
Gradient Visualization for General
Characterization in Profiling Attacks

Loïc Masure1,2, Cécile Dumas1, and Emmanuel Prouff2,3

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble
{loic.masure, cecile.dumas}@cea.fr

2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005,
Paris, France

3 ANSSI, France emmanuel.prouff@ssi.gouv.fr

Abstract. Past few years have seen the emergence of Machine Learning
and Deep Learning algorithms as promising tools for profiling attacks, es-
pecially Convolutional Neural Networks (CNN). The latters have indeed
been shown to overcome countermeasures such as de-synchronization or
masking. However, CNNs are not widely used yet and Gaussian Tem-
plates are usually preferred. Though their efficiency is highly impacted
by the countermeasures previously mentioned, their relevance relies on
theoretical and physical justifications fairly recognized among the Side
Channel community. Instead, the efficiency of CNNs still raises a cer-
tain scepticism as they act as a black-box tool. This scepticism is not
specific to the Side Channel Analysis context: understanding to what
extent CNNs would be so powerful and how they learn to recognize dis-
criminative features for classification problems is still an open problem.
Some methods have been proposed by the computer vision community,
without satisfying performance in this field.
However, methods based on Sensitivity Analysis particularly fit our prob-
lem. We propose to apply one of them called Gradient Visualization that
uses the derivatives of a CNN model with respect to an input trace in
order to accurately identify temporal moments where sensitive informa-
tion leaks. In this paper, we theoretically show that this method may
be used to efficiently localize Points of Interest in the SCA context. The
efficiency of the proposed method does not depend on the particular
countermeasure that may be applied to the measured traces as long as
the profiled CNN can still learn in presence of such difficulties. In addi-
tion, the characterization can be made for each trace individually. We
verified the soundness of our proposed method on simulated data and
on experimental traces from a public Side Channel database. Eventu-
ally we empirically show that Sensitivity Analysis is at least as well as
state-of-the-art characterization methods, in presence (or not) of coun-
termeasures.

Keywords: Side Channel Analysis · Profiling Attacks · Deep Learning · Points
of Interest · Characterization

1 Introduction

Side Channel Analysis (SCA) is a class of cryptanalytic attacks that exploits
weaknesses of a physical implementation of a cryptographic primitive. During
its execution, the primitive will process a piece of plaintext and of secret key
into a sensitive variable. As the processing is invertible, knowing the value of
this variable (or at least having some information about it) and the plaintext
enables an attacker to recover the piece of secret key. Secure cryptographic algo-
rithms such as the Advanced Encryption Standard (AES) can then be defeated
by recovering each byte of secret key separately thanks to a Divide and Conquer
strategy, thereby breaking the high complexity usually required to defeat such
an algorithm. This information is usually gathered thanks to physical leakages
such as the power consumption or the electromagnetic emanations measured on
the target device. Actually, conducting an SCA is equivalent as studying the con-
ditional probability of the sensitive variable given the physical measure. It can
be done for example through the computation of statistics such as a difference
of means [16] or a correlation coefficient [3].

For the specific type of SCA called profiling attacks, an attacker will try to
estimate the whole conditional distribution thanks to a profiling phase during
which he has access to an open sample for which he knows the value of the
target variable. Such an access allows him to estimate the conditional distribu-
tion. Historically, Gaussian Template Attacks (GTA) have first been proposed
in the early 2000’s [7]. Their efficiency however, requires an amount of traces
that highly increases with the number of considered time samples. Therefore a
first pre-processing step is hence required to extract few points called Points
of Interest (PoIs). Tools like Signal-to-Noise Ratio (SNR) can efficiently ex-
tract those PoIs [22]. However, in presence of countermeasures such as mask-
ing or de-synchronization [30], both estimation with GTA and PoIs extraction
with SNR are no longer efficient (or at least much less). Other dimensionality
reduction techniques like dedicated variants of Principal Component Analysis
(PCA) [4,34,11,9,8] or Kernel Discriminant Analysis (KDA) [6] can be used,
whithout guarantee that relevant components will be extracted.

Recently, the SCA community has benefited the resurgence of Convolutional
Neural Networks (CNNs) in the 2010’s [17] to apply them to profiling attacks, as
first proposed in [12,20,23]. They are seen as a black-box tool and their results
have been afterwards experimentally shown to be robust to the most common
countermeasures, namely masking [21] and de-synchronization [5]. Their main
advantage is that they may not require pre-processing, and are at least as efficient
as the other state-of-the-art profiling attacks. However, in an evaluator point-of-
view, this is not sufficient. On the one hand he wants to make sure that a CNN
attack succeeded for good reasons i.e. that the rules learned by the model are
generalizable. On the other hand the evaluator also wants to help the developer
to localize and understand where the vulnerability comes from in order to remove
or at least reduce it. This issue is part of a more general problematic for Deep
Learning based systems, namely their explainability and interpretability. On the
one hand, a theoretical framework has been proposed in this context [24]. On

the other hand, several methods have been tried to tackle this problem. Some
computer vision research groups have studied Sensitivity Analysis [32,33] derived
from the computation of the loss function gradient with respect to the input data
during the training phase.

In this paper, we propose to apply a particular Sensitivity Analysis method
called Gradient Visualization (GV) in order to better understand how a CNN
can learn to predict the sensitive variable based on the analysis of a single trace.
The main claim is that CNN based models succeed in discriminating PoIs from
non-informative points, and their localization can be deduced by simply looking
at the gradient of the loss function with respect to the input traces for a trained
model. We theoretically show that this method can be used to localize PoIs
in the case of a perfect model. The efficiency of the proposed method does not
decrease when countermeasures like masking or misalignment are applied. In ad-
dition, the characterization can be made for each trace individually. We verified
the efficiency of our proposed method on simulated data and on experimental
traces from a public Side Channel database. We empirically show that Gradient
Visualization is at least as well as state-of-the-art characterization methods, in
presence or not of different countermeasures.

The paper is organized as follows. In Section 3 we start by considering the
optimal model an ideal attacker may get during profiling, and we deduce some
properties of its derivatives with respect to the input traces that can be related
to the PoIs. In Section 4 we use these properties on a model estimated with
CNNs and we explain how to practically implement the visualization method.
A toy example applied on simulated data is proposed for illustration. Sections 5
and 6 are eventually dedicated to an experimental validation of the effectiveness
of our proposal in realistic attacks scenarios.

