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Abstract. The recently proposed CSIDH primitive is a promising can-
didate for post quantum static-static key exchanges with very small keys.
However, until now there is only a variable-time proof-of-concept imple-
mentation by Castryck, Lange, Martindale, Panny, and Renes, recently
optimized by Meyer and Reith, that can leak various information about
the private key. Therefore, we present a constant-time implementation
that samples key elements only from intervals of nonnegative numbers
and uses dummy isogenies, which prevents certain kinds of side-channel
attacks. We apply several optimizations, e.g. SIMBA and Elligator, in
order to get a more efficient implementation.
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1 Introduction

Isogeny-based cryptography is the most juvenile family of the current proposals
for post-quantum cryptography. The first cryptosystem based on the hardness
of finding an explicit isogeny between two given isogenous elliptic curves over
a finite field was proposed in 1997 by Couveignes [9], eventually independently
rediscovered by Rostovtsev and Stolbunov [18] in 2004, and therefore typically
called CRS. Childs, Jao and Soukharev [6] showed in 2010, that CRS can be
broken using a subexponential quantum algorithm by solving an abelian hid-
den shift problem. To avoid this attack, Jao and De Feo [12] described a new
isogeny-based scheme SIDH (supersingular isogeny Diffie-Hellman) that works
with supersingular curves over Fp2 . The current state-of-the-art implementation
is SIKE [11], which was submitted to the NIST post-quantum cryptography
competition [16].

De Feo, Kieffer and Smith optimized CRS in 2018 [10]. Their ideas led to the
development of CSIDH by Castryck, Lange, Martindale, Panny, and Renes [5],
who adapted the CRS scheme to supersingular curves and isogenies defined over
a prime field Fp. They implemented the key exchange as a proof-of-concept,
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which is efficient, but does not run in constant-time, and can therefore leak
information about private keys. We note that building an efficient constant-time
implementation of CSIDH is not as straightforward as in SIDH, where, speaking
of running-times, only one Montgomery ladder computation depends on the
private key (see [8]).

In this paper we present a constant-time implementation of CSIDH with
many practical optimizations.

Organization. The rest of this paper is organized as follows. The following sec-
tion gives a brief algorithmic introduction to CSIDH [5]. Two leakage scenarios
based on time and power analysis are presented in Section 3. In Section 4, we
suggest different methods on how to avoid these leakages and build a constant-
time implementation. Section 5 contains a straightforward implementation de-
scription of our suggested methods, and various optimizations. Thereafter, we
provide implementation results in Section 6 and give concluding remarks in Sec-
tion 7. The appendices A and B give more details about our implementations
and algorithms.

Note that there are two different notions of constant-time implementations, as
explained in [2]. In our case, it suffices to work with the notion, that the running
time does not depend upon the choice of the private key, but may vary due to
randomness. The second notion specifies strict constant time, meaning that the
running time must be the same every time, independent from private keys or
randomness. When we talk about constant time throughout this paper, we refer
to the first notion described here.

Related work. In [2], Bernstein, Lange, Martindale, and Panny describe cons-
tant-time implementations in the second notion from above, which is required
for quantum attacks. In this paper, we follow the mentioned different approach
for an efficient constant-time implementation, but reuse some of the techniques
from [2].

2 CSIDH

We only cover the algorithmic aspects of CSIDH here, and refer to [5] for the
mathematical background and a more detailed description.

We first choose a prime of the form p = 4 · `1 · ... · `n − 1, where the `i are
small distinct odd primes. We work with supersingular curves over Fp, which
guarantees the existence of points of the orders `i, that enable us to compute
`i-isogenies from kernel generator points by Vélu-type formulas [19].

A private key consists of a tuple (e1, ..., en), where the ei are sampled from an
interval [−B,B]. The absolute value |ei| specifies how many `i-isogenies have to
be computed, and the sign of ei states, whether points on the current curve or on
its twist have to be used as kernel generators. One can represent this graphically:
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Algorithm 1: Evaluating the class group action.

Input : a ∈ Fp and a list of integers (e1, ..., en).
Output: a′ such that [le11 · · · lenn ]Ea = Ea′ .

