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Abstract. In this paper we revisit some of the main aspects of the
DAGS Key Encapsulation Mechanism, one of the code-based candidates
to NIST’s standardization call for the key exchange/encryption func-
tionalities. In particular, we modify the algorithms for key generation,
encapsulation and decapsulation to fit an alternative KEM framework,
and we present a new set of parameters that use binary codes. We discuss
advantages and disadvantages for each of the variants proposed.

Keywords: post-quantum cryptography, code-based cryptography, key exchange.

1 Introduction

The majority of cryptographic protocols in use in the present day are based on
traditional problems from number theory such as factoring or computing dis-
crete logarithms in some group; this is the case for schemes such as RSA, DSA,
ECDSA etc. This is undoubtedly about to change due to the looming threat of
quantum computers. In fact, due to Shor’s seminal work [18], such problems will
be vulnerable to polynomial-time attacks once quantum computers with enough
computational power are available, which will make current cryptographic so-
lutions obsolete. While the resources necessary to effectively run Shor’s algo-
rithm on actual cryptographic parameters (or other cryptographically relevant



quantum algorithms such as or Grover’s [12]) might be at least a decade away,
post-quantum cryptography cannot wait for this to happen. In fact, today’s en-
crypted communication could be easily stored by attackers and decrypted later
with a quantum computer, compromising secrets that aim for long-term security.
Therefore, it is vital that the time required to develop such resources (tDev) is
not inferior to the sum of the time required to develop and deploy new crypto-
graphic standards (tDep), and the desired lifetime of a secret (tSec), i.e. we need
to ensure tDev ≥ tDep + tSec.

With this in mind, the National Institute of Standards and Technology
(NIST) has launched a Call for Proposals for Post Quantum Cryptographic
Schemes [1], to select a range of post-quantum primitives to become the new
public-key cryptography standard. The NIST Call is soliciting proposals in en-
cryption, key exchange, and digital signature schemes. It is expected that the
effort will require approximately 5 years, and another 5 years will likely follow
for the deployment phase, which includes developing efficient implementations
and updating the major cryptographic products to the new standard. Currently,
there are five major families of post-quantum cryptosystems: lattice-based, code-
based, hash-based, isogeny-based, and multivariate polynomial-based systems.
The first two are the most investigated, comprising nearly three quarters of the
total amount of submissions to the NIST competition (45 out of 69).

Our Contribution DAGS [5] is one of the candidates to NIST’s Post-Quantum
Standardization call [1]. The submission introduces a code-based Key Encapsu-
lation Mechanism (KEM) that uses Quasi-Dyadic (QD) Generalized Srivastava
(GS) codes to achieve very small sizes for all the data (public and private key,
and ciphertext); as a result, DAGS features one of the smallest data size among
all the code-based submissions. In this paper, we present the results of our inves-
tigation of the DAGS scheme, aimed at tweaking and improving several aspects
of the scheme. First, we describe a new approach to the protocol design, which
offers an important alternative and a tradeoff between security and performance.
Then, we discuss and propose new parameters, including an all-new set based on
binary codes, to protect against both known and new attacks. Finally, we report
the numbers obtained in a new, improved implementation which uses dedicated
techniques and tricks to achieve a considerable speed up.

2 SimpleDAGS

The DAGS algorithms, as detailed in the original proposal submitted to the first
Round [2], follow the “Randomized McEliece” paradigm of Nojima et al. [16],
which is built upon the McEliece cryptosystem. The fact that this version of
McEliece is proved to be IND-CPA secure makes it so that the resulting KEM
conversion achieves IND-CCA security tightly, as detailed in [13]. However, to ap-
ply the conversion correctly, it is necessary to use multiple random oracles. These
are needed to produce the additional randomness required by the paradigm, as
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well as to convert McEliece into a deterministic scheme (by generating a low-
weight error vector from a random seed) and to obtain an additional hash output
for the purpose of plaintext confirmation. Even though, in practice, such ran-
dom oracles are realized using the same hash function (the KangarooTwelve
function [3] from the Keccak family), the protocol’s description ends up being
quite cumbersome and hard to follow.

A simpler protocol can be obtained, although, as we will see, not without con-
sequences, using the Niederreiter cryptosystem. We report the new description
below. In the description, we follow the same conventions used in the original
DAGS specification, using variables n, k, r to denote, respectively, code length,
dimension and co-dimension (as is standard in coding theory). All vectors are
written in boldface, and, for ease of notation, treated as column vectors.

Algorithm 1. Key Generation

Key generation follows closely the process described in the original DAGS
Key Generation. We present here a compact version, and we refer the reader to
the description in Section 3.1.1 of [2] for further details.

1. Generate dyadic signature h.

2. Build the Cauchy support (u,v).

3. Form Cauchy matrix Ĥ1 = C(u,v).

4. Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.