2 Preliminaries

2.1 Notations

Throughout the paper we use calligraphic letters as X to denote sets, the corre-
sponding upper-case letter X to denote random variables (resp. random vectors
X) over X , and the corresponding lower-case letter x (resp. x for vectors) to
denote realizations of X (resp. X). The i-th entry of a vector x is denoted by
x[i]. We denote the probability space of a set X by P(X). If X is discrete, it
corresponds to the set of vectors [0, 1]|X | such that the coordinates sum to 1. If
a random variable X is drawn from a distribution D, then DN denotes the joint
distribution over the sequence of N i.i.d. random variables of same probability
distribution than X. The symbol E denotes the expected value, and might be
subscripted by a random variable EX , or by a probability distribution E

X∼D
to

specify under which probability distribution it is computed. Likewise, Var de-
notes the variance of a random variable. If f : x, y 7→ f(x, y) is a multivariate
function, ∂

∂x denotes the partial derivative with respect to the input variable x.
Likewise, if f if a function from Rn to R, then ∇f(x) denotes the gradient of

f computed in x ∈ Rn, which corresponds to the vector of the partial deriva-
tives with respect to each coordinate of x respectively. If there is an ambiguity,
the gradient will be denoted ∇xf(x,y) to emphasize that the gradient is com-
puted with respect to x only. Eventually iff is a function from Rn to Rm, then
Jf (x) ∈ Rm,n denotes the (m,n) matrix whose rows are the transposed gradient
of each elementary function x 7→ f(x)[i] ∈ R. The output of a cryptographic
primitive C is considered as the target sensitive variable Z = C(P,K), where
P denotes some public variable, e.g. a plaintext chunk, where K denotes the
part of secret key the attacker aims to retrieve, and where Z takes values in
Z = {s1, . . . , s|Z|}. Among all the possible values K may take, k? will denote
the right key hypothesis. A side-channel trace will be viewed as a realization of
a D-dimensional random column vector X ∈ X ⊂ RD.

2.2 Profiling Attacks

We will consider attacking a device through a profiling attack, made of the
following steps:

– Profiling acquisition: a dataset of Np profiling traces is acquired on the pro-
totype device: Sp , {(x1, z1), . . . , (xNp

, zNp
)}.

– Model building : a model that returns a discrete probability distribution (pdf)
F (x) is built. If the model is accurate, the returned discrete pdf, viewed as
a vector, is assumed to be a good approximation of the conditional pdf
Pr[Z|X = x].

– Attack acquisition: a dataset of Na attack traces is acquired on the target
device: Sa , {(x1, z1), . . . , (xNa

, zNa
)}.

– Predictions: a prediction vector is computed on each attack trace, based on
the previously built model: yi = F (xi), i ∈ [|1, Na|]. It assigns a score to
each key hypothesis, for each trace.

– Guessing : the scores are combined over all the attack traces to output a
likelihood for each key hypothesis; the candidate with the highest likelihood
is predicted to be the right key.

Let us denote by gSa
(k?) the actual rank of the correct key hypothesis returned

by the attack. If gSa
(k?) = 1, then the attack is considered as successful. More

details about the score vector and the rank definitions can be found in Ap-
pendix A. The difficulty of attacking the target device is often defined as the
number of traces required to get a successful attack. As many random factors
may be involved during the attack, it is preferred to study its expected value,
the so-called Guessing Entropy (GE) [35]:

GE(Na) , E
Sa

[gSa(k
?)] . (1)

The goal of an evaluator is therefore to find a model F that minimizes Na such
that GE(Na) < 2. We will assume that this is equivalent to the problem of ac-
curately estimating the conditional probability distribution x 7→ Pr[Z|X = x].

As mentioned in the introduction, we distinguish the security evaluator as a
particular attacker who additionally wishes to interpret the attack results. One
step of this diagnosis is to temporally localize where the information leakage
appeared in x. This task is usually called characterization. It consists in empha-
sizing Points of Interest (PoIs) where the information leakage may come from.
Section 4.3 will present an usual characterization technique while a new method
will be introduced through this paper.

3 Study of an Optimal Model

In this section, we address the evaluator interpretation problem in the ideal
situation when the conditional distribution is known (i.e. when the model is
perfect). The latter will be denoted as F ∗. We will show how the study of the
derivatives of such a model with respect to each coordinate of an input trace can
highlight information about our PoIs. To this end, we need two assumptions.

Assumption 1 (Sparsity) There only exists a small set of coordinates IZ ,
{t1, . . . , tC |C � D} such that Pr[Z|X] = Pr [Z|X[t1], . . . ,X[tC]].

Assumption 2 (Regularity) The conditional probability distribution F ∗ is dif-
ferentiable over X and thereby continuous.

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace. Both assumptions are realistic in a SCA context (this
point is discussed in Appendix B).

Once Assumptions 1 and 2 are stated, we may observe the impact on the
properties verified by the optimal model derivatives. For such a purpose we
start by considering a trace x. Figure 1 (top) illustrates such a trace in blue, and
the green line depicts IZ which is assumed to be a singleton here. The prediction
pdfs F ∗(x) are given at the bottom of the same figure. We may fairly suppose
that a slight variation on one coordinate that does not belong to IZ (circled
in gray in Figure 1, top) should not radically change the output of the optimal
model. The pdf remains the same, as the gray bars are exactly covered by the
blue ones in Figure 1 (bottom). However, applying a slight variation on the
coordinate from IZ (circled in Figure 1, top) may radically change the output
distribution (red bars in Figure 1, bottom).

As a consequence, F ∗ is differentiable with respect to the input trace (As-
sumption 2) so there should exist s ∈ Z such that:

∂

∂x[t]
F ∗(x)[s]

{
6= 0 if t ∈ IZ
≈ 0 if t /∈ IZ

. (2)

Fig. 1: Illustration of the Sensitivity Analysis principle. Top: a piece of trace.
t ∈ IZ is depicted by the green line, and slight variations circled in red and gray.
Bottom: predictions of the optimal model.