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 if x3 + ax2 + x is a square in Fp then
4 s← +1.
5 else
6 s← −1.

7 Let S = {i | sign(ei) = s}.
8 if S = ∅ then
9 Go to line 2.

10 P = (x : 1), k ←
∏
i∈S `i, P ← [(p+ 1)/k]P .

11 foreach i ∈ S do
12 K ← [k/`i]P .
13 if K 6=∞ then
14 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
15 a← a′, P ← ϕ(P ), k ← k/`i, ei ← ei − s.

16 return A.

Over Fp, the supersingular `i-isogeny graph consists of distinct cycles. Therefore,
we have to walk |ei| steps through the cycle for `i, where the sign of ei tells us
the direction.

Since this class group action is commutative, it allows a basic Diffie-Hellman-
type key exchange: Starting from a supersingular curve E, Alice and Bob choose
a private key as described above, and compute their public key curves EA resp.
EB via isogenies, as described in Algorithm 1. Then Alice repeats her computa-
tions, this time starting at the curve EB , and vice versa. Both parties then arrive
at the same curve EAB , which represents their shared secret. Furthermore, pub-
lic keys can be verified efficiently in CSIDH (see [5]). Therefore, a static-static
key-exchange is possible.

However, the quantum security is still an open problem. For our implemen-
tation, we use CSIDH-512, the parameter set from [5], that is conjectured to
satisfy NIST security level 1. In the light of the subexponential attack on CRS
[6], more analysis on CSIDH has been done in [3,4,2].

3 Leakage scenarios

It is clear and already mentioned in [5] that the proof-of-concept implementation
of CSIDH is not side-channel resistant. In this paper we focus on two scenarios,
that can leak information on the private key. Note that the second scenario
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requires the attacker to have more power than the first. Further, there will
naturally be many more scenarios for side-channel attacks.

Timing leakage. As the private key in CSIDH specifies how many isogenies
of which degree have to be computed, it is obvious that this (up to additional
effort for point multiplications due to the random choice of points) determines
the running time of the algorithm. As stated in [13], the worst case running
time occurs for the private key (5, 5, ..., 5), and takes more than 3 times as much
as in the average case. The other extreme is the private key (0, 0, ..., 0), which
would require no computations at all. However, in a timing-attack protected
implementation, the running time should be independent from the private key.

Power analysis. Instead of focusing on the running time, we now assume that
an attacker can measure the power consumption of the algorithm. We further
assume that from the measurement, the attacker can determine blocks which
represent the two main primitives in CSIDH, namely point multiplication and
isogeny computation, and can separate these from each other. Now assume that
the attacker can separate the loop iterations from each other. Then the attacker
can determine which private key elements share the same sign from the isogeny
blocks that are performed in the same loop, since they have variable running
time based on the isogeny degree. This significantly reduces the possible key
space and therefore also the complexity of finding the correct key.

4 Mitigating Leakages

In this section we give some ideas on how to fix these possible leakages in an
implementation of CSIDH. We outline the most important ideas here, and give
details about how to implement them efficiently in CSIDH-512 in section 5.

Dummy isogenies. First, it seems obvious that one should compute a constant
number of isogenies of each degree `i, and only use the ones required by the
private key, in order to obtain a constant running time. However, in this case
additional multiplications are required, if normal isogenies and unused isogenies
are computed in the same loop3. We adapt the idea of using dummy isogenies
from [13] for that cause. Meyer and Reith propose to design dummy isogenies,
that instead of updating the curve parameters and evaluating the curve point
P , computes [`i]P in the degree-`i dummy isogeny. Since the isogeny algorithm
computes [ `i−12 ]K for the kernel generator K, one can replace K by P there, and
perform two more differential additions to compute [`i]P . The curve parameters
remain unchanged.

In consequence, a dummy isogeny simply performs a scalar multiplication.
Therefore, the output point [`i]P then has order not divided by `i, which is

3 This is required, since otherwise, an attacker in the second leakage scenario can
determine the private key easily.
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important for using this point to compute correct kernel generators in following
iterations. Further, one can design the isogeny and dummy isogeny algorithms
for a given degree `i such that they perform the same number and sequence
of operations with only minor computational overhead compared to the isoge-
nies from [13]. This is important to make it hard for side-channel attackers to
distinguish between those two cases.

