive than multiplication in Z2λ

5.4 Key-Value Map Commitment

An accumulator is a commitment to a set. A vector-commitment is a commitment to a positional
vector. We will now show how we can use the vector-commitment to build a commitment to a
key-value map. A key-value map is an associative data structure where elements from a key space
K are mapped to a value space V ∪ {⊥}. We say that a key k ∈ K is in the map if it does not map
to ⊥. A key-value map can be built from a sparse vector. The key-space is represented by positions
in the vector and the associated value is the data at the keys position. Note that if the key-space is
large then we need a sparse vector. A sparse vector is a vector whose complexity is only dependent
on the number of non-zero elements in it. A sparse vector commitment has the same property with

27

respect to the number of elements that were committed. We can use a sparse vector commitment
and two collision resistant hash function HK,HV . HK maps from K to [0, 2λ] and HV from V to
{0, 1}λ. We set up a vector commitment VC with message space {0, 1}λ and length 2λ. In order to
add a mapping from a key k to a value v we update the vector commitment at position HK(k) and
set the value to HV(v). ⊥ is represented by 0. In order to prove that the committed map contains
a commitment k → v we open the vector at the position HK(k) to the value HV(v). The key-value
map inherits its properties from the vector commitment. In particular, it has batch openings with
efficient verification and supports distributed updates.

6 Hashing To Primes

Our constructions use a hash-function with prime domains in several places: Elements in the
accumulator are mapped to primes, using a collision resistant hash function with prime domain.
The vector commitment associates a unique prime with each index. All of the proofs presented in
Section 3 use a random prime as a challenge. When the proofs are made non-interactive, using the
Fiat-Shamir heuristic the challenge is generated by hashing the previous transcript (See Figure 1).
In Figure 4.1 we present a simple algorithm for a collision-resistant hash function Hprime with
prime-domain built from a collision resistant hash function H with domain Z2λ . The hash function
iteratively hashes a message and a counter until the output is a prime. If we model H as a random
function with then the expected running time of Hprime is O(λ). This is because there are O(n

log(n))
primes below n. The problem of hashing to primes has been studied in several context: Cramer and
Shoup [CS99] provide a way to generate primes with efficiently checkable certificates. Fouque and
Tibouchi[FT14] showed how to quickly generate random primes. Seeding the random generation
with a collision resistant hash function can be used to generate an efficient hash function with prime
domain. Despite these improvements, the hash function actually introduces a significant overhead
for verification and in this section we present several techniques how the hashing can be further
sped up.

PoE,PoKE proofs We first investigate the PoE,PoKE family of protocols. In the non-interactive
variant the challenge ` is generated by hashing the previous transcript to a prime. The protocol
can be modified by having the prover provide a nonce such that H(nonce||transcript) = ` with
` ∈ Primes(λ). While this allows an adversary to produce different challenges it does not increase
an adversary’s advantage. The prover can always alter the input to generate new challenges. By
changing the nonce the prover can grind a polynomial number of challenges but the soundness error
in all of our protocols is negligible. The change improves the verification as the verifier only needs to
do a single primality check instead of λ. The change is particularly interesting if proof verification
is done in a circuit model of computation, where variable time operations are difficult and costly to
handle. Circuit computations have become increasingly popular for general purpose zero-knowledge
proofs[GGPR13, BBB+18, BSCR+18]. Using the adapted protocol verification becomes a constant
time operation which uses only a single primality check.

Accumulator A similar improvement can be applied to accumulators. The users can provide a
nonce such that nonce||element is accumulated instead of just the element. This of course allows an
adversary to accumulate the same element twice but this can be prevented by additionally hashing
in the current state of the accumulator. Also in some applications, such as stateless blockchains

28

it is guaranteed that no element is accumulated twice(see Section 7). In an inclusion proof, the
prover would provide the nonce as part of the proof. The verifier now only does a single primality
check to ensure that H(nonce||element) is indeed prime. This stands in contrast to O(λ) primality
checks if Hprime is used. The nonce construction prohibits efficient exclusion proofs but these are
not required in some applications, such as the blockchain application.

Vector Commitments The vector commitment construction uses one prime per index to indi-
cate whether the vector is 1 at that index or 0. The security definition for a vector commitment
states that a secure vector commitment cannot be opened to two different openings at the same
index. In our construction this would involve giving both an inclusion as well as an exclusion proof
for a prime in an accumulator, which is impossible if the accumulator itself is secure. Using a prime
for each index again requires using a collision resistant hash function with prime domain which uses
O(λ) primality checks or an injective function which runs in time O(log(n)2), where n is the length
of the vector. What if instead of accumulating a prime for each index we accumulate a random
λ bit number at each index? The random number could simply be the hash of the index. Is this
construction still secure? First consider the case where each index’s number has a unique prime
factor. This adapted construction is trivially still secure. What, however, if xk, associated with
index k, is the product of xi and xj . Then accumulating xi and xj lets an adversary also give an
inclusion proof for xk. Surprisingly, this does still not break security. While it is possible to give
an inclusion proof for xk, i.e. open the vector at index k to 1 it is suddenly impossible to give an
exclusion proof for xk, i.e. open the vector at index k to 0. The scenario only breaks the correctness
property of the scheme, in that it is impossible to commit to a vector that is 1 at i and j but 0 at k.
In a setting, where the vector commitment is used as a static commitment to a vector, correctness
only needs to hold for the particular vector that is being committed to. In the IOP application,
described in Section 7.2, the prover commits to a long proof using a vector commitment. If these
correctness failures only happen for few vectors, it may still be possible to use the scheme. This is
especially true because in the IOP application the proof and also the proof elements can be modi-
fied by hashing the proof elements along with a nonce. A prover would modify the nonces until he
finds a proof, i.e. a vector that he can commit to. To analyze the number of correctness failures we
can compute the probability that a k-bit element divides the product of n k-bit random elements.
Fortunately, this question has been analyzed by Coron and Naccache[CN00] with respect to the
Gennaro-Halevi-Rabin Signature Scheme[GHR99]. They find that for 50 Million integers and 256-
bit numbers the probability that even just a single correctness failure occurs is 1%. Furthermore
we find experimentally that for 220 integers and 80-bit numbers only about 8, 000 integers do not
have a unique prime factor. Thus, any vector that is 1 at these 8, 000 positions can be committed
to using just 80-bit integers. Our results suggest that using random integer indices instead of prime
indices can be useful, if a) perfect completeness is not required b) primality checks are a major cost
to the verifier.

7 Applications

7.1 Stateless Blockchains

Camenisch and Lysanskia [CL02] originally considered the application of accumulators to dis-
tributed databases. In the application a database manager would store and update a database and

29

users storing only the short accumulator value could verifiably convince other users that an item
was stored in the database. We consider a similar application of a blockchain acting as a decen-
tralized ledger. In a blockchain users submit transactions and miners validate and aggregate the
transactions in a block. The block is then appended to the ledger. Decentralized and permissionless
blockchains such as Bitcoin allow any user to be a miner and employ a consensus mechanism to
agree on which blocks are valid and will be added to the chain. In this setting, having a trusted
database manager is not a reasonable assumption.