5. Superimpose blocks Ĥi in ascending order to form matrix Ĥ.

6. Generate vector z by sampling uniformly at random elements in Fqm with
the restriction zis+j = zis for i = 0, . . . , n0 − 1, j = 0, . . . , s− 1.

7. Form H = Ĥ ·Diag(z).

8. Project H onto Fq using the co-trace function: call this Hbase.

9. Write Hbase as (B | A), where A is r × r.
10. Get systematic form (M | Ir) = A−1Hbase: call this H̃.

11. Sample a uniform random string r ∈ Fn
q .

12. The public key is the matrix H̃.

13. The private key consists of (u, A, r) and H̃.

The main differences are as follows. First of all, the public key consists of the
systematic parity-check matrix H̃ = (M | Ir), rather than the generator matrix
G = (Ik | MT ). Also, the private key only stores u instead of v and y, but it
includes additional elements, namely the random string r, the submatrix A and
H̃ itself8.
8 This is mostly a formal difference, since H̃ is in fact the public key.
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Algorithm 2. Encapsulation

Encapsulation uses a hash function H : {0, 1}∗ → {0, 1}` to extract the de-
sired symmetric key, ` being the desired bit length (commonly 256). The function
is also used to provide plaintext confirmation by appending an additional hash
value, as detailed below.

1. Sample e
$←Fn

q of weight w.

2. Set c = (c0, c1) where c0 = H̃e and c1 = H(2, e).

3. Compute k = H(1, e, c).

4. Output ciphertext c; the encapsulated key is k.

Algorithm 3. Decapsulation

As in every code-based scheme, the decapsulation algorithm consists mainly
of decoding; in this case, like in the original DAGS version, we call upon the
alternant decoding algorithm (see for example [14]).

1. Get syndrome c′0 corresponding to matrix9 H ′ from private key10.

2. Decode c0 and obtain e′.

3. If decoding fails or wt(e′) 6= w, set b = 0 and η = r.

4. Check that H̃e′ = c0 and H(2, e′) = c1. If so, set b = 1 and η = e′.

5. Otherwise, set b = 0 and η = r.

6. The decapsulated key is k = H(b,η, c).

The description we just presented follows the guidelines detailed by the “Sim-
pleKEM” construction of [8], hence our choice to call this new version “Sim-
pleDAGS”. This is one of two aspects in which this variant diverges substan-
tially from the original; we will discuss advantages (and disadvantages) of this
new paradigm in the next section. The other different aspect is that using Nieder-
reiter requires a different strategy for decoding, which we describe below.

2.1 Decoding from a Syndrome

In the original version of DAGS, the input to the decoding algorithm is, as is
commonly the case is coding theory, a noisy codeword. The alternant decoding
algorithm consists of three distinct steps. First, it is necessary to compute the
syndrome of the received word, with respect to the alternant parity-check matrix;
this is represented as a polynomial S(z). Then, the algorithm uses the syndrome
to compute the error locator polynomial σ(z) and the error evaluator polynomial
ω(z), by solving the key equation ω(z)/σ(z) = S(z) (mod z)r. Finally, finding
the roots of the two polynomials reveals, respectivelly, the locations and values (if

9 In alternant form.
10 See below for details.
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the code is not binary) of the errors. Actually, as shown in Section 6.3 of [5], it is
possible to speed up decapsulation by incorporating the first step of the decoding
algorithm in the reconstruction of the alternant matrix, i.e. the syndrome is
computed on the fly, while the alternant matrix is built.

We now explain how to perform alternant decoding when the input is a syn-
drome, rather than a noisy codeword, as in Algorithm 3 above. In this case,
we don’t need to reconstruct the alternant matrix itself, but rather to trans-
form the received syndrome to the syndrome corresponding to the alternant
matrix. This consists of two steps. First, remember that the public key H̃ is
the systematic form of the matrix Hbase. This is obtained from the quasi-dyadic
parity-check matrix H, whose entries are in Fqm , by projecting it onto the base
field Fq. The projection is performed using the co-trace function and a basis for
the extension field, say {β1, . . . , βm}. Recall that the co-trace function works
similarly to the trace function, by writing each element of Fqm as a vector
whose components are the coefficients with respect to the basis {β1, . . . , βm}.
However, instead of writing the components on m successive rows, the co-trace
function distributes them over the rows at regular intervals, r at a time. More
precisely, if a = (a1, a2, . . . , ar)T is a column of H, the corresponding column
a′ = (a′1, a

′
2, . . . , a

′
rm)T of Hbase will be formed by writing the components of

each ai in positions a′i, a
′
r+i, . . . , a

′
r(m−1)+i, for all i = 1, . . . ,m.