Balanced vs. unbalanced private keys. Using dummy isogenies to spend
a fixed time on isogeny computations in not enough for a constant-time imple-
mentation, however. Another problem lies in the point multiplications in line 10
and 12 of algorithm 1. We use an observation from [13] to illustrate this. They
consider the private keys (5, 5, 5, ...) and (5,−5, 5,−5, ...) and observe that for
the first key, the running time is 50% higher than for the second key. The reason
for this is that in the first case in order to compute one isogeny of each degree,
the multiplication in line 10 is only a multiplication by 4, and the multiplication
in line 12 has a factor of bitlength 509 in the first iteration, 500 in the second
iteration, and so on.

For the second key, we have to perform one loop through the odd i and one
through the even i in order two compute one isogeny of each degree `i. Therefore,
the multiplications in line 10 are by 254 resp. 259 bit factors, while the bitlengths
of the factors in the multiplications in line 12 are 252, 244,..., resp. 257, 248, and
so on (see Figure 1). In total, adding up the bitlenghts of all factors, we can
measure the cost of all point multiplications for the computation of one isogeny
per degree, where we assume that the condition in line 13 of algorithm 1 never
fails, since one Montgomery ladder step is performed per bit. For the first key,
we end up with 16813 bits, while for the second key we only have 9066 bits.

Fig. 1. Bitlengths of factors for computing one isogeny per degree.

This can be generalized to any private key: The more the key elements (or
the products of the respective `i) are unbalanced, i.e. many of them share the
same sign, the more the computational effort grows, compared to the perfectly
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balanced case from above. This behavior depends on the private key and can
therefore leak information. Hence, it is clear that we have to prevent this in order
to achieve a constant-time implementation.

One way to achieve this is to use constant-time Montgomery ladders, that
always run to the maximum bitlength, no matter how large the respective factor
is. However, this would lead to a massive increase in running time. Another
possibility for handling this is to only choose key elements of a fixed sign. Then
we have to adjust the interval from which we sample the integer key elements,
e.g. from [−5, 5] to [0, 10]. This however doubles the computational effort for
isogenies (combined normal and dummy isogenies). We will return to this idea
later.

Determining the sign distribution. In our second leakage scenario, an at-
tacker might determine the sign distribution of the key elements by identifying
blocks of isogeny resp. dummy isogeny computations. One way of mitigating this
attack would be to let each degree-`i isogeny run as long as a `max-isogeny, where
`max is the largest `i. As used in [2], this is possible because of the Matryoshka-
doll structure of the isogeny algorithms. This would allow an attacker in the
second leakage scenario to only determine the number of positive resp. negative
elements, but not their distribution, at the cost of a large increase of compu-
tational effort. We can also again restrict to the case that we only choose non-
negative (resp. only nonpositive) key elements. Then there is no risk of leaking
information about the sign distribution of the elements, since in this setting the
attacker knows this beforehand, at the cost of twice as many isogeny computa-
tions.

Limitation to nonnegative key elements. Since this choice eliminates both
of the aforementioned possible leakages, we use the mentioned different interval
to sample private key elements from. In CSIDH-512, this means using the inter-
val [0, 10] instead of [−5, 5]. One might ask if this affects the security properties
of CSIDH. As before, there are 1174 different tuples to choose from in CSIDH-
512. Castryck et al. argue in [5] that there are multiple vectors (e1, e2, ..., en),
which represent the same ideal class, meaning that the respective keys are equiv-
alent. However, they assume by heuristic arguments that the number of short
representations per ideal class is small, i.e. the 1174 different keys (e1, e2, ..., en),
where all ei are sampled from the interval [−5, 5], represent not much less than
1174 ideal classes. Heuristically we can conjecture that the same applies if we
sample from the slightly shifted interval [0, 10]. Therefore, we assume that our
different choice of parameters has no implications on the security of CSIDH-512.