UTXO commitments We first consider a simplified blockchain design which closely corresponds
to Bitcoin’s UTXO3 design where users own coins and issue transaction by spending old coins and
creating new coins. We call the set of unspent coins the UTXO set. Updates to the blockchain
can be viewed as asynchronous updates to the UTXO set. In most current blockchain designs
([MGGR13, BCG+14] are notable exception) the miners store the whole UTXO set and use it to
verify whether a coin was unspent. This design allows users to issue transactions without knowing
the whole UTXO set. Several authors and members of the blockchain community have proposed
committing to the UTXO set in every block [TMA13, Tod16] using a Merkle tree based construction.
This has several advantages: A user can efficiently proof to another user that his coins are unspent
or that a certain transaction has not yet happened. Additionally, Todd [Tod16] proposed using
the UTXO commitment to prove that a certain transaction output is indeed unspent. This has
the advantage that the miners only need to store the commitment to the UTXOs not the UTXOs
themselves. Todd proposes this mostly for old transaction outputs as ”the log2(n) bandwidth
overhead per transaction is substantial”. He further remarks that checking that the commitment
has been properly updated incurs a significant overhead.
We propose to replace the Merkle tree based accumulator with our decentralized accumulator
which will resolve many of the problems of Merkle based UTXO commitments. The basic design
is equivalent to the one proposed by [TMA13, Tod16, Dra]. Each block contains an accumulator
which represents the current state of the blockchain, i.e. the UTXO set. When a user wants to
spend a coin, or more generally change the state, she provides a membership witness for the coin
(UTXO) that is being spent. A miner can verify the transactions and use BatchDel to properly
delete all spent coins from the accumulator. BatchDel additionally produces a proof of correctness
for the deletions. The miner can, therefore, throw away all of the membership witnesses. For the
newly produced and minted coins the miner uses BatchAdd to add them to the accumulator
and produce a second NI-PoE proof of correctness. Neither of these operations require the miner
to have any state beyond the accumulator value. Furthermore, other miners can verify that the
accumulator was updated correctly using only a constant number of group operations and highly
efficient arithmetic in Z`. Users will need to store membership witnesses for their own coins. No
further storage is required. This accumulator based blockchain design therefore does not require
even a single participant to the store the whole state of the ledger. It also enables highly efficient
verification of transaction inclusion4.

Unfortunately, the design requires that user update their witnesses for every addition or deletion
to the set. The impossibility result of [CH10] suggests that this is unavoidable. We, therefore,

3Unspent Transaction Outputs
4The signature verification for each transaction is orthogonal. Recent advances [BDN18] have dramatically reduced

the signature size and verification time.

30

envision that some users will use services5 that provide them with inclusion proofs. These services
are not trusted for security, but only for availability. A service stores the whole UTXO set and can
compute membership witnesses from scratch. A service may need to produce many membership
witnesses at once. It can use the CreateAllMemWit algorithm to produce all membership
witnesses in just O(n log(n)) time.

Account based state commitments The accumulator based state commitment we described
works for transactional currencies where the state can be represented as a set. Some currencies
such as Ethereum [Woo14] or Stellar [SYB14] use an account based system where the state is a
key-value map. Each account has some state, such as the amount of currency that is associated
with an account. Ethereum actually does use a Merkle tree based state commitment but currently
does not require users to provide inclusion proofs.
A transaction in a state based currency updates the state of the sending and the receiving accounts.
For stateless verification a user would have to provide proofs of the current state of the sending and
receiving accounts. While an accumulator does not suffice to represent the state, we can use our
new batchable hash-map commitment from Section 5.4 to represent the state. The commitment
has similar batching properties as the accumulator. The one notable difference is that we do not
have an efficient method for aggregating opening proofs. This, however, only applies in the stateless
setting. Some aggregation nodes that do store the full state can verifiably aggregate openings. This
service could be provided by the same service providers that generate and maintain opening proofs.

7.2 Short IOPs

Micali [Mic94] showed how PCPs could be used to construct succinct non-interactive arguments.
The prover commits to a long PCP using a Merkle tree and then uses a random oracle to generate a
few random query positions. The prover then verifiably opens the proof at the queried positions by
providing Merkle inclusion paths. [LM18] recently proposed using the [CF13] vector commitment
as a replacement for the Merkle tree. The advantage is that the size of the inclusion proofs is
independent of the length of the underlying PCP and the number of positions queried. [LM18] claim
that their scheme has both succinct public parameters and efficient verification. This, however,
seems to be a mistake as [CF13] either requires linear sized public parameters (in the length of the
committed vector) or has linear verification time. Our new vector commitment can be used as a
replacement to achieve both of these properties.

[BCS16] generalized PCPs and interactive proofs to interactive oracle proofs. In an IOP the
prover sends oracles proofs to a verifier which responds with challenges. The verifier then queries
the oracle for small subsets of the proof and afterwards accepts or rejects. [BCS16] show that
if the oracle is replaced with a Merkle tree commitment and the verifier is public coin than an
IOP can be transformed into a short non-interactive proof of knowledge that is secure in the
random oracle model. For every oracle query to the proof oracles the prover provides a Merkle
inclusion path which ensures that the returned value was indeed a particular part of the proof. The
Merkle inclusion proofs results in a O(log(n)) multiplicative overhead vs. the information theoretic
setting. [BCS16] build on top of [Val08]’s extractor which turns Micali’s CS proofs into proofs of
knowledge. More generally, vector commitments have similar extraction properties. We therefore
propose generalizing the IOP transformation to work with other secure vector commitments such as

5These services are sometimes referred to as bridge nodes.

31

the one presented in Section 5. In every round the prover sends a commitment to a vector and then
verifiably opens certain elements of the vector. The advantage for using the vector commitment
over Merkle trees is that a single constant size inclusion proof suffices for an arbitrary number of
queried elements. Further, using the PoE protocol the inclusion checks can essentially be reduced
to multiplication in a λ-bit prime field. The inclusion proofs are therefore significantly smaller and
more efficient to verify than the Merkle inclusion proofs.