The previous observation can be stated in terms of the Jacobian matrix JF∗(x):
its coefficients should be zero almost everywhere, except in columns t ∈ IZ :

JF∗(x) =

0 . . . ∂

∂x[t]F
∗(x)[s1] 0 . . . 0

0 . . . ∂
∂x[t]F

∗(x)[s2] 0 . . . 0
...

...
...

...
0 . . . ∂

∂x[t]F
∗(x)

[
s|Z|

]
0 . . . 0

 (3)

The properties verified by the Jacobian matrix in (3) form the cornerstone
of this paper, as it implies that we can guess from this matrix whether a co-
ordinate from an input trace belongs to IZ , i.e. whether a coordinate has been
recognized as a PoIs when designing the optimal model F ∗. Such a technique is
part of Sensitivity Analysis.1 Moreover it requires no assumption on the type of
countermeasure implemented in the device.

4 Our Characterization Proposal

So far we have shown that the Jacobian of an optimal model may emphasize
PoIs. In practice however, the evaluator does not have access to the optimal
model, but a trained estimation of it. A natural idea is hence to look at the
Jacobian matrix of the model estimation, hoping that its coefficients will be close
to the optimal model derivatives. Here we follow this idea in contexts where the
approximation is modeled by training Convolutional Neural Networks (CNN),
described in Section 4.1 (discussions can be found in Appendix C about this
approximation). Section 4.2 illustrates our claim with a toy example. Finally
1 A general definition of Sensitivity Analysis is the study of how the uncertainty in
the output of a mathematical model or system (numerical or otherwise) can be
apportioned to different sources of uncertainty in its inputs [1].

we relate our study with state-of-the-art methods for leakage characterization in
Section 4.3.

4.1 Gradient Approximation with Neural Networks

Neural Networks (NN) [19] aim at constructing a function F : X → P(Z) com-
posed of several simple operations called layers. All the layers are entirely param-
eterized by (a) a real vector called trainable weights and denoted by θ that can
be automatically set; (b) other parameters defining the general architecture of
the model are gathered under the term hyper-parameter. The latters are defined
by the attacker/evaluator.

Convolutional Neural Networks (CNN) is a specific type of Neural Network
where particular constraints are applied on the trainable weights [18]. The train-
ing phase consists in an automatic tuning of the trainable weights and it is done
via an iterative approach that locally applies the Stochastic Gradient Descent
algorithm to minimize a loss function quantifying the classification error of the
function F over the training set. For further details, the interested reader may
refer to [13].

To accurately and efficiently compute the Jacobian matrix of a CNN, an
algorithm called backward propagation (or backprop) can exactly compute the
derivatives with the same time complexity as computing F (x, θ) [13]. As a con-
sequence, computing such a matrix can be done with a negligible cost during an
iteration of Stochastic Gradient Descent.

Actually the modern Deep Learning libraries [26,2] are optimized to compute
the required derivatives for Stochastic Gradient Descent in the backprop so the
Jacobian matrix is never explicitly stored, and it is easier to get the loss function
gradient with respect to the input trace ∇x`(F (x, θ), z∗), where ` : P(Z)×Z →
R+ denotes the loss function, and z∗ denotes the true sensitive value. Hopefully,
studying either the latter one or JF (x) is fairly equivalent, as one coordinate
of the loss function gradient is a function of elements from the corresponding
column in the Jacobian matrix:

∇x`(F (x, θ), z) = JF (x, θ)T∇y`(F (x, θ), z). (4)

That is why we propose to visualize the latter gradient to characterize PoIs
in the context of a CNN attack, instead of the Jacobian matrix (unless explicit
mention). To be more precise, we visualize each coordinate of the gradient in
absolute value in order to get the sensitivity magnitude. In the following, such
a method will be denoted as Gradient Visualization (GV). Discussions about
other visualization methods can be found in Appendix D.

4.2 Example on Simulated Data

To illustrate and explain the relevance of GV, and before going on experimental
data, we first apply our method on a toy example, aiming at simulating simple

D-dimensional leakages from an n-bit sensitive variable Z. The traces are defined
such that for every t ∈ [|1, D|]:

xi[t] =

{
Ui +Bi, if t /∈ {t1, . . . , tm}
zt,i +Bi otherwise

, (5)

where (Ui)i, (Bi)i and all (zt,i)i are independent, Ui ∼ B(n, 0.5), Bi ∼ N (0, σ2)
and where (z1,i, . . . , zm,i) is a m-sharing of zi for the bitwise addition law. This
example corresponds to a situation where the leaks of the shares are hidden
among values that have no relation with our target.

Every possible combination of the m-sharing has been generated and repli-
cated 100 times before adding the noise, in order to have an exhaustive dataset.
Therefore, its size is 100 × 2mn. We ran the experiment for n = 4 bits, m ∈
{2, 3}, D = 100, and a varying noise σ2 ∈ [0, 1]. Once the data were generated,
we trained a neural network with one hidden layer made of D neurons. Figure 2

0 20 40 60 80 100
Input coordinates: 100 random values, 2 informative components.

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44]
Shape: (25600, 100), = 0.4, loss = 3.9360218048095703

0 20 40 60 80 100
Input coordinates: 100 random values, 3 informative components.

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44, 80]
Shape: (409600, 100), = 0.1, loss = 3.9143667221069336

Fig. 2: Gradient of the loss function respectively for two and three shares.

presents some examples obtained for 2 (left) and 3 shares (right). We clearly
see some peaks at the coordinates where the meaningful information have been
placed. Interestingly, this simulation shows that a second order masking has
been defeated, though it required 16 more simulated data and less noised data
(σ2 ≥ 0.1) than for the same experiment with only a first order masking. A
further work might study the impact of the noise magnitude σ2 and of the num-
ber of bits considered on the efficiency of the training. It is however beyond the
scope of this paper.