In the following sections we focus on optimized implementations, using the men-
tioned countermeasures against attacks, i.e. sampling key elements from the
interval [0, 10] and using dummy isogenies.
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5 Efficient Implementation

5.1 Straightforward Implementation

First, we describe the straightforward implementation of the evaluation of the
class group action in CSIDH-512 with the choices from above, before applying
various optimizations. We briefly go through the implementation aspects of the
main primitives, i.e. point multiplications, isogenies and dummy isogenies, and
explain why this algorithm runs in constant-time, i.e. does not leak information
about the private key.

Algorithm 2: Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp and a list of integers (e1, ..., en).
Output: a′ such that [le11 · · · lenn ]Ea = Ea′ .

1 Initialize k = 4, eiso = (e1, ..., en) and edum = (edum1 , ..., edumn ), where

edumi = 10− ei.
2 while some eisoi 6= 0 or edumi 6= 0 do
3 Sample random values x ∈ Fp until we have some x where x3 + ax2 + x is

a square in Fp.
4 Set P = (x : 1), P ← [k]P , S = {i | eisoi 6= 0 or edumi 6= 0}.
5 foreach i ∈ S do
6 Let m =

∏
j∈S,j>i `i.

7 Set K ← [m]P.
8 if K 6=∞ then
9 if eisoi 6= 0 then

10 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
11 a← a′, P ← ϕ(P ), eisoi ← eisoi − 1.

12 else
13 Compute a degree-`i dummy isogeny:

14 a← a, P ← [`i]P , edumi ← edumi − 1.

15 if eisoi = 0 and edumi = 0 then
16 Set k ← k · `i.

Parameters. As described in [5], we have a prime number p = 4·`1 ·`2 ·...·`n−1,
where the `i are small distinct odd primes. We further assume that we have
`1 > `2 > ... > `n. In CSIDH-512 we have n = 74, and we sample the elements
of private keys (e1, e2, ..., en) from [0, 10].

Handling the private key. Similar to the original implementation of Castryck
et al., we copy the elements of the private key in an array eiso = (e1, e2, ..., en),
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where ei determines how many isogenies of degree `i we have to compute. Fur-
thermore, we set up another array edum = (10 − e1, 10 − e2, ..., 10 − en), to
determine how many dummy isogenies of each degree we have to compute. As
we go through the algorithm, we compute all the required isogenies and dummy
isogenies, reducing eisoi resp. edumi by 1 after each degree-`i isogeny resp. dummy
isogeny. We therefore end up with a total of 10 isogeny computations (counting
isogenies and dummy isogenies) for each `i.

Sampling random points. In algorithm 2 line 3, we have to find curve points
on the current curve, that are defined on the curve itself instead of the twist
curve, i.e. their y-coordinates have to be defined over Fp. As in [5] this can be
done by sampling a random x ∈ Fp, and computing y2 by the curve equation
y2 = x3 + ax2 + x. We then check if y is defined over Fp by a Legendre symbol
computation, i.e. by computing (y2)(p−1)/2 (mod p). If this is not the case,
we simply repeat this procedure until we find a suitable point. Note that we
require the curve parameter a to be in affine form. Since a will typically be in
projective form after isogeny computations, we therefore have to compute the
affine parameter each time before sampling a new point.

Elliptic curve point multiplications. Since we work with Montgomery curves,
using only projective XZ-coordinates, and projective curve parameters a = A/C,
we can use the standard Montgomery ladder as introduced in [14], adapted to
projective curve parameters as in [8]. This means that per bit of the factor, one
combined doubling and differential addition is performed.

Isogenies. For the computation of isogenies, we use the formulas presented
by Meyer and Reith in [13]. They combine the Montgomery isogeny formulas
by Costello and Hisil [7], and Renes [17] with the twisted Edwards formulas by
Moody and Shumow [15], in order to obtain an efficient algorithm for the isogeny
computations in CSIDH. For a `i-isogeny, this requires a point K of order `i as
kernel generator, and the projective parameters A and C of the current curve. It
outputs the image curve parameters A′ and C ′, and the evaluation of the point
P . As mentioned before, the algorithm computes all multiples of the point K up
to the factor `i−1

2 . See e.g. [2] for more details.