There are several different proofs in the IOP Model. These involve classical zero-knowledge
proofs such as Ligero [AHIV17], STARKs [BSBHR18] and Aurora [BSCR+18] but also proofs of
space [DFKP15, RD16, Pie18a, Fis18]. The proof size for all of these protocols would be reduced
by at least a factor of log(n). However, since for most protocols, such as STARKs or Aurora, the
verifier makes O(λ) queries per oracle/vector commitment additional space savings can be gained
by aggregating the inclusion proofs. The prover will simply send the responses to the O(λ) queries
plus a constant sized inclusion proof. Additionally, the prover sends the vector commitment in
each round which is also of constant size. As we showed in Section 5 it is possible to aggregate
vector commitment openings over k different vector commitments such that only k + 1 elements
in GRSA and k elements in Z2λ need to be send. This is independent of how many elements per
vector are opened. Using class groups with 1000 bit discriminants the inclusion proofs and vector
commitment would only take up 265 bytes per round of the IOP. The improvements are therefore
not only asymptotic but also practically relevant. For a circuit of size 220 [BSCR+18] report that
the Merkle paths take up 154kb of the 222kb proof. Using our vector commitment, the proof
size would go down to less than 73kb. For STARKs the benefits are equally significant. For a
benchmark circuit of 252 gates [BSBHR18] the Merkle paths make up over 400kb of the 600kb
proof and the inclusion checks are roughly 80% of the verification time. Note, that current IOPs
optimize the proofs to open as few Merkle paths as possible. Our construction potentially opens
the development of IOPs with different tradeoffs.
While using our vector commitment has many benefits for IOPs, there are several sever downsides.
Our vector commitment is not quantum secure as a quantum computer can find the order of the
group and break the Strong-RSA assumption. Using a Merkle tree with a sufficiently large hash
function on the other hand is at least plausibly quantum secure. Instantiating a Vector commitment
with similar properties as ours, using plausibly quantum-secure assumptions, remains an interesting
open problem. Additionally, constructing a Merkle tree and Merkle inclusion proofs is much faster
than generating a vector commitment of equivalent size. The prover for an IOP instantiated with
our vector commitment would, therefore, be significantly slower.

8 Conclusion

In this paper we discussed new batching techniques for accumulators and how these techniques
can be used to build sparse vector commitments, IOPs and succinct and stateless blockchains. As
part of our batching techniques we develop new succinct zero-knowledge arguments for groups of
unknown order that are of independent interest.

We expect that our techniques and commitments will have more applications beyond what was
discussed. Several interesting open questions remain: Is it possible to non-interactively aggregate
non-membership witnesses? Can one build an accumulator with constant sized witnesses from a
quantum resistant assumption? Additionally, we hope that this research will motivate further study
of class groups as a group of unknown order.

32

Acknowledgments

This work was partially supported by NSF, ONR, the Simons Foundation, and a Google faculty
fellowship.

References

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent
Waters. Computing on authenticated data. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 1–20. Springer, Heidelberg, March 2012.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 2087–2104. ACM Press, October / November 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/
712.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid
Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applications to
anonymity-preserving revocation. Cryptology ePrint Archive, Report 2017/043, 2017.
http://eprint.iacr.org/2017/043.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE
Computer Society Press, May 2014.

[BCK10] Endre Bangerter, Jan Camenisch, and Stephan Krenn. Efficiency limitations for S-
protocols for group homomorphisms. In Daniele Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 553–571. Springer, Heidelberg, February 2010.

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli Maurer. Efficient proofs of knowledge of
discrete logarithms and representations in groups with hidden order. In Serge Vaude-
nay, editor, PKC 2005, volume 3386 of LNCS, pages 154–171. Springer, Heidelberg,
January 2005.

33

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://eprint.iacr.org/2017/043

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 31–60. Springer, Heidelberg, October / November 2016.

[Bd94] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In Tor Helleseth, editor, EURO-
CRYPT’93, volume 765 of LNCS, pages 274–285. Springer, Heidelberg, May 1994.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Report 2018/483, 2018. https://eprint.

iacr.org/2018/483.

[BH01] Johannes Buchmann and Safuat Hamdy. A survey on iq cryptography. In Public-Key
Cryptography and Computational Number Theory, pages 1–15, 2001.

[BLL00] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate management
using undeniable attestations. In S. Jajodia and P. Samarati, editors, ACM CCS 00,
pages 9–17. ACM Press, November 2000.

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 480–494. Springer, Heidelberg, May 1997.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[BSCR+18] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for r1cs. Cryptology
ePrint Archive, Report 2018/828, 2018. https://eprint.iacr.org/2018/828.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In
Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,
pages 55–72. Springer, Heidelberg, February / March 2013.

[CH10] Philippe Camacho and Alejandro Hevia. On the impossibility of batch update for
cryptographic accumulators. In Michel Abdalla and Paulo S. L. M. Barreto, editors,
LATINCRYPT 2010, volume 6212 of LNCS, pages 178–188. Springer, Heidelberg,
August 2010.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos A. Kiwi, and Roberto Opazo. Strong
accumulators from collision-resistant hashing. In Tzong-Chen Wu, Chin-Laung Lei,
Vincent Rijmen, and Der-Tsai Lee, editors, ISC 2008, volume 5222 of LNCS, pages
471–486. Springer, Heidelberg, September 2008.

[CJ10] Sébastien Canard and Amandine Jambert. On extended sanitizable signature schemes.
In Josef Pieprzyk, editor, CT-RSA 2010, volume 5985 of LNCS, pages 179–194.
Springer, Heidelberg, March 2010.

34

https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/828

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In Stanislaw Jarecki
and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 481–500. Springer,
Heidelberg, March 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August 2002.

[CN00] Jean-Sébastien Coron and David Naccache. Security analysis of the Gennaro-Halevi-
Rabin signature scheme. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 91–101. Springer, Heidelberg, May 2000.

[CPZ18] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A
cryptocurrency with stateless transaction validation. Cryptology ePrint Archive, Re-
port 2018/968, 2018. https://eprint.iacr.org/2018/968.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA as-
sumption. Cryptology ePrint Archive, Report 1999/001, 1999. http://eprint.iacr.
org/1999/001.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 585–605. Springer, Heidelberg,
August 2015.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic ac-
cumulators, additional properties and relations to other primitives. In Kaisa Nyberg,
editor, CT-RSA 2015, volume 9048 of LNCS, pages 127–144. Springer, Heidelberg,
April 2015.

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and
signature schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 256–271. Springer, Heidelberg, April / May 2002.

[Dra] Justin Drake. Accumulators, scalability of utxo
blockchains, and data availability. https://ethresear.ch/t/

accumulators-scalability-of-utxo-blockchains-and-data-availability/176.

[DT08] Ivan Damg̊ard and Nikos Triandopoulos. Supporting non-membership proofs with
bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538, 2008. http:
//eprint.iacr.org/2008/538.

[Fis18] Ben Fisch. Tight proofs of space and replication. Cryptology ePrint Archive, Report
2018/702, 2018. https://eprint.iacr.org/2018/702.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

35

https://eprint.iacr.org/2018/968
http://eprint.iacr.org/1999/001
http://eprint.iacr.org/1999/001
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2008/538
https://eprint.iacr.org/2018/702

[FT14] Pierre-Alain Fouque and Mehdi Tibouchi. Close to uniform prime number generation
with fewer random bits. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and
Elias Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of LNCS, pages 991–
1002. Springer, Heidelberg, July 2014.