The first step consists of transforming the received syndrome c0 = H̃e
into He. For this, we need to multiply the syndrome by A to obtain AH̃e =
AA−1Hbasee = Hbasee. Then we reverse the projection process and “bring back”
the syndrome on the extension field. This is immediate when operating directly
on the matrices, but a little less intuitive when starting from a syndrome. It turns
out that it is still possible to do that, by using again the basis {β1, . . . , βm}.
Namely, it is enough to collect all the components si, sr+i, . . . , sr(m−1)+i of
the syndrome s = Hbasee and multiply the resulting vector with the vector
(β1, . . . , βm). This maps the vector of components back to its corresponding el-
ement in Fqm and it is immediate to check that this process yields He.

The second step consists of relating the newly-obtained syndrome to the
alternant parity-check matrix H ′. Since this is just another parity-check for the
same code, it is possible to obtain one from the other via an invertible matrix.
In particular, for GS codes we have H = CH ′, where the r× r matrix C can be
obtained using u. Namely, the r rows of C corresponds to the coefficients of the
polynomials g1(x), . . . , gr(x), where we have

g(l−1)t+i =

s∏
j=1

(x− uj)t

(x− ul)i

for l = 1, . . . , s and i = 1, . . . , t. To complete the second step, then, it is enough
to compute C and then C−1He. The resulting syndrome is ready to be decoded.
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2.2 Consequences

There are some notable consequence to keep in mind when switching to the
SimpleDAGS variant. First of all, the change in the KEM conversion not only
makes the protocol simpler, but has additional advantages. The reduction is tight
in the ROM, and the introduction of the plaintext confirmation step provides
an extra layer of defense, at the cost of just one additional hash value. This is
similar to what done in the Classic McEliece submission [4]. Moreover, the use
of implicit rejection and a “quiet” KEM (i.e. such that the output is always a
session key) further simplifies the API, and is an incentive to design constant-
time algorithms, without needing extra machinery or stronger assumptions, as
explained in Sections 14 and 15 of [8].

On the other hand, using Niederreiter has a negative impact on the overall
performance of the scheme. The cost of the first step of decoding, detailed above,
is comparable to that of reconstructing H ′ (and computing the syndrome) in
the original DAGS, but there is an additional cost in the multiplication by A.
Moreover, inverting the matrix C in the second step is expensive, and would
slow down decapsulation considerably. In alternative, one could delegate some
computation time to the key generation algorithm, and store C−1 as private key;
this would preserve the efficiency of the decapsulation but noticeably increase the
size of the private key. Either way, there is a clear a tradeoff at hand, sacrificing
performance and efficiency in favor of a simpler description and tighter security.
It therefore falls to the user’s discretion whether original DAGS or SimpleDAGS
is the best variant to be employed for the purpose.

3 Improved Resistance

It is natural to think that introducing additional algebraic structure like Quasi-
Dyadicity in a scheme based on algebraic codes (such as Goppa or GS) would
give an adversary more power to perform a structural attack. This is the case of
the well-known FOPT attack [11], and successive variants [10], which exploit this
algebraic structure to solve a multivariate system of equations and reconstruct
an alternant matrix which is equivalent to the private key. Recently, Barelli and
Couvreur presented a structural attack aimed precisely at DAGS [7], based on
a new technique using so-called “norm-trace” codes. The attack performs very
well against the original DAGS parameter sets, but it is overall not as critical
as it appears. In fact, it is shown in Section 5.3 of [5] how this can be defeated,
in most cases, by modifying a single parameter, namely the size of the base field
q. Changing this from 25 to 26 and from 26 to 28 in, respectively, DAGS 1 and
DAGS 3, is enough to push the attack complexity beyond the claimed security
level. In the case of DAGS 5, the dyadic order s needs to be amended too, and
the rest of the code parameters modified accordingly to respect the requirements
on code length, dimension etc. This simple fix shows how the Barelli-Couvreur
attack should probably be regarded as another constraint on the selection of
parameters (similar to ISD, for example) rather than an attack per se. More
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precisely, since the attack complexity depends strongly on the ratio q/s, pa-
rameters have to be chosen such that q is big enough and s is not too large
(hence the details of the fix). For completeness, we report below the current se-
lection of DAGS parameters (Table 1) and corresponding memory requirements
(Table 2). The column labeled “BC” reports the estimated complexity of the
Barelli-Couvreur attack.

Table 1: Updated DAGS Parameters.

Security Level q m n k s t w BC

1 26 2 832 416 24 13 104 ≈ 2128

3 28 2 1216 512 25 11 176 ≈ 2288

5 28 2 1600 896 25 11 176 ≈ 2289

Table 2: Memory Requirements (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS 1 8112 2496 656
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

In what follows, we suggest another strategy for generating DAGS parameters
which hasn’t been explored before.