4.3 Comparison with another Characterization Method: the SNR

Now we have shown that Gradient Visualization is relevant for characterization
on simulated data, one may wonder to what extent this method would be useful
compared to other characterization techniques. In this section, we compare our
contribution to a state-of-the-art method used for characterization in SCA. The

Signal-to-Noise Ratio (SNR) is estimated by the following pointwise statistics:

SNR[t] ,
Var
Z

(
E [X[t]|Z = z]

)
E
Z

[
Var (X[t]|Z = z)

] , (6)

where the numerator denotes the signal magnitude and the denominator denotes
the noise magnitude estimate. More on the SNR can be found in [22]. One has
to keep in mind that the SNR is a statistical tool, and produces one character-
ization from the profiling traces; whereas our method gives one map for each
trace, though we might average them. It has two consequences, in an SNR char-
acterization with masking, every trace coordinate X[t] will be independent from
Z, leading the numerator to converge toward 0. Similarly, de-synchronization
is equivalent to having a stronger noise on the traces, leading the denominator
to explode (see Section 3.2 in [30]). It explains why it cannot highlight higher
order leakages. Some solutions have been proposed, especially by using functions
combining every couple of points [28] or realignment techniques [36,25,10].

5 Experiment Description

So far we have claimed that relevant information can be extracted from the
loss gradient of a differentiable model. Following this idea, it has been shown to
be efficient to localize PoIs on simulated data and validated that this method
might overcome some weaknesses of state-of-the-art techniques. We now plan to
experimentally verify these claims. Before introducing the results in Section 6, we
first describe our investigations. In Section 5.1, we present the CNN architecture
that will be used for profiling. Finally, Section 5.2 gives an exhaustive description
of all the considered parameters for our experiments.

5.1 CNN Architecture

For these experiments, we will consider the same architecture as proposed in [5,29]
up to slight modifications:

s ◦ [λ]n1 ◦ δG ◦ [δ ◦ [σ ◦ µ ◦ γ]n2]n3 , (7)

where γ denotes a convolutional layer, σ denotes an elementwise non-linearity, µ
denotes a batch-normalization layer, λ denotes a dense layer and s denotes the
softmax layer. Compared to the original architecture proposed in those papers,
a lighter baseline CNN architecture has been chosen:

– The number of filters in the first layers has been decreased (10 instead of
64), though it is still doubled between each block; and the filter size has been
set to 5.

– The dense layers contain less neurons: 1,000 instead of 4,096.

– A global pooling layer δG, has been added at the top of the last block. Its
pooling size equals the width of the feature maps in the last convolutional
layer, so that each feature maps are reduced to one point. While it acts as a
regularizer (since it will drastically reduce the number of neurons in the first
dense layer), the global pooling layer also forces the convolutional filters to
better localize the discriminative features [37].

5.2 Settings

Our experiments have been done with the 50, 000 EM traces from ASCAD
database [29]. Each trace is made of 700 time samples.2 Here-after, the three
different configurations investigated in this paper are presented with the nota-
tions taken from [29]:

– Synchronized traces, with the masked data as a target: Z = Sbox(P ⊕K)⊕
rout (in other terms, rout is assumed to be known, like P).

– Artificial shift: same as previously, but the traces are artificially shifted to
the left of a random number of points drawn from a uniform distribution
over [|0, 100|]. The traces correspond to the dataset ASCAD_desync100.

– Synchronized traces, with unknown masking: we have no knowledge of the
masks rout (neither during profiling or attack phase). The traces correspond
to the dataset ASCAD.

The Neural Networks source code is implemented on Python thanks to the
Pytorch [26] library and is run on a workstation with a Nvidia Quadro M4000
GP-GPU with 8 GB memory and 1664 cores.

We will use the Cross-Entropy (also known as Negative Log Likelihood) as a
loss function. It particularly fits our context as it is equivalent as minimizing the
Kullback-Leibler divergence, which measures a divergence between two proba-
bility distributions, namely F ∗(x) and F (x, θ) in our case. Therefore, the model
F (., θ) will converge towards F ∗ during the training.

For each tested neural network architecture, a 5-fold cross-validation strategy
has been followed. Namely, the ASCAD database has been split into 5 sets
S1, . . . , S5 of 10, 000 traces each, and the i-th cross-validation, denoted by CVi,
corresponds to a training dataset Sp = ∪j 6=iSj and a validation dataset Sv = Si.
The given performance metrics and the visualizations are averaged over these 5
folds. The optimization is actually done with a slight modification of Stochastic
Gradient Descent called Adam [15]. The learning rate is always set to 10−4.
Likewise, the batch size has been fixed to 64. For each training, we operate 100
epochs, i.e. each couple (xi, zi) is passed 100 times through an SGD iteration,
and we keep as the best model the one that has the lowest loss function on the
validation set.

2 It corresponds to 26 clock cycles.

6 Experimental Results

This section presents experimentations of the GV in different contexts, namely
(Exp.1) when the implementation embeds no countermeasure, (Exp.2) when
traces are de-synchronized and (Exp.3) when masking is applied. The methods
used to train the CNNs, to tune their hyper-parameters and to generate the GV
have been presented in Section 5.

6.1 Application Without Countermeasure

Parameter Value

n3 5
n2 1
n1 {0, 1, 2}

n1 Validation Loss (bits) N∗

0 6.40 3.25
1 6.15 3
2 6.35 3.25

n1 Validation Loss (bits) N∗

0 6.64 4.0
1 6.46 3.6
2 6.90 5.4

Table 1: Architecture hyper-parameters (left) and performance metrics without
countermeasure (center) and with de-synchronization (right).

In application context (Exp.1) (i.e. no countermeasure) several CNNs have
been trained with the architecture hyper-parameters in (7) specified as listed in
Table 1 (left). Since the masked data are here directly targeted (i.e. the masks
are supposed to be known), no recombination (thereby no dense layer) should be
required [29]. The parameter n1 should therefore be null. However, to validate
this intuition we let it vary in {0, 1, 2}. The validation loss corresponding to these
values is given in Table 1 (center), where N∗ denotes the minimum number of
traces required to have a GE lower than 1. Even if this minimum is roughly the
same for the 3 different configurations, we selected the best one (i.e. n1 = 1) for
our best CNN architecture. Figure 3 (left) presents the corresponding GV, and
the corresponding SNR (right).3 It may be observed that the peaks obtained with
GV and SNR are identical: the highest point in the SNR is the second highest
point in GV, whereas the highest point in GV is ranked 7-th in the SNR peaks.
More generally both methods target the same clock cycle (the 19-th). These
observations validate the fact that our characterization method is relevant for
an unprotected target.