Dummy isogenies. As described before, we want the degree-`i dummy isoge-
nies to output the scalar multiple [`i]P instead of an isogeny evaluation of P .
Therefore, we interchange the points K and P in the original isogeny algorithm,
such that it computes [ `i−12 ]P . We then perform two more differential additions,

i.e. compute [ `i+1
2 ]P from [ `i−12 ]P , P , and [ `i−32 ]P , and compute [`i]P from

[ `i+1
2 ]P , [ `i−12 ]P , and P .
If one is concerned that a side-channel attacker can detect, that the curve

parameters A and C are not changed for some time (meaning that a series of
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dummy isogenies is performed), one could further multiply A and C by a random
number4 0 < k < p.

As mentioned before, we want isogenies and dummy isogenies of degree `i
to have the same number and sequence of operations. Hence, we also perform
the two extra differential additions in the isogeny algorithm, without using the
results.

5.2 Running time

We now explain why this algorithm runs in constant time. As already explained,
we perform 10 isogeny computations (counting isogenies and dummy isogenies)
for each degree `i. Furthermore, isogenies and dummy isogenies have the same
running time. Therefore the total computational effort for isogenies is constant,
independent from the respective private key. We also set the same condition
(line 8 of algorithm 2) for the kernel generator for the computation of a dummy
isogeny, in order not to leak information.

Sampling random points and finding a suitable one doesn’t run in constant
time in algorithm 2. However, the running time only depends on randomly chosen
values, and does not leak any information on the private key.

Now for simplicity assume that we always find a point of full order, i.e. a point
that can be used to compute one isogeny of each degree `i. Then it is easy to see
that the total computational effort for scalar multiplications in algorithm 2 is
constant, independent from the respective private key. If we now allow random
points, we will typically not satisfy the condition in line 8 of algorithm 2 for
all i. Therefore, additional computations (sampling random points, and point
multiplications) are required. However, this does not leak information about the
private key, since this only depends on the random choice of curve points, but
not on the private key.

Hence, we conclude, that the implementation of algorithm 2 as described
here, prevents the leakage scenarios considered in section 3. It is however quite
slow compared to the performance of variable-time CSIDH-512 in [13,5]. In the
following section, we focus on how to optimize and speed up the implementation.

5.3 Optimizations

Sampling points with Elligator. In [2] Bernstein, Lange, Martindale, and
Panny pointed out, that Elligator [1], specifically the Elligator 2 map, can be
used in CSIDH to be able to choose points over the required field of definition.
Since we only need points defined over Fp, this is especially advantageous in our
situation. For a 6= 0 the Elligator 2 map works as follows (see [2]):

– Sample a random u ∈ {2, 3, ..., (p− 1)/2}.
– Compute v = A/(u2 − 1).

4 One could actually use an intermediate non-zero number of the isogeny computation,
since the factor is not required to be truly random.
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– Compute e, the Legendre symbol of v3 + av2 + v.
– If e = 1, output v. Otherwise, output −v − a.

Therefore, for all a 6= 0, we can replace the search for a suitable point in line
3 of algorithm 2, at the cost of an extra inversion. However, as explained by
Berstein et al., one can precompute 1/(u2 − 1) for some values of u, e.g. for
u ∈ {2, 3, 4, ...}. Then the cost is essentially the same as for the random choice of
points, but we always find a suitable point this way, compared to the probability
of 1/2 when sampling random points. This could, however, potentially lead to
the case that we cannot finish the computation: Consider that we only have one
isogeny of degree `i left to compute, but for all of the precomputed values of u,
the order of the corresponding point is not divided by `i. Then we would have
to go back to a random choice of points to finish the computation. However, our
experiments suggest that it is enough to have 10 precomputed values. Note that
the probability for actually finding points of suitable order is somewhat lower
when using Elligator (see [2]).

For a = 0, Bernstein et al. also show how to adapt the Elligator 2 map to this
case, but also argue that one could precompute a point of full order (divided by
all `i) and simply use this point whenever a = 0. We follow their latter approach.

SIMBA (Splitting isogeny computations into multiple batches). In
section 4, we analyzed the running time of variable-time CSIDH-512 for the
keys e1 = (5, 5, ..., 5) and e2 = (5,−5, 5,−5, ...). For the latter, the algorithm is
significantly faster, because of the smaller multiplications during the loop (line
12 of algorithm 1), see Figure 1. We adapt and generalize this observation here,
in order to speed up our constant-time implementation.