[FVY14] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. A decentralized pub-
lic key infrastructure with identity retention. Cryptology ePrint Archive, Report
2014/803, 2014. http://eprint.iacr.org/2014/803.

[GGM14] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous creden-
tials. In NDSS 2014. The Internet Society, February 2014.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without
the random oracle. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 123–139. Springer, Heidelberg, May 1999.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016.

[Lip12] Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS 12, volume 7341 of
LNCS, pages 224–240. Springer, Heidelberg, June 2012.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmem-
bership proofs. In Jonathan Katz and Moti Yung, editors, ACNS 07, volume 4521 of
LNCS, pages 253–269. Springer, Heidelberg, June 2007.

[LM18] Russell W.F. Lai and Giulio Malavolta. Optimal succinct arguments via hidden order
groups. Cryptology ePrint Archive, Report 2018/705, 2018. https://eprint.iacr.

org/2018/705.

[LRY16] Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from simple
assumptions. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and
Davide Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss
Dagstuhl, July 2016.

[LY10] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In Daniele Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 499–517. Springer, Heidelberg, February 2010.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer,
Heidelberg, August 1988.

36

http://eprint.iacr.org/2014/803
https://eprint.iacr.org/2018/705
https://eprint.iacr.org/2018/705

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anony-
mous distributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and
Privacy, pages 397–411. IEEE Computer Society Press, May 2013.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE
Computer Society Press, November 1994.

[Ngu05] L. Nguyen. Accumulators from bilinear maps and applications. CT-RSA, 3376:275–
292, 2005.

[NN98] Kobbi Nissim and Moni Naor. Certificate revocation and certificate update. In Usenix,
1998.

[Pie18a] Krzysztof Pietrzak. Proofs of catalytic space. Cryptology ePrint Archive, Report
2018/194, 2018. https://eprint.iacr.org/2018/194.

[Pie18b] Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive,
Report 2018/627, 2018. https://eprint.iacr.org/2018/627.

[PS14] Henrich Christopher Pöhls and Kai Samelin. On updatable redactable signatures. In
Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14, volume
8479 of LNCS, pages 457–475. Springer, Heidelberg, June 2014.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
262–285. Springer, Heidelberg, October / November 2016.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences.
ACM Transactions on Computer Systems (TOCS), 1(1):38–44, 1983.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[Sla12] Daniel Slamanig. Dynamic accumulator based discretionary access control for out-
sourced storage with unlinkable access - (short paper). In Angelos D. Keromytis,
editor, FC 2012, volume 7397 of LNCS, pages 215–222. Springer, Heidelberg, Febru-
ary / March 2012.

[STS99] Tomas Sander and Amnon Ta-Shma. Flow control: A new approach for anonymity
control in electronic cash systems. In Matthew Franklin, editor, FC’99, volume 1648
of LNCS, pages 46–61. Springer, Heidelberg, February 1999.

[SYB14] David Schwartz, Noah Youngs, and Arthur Britto. The Ripple Protocol Consensus
Algorithm, September 2014.

[TMA13] Peter Todd, Gregory Maxwell, and Oleg Andreev. Reducing UTXO: users send parent
transactions with their merkle branches. bitcointalk.org, October 2013.

37

https://eprint.iacr.org/2018/194
https://eprint.iacr.org/2018/627
bitcointalk.org

[Tod16] Peter Todd. Making UTXO Set Growth Irrelevant With Low-Latency Delayed TXO
Commitments . https://petertodd.org/2016/delayed-txo-commitments, May
2016.

[TW12] Björn Terelius and Douglas Wikström. Efficiency limitations of S-protocols for group
homomorphisms revisited. In Ivan Visconti and Roberto De Prisco, editors, SCN 12,
volume 7485 of LNCS, pages 461–476. Springer, Heidelberg, September 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
1–18. Springer, Heidelberg, March 2008.

[Wes18] Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive,
Report 2018/623, 2018. https://eprint.iacr.org/2018/623.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. http://gavwood.
com/paper.pdf, 2014.

38

https://petertodd.org/2016/delayed-txo-commitments
https://eprint.iacr.org/2018/623
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

A Security Proofs

A.1 Preliminary lemmas

In the following lemmas, which all concern the generic group model, we restrict ourselves to ad-
versaries that do not receive any group elements as input. This is sufficient to prove our theorems.
For our proof protocols we require that the adversary itself outputs the instance after receiving
a description of the group. We require this in order to prevent that the instance itself encodes a
trapdoor, such as the order of the group.

Lemma 2 (Element representation [Sho97]). Using the notation of Section 2.2, let G be a generic
group and A a generic algorithm making q1 queries to O1 and q2 queries to O2. Let {g1, . . . , gm}
be the outputs of O1. There is an efficient algorithm Ext that given as input the transcript of A’s
interaction with the generic group oracles, produces for every element u ∈ G that A outputs, a tuple
(α1, . . . , αm) ∈ Zm such that u =

∏m
i=1 g

αi
i and αi ≤ 2q+2.

Lemma 3 (Computing multiple of orders of random elements). Let G be a generic group where
|G| is a uniformly chosen integer in [A,B]. Let A be a generic algorithm making q1 queries to O1

and q2 queries to O2. The probability that A succeeds in computing 0 6= k ∈ N such that for a g

which is a response to an O1 query gk = 1 is at most (q1+q2)3

M , where 1/M is negligible whenever
|B −A| = exp(λ). When A succeeds we say that event Root happened.

We denote ordG(g) as the order of g ∈ G. By definition gk = 1∧0 6= k ∈ Z↔ k mod ordG(g) = 0.

Proof. This lemma is a direct corollary of Theorem 1 from [DK02]. That theorem shows that an
adversary that interacts with the two generic group oracles cannot solve the strong RSA problem
with probability greater than (q1 + q2)3/M , where M is as in the statement of the lemma. Recall
that a strong RSA adversary takes as input a random g ∈ G and outputs (u, x) where ux = g and
x is an odd prime. Let A be an adversary from the statement of the lemma, that is, A outputs
0 < k ∈ Z where k ≡ 0 mod |G| with some probability ε. This A immediately gives a strong RSA
adversary that also succeeds with probability ε: run A to get k and g such that gk = 1 ∈ GRSA.
Then find an odd prime x that does not divide k, and output (u, x) where u = g(x−1 mod k). Clearly
ux = g which is a solution to the given strong RSA challenge. It follows by Theorem 1 from [DK02]
that ε ≤ (q1 + q2)3/M , as required.