6.2 Application with an Artificial De-synchronization

We now add a new difficulty by considering the case of de-synchronization as
described in Section 5.2. The hyper-parameter grid is exactly the same as in

3 An alternative representation with the Jacobian matrix is given in Appendix E,
Figure 8.

0 100 200 300 400 500 600 700
Time(samples)

0.00

0.01

0.02

0.03

0.04

0.05
Gr

ad
ie

nt

Gradient averaged on a 5-fold cross validation
No masking, no desync

0 100 200 300 400 500 600 700
Time(samples)

0.0

0.1

0.2

0.3

0.4

SN
R

SNR for Z = SBox(p[3] k[3]) rout
Synchronized traces

Fig. 3: Case where no countermeasure is considered. Left: GV for the trained
model with 1 dense layer. Right: SNR.

Section 6.1, and the corresponding loss is given in Table 1 (right). Faced to mis-
alignment, the considered architectures have still good performances, and the
attacks succeeded in roughly the same number of traces than before. Interest-
ingly, Figure 4 shows that the GV succeeds to recover the leakage localization
while the SNR does not (see Figure 9 in Appendix E). Actually, the gradient
averaged over the profiling traces Figure 4 (left) shows that, instead of having
a small number of peaks, a band is obtained whose width approximately equals
the maximum quantity of shift applied in the traces, namely 100 points. More-
over, individual gradients Figure 4 (right) bring a single characterization for each
trace, enabling to guess approximately the shift applied to each trace.

0 100 200 300 400 500 600 700
Time(samples)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Gr
ad

ie
nt

Loss function gradient (average)
No masking, random shift (100)

Fig. 4: Case where de-synchronization is considered. GV for each trace separately
(right) and averaged (left).

6.3 Application with a First Order Masking

The last experiment concerns the application of GV in presence of masking.
Several model configurations have been tested which correspond to the hyper-

parameters listed in Table 2 (left). We eventually selected the 8 models that
achieved the best GE convergence rate (right).

Parameter Value

n3 {5, 6, 7, 8}
n2 1
n1 {2, 3}
n_filters_1 10
kernel_size {3, 5, 11}

100 101 102

Number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g

En
tro

py

Guessing Entropy on cross validated grid-search with CNN
n3 = 7, n1 = 3, kernel_size = 5
n3 = 7, n1 = 2, kernel_size = 5
n3 = 8, n1 = 2, kernel_size = 5
n3 = 7, n1 = 2, kernerl_size=11
n3 = 8, n1 = 2, kernel_size = 11
n3 = 7, n1 = 3, kernel_size = 11
n3 = 8, n1 = 3, kernel_size = 3
n3 = 5, n1 = 3, kernel_size = 11

Table 2: Masking Case. Left: architecture hyper-parameters (bold values refer
to the best choices). Right: GE for the 8 best architectures.

For the selected architectures, our first attempt to use GV did not give full
satisfaction. As an illustration, Figure 5 (left) presents it for one of the tested
architectures (averaged over the 5 folds of the cross-validation). Indeed, it looks
difficult to distinguish PoIs (i.e. those identified by our SNR characterization, see
the right-hand side of Figure 6) from ghost peaks (i.e. peaks a priori independent
of the sensitive target). To explain this phenomenon, we decided to study the
validation loss of the trained models. Figure 5 (right) presents it for one model
and for each of the 5 cross-validation folds CVi, i ∈ [0..4].

0 100 200 300 400 500 600 700
Time(samples)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Gr
ad

ie
nt

Loss function gradient (average)
With masking, no shift

0 20 40 60 80 100
Epoch

7.80

7.85

7.90

7.95

8.00

8.05

Lo
ss

Loss for the best architecture
With Masking, No Desynchronization

CV 0
CV 1
CV 2
CV 3
CV 4

Fig. 5: Left: GV in presence of masking (without early-stopping). Right: valida-
tion loss for each fold.

It may be observed in Figure 5 (right) that the validation loss curve proceeded
a fast big decrease after an initial plateau during the first 15 epochs. After that,
the validation loss starts increasing before going on a regime with unstable re-
sults (after 50 epochs). These observations are clues of overfitting. It means that

the model exploits (non-informative) leakage not localized in the PoIs to mem-
orize the training data and to improve the training loss. Such a strategy should
not generalize well on the validation traces. As we are looking for models that
implement a generalizable strategy, we propose to use a regularization technique
called early-stopping [13]: the training is stopped after a number of epochs called
patience (in our case 10) if no remarkable decrease (i.e. up to a tolerance term,
0.25 bits here) is observed in the validation loss. With this slight modification,
the previous architectures are trained again from scratch, and a better GV is
produced (see the left-hand side of Figure 6). As the main peaks are separated
enough, an evaluator may conclude that they represent different leakages.

0 100 200 300 400 500 600 700
Time(samples)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Gr
ad

ie
nt

Loss function gradient (average)
With masking, no shift

0 100 200 300 400 500 600 700
Time(samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SN
R

Signal-to-Noise Ratios
ASCAD database

rout

Z rout

Fig. 6: Early-stopping is applied. Left: GV. Right: corresponding SNR.

6.4 Comparison with SNR in the Context of Template Attacks

A careful observation of Figure 6 shows that the main peaks given by the GV
are not exactly aligned with those given by the SNR characterization (performed
under the hypothesis that the masks are known). For GV, the main peak ap-
pears at the points corresponding to the 20-th clock cycle, which is one cycle
after the one previously targeted by both the GV and the SNR in the previous
case where no countermeasure was considered (Section 6.1). We validated that
this phenomenon occurred for every successful visualization produced by GV.
Furthermore, concerning the peaks related to the mask leakage, the GV only
emphasizes one clock cycle (the 6-th) whereas the SNR highlights two of them:
the 6-th and the 7-th.

It implies that the GV should not be taken as an exact equivalent to the
SNR. We have not found any track of explanation to justify this slight shift
but it raises the question to know whether such a change in the targeted clock
cycles has a sense. To give an answer, we decided to use our characterization
method as a dimensionality reduction method. To make a fair comparison in
the context of a first order masking, we assume that we know the mask during
the characterization phase, so that we can localize PoIs for the mask and the

masked data. Notice that we do not assume the mask knowledge during the
profiling phase.4

The input dimension of the traces are reduced to 2n, n ∈ {1, 2, 3, 4, 5} points,
based on the following methods: (a) the 2n−1 highest PoIs from the mask SNR
and the 2n−1 highest PoIs from the masked data SNR are selected; (b) the 2n−1
highest PoIs from the GV are selected from the area around the 6-th clock cycle.
Likewise, the other half comes from the peaks in the area around the 20-th
clock cycle. Once reduced, the traces are processed with a first order Template
Attack [7], and the GE is estimated. The results are given on Figure 7. The
plain curves denote the GE for GV whereas the dotted curves denote either GE
obtained with SNR.