Consider for our setting the key (10, 10, ..., 10) and that we can again always
choose points of full order. To split the indices as algorithm 1 does for the key
e2, we define the two sets S1 = {1, 3, 5, ..., 73} and S2 = {2, 4, 5, ..., 74}. Then
the loops through the `i for i ∈ S1 resp. i ∈ S2 require significantly smaller
multiplications, while only requiring to compute [4k]P with k =

∏
i∈S2

`i resp.
k =

∏
i∈S1

`i beforehand. We now simply perform 10 loops for each set, and
hence this gives exactly the same speedup, as algorithm 1 gives for e2 compared
to e1.

One might ask if splitting the indices in 2 sets already gives the best speedup.
We generalize the observation from above, now splitting the indices into m
batches, where S1 = {1,m + 1, 2m + 1, ...}, S2 = {2,m + 2, 2m + 2, ...}, and
so on5. Before starting a loop through the indices i ∈ Sj with 1 ≤ j ≤ n, one
now has to compute [4k]P with k =

∏
h/∈Sj

`h. The number and size of these
multiplications grows when m grows, so we can expect, that the speedup turns
into an increasing computational effort when m is too large.

5 Note that in [2] a similar idea is described. However, in their algorithm, only two
isogeny degrees are covered in each iteration. Our construction makes use of the fact
that we restrict to intervals of nonnegative numbers for sampling the private key
elements.
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To find the best choice for m, we computed the total number of Montgomery
ladder steps during the computation of one isogeny of each degree in CSIDH-512
for different m, with the assumptions from above. We did not take into account
here, that when m grows, we will have to sample more points (which costs at
least one Legendre symbol computation each). Table 1 shows that the optimal
choice should be around m = 5.

Table 1. Number of Montgomery ladder steps for computing one isogeny of each degree
in CSIDH-512 for different numbers of batches m.

m 1 2 3 4 5 6 7

Ladder steps 16813 9066 6821 5959 5640 5602 5721

If we now come back to the choice of points through Elligator, the assumption
from above does not hold anymore, and with very high probability, we will
need more than 10 loops per index set. Typically, soon after 10 loops through
each set, the large isogeny degrees will be finished, while there are some small
degree isogenies left to compute. In this case our optimization backfires, since
in this construction, the indices of the missing `i will be distributed among the
m different sets. We therefore need large multiplications in order to only check
a few small degrees per set. Hence it is beneficial to define a number µ ≥ 10,
and merge the sets after µ steps, i.e. simply going back to algorithm 2 for the
computation of the remaining isogenies. We dub this construction SIMBA-m-µ.

Sampling private key elements from different intervals. Instead of sam-
pling all private key elements from the interval [0, 10], and in total computing 10
isogenies of each degree, one could also consider to choose the key elements from
different intervals for each isogeny degree. For a private key e = (e1, e2, ..., en),
we can choose an interval [0, Bi] for each ei, in order to e.g. reduce the number
of expensive large degree isogenies at the cost of computing more low degree
isogenies. We require

∏
i(Bi + 1) ≈ 1174, in order to obtain the same security

level as before. For the security implication of this choice, the same as in section
4 applies.
Trying to find the optimal parameters Bi leads to a large integer optimization
problem, that is not likely to be solvable exactly. Therefore, we heuristically
searched for parameters, that are likely to improve the performance of CSIDH-
512. We present them in section 6 and Appendix A.

Note that if we choose B = (B1, ..., Bn) differently from Bi = 10 for all
i, the benefit of our optimizations above may change accordingly. Therefore,
we changed the parameters m and µ in our implementation according to the
respective B.

Skip point evaluations. As described before, the isogeny algorithms compute
the image curve parameters, and push a point P through the isogeny. However,
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in the last isogeny per loop, this is unnecessary, since we choose a new point
after the isogeny computation anyway. Therefore, it saves some computational
effort, if we skip the point evaluation parts in these cases.

Application to variable-time CSIDH. Note that many of the optimizations
from above are also applicable to variable-time CSIDH-512 implementations as
in [13] or [5]. We could therefore also speed up the respective implementation
results using the mentioned methods.