Lemma 4 (Discrete Logarithm). Let G be a generic group where |G| is a uniformly chosen integer
in [A,B], where 1/A and 1/|B − A| are negligible in λ. Let A be a generic algorithm and let
{g1, . . . , gm} be the outputs of O1. Then if A runs in polynomial time, it succeeds with at most

negligible probability in outputting α1, . . . , αm, β1, . . . , βm ∈ Z such that
∏m
i=1 g

αi
i =

∏m
i=1 g

βi
i and

αi 6= βi for some i. We call this event DLOG.

Proof sketch. We follow the structure of Shoup’s argument [Sho97]. By Lemma 2 every group
element u ∈ G that the adversary obtains in response to an O2 query can be written as u =

∏m
i=1 g

αi
i

for some known αi ∈ Z. Let g =
∏m
i=1 g

αi
i and h =

∏m
i=1 g

βi
i be two such group elements. If there

is some i for which αi 6≡ βi (mod ordG(gi)) then the probability that g = h is at most negligible,
as shown in [DK02]. Hence, if g = h then with overwhelming probability we have that αi ≡ βi
(mod ordG(gi)) for all i. From this it follows by Lemma 3 that αi = βi ∈ Z with overwhelming
probability, since otherwise one obtains a multiple of |G|. Since A constructs at most polynomially

39

many group elements, there are at most polynomially many pairs of such elements. Therefore,
a union bound over all pairs shows that the probability that event DLOG happens is at most
negligible, as required.

Lemma 5 (Dlog extraction). Let G be a generic group where |G| is a uniformly chosen integer
in [A,B] and g an output of a query to O1. Let A be a generic algorithm that outputs w ∈ G
and then runs the interactive protocol Protocol PoKE∗ with g in the CRS. Let (`1, Q1, r1) and
(`2, Q2, r2) two accepting transcripts for Protocol PoKE∗ generated one after the other. If 1/A and
1/|B −A| are negligible in λ, then with overwhelming probability there exist integers α and β such
that α · l1 + r1 = β · l2 + r2 and gα·l1+r1 = w. Further if A makes q queries to O2 then |α| , |β| are
bounded by 2q.

Proof. W.l.o.g. let g1 = g be encoded in the PoKE∗ CRS. The PoKE∗ verification equations give
us w = Q`11 g

r1 = Q`22 g
r2 . We can write Q1 =

∏m
i=1 g

αi
i and Q2 =

∏m
i=1 g

βi
i . This implies that

Q`11 g
r1 = gα1·`1+r1

∏m
i=2 g

αi·`1
i = gβ1·`2+r2

∏m
i=2 g

βi·`2
i . By Lemma 4, αi`1 = βi`2 ∈ Z for all i 6=

1 with overwhelming probability (i.e. unless event DLOG occurs), and therefore `2|αi`1. The

primes `1 and `2 are co-prime unless `1 = `2, which happens with probability ln(2)λ
2λ

. Thus, with
overwhelming probability `2|αi. However, αi ≤ 2q2 and αi is chosen before `2 is sampled, hence

the probability that `2|αi for αi 6= 0 is at most q2λ ln(2)
2λ

. We conclude that with overwhelming

probability αi = βi = 0 for all i 6= 1. It follows that except with probability Pr[DLOG] + 2q2λ ln(2)
2λ

,

we can express w = gα1`1+r1 = gβ1`2+r2 for integers α1, r1, β1, r2 such that α1`1 +r1 = β1`2 +r2.

In what follows we will use the following notation already introduced in Section 3: for generators
g1, . . . , gn ∈ G we let Rep : Zn → G be the homomorphism

Rep(x) =

n∏
i=1

gxii .

Lemma 6 (Representation extraction). Let G be a generic group where |G| is a uniformly cho-
sen integer in [A,B] and let g1, . . . , gn ∈ G be responses to queries to oracle O1. Let A be a
generic algorithm that outputs w ∈ G and then runs the interactive protocol Protocol PoKRep on
input w with g1, ..., gn in the CRS. Let (`1, Q1, r1) and (`2, Q2, r2) be two accepting transcripts for
Protocol PoKRep. If 1/A and 1/|B−A| are negligible in λ, then with overwhelming probability there
exist integer vectors α,β ∈ Zn such that αl1 + r1 = βl2 + r2 and Rep(αl1 + r1) = w. Further if A
makes q queries to O2 then each component αj and βj of α and β are bounded by 2q.

Proof. The proof is a direct generalization of the argument in Lemma 5 above. From the verification
equations of the protocol we have Q`11 Rep(r1) = Q`22 Rep(r2) = w. With overwhelming probability,
the generic group adversary knows α1, ..., αm and β1, .., βm for m > n such that it can write Q1 =∏m
i=1 g

αi
i and Q2 =

∏m
i=1 g

βi
i . From the verification equation and Lemma 4, with overwhelming

probability αi`1 + r1[i] = βi`2 + r2[i] for each i ≤ n and αi`1 = βi`2 for each i > n. As explained
in the proof of Lemma 5, this implies that with overwhelming probability αi = βi = 0 for each

i > n, in which case w =
∏n
i=1 g

αi`1+r1[i]
i =

∏n
i=1 g

βi`2+r2[i]
i . Setting α := (α1, ..., αn) and β :=

(β1, ..., βn), we conclude that with overwhelming probability w = Rep(α`1 + r1) = Rep(β`2 + r2)
and α`1 + r1 = α`2 + r2. Finally, if A has made at most q queries to O2 then αi < 2q and βi < 2q

for each i.

40

The next two corollaries show that the adaptive root problem and the known order element
problem are intractable in a generic group.

Corollary 1 (Adaptive root hardness). Let G be a generic group where |G| is a uniformly chosen
integer in [A,B] such that 1/|A| and 1/|B − A| are negligible in λ. Any generic adversary A
that performs a polynomial number of queries to oracle O2 succeeds in breaking the adaptive root
assumption on G with at most negligible probability in λ.

Proof. Recall that in the adaptive root game the adversary outputs w ∈ G, the challenger then
responds with a prime ` ∈ [2, 2λ], and the adversary succeeds if it outputs u such that u` = w.

According to Lemma 2 we can write u =
∏m
i=1 g

αi
i and w =

∏m
i=1 g

βi
i , where g1, . . . , gm are the

responses to oracle O1 queries. By Lemma 4 we know that αi` = βi mod |G| for all i = 1, . . . ,m
with overwhelming probability, namely 1−Pr[DLOG]. Therefore, αi` = βi + k · |G| for some k ∈ Z.
By Lemma 3, an efficient adversary can compute a multiple of the order of the group with at most
negligible probability Pr[Root]. It follows that k = 0 and αi` = βi ∈ Z with probability greater
than 1−Pr[DLOG]−Pr[Root], since otherwise αi`−βi is a multiple of G. Now, because αi` = βi we
know that ` must divide βi. However, βi is chosen before ` and if A makes q2 generic group queries
then βi ≤ 2q2 . The probability that ` divides βi, for βi 6= 0, is bounded by the probability that
a random prime in Primes(λ) divides a number less than 2q2 . Any such number has less than q2

distinct prime factors and there are more than 2λ/λ primes in Primes(λ). Therefore, the probability
that ` divides βi 6= 0 is at most q2·λ

2λ
. Overall, we obtain that a generic adversary can break the

adaptive root assumption with probability at most (q1+q2)2

A + 2 · (q1+q2)3

M + q2·λ
2λ

, which is negligible
if A and B −A are exponential in λ and q1, q2 are bounded by some polynomial in λ.