Binary DAGS Parameters in schemes based on QD-GS codes are a carefully
balanced machine, needing to satisfy many constraints. First of all, we would
like the code dimension k = n −mst to be approximately n/2, since rate close
to 1/2 is an optimal choice in many aspect (for instance, against ISD). Secondly,
the dyadic order s, which has to be a power of 2, should be as big as possible,
to obtain the most reduction in key size (but not too big, for Barelli-Couvreur).
On the other hand, the extension degree m and the number of blocks t need to
be large enough to have mt > 21, in order to avoid FOPT. Of course, m, s and
t can’t all be large at the same time otherwise the dimension k would become
trivial. Moreover, it is possible to observe that the best outcome is obtained when
m and t are of opposite magnitude (one big and one small) rather than both
of “medium” size. Now, since s and t also determine the number of correctable
errors, t can’t be too small either, while a small m is helpful to avoid having to
work on very large extension fields. Note that qm still needs to be at least as big
as the code length n (since the support elements are required to be distinct).
After all these considerations, the result is that, in previous literature [17,9], the
choice of parameters was oriented towards large base field q and small m = 2,
with s ranging from 24 to 26, and t chosen accordingly. We now investigate the
consequences of choosing parameters in the opposite way.
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Choosing large m and small t allows q to be reduced to the minimum, and
more precisely q could be even 2 itself, meaning binary codes are obtained. Binary
codes were already considered in the original QD Goppa proposal by Misoczki
and Barreto [15], where they ended up being the only safe choice. The reason for
this is that larger base fields mean m can be chosen smaller (and in fact, must,
in order to avoid working on prohibitively large extension fields). This in turn
means FOPT is very effective (remember that there is no parameter t for Goppa
codes), so in order to guarantee security one had to choose m as big as possible
(at least 16) and consequently q = 2. Now in our case, if t is small, s must be
bigger (for error-correction purposes), and this pushes n and k up accordingly.
We present below our binary parameters (Table 3) and corresponding memory
requirements (Table 4).

Table 3: Binary DAGS Parameters.

Security Level q m n k s t w BC

1 2 13 6400 3072 27 2 128 N.A.
3 2 14 11520 4352 28 2 256 N.A.
5 2 14 14080 6912 28 2 256 N.A.

Table 4: Memory Requirements for Binary DAGS (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS 1 9984 20800 832
DAGS 3 15232 40320 1472
DAGS 5 24192 49280 1792

The parameters are chosen to stay well clear of the algebraic attacks such as
FOPT. In particular, using binary parameters should entirely prevent the latest
attack by Barelli and Couvreur. In this case, in fact, we have m >> 2, and it is
not yet clear whether the attack is applicable in the first place. However, even if
this was the case, the complexity of the attack, which currently depends on the
quantity q/s, should depend instead of mqm−1)/s. It is obvious that, with our
choice of parameters, the attack would be completely infeasible in practice.
Note that, in order to be able to select binary parameters, it is necessary to
choose longer codes (as explained above), which end up in slightly larger public
keys: these are about 1.3 times those of the original (non-binary) DAGS. On the
other hand, the binary base field should bring clear advantages in term of arith-
metic, and result in a much more efficient implementation. All things considered,
this variant should be seen as yet another tradeoff, in this case sacrificing public
key size in favor of increased security and efficient implementation.
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4 Revised Implementation Results

In this section we present the results obtained in our revised implementation. Our
efforts focused on several aspects of the code, with the ultimate goal of providing
faster algorithms, but which are also clearer and more accessible. With this in
mind, one of the main aspects that was modified is field multiplication: this is
now vectorized by the compiler, allowing for a dramatic speedup (about 300%).
Moreover, we incorporate a dedicated version of the Karatsuba multiplication
algorithm (as detailed in [6]), applied to the quasi-dyadic case, which further
boosts the efficiency of encapsulation (where all objects are quasi-dyadic). The
integration of additional techniques from [6], such as LUP inversion, is currently
in progress, and promises further speedups. Finally, we “cleaned up” and polished
our C code, to ensure it is easier to understand for external auditors. Below, we
report timings obtained for our revised implementation (Table 6), as well as
the measurements previously obtained for the reference code (Table 5), for ease
of comparison. We remark that all these numbers refer to the updated DAGS
parameters (i.e. those presented in Table 3); an implementation of Binary DAGS
is currently underway.

Table 5: Timings for Reference Code.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 2,540,311,986 4,320,206,006 7,371,897,084

Encapsulation 12,108,373 26,048,972 96,929,832

Decapsulation 215,710,551 463,849,016 1,150,831,538

Table 6: Timings for Revised Implementation.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 3,840,144,290 5,397,811,954 8,512,178,387

Encapsulation 4,559,432 13,641,078 41,039,844

Decapsulation 27,304,282 387,945,056 397,973,400
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