6 Implementation Results

We implemented our optimized constant-time algorithm in C, using the imple-
mentation accompanying [13], which is based on the implementation from the
original CSIDH paper [5] by Castryck et al. For example the implementation of
the field arithmetic in assembly is the one from [5]. Our final algorithm, contain-
ing all the optimizations from above, can be found in Appendix B.

Since we described different optimizations, that can influence one another, it
is not straightforward to decide which parameters B, m and µ to use. Therefore,
we implemented CSIDH-512 dynamically, and tested various choices of parame-
ters. The parameters and implementation results can be found in Appendix A.
The best parameters we found are given by

B = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

using SIMBA-5-11, where the key element ei is chosen from [0, Bi] and we assume
`1 > `2 > ... > `n. We do not claim that these are the best parameters; there
might be better choices, that we simply did not consider in our experiments.

Table 2. Performance comparison of the class group action evaluation in CSIDH-512
with the mentioned parameters. All timings were measured on an Intel Core i7-6500
Skylake processor running Ubuntu 16.04 LTS, averaged over 1 000 runs.

Clock Cycles ×106 wall clock time

326.5 ∼ 128 ms

In table 2, we give the cycle count and running time for the implementation using
the parameters from above. The code is freely available at https://zenon.cs.
hs-rm.de/pqcrypto/constant-csidh-c-implementation.6

6 The provided implementation actually uses a further small speedup as explained in
Appendix A, and achieved a running time of 322.6 million clock cycles in the setting
from above.

https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
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To give a comparison, that mainly shows the impact of SIMBA and the
different choice of B, we also ran the straightforward implementation according
to algorithm 2 with B = [10, 10, ..., 10], also using Elligator. In this case, we
measured 621.5 million clock cycles in the same setting as above.

Compared to the performance of the variable-time implementation from [13],
this means a slowdown of factor 3.10. However, as mentioned, also the variable-
time implementation can benefit from the optimizations from this paper, so this
comparison should not be taken too serious.

7 Conclusion

We present the first implementation of CSIDH, that prevents certain side-channel
attacks, such as timing leakages. However, there might be more leakage models,
depending on how powerful the attacker is. There is also more work to be done
on making this implementation as efficient as possible. It may e.g. be possible
to find a CSIDH-friendly prime p, that allows for faster computations in Fp.

Also the security features of CSIDH remain an open problem. More analy-
sis on this is required, to show if the parameters are chosen correctly for the
respective security levels.

We note that our results depend on the parameters from CSIDH-512. How-
ever, it is clear that the described optimizations can be adapted to other param-
eter sets and security levels as well.

Acknowledgments. This work was partially supported by Elektrobit Automo-
tive, Erlangen, Germany. We thank Joost Renes for answering some questions
during the preparation of this work.
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B2 = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

13, 13, 13, 13, 13, 13, 13, 13],

B3 = [2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16], and

B4 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20].

We measured many different combinations with different m and µ, running
SIMBA-m-µ as described above, averaging the running time over 100 runs per
parameter set, given in 106 clock cycles . For each Bi, we present the three best
combinations we found.

B 1st 2nd 3rd

0
µ=10

338.1
µ=10

343.5
µ=11

343.7
m=5 m=6 m=5

1
µ=12

329.3
µ=14

330.6
µ=13

330.8
m=4 m=4 m=4

2
µ=11

326.5
µ=12

327.0
µ=11

327.6
m=5 m=5 m=4

3
µ=16

333.8
µ=17

337.6
µ=16

339.3
m=4 m=4 m=3

4
µ=20

397.5
µ=20

399.0
µ=21

399.5
m=3 m=4 m=3

For the best combinations mentioned above, we further tried to rearrange
the order of the primes `i in the loops. As pointed out in [13], it is beneficial
to go through the `i in descending order. However, if we suppress isogeny point
evaluations in the last iteration per loop, this means that these savings refer to
small `i, and therefore the impact of this is rather small. Hence, we put a few
large primes at the end of the loops, therefore requiring more computational
effort for point multiplications, which is however in some situations outweighed
by the larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is `1 = 349, `2 = 347,
`3 = 337,..., `69 = 3, `70 = 587, `71 = 373, `72 = 367, `73 = 359, and `74 = 353,
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using SIMBA-5-11 and B2, where the Bi are swapped accordingly to the `i.