Corollary 2 (Non-trivial order hardness). Let G be a generic group where |G| is a uniformly chosen
integer in [A,B] such that 1/|A| and 1/|B − A| are negligible in λ. Any generic adversary A that
performs a polynomial number of queries to oracle O2 succeeds in finding an element h 6= 1 ∈ G
and an integer d such that hd = 1 with at most negligible probability in λ.

Proof. We can construct an adaptive root adversary that first uses A to obtain h and d, and then
computes the `th root of h by computing c = `−1 mod d and hc = h1/`. Since the adaptive root
assumption holds true in the generic group model (Corollary 1), we can conclude that A succeeds
with negligible probability.

Fact 1 (Chinese Remainder Theorem (CRT)). Let `1, . . . , `n be coprime integers and let r1, . . . , rn ∈
Z, then there exists a unique 0 ≤ x <

∏n
i=1 `i such that x = ri mod `i and there is an efficient

algorithm for computing x.

A.2 Proofs of the main theorems

Proof of Theorem 5.

Protocol PoKRep is an argument of knowledge for the relation Rφ where φ := Rep, in
the generic group model.

Fix G $← GGen(λ) and g = (g1, ..., gn) ∈ G. Let A0,A1 be poly-time generic adversaries where

(w, state)
$← A0(g) and A1(state) runs Protocol PoKRep with a verifier V (g, w). We need to show

41

that for all A1 there exists a poly-time Ext such that for all A0 the following holds: if A1 convinces
V (g, w) to accept with probability ε ≥ 1/poly(λ), then Ext outputs a vector x ∈ Zn such that
Rep(x) = w with overwhelming probability.

Subclaim In Protocol PoKRep, for any polynomial number of accepting transcripts

{(`i, Qi, ri)}poly(λ)
i=1 obtained by rewinding A1 on the same input (w, state), with over-

whelming probability there exists x ∈ Zn such that x = ri mod `i for each i and
Rep(x) = w. Furthermore, xj ≤ 2q for each jth component xj of x, where q is the total
number of queries that A makes to the group oracle.

The subclaim follows from Lemma 6. With overwhelming probability there exists α,β, and x
in Zn such that x = α`1 + r1 = β`2 + r2 and Rep(x) = w, and each component of x is bounded
by 2q. Consider any third transcript, w.l.o.g. (`3, Q3, r3). Invoking the lemma again, there exists
α′, β′, and x′ such that x′ = α′`2 + r2 = β′`3 + r3. Thus, with overwhelming probability,
x′ − x = (α′ − β)`2. However, since `2 is sampled randomly from an exponentially large set of
primes independently from r1, r3, `1, and `3 (which fix the value of x′ − x) there is a negligible
probability that x′ − x ≡ 0 (mod `2), unless x′ = x. By a simple union bound over the poly(λ)
number of transcripts, there exists a single x such that x = ri mod `i for all i.

To complete the proof of Theorem 5 we describe the extractor Ext:
1. run A0 to get output (w, state)
2. let R← {}
3. run Protocol PoKRep with A1 on input (w, state), sampling fresh randomness for the verifier
4. if the transcript (`,Q, r) is accepting set R← R ∪ {(r, `)}, and otherwise return to Step 3
5. use the CRT algorithm to compute x such that x = ri mod `i for each (ri, `i) ∈ R
6. if Rep(x) = w output x and stop
7. return to Step 3

It remains to argue that Ext succeeds with overwhelming probability in a poly(λ) number of rounds.
Suppose that after some polynomial number of rounds the extractor has obtained M accepting
transcripts {`i, Qi, ri} for independent values of `i ∈ Primes(λ). By the subclaim above, with
overwhelming probability there exists x ∈ Zn such that x = ri mod `i and Rep(x) = w and
xj < 2q for each component of x. Hence, the CRT algorithm used in Step 5 will recover the
required vector x once |R| > q.

Since a single round of interaction with A1 results in an accepting transcript with probability
ε ≥ 1/poly(λ), in expectation the extractor obtains |R| > q accepting transcripts for independent
primes `i after q ·poly(λ) rounds. Hence, Ext outputs a vector x such that Rep(x) = w in expected
polynomial time, as required.

Proof of Theorem 4.

Protocol PoKE and Protocol PoKE2 are arguments of knowledge for relation RPoKE in
the generic group model.

Fix G $← GGen(λ) and g ∈ G. Let A0,A1 be poly-time adversaries where (u,w, state)
$←

A0(g) and A1 runs Protocol PoKE or Protocol PoKE2 with the verifier V(g, u, w). We need to
show that for all A1 there exists a poly-time Ext such that for all A0 the following holds: if
Pr
[
〈V(g, u, w),A1(g, u, w, state)〉 = 1

]
(i.e. A1 convinces V to accept on these inputs) then Ext

outputs an integer x such that ux = w in G with overwhelming probability.

42

Proof for Protocol PoKE. Protocol PoKE includes an execution of Protocol PoKE∗ on g ∈ G
and input z (the first message sent by the prover to the verifier), and the prover succeeds in
Protocol PoKE only if it succeeds in this subprotocol for Protocol PoKE∗. Since Protocol PoKE∗ is
a special case of Protocol PoKRep, by Theorem 5 there exists Ext∗ for A1 that outputs x∗ ∈ Z such
that g(x∗) = z. Furthermore, as already shown in the analysis of Theorem 5, once Ext∗ has obtained

x∗ it can continue to replay the protocol, sampling a fresh prime `
$← Primes(λ), and in each fresh

round that produces an accepting transcript it obtains from the Prover a triple (Q,Q′, r) such that
r = x∗ mod ` with overwhelming probability. This is due to the fact that the adversary outputs Q′

such that Q′`gr = z = gx
∗
, and the generic group adversary can write Q′ = gq

∏
i>1 g

qi
i (Lemma 2)

such that q`+ r = x∗ with overwhelming probability (Lemma 4).
The extractor Ext will simply run Ext∗ to obtain x∗. Now we will show that either ux

∗
= w,

i.e. Ext∗ extracted a valid witness, or otherwise the adaptive root assumption would be broken,
which is impossible in the generic group model (Corollary 1). To see this, we construct an adaptive
root adversary AAR that first runs Ext∗ with A0,A1 to obtain x∗ and provides h = w/ux

∗ ∈ G to

the challenger. When provided with `
$← Primes(λ) from the challenger, AAR rewinds A1, passes

` to A1, and with overwhelming probability obtains Q, r such that x∗ = r mod ` and Q`ur = w.
Finally, AAR outputs v = Q

ub
x∗
` c

, which is an `th root of h:

v` =
(Q

ub
x∗
`
c

)`
=
(Q

ub
x∗
`
c

)`ur
ur

=
w

ux∗
= h

If w 6= ux
∗

so that h 6= 1, then AAR succeeds in the adaptive root game. In conclusion, the
value x∗ output by Ext satisfies w = ux

∗
with overwhelming probability.