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g

En
tro

py

Guessing Entropy for Template Attack
with SNR and Gradient characterization

Gradient 16 PoIs
Gradient 2 PoIs
Gradient 32 PoIs
Gradient 4 PoIs
Gradient 8 PoIs
SNR 16 PoIs
SNR 2 PoIs
SNR 32 PoIs
SNR 4 PoIs
SNR 8 PoIs

Fig. 7: Comparison of the guessing entropy for GV based and SNR based attacks.

As expected, the GE converges towards 0 when the extraction is made with
GV. In addition, when comparing the SNR and the GV it may be remarked that
for a same number of extracted points, the latter method always outperforms
the former one, i.e. the guessing entropy converges faster towards 0 (Figure 7).
This may emphasize that a trained CNN is able to carefully select the couples of
points corresponding to the leakages of the mask and of the masked data among
all the possible couples to get the best possible recombination.

4 Obviously, this scenario is not realistic as if one has access to the mask during
characterization, then the latter one is very likely to be also available during the
profiling phase.

Conclusion

In this paper, we have theoretically shown that a method called Gradient Vi-
sualization can be used to localize Points of Interest. This result relies on two
assumptions that can be considered as realistic in a Side Channel context.

Generally, the efficiency of the proposed method only depends on the ability
of the profiling model to succeed the attack. In the case where countermeasures
like masking or misalignment are considered, CNNs are shown to still build
good pdf estimations, and thereby the Gradient Visualization provides a good
characterization tool. In addition, such a visualization can be made for each
trace individually, and the method does not require more work than needed to
perform a profiling with CNNs leading to a successful attack.

We verified the efficiency of our proposed method on simulated data. It has
been shown that as long as a Neural Network is able to have slightly better
performance than randomness, it can localize points that contain the informative
leakage.

On experimental traces, we have empirically shown that Gradient Visualiza-
tion is at least as good as state-of-the-art characterization methods, in different
cases corresponding to the presence or not of different countermeasures. Not only
it can still localize Points of Interest in presence of desynchronization or masking
but it has also been shown in the latter case that a CNN is able to select the
optimal couples of Points of Interest in order to recombine the shares instead of
just trying the best Points of Interest when separately characterizing the mask
and the masked data leakages. To the best of our knowledge, this would not be
possible with state-of-the-art characterization methods.

References

1. Sensitivity analysis - Wikipedia, https://en.wikipedia.org/wiki/Sensitivity_
analysis

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: A system for large-scale machine learning.
arXiv:1605.08695 [cs] (2016-05-27), http://arxiv.org/abs/1605.08695

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: International Workshop on Cryptographic Hardware and Embedded Systems.
pp. 16–29. Springer (2004)

4. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) Smart Card Research and
Advanced Applications. pp. 15–33. Lecture Notes in Computer Science, Springer
International Publishing (2016)

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 45–68. Springer (2017)

6. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information ex-
traction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.) Smart

https://en.wikipedia.org/wiki/Sensitivity_analysis
https://en.wikipedia.org/wiki/Sensitivity_analysis
http://arxiv.org/abs/1605.08695

Card Research and Advanced Applications. pp. 1–22. Lecture Notes in Computer
Science, Springer International Publishing (2017)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 13–28. Springer (2002)

8. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: Profiled attacks be-
yond 8 bits. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Advanced
Applications. pp. 85–103. Lecture Notes in Computer Science, Springer Interna-
tional Publishing (2015)

9. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) Smart Card Research and Advanced Applications. pp. 253–270. Lecture
Notes in Computer Science, Springer International Publishing (2014)

10. Durvaux, F., Renauld, M., Standaert, F., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.)
Smart Card Research and Advanced Applications - 11th International Con-
ference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7771, pp. 123–
140. Springer (2012). https://doi.org/10.1007/978-3-642-37288-9_9, https://
doi.org/10.1007/978-3-642-37288-9_9

11. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based dis-
assembler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transac-
tions on Computational Science X: Special Issue on Security in Computing,
Part I, pp. 78–99. Lecture Notes in Computer Science, Springer Berlin Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-17499-5, https://doi.org/10.
1007/978-3-642-17499-5_4

12. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a
masked implementation of AES. In: 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). pp. 106–111 (2015-05).
https://doi.org/10.1109/HST.2015.7140247

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Adaptive computation
and machine learning series, MIT Press (2017)

14. Hardt, M.: Off the convex path, http://offconvex.github.io/
15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.

arXiv:1412.6980 [cs] (2014-12-22), http://arxiv.org/abs/1412.6980
16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

Advances in Cryptology — CRYPTO’ 99. pp. 388–397. Lecture Notes in Computer
Science, Springer Berlin Heidelberg (1999)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

18. LeCun, Y., Bengio, Y.: The handbook of brain theory and neural networks.
chap. Convolutional Networks for Images, Speech, and Time Series, pp. 255–258.
MIT Press, Cambridge, MA, USA (1998), http://dl.acm.org/citation.cfm?id=
303568.303704

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–
444 (2015-05). https://doi.org/10.1038/nature14539, http://www.nature.com/
articles/nature14539

20. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach
against a masked AES: Reaching the limit of side-channel attacks with a
learning model. Journal of Cryptographic Engineering 5(2), 123–139 (2015).
https://doi.org/10.1007/s13389-014-0089-3

https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-17499-5
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1109/HST.2015.7140247
http://offconvex.github.io/
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
https://doi.org/10.1038/nature14539
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539
https://doi.org/10.1007/s13389-014-0089-3

21. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
Security, Privacy, and Applied Cryptography Engineering. pp. 3–26. Lecture Notes
in Computer Science, Springer International Publishing (2016)

22. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets
of smart cards. Springer (2007), OCLC: ocm71541637

23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack
based on MLP in DPA contest v4.2. In: 2016 39th International Conference
on Telecommunications and Signal Processing (TSP). pp. 223–226 (2016-06).
https://doi.org/10.1109/TSP.2016.7760865

24. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and un-
derstanding deep neural networks. Digital Signal Processing 73, 1–15 (2018-
02). https://doi.org/10.1016/j.dsp.2017.10.011, http://linkinghub.elsevier.
com/retrieve/pii/S1051200417302385

25. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: DPA using phase-
based waveform matching against random-delay countermeasure. In: 2007 IEEE
International Symposium on Circuits and Systems. pp. 1807–1810 (2007-05).
https://doi.org/10.1109/ISCAS.2007.378024

26. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS-W (2017)

27. Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the perfor-
mance of deep learning for side-channel analysis. IACR Cryptology ePrint Archive
2018, 4 (2018), http://eprint.iacr.org/2018/004

28. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order dif-
ferential power analysis. IEEE Transactions on Computers 58(6), 799–811
(2009-06). https://doi.org/10.1109/TC.2009.15, http://ieeexplore.ieee.org/
document/4752810/

29. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018), http://eprint.iacr.org/2018/053

30. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2009. pp. 171–188. Lecture Notes in
Computer Science, Springer Berlin Heidelberg (2009)

31. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press (2014).
https://doi.org/10.1017/CBO9781107298019, http://ebooks.cambridge.org/
ref/id/CBO9781107298019

32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034 [cs]
(2013-12-20), http://arxiv.org/abs/1312.6034

33. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net. arXiv:1412.6806 [cs] (2014-12-21), http://arxiv.
org/abs/1412.6806

34. Standaert, F.X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald,
E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2008. pp. 411–425. Lecture Notes in Computer Science, Springer Berlin Heidelberg
(2008)

https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1016/j.dsp.2017.10.011
http://linkinghub.elsevier.com/retrieve/pii/S1051200417302385
http://linkinghub.elsevier.com/retrieve/pii/S1051200417302385
https://doi.org/10.1109/ISCAS.2007.378024
http://eprint.iacr.org/2018/004
https://doi.org/10.1109/TC.2009.15
http://ieeexplore.ieee.org/document/4752810/
http://ieeexplore.ieee.org/document/4752810/
http://eprint.iacr.org/2018/053
https://doi.org/10.1017/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806

35. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Lecture Notes in Computer Science, Springer
Berlin Heidelberg (2009)

36. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Proceedings of the 11th International Conference
on Topics in Cryptology: CT-RSA 2011. pp. 104–119. CT-RSA’11, Springer-Verlag
(2011), http://dl.acm.org/citation.cfm?id=1964621.1964632

37. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep
features for discriminative localization. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2921–2929 (2016-06).
https://doi.org/10.1109/CVPR.2016.319

http://dl.acm.org/citation.cfm?id=1964621.1964632
https://doi.org/10.1109/CVPR.2016.319

A Profiling Attacks

As the model is aiming at approximating the conditional pdf, a Maximum Like-
lihood score can be used for the guessing:

dSa
[k] ,

Na∑
i=1

log (yi[zi]) where zi = C(pi, k). (8)

Based on these scores, the key hypotheses are ranked in a decreasing order.
Finally, the attacker chooses the key that is ranked first (resp. the set of first o
ranked keys). More generally, the rank gSa

(k?) of the correct key hypothesis k?
is defined as:

gSa
(k?) ,

∑
k∈K

1dSa [k]>dSa [k
?]. (9)

Remark 1. In practice, to compute GE(Na), sampling many attack sets may be
very prohibitive in an evaluation context, especially if we need to reproduce the
estimations for many values of Na; one solution to circumvent this problem is,
given a validation set Sv of Nv traces, to sample some attack sets by permuting
the order of the traces into the validation set. dSa can then be computed with a
cumulative sum to get a score for each Na ∈ [|1, Nv|], and so is gSa

(k?). While
this trick gives good estimations for Na � Nv, one has to keep in mind that
the estimates become biased when Na → Nv. This problem also happens in
Machine Learning when one lacks data to validate a model. A technique called
Cross-Validation [31] enables to circumvent this problem by splitting the dataset
into q parts called folds. The profiling is done on q − 1 folds and the model is
evaluated with the remaining fold. By repeating this step q times, the measured
results can be averaged so that they are less biased.

B Study of an Optimal Model

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace X, i.e. only a few coordinates contain clues about the
attacked sensitive variable. Assumption 1 has been made in many studies such
as [4]. Depending on the countermeasures implemented into the attacked device,
the nature of IZ may be precised. Without any countermeasure, and supposing
that the target sensitive variable only leaks once, Assumption 1 states that IZ
is only a set of contiguous and constant coordinates, regardless the input traces.

Adding masking will split IZ into several contiguous and fixed sets whose
number is equal to the number of shares in the masking scheme (or at least
equal to the number of shares if we relax the hypothesis of one leakage per
share). For example if M (resp. Z ⊕M) denotes the mask (resp. masked data)
variable leaking at coordinate t1 (resp. t2), then M and X[t] with t 6= t1 are

independent (resp. Z and X[t] with t 6= t2 are independent). The conditional
probability Pr[Z = z|X = x] satisfies:

Pr[Z = z|X = x] =∑
m

Pr[Z ⊕M = z ⊕m|X[t1] = x[t1]]Pr[M = m|X[t2] = x[t2]] (10)

Adding de-synchronization should force IZ to be non-constant between each
trace.

Likewise, Assumption 2 is realistic because it is a direct corollary of a Gaus-
sian leakage model for the traces [7,9]. Such an hypothesis is common for Side
Channel Analysis [7]. It implies that x 7→ Pr[X = x|Z = z] is differentiable and:

∇xPr[X = x|Z = z] = Σ−1z (x− µz)Pr[X = x|Z = z] (11)

where µz and Σ−1z respectively denote the mean vector and the covariance ma-
trix of the normal probability distribution related to the target sensitive value
hypothesis z. Then, from Bayes’ theorem, (11) and the basic rules for derivatives
computation, it gives an analytic expression of ∇xF

∗(x), thereby proving that
F ∗ is differentiable with respect to the input trace.