In the same setting as in section 7, we measured 322.6 million clock cycles for
this combination, which saves 3.9 million clock cycles compared to the results
from above.

B Algorithms

In this section we describe our constant-time algorithm, containing the optimiza-
tions from above. We split the application of SIMBA in two parts: SIMBA-I
splits the isogeny computations in m batches, and SIMBA-II merges them after
µ rounds. Note that in our implementation, it is actually not required to gener-
ate all the arrays from SIMBA-I.

Algorithm 5 shows the full class group action evaluation. Due to many loops
and indices, it looks rather complicated. We recommend to additionally have a
look at our implementation, provided in section 6.

Algorithm 3: SIMBA-I.

Input : e = (e1, ..., en), B = (B1, ..., Bn), m.
Output: ei,iso = (ei,iso1 , ..., ei,ison ), ei,dum = (ei,dum1 , ..., ei,dumn ), ki for

i ∈ {0, ...,m− 1}.
1 Initialize ei,iso = ei,dum = (0, 0, ..., 0) and ki = 4 for i ∈ {0, ...,m− 1}
2 foreach i ∈ {1, ..., 74} do
3 ei%m,isoi ← ei

4 ei%m,dumi ← Bi − ei
5 foreach j ∈ {1, ...,m} do
6 if j 6= (i%m) then
7 ki ← ki · `i
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Algorithm 4: SIMBA-II.

Input : ei,iso = (ei,iso1 , ..., ei,ison ) and ei,dum = (ei,dum1 , ..., ei,dumn ) for
i ∈ {0, ...,m− 1}, m.

Output: eiso = (eiso1 , ..., eison ), edum = (edum1 , ..., edumn ), and k.

1 Initialize eiso = edum = (0, 0, ..., 0), and k = 4.
2 foreach i ∈ {1, ..., 74} do
3 eisoi ← ei%m,isoi

4 edumi ← ei%m,dumi

5 if eisoi = 0 and edumi = 0 then
6 k ← k · `i
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Algorithm 5: Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp , e = (e1, ..., en), B, m, µ.
Output: a′ such that [le11 · · · lenn ]Ea = Ea′ .

1 Run SIMBA-I(e, B, m).
2 foreach i ∈ {1, ..., µ} do
3 foreach j ∈ {1, ...,m} do
4 Run Elligator to find a point P , where yP ∈ Fp.
5 P ← [kj ]P

6 S = {ι | em,isoι 6= 0 or em,dumι 6= 0}
7 foreach ι ∈ S do
8 α =

∏
κ∈S,κ>ι `κ

9 K ← [α]P.
10 if K 6=∞ then
11 if ej,isoι 6= 0 then
12 Compute a degree-`ι isogeny ϕ : Ea → Ea′ with

ker(ϕ) = 〈K〉.
13 a← a′, P ← ϕ(P ), ej,isoι ← ej,isoι − 1.

14 else
15 Compute a degree-`ι dummy isogeny:

16 a← a, P ← [`ι]P , ej,dumι ← ej,dumι − 1.

17 if ej,isoι = 0 and ej,dumι = 0 then
18 Set kj = kj · `ι.

19 Run SIMBA-II(ei,iso and ei,dum for i ∈ {0, ...,m− 1}, m).

20 while some eisoi 6= 0 or edumi 6= 0 do
21 Run Elligator to find a point P , where yP ∈ Fp.
22 Set P = (x : 1), P ← [k]P , S = {i | eisoi 6= 0 or edumi 6= 0}.
23 foreach i ∈ S do
24 Let m =

∏
j∈S,j<i `i.

25 Set K ← [m]P.
26 if K 6=∞ then
27 if eisoi 6= 0 then
28 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
29 a← a′, P ← ϕ(P ), eisoi ← eisoi − 1.

30 else
31 Compute a degree-`i dummy isogeny:

32 a← a, P ← [`i]P , edumi ← edumi − 1.

33 if eisoi = 0 and edumi = 0 then
34 Set k = k · `i.
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