Proof for protocol PoKE2 Showing that Protocol PoKE2 requires a fresh argument (similar
to the analysis in Theorem 5) since the protocol no longer directly contains Protocol PoKE∗ as a
subprotocol. Ext first obtains u,w from A0 and runs the first two steps of Protocol PoKE2 with

A1 playing the role of the verifier, sampling g
$← G and receiving z ∈ G from A1. Ext is a simple

modification of the extractor for Protocol PoKE:

1. Set R← {} and sample α
$← [0, 2λ].

2. Sample `
$← Primes(λ) and send α, ` to A1.

3. Obtain output Q, r from A0. If Q`urgαr = wzα (i.e. the transcript is accepting) then update
R← R ∪ {(r, `)}. Otherwise return to step 2.

4. Use CRT to compute x = ri mod `i for each (ri, `i) ∈ R. If ux = w then output x, otherwise
return to step 2.

Note that the extractor samples a fresh prime challenge ` each time it rewinds the adversary
but keeps the challenge α fixed each time. Since these are independently sampled in the real
protocol, keeping α fixed while sampling a fresh prime does not change the output distribution of
the adversary. This subtle point of the rewinding strategy is important.

There is a negligible probability that the random g sampled by the extractor was contained in
the group oracle queries from A0 to O1. Thus, by Lemma 2, A0 knows representations w =

∏
i g
ωi
i

43

and u =
∏
i g
µi
i such that gi 6= g for all i. A0 also knows a representation z = gζ

∏
i g
ζi
i and for

each Q obtained A0 knows a representation Q = gq
∏
i g
qi
i , which it can pass in state to A1. If

Q`urgαr = wzα, then A1 obtains an equation gq`+αr
∏
i g
qi`+µir
i = gζα

∏
i g
ζiα+ωi
i .

By Lemma 4, with overwhelming probability q`+αr = ζα, which implies α|q`. Since gcd(α, `) =
1 with overwhelming probability, it follows that α|q and setting a = q/α shows that ζ = a` + r,
i.e. ζ = r mod `. Also for the same reasoning qi`+ µir = ζiα+ ωi with overwhelming probability.
Repeating the argument for a different `′ sampled by the extractor yields a similar equation ζ =
a′`′ + r′, hence a` + r = a′`′ + r′ for some a′ = q′/α. Also qi` + µir − ζiα = q′i`

′ + µir
′ − ζiα.

Substituting for r and r′ gives qi`+ µi(ζ − a`) = q′i`
′ + µi(ζ − a′`′) implying:

(qi − µia)` = (q′i − µia′)`′

(This is where it was important that α is fixed by the extractor, as otherwise we could not
cancel the ζiα term on each side of the equation). Now since ` 6= `′ 6= 0 with overwhelming
probability, it follows that `|q′i − µia′ and `′|qi − µia. However, qi − µia was fixed independently
before `′ was sampled, hence there is a negligible probability that it has `′ as a factor unless
qi − µia = 0, in which case q′i − µia′ = 0 as well. We conclude that with overwhelming probability
qi` + µir = q′i`

′ + µir
′ = µiζ. In other words, for each ` sampled, as long as Q`urgαr = wzα then

with overwhelming probability:

wzα = gq`+αr
∏
i

gqi`+µiri = gζα
∏
i

gµiζi = gζαuζ

Finally, if uζ 6= w then gζ/z 6= 1 and yet (gζ/z)α = uζ/w. Since α is sampled independently
from u,w, g, and ζ, this relation can only hold true with non-negligible probability over the choice
of α if both gζ/z and uζ/w are elements of a small (i.e. poly(λ) size) subgroup generated by gζ/z.
In other words, gζ/z is an element of low order, and it is possible to compute its order in polynomial
time. This would be a contradiction in the generic group model since it is hard to find a non-trivial
element and its order (Corollary 2). In conclusion, with overwhelming probability uζ = w.

Repeating this analysis for each accepting transcript (`i, Qi, ri) shows that ζ = ri mod `i with
overwhelming probability. The remainder of the analysis is identical to the last part of the proof of
Theorem 5. Namely, since ζ < 2q where q < poly(λ) is an upper bound on the number of queries
the adversary makes to the group oracle, we can show there exists a polynomial number of rounds
after which Ext would succeed in extracting ζ with overwhelming probability.

Proof of Theorem 6.

For any homomorphism φ : Zn → G, Protocol PoKHP for relation Rφ = {(w;x) :
φ(x) = w} is an argument of knowledge in the generic group model.

The proof is a direct generalization of the proof of Theorem 4 for Protocol PoKE. As usual,

fix G $← GGen(λ) and g = (g1, ..., gn) ∈ G. Let A0,A1 be poly-time generic adversaries where

(w, state)
$← A0(g) and A1(state) runs Protocol PoKHP with the verifier V (g, w). We need to show

that for all A1 there exists a poly-time Ext such that for all A0 the following holds: if A1 convinces
V (g, w) to accept with probability at least 1/poly(λ) then Ext outputs x ∈ Zn such that φ(x) = w
with overwhelming probability.

44

Protocol PoKHP includes an execution of Protocol PoKRep on g1, ..., gn ∈ G and input z (the
first message sent by the prover to the verifier), and the prover succeeds in Protocol PoKHP only
if it succeeds in this subprotocol for Protocol PoKRep. By Theorem 5 there exists Ext∗ for each A1

that outputs x∗ such that Rep(x∗) = z. Furthermore, as shown in the analysis of Theorem 5, once

Ext∗ has obtained x∗ it can continue to replay the protocol, sampling a fresh prime `
$← Primes(λ),

and in each fresh round that produces an accepting transcript it obtains from the Prover values
Q,Q′ and r such that r = x∗ mod ` with overwhelming probability.