C Neural Networks

Neural Networks (NN) are nowadays the privileged tool to address the classifi-
cation problem in Machine Learning [19]. They aim at constructing a function
F : X → P(Z) that takes data x and outputs vectors y of scores. The classifica-
tion of x is done afterwards by choosing the label z∗ = argmaxz∈Z y[z], but the
output can be also directly used for soft decision contexts, which corresponds
more to Side Channel Analysis as the NN outputs on attack traces will be used
to compute the score vector in (8). In general F is obtained by combining several
simpler functions, called layers. An NN has an input layer (the identity over the
input datum x, an output layer (the last function, whose output is the scores
vector y and all other layers are called hidden layers. The nature (the number
and the dimension) of the layers is called the architecture of the NN. All the
parameters that define an architecture, together with some other parameters
that govern the training phase, have to be carefully set by the attacker, and
are called hyper-parameters. The so-called neurons, that give the name to the
NNs, are the computational units of the network and essentially process a scalar
product between the coordinate of its input and a vector of trainable weights (or
simply weights) that have to be trained. We denote θ the vector containing all
the trainable weights. Therefore, for a fixed architecture, an NN is completely
parameterized by θ. Convolutional Neural Networks (CNN) implement other
operations, but can be rewritten as regular NN with specific constraints on the
weights [18]. Each layer processes some neurons and the outputs of the neuron
evaluations will form new input vectors for the subsequent layer.

The ability of a Neural Network to approximate well a target probabilis-
tic function F ∗ by minimizing a loss function on sampled training data with
Stochastic Gradient Descent is still an open question. This is what we call the
mystery of Deep Learning. It theoretically requires a huge quantity of training
data so that the solution obtained by loss minimization generalizes well, though
it empirically works with much less data. Likewise, finding the minimum with
Stochastic Gradient Descent is theoretically not proved, but has been empirically
shown to be a good heuristic. For more information, see [14]. Indeed, though it
raises several theoretical issues, it has been empirically shown to be efficient,
especially in SCA with CNN based attacks [5,27].

D What about Other Visualization Methods?

The idea to use the derivatives of differentiable models to visualize information is
not new. Following the emergence of deep convolutional networks, [32] have first
proposed a so-called Sensitivity Map for image recognition. The idea was more
motivated by the fact that such a map can be computed for free. Nevertheless,
this method did not fit well the explainability problem for image recognition.
Actually [24] states that visualizing the gradient only tracks an explanation to
the variation of a final decision (F (x) in our context), and not directly the
decision itself.5

In a computer vision context, data are highly structured (e.g. pixels giving
edges, giving primar shapes, giving more sophisticated ones, forming faces). The
decision is then highly diluted among lots of pixels, and the decision surface
might be locally flat, though very high. Hopefully, Assumption 1 states that in a
SCA context it is reasonable to consider that the information is very localized.
Actually the less PoIs we have, the more likely a small variation on a relevant
feature is to impact the decision. That is why we are in a particular case where
looking at the output sensitivity may be more interesting than other visualization
methods.

E Experimental Results

E.1 The Jacobian matrix

In this appendix, we present the Jacobian matrix visualization, equivalent to the
GV. It shows, in addition, that some target values seem more sensitive, especially
those whose Hamming weight is shared by only few other values (so it gives clues
about how the traces leak sensitive information). Figure 8 (top) shows such a
matrix in application context (Exp.1) as described in Section 6, while Figure 8
(bottom) shows the Jacobian matrix corresponding to the application context
(Exp.2). Figure 9 shows the SNR computed on de-synchronized traces.

5 To this end, they propose a visualization method called Layerwise Relevance Prop-
agation (LRP). We tested it without relevant results.

0 100 200 300 400 500 600 700

Time (samples)

0

50

100

150

200

250

Se
ns

iti
ve

 v
ar

ia
bl

e

Jacobian matrix - No countermeasure

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 100 200 300 400 500 600 700

Time(samples)

0

50

100

150

200

250

Se
ns

iti
ve

 v
ar

ia
bl

e

Jacobian matrix (no dense layer) - Random shift (100)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 8: Jacobian matrix for the best models in application contexts (Exp.1)(top)
and (Exp.2) (bottom).

E.2 Comparison with a Principal Component Analysis

PCA has been widely used as a dimensionality reduction method. See for exam-
ple [4,31] for more details. This idea is to project the data into a smaller linear
subspace, namely the eigenspaces of the empirical covariance matrix correspond-
ing to the N highest eigenvalues, where N � D denotes the new dimension of
the projected traces.

This method often meets success thanks to its simplicity and its absence of
requirement in prior knowledge of the problem. That is why it is commonly used
in presence of masking, where other methods such as SNR or Linear Discriminant
Analysis (LDA) become inefficient. However, such a success is not guaranteed, as
discriminative features may be at coordinates of lower variance. The consequence
is that there is no guarantee that the most informative components are in the
very first principal ones [4].

As we compared GV with SNR for characterization, we may compare GV
with PCA in the context of dimensionality reduction. The question is roughly
the same: how to project the input traces to a lower dimension space in order to
make a Gaussian Template Attack feasible? In that sense, Gradient Visualization
is reduced to project the traces on only few coordinates, while PCA projects the
traces on linear subspaces.

0 100 200 300 400 500 600 700
Time(samples)

0.00475

0.00500

0.00525

0.00550

0.00575

0.00600

0.00625

SN
R

SNR on ASCAD with random shift (100)

Fig. 9: The SNR in the case where de-synchronization is considered.

We proceeded the same experiments as done in Section 6.4, by replacing
dimensionality reduction from the SNR with a PCA. The main difference is that
the mask is not assumed to be known for the PCA, and the first components are
extracted without following a specific rule. The results are given in Figure 10.
Both PCA and GV obtain roughly the same results. However, PCA is more likely
to not converge when the reduced dimension is very low, i.e. under 8, whereas
GV always makes the Guessing Entropy converge towards 0 within the 10,000
validation traces.

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g

En
tro

py

Guessing Entropy for Template Attack
with PCA and Gradient characterization

Gradient 16 PoIs
Gradient 2 PoIs
Gradient 32 PoIs
Gradient 4 PoIs
Gradient 8 PoIs
PCA 16 comp
PCA 2 comp
PCA 32 comp
PCA 4 comp
PCA 8 comp

Fig. 10: Comparison of the guessing entropy for GV based and PCA based at-
tacks.

	Gradient Visualization for General Characterization in Profiling Attacks