The extractor Ext simply runs Ext∗ to obtain x∗. Now we will show that either φ(x∗) = w, i.e.
Ext∗ extracted a valid witness, or otherwise the adaptive root assumption would be broken, which
is impossible in the generic group model (Corollary 1). To see this, we construct an adaptive root
adversary AAR that first runs Ext∗ with A0,A1 to obtain x∗ and provides h = w/φ(x∗) ∈ G to

the challenger. When provided with `
$← Primes(λ) from the challenger, AAR rewinds A1, passes `

to A1, and with overwhelming probability obtains Q, r such that x∗ = r mod ` and Q`φ(r) = w.
Finally, define bx∗/`c to be the vector obtained by replacing each component xi with the quotient
bxi/`c. AAR outputs v = Q

φ(bx∗/`c) . Using the fact that φ is a group homomorphism we can show
that this is an `th root of h:

v` =
(Q

φ(bx∗` c)
)`

=
Q`

φ(` · bx∗` c)
=

Q`

φ(x∗ − r)

φ(r)

φ(r)
=

w

φ(x∗)
= h

If w 6= φ(x∗) so that h 6= 1, then AAR succeeds in the adaptive root game. In conclusion, the
value x∗ output by Ext satisfies w = φ(x∗) with overwhelming probability.

Proof of Theorem 7.

Protocol ZKPoKRep is an honest-verifier statistical zero-knowledge argument of knowl-
edge for relation RRep in the generic group model.

To show that the protocol is honest-verifier zero-knowledge we build a simulator Sim. Sim picks a

random s∗ ∈ [0, B]n, c ∈ [1, 2λ] and computes A =
∏n
i=1 g

s∗i
i w

−c. Sim then samples a random prime
` and computes Q∗ and r∗ from s∗ such that q∗i `+r∗i = s∗i for each i. The values c, ` are distributed
identically to the verifier’s challenges in the real protocol transcript and Q∗, r∗ are computed from
s∗ in the same way that Q, r are computed in the real transcript. It remains to show that the
distribution of s∗ is statically indistinguishable from s in the real protocol. In the real protocol
transcript, each ith component is si = ri + cx where c and ri are uniformly distributed over [0, B].
For each value of c, si is distributed uniformly in [cx, cx+B] and thus has a statistical distance of
2cx/B from s∗i , which is negligible because B > 22λ |G| and hence 2cx/B < 2−λ+1. It follows that
the statistical distance between s and s∗ is negligible in λ. The simulation therefore produces sta-
tistically indistinguishable transcripts and ZKPoKRep is statistically honest-verifier zero-knowledge.

For extraction we describe an efficient extractor Ext. Ext randomly samples two random chal-
lenges c and c′, and c 6= c′ with probability 1

2λ
. Ext then uses the extractor from Theorem 5 to

extract s and s′ such that
∏n
i=1 g

si
i = Awc and

∏n
i=1 g

s′i
i = Awc

′
. We now compute ∆si = si − s′i

for all i ∈ [1, n] and ∆c = c − c′. This gives us
∏n
i=1 g

∆si
i = w∆c. We now claim that ∆c ∈ Z

divides ∆si ∈ Z for each i ∈ [1, n] with overwhelming probability and that
∏n
i=1 g

∆si/∆c
i = w. By

45

Lemma 2, we can write w =
∏m
i=1 g

αi
i , for integers αi ∈ Z that can be efficiently computed from

A’s queries to the generic group oracle. Since
∏n
i=1 g

∆si
i = w∆c it follows by Lemma 4 that, with

overwhelming probability, αj = 0 for all j > n and ∆si = αi∆c for all i ∈ [1, n].

Furthermore, if µ =
∏n
i=1 g

∆si/∆c
i 6= w, then since µ∆c =

∏n
i=1 g

∆si
i = w∆c it would follow that

µ/w is an element of order ∆c > 1. As ∆c is easy to compute this would contradict the hardness
of computing a non-trivial element and its order in the generic group model (Corollary 2). We can
conclude that µ = w with overwhelming probability. The extractor outputs α = (α1, ..., αn) where
αi = ∆si/∆c.

Proof of Theorem 8.

Protocol ZKPoKE is an honest-verifier statistically zero-knowledge argument of knowl-
edge for relation RPoKE in the generic group model.

To prove that the protocol is honest-verifier zero-knowledge we build a simulator Sim which
generates valid transcripts that are statistically indistinguishable from honestly generated ones.

Sim samples random challenges c
$← [0, 2λ] and `

$← Primes(λ) as well as s1, s2 ∈ [0, B]. Sim then
computes Ag = gs1hs2z−c and Au = us1w−c. Qg, Qu, r1, r2 are computed from s1, s2 as in the real
protocol. As shown in the analysis of Theorem 7, due to the fact that cx/B < 2−λ the distribution
of s1, s2 is statistically close to the distribution of s1, s2 in the real protocol transcript, with distance
negligible in λ. The simulation therefore produces valid, statistically indistinguishable transcripts.

For extraction, note that the protocol contains Protocol ZKPoKRep as a subprotocol on input
Ag and bases g, h in the CRS, and therefore we can use the ZKPoKReP and PoKRep extractors to
extract x, ρ such that z = gxhρ and s1, s2 such that gs1hs2 = Agz

c with overwhelming probability.
Moreover, as shown in the analysis for the PoKRep extractor, we can rewind the adversary on fresh
challenges so that each accepting transcript outputs an r1, ` where s1 = r1 mod ` with overwhelming
probability. If us1 6= Auw

c = Q`uu
r1 then γ = (r1 − s1)/` is an integer and Quu

γ is an `th root
of Auw

c/us1 6= 1. This would break the adaptive root assumption, hence by Corollary 1 it follows
that us1 = Auw

c with overwhelming probability.
Recall from the analysis of Theorem 7 that the extractor obtains a pair of accepting transcripts

with s1, s2, s
′
1, s
′
2, c, c

′ so that x = ∆s1/∆c = (s1− s′1)/(c− c′) and ρ = ∆s2/∆c = (s2− s′2)/(c− c′).
Since us1 = Auw

c and us
′
1 = Auw

c′ with overwhelming probability, we obtain u∆s1 = w∆c with
overwhelming probability. Finally, this implies (ux)∆c = w∆c. If ux 6= w, then ux/w is a non-trivial
element of order ∆c, which would contradict the hardness of computing a non-trivial element and its
order in the generic group model (Corollary 2). Hence, we conclude that ux = w with overwhelming
probability.

46

	Introduction
	Preliminaries
	Assumptions
	Generic group model for groups of unknown order
	Argument systems

	Succinct proofs for hidden order groups
	A succinct proof of exponentiation
	A succinct proof of homomorphism preimage
	A succinct proof of knowledge of a discrete-log
	A succinct proof of knowledge of a homomorphism preimage
	A succinct zero-knowledge proof of discrete-log
	Aggregating Knowledge of Co-prime Roots

	Trapdoorless Universal Accumulator
	Accumulator construction

	Batchable Vector Commitments with Small Parameters
	VC Definitions
	VC construction
	Comparison
	Key-Value Map Commitment

	Hashing To Primes
	Applications
	Stateless Blockchains
	Short IOPs

	Conclusion
	Security Proofs
	Preliminary lemmas
	Proofs of the main theorems

