
Countering Block Withholding Attack Efficiently

Suhyeon Lee1,2 and Seungjoo Kim1

1CIST(Center for Information Security Technologies),
Korea University

1{orion-alpha, skim71}@korea.ac.kr
2Agency for Defense Development

2korea@add.re.kr

October 2018

Abstract

Bitcoin, well-known cryptocurrency, selected Poof-of-Work (PoW) for
its security. PoW mechanism incentivizes participants and deters attacks
on the network. Bitcoin seems to have operated the stable distributed
network with PoW until now. Researchers found however some vulnera-
bilities in PoW such as selfish mining, block withholding attack, and so on.
Especially, after Rosenfeld suggested block withholding attack and Eyal
made this attack practical, many variants and countermeasures have been
proposed. However, most countermeasures were accompanied by changes
in the mining algorithm to make the attack impossible, which lowered
the practical adaptability. In this paper, we propose a countermeasure to
prevent block withholding attack effectively. Mining pools can adapt our
method without changing their mining environment.

1 Introduction

In Bitcoin [2] and Ethereum [10], PoW is adapted to make its system secure,
especially against Sybil attack. In PoW, people make mining pools and join in
mining pools to mine blocks efficiently and share rewards. In Bitcoin protocol,
mining difficulty is automatically set by calculating interval time of block gen-
eration. As a result of control of difficulty, bitcoin network generates a block
every 15 minutes, and a miner who generates the block gets a reward. To get
this reward efficiently, miners cooperate with each other. We call it a mining
pool.

Researchers have shown several vulnerabilities in PoW. At first, selfish min-
ing makes incentive incompatible with the blockchain reward design. If a miner
has enough power, he can keep a block he mined and mining the next block in
secret. By releasing more than one blocks when other miners generate a block,

1



he can make other miners waste their power. Hence, he earns more reward than
he mines honestly. Furthermore, Eyal[16] proved that his selfish mining is useful
even if a miner has over 25% of total mining power.

Second, block withholding attack is related to competition between mining
pools. Mining Pools compete with each other to get Bitcoin reward. The con-
cept ‘difficulty’, numerical value, in Bitcoin protocol means that only blocks
which have a hash value less than difficulty are credited as legal blocks. Be-
cause, in most time, miners cannot find legal blocks(full Proof-of-Work; fPoW),
they can prove they are mining with submitting partial blocks(partial Proof-
of-Work; pPoW) that have a bigger hash value than the difficulty in Bitcoin
protocol. Eyal[14] proposed the effective algorithm to implement block with-
holding attack. In his paper, one mining pool can attack other mining pools to
get more reward than its mining power by submitting only pPoW but keeping
fPoW in other mining pools.

Contributions Summarizing this paper, our contributions are as follows:

• Method to detect block withholding attack. If there is no bad intent, there
is no reason to infiltrate and mine in other pools. Thus, for preventing
block withholding attack, our method tries to detect the infiltration of
mining pool first. Existing research papers do not treat methods to detect
the attack or refer that it is hard to detect the attack [17]. If a pool is
under block withholding attack, the pool can check whether other pools
are attacking it by infiltration to other pools. Because block withholding
attack shares task from the victim pool to miners, it is inevitable to expose
where attacks.

• Compatible method to counter attack. Our method consists of two phases
to detect and punish the attack. The punishment phase is the process of
eliminating the damage to the attack by reducing the stake taken by the
attacker. Our method does not need to alter the algorithm of mining, and
it can be applied not only to Bitcoin but also to other cryptocurrencies
using PoW. Furthermore, our countermeasure works well against other
variants of block withholding attack such as FAW attack [17].

2 Preliminary

2.1 Proof-of-Work in Bitcoin

Bitcoin uses Proof-of-work(PoW) for its security property. PoW is a sort of
data which verifies resource, for example, time-consuming work spent on data. It
needs to be verified much easily by others. On the contrary, PoW is a mathemat-
ical puzzle challenging to produce. Blockchain network gives revenue(generally,
a type of coin) to miners who find PoW to motivate them to generate blocks.
In the blockchain system uses PoW, to profit specific miner, the block should
depend on the miner’s unique value.

2



In Bitcoin, its difficulty is a specific numeric value. It means the difficulty of
this mathematical puzzle. Miners who try to generate a block should find nonce
which makes a hash value of a block less than the difficulty in current Bitcoin
protocol. In Figure 1, miners try to find a nonce value that the hash value of 6
header values(Version, Time, Bits, Nonce, hashPrevBlock, hashMerkleRoot) is
less than difficulty. This random process to find nonce is very more exhausting
work when the difficulty is smaller. The hash value is calculated by double
iteration of the SHA256 hash algorithm.

To be concrete, Bitcoin block structure [3] is as Figure 1. Take note of
the values, ‘merkleRootHash’ and ‘coinbase.’ The value ‘merkleRootHash’ de-
pends on all transactions in the block. The first transaction in the block must
be ‘coinbase’ transaction. ‘Coinbase’ transaction is a special transaction which
generates bitcoin, that is, this transaction creates a certain amount of Bitcoin.
As it is a creation, this transaction does not have a sender. ‘Coinbase’ trans-
action is a reward for who creates a block in PoW. Miner should make a block
include ‘coinbase’ transaction of him as we referred. It is directly related to min-
ers’ reward. Even, some miners record their signature in arbitrary data space in
‘coinbase’ transaction [4]. So, ‘coinbase’ transaction is the basis for identifying
who has mined a block.

Figure 1: Bitcoin block structure

3



2.2 Mining Pool

Since a PoW requires a very big hashrate, which individual miners rarely find
a block, a pooled mining is the dominant approach to generate a block [6]. In
the mining pool, multiple client miners contribute to generate a block and share
their reward as much as they contribute. This method makes the reward of
block generation spread to multiple miners. Also, miners can reduce their risk
of absent mining.

As we mentioned above, it needs high hashrate to mine a block. Therefore,
there is a possibility that small miners cannot find any block in whole time. To
prove that they are working, they submit pPoW(partial PoW) to the mining
pool. pPoW is a block that meets the smaller value than the protocol specified
in the current protocol. fPoW is a valid block that meets protocol difficulty.
Even though pPoW does not help in obtaining Bitcoin reward for mining pools,
it is useful as a basis for sharing the total rewards within a mining pool. Based
on pPoW, each mining pools have a slightly different sharing algorithm for each
mining pool in detail [5, 12].

Figure 2: Bitcoin Mining Pool

In this paper, we treat a mining pool model which has a central manager.
Because it is easy to manage, most of the mining pools use central management
to share their revenue [5]. On the other hand, P2P Pool [11] is working with
decentralized structure. P2P Pool needs its own blockchain. This blockchain
helps to check and share their revenue. Even though its structure is different
with centralized mining pools, this design is also vulnerable to block withholding
attack. Smart Pool [19] is another design of decentralized mining pool. It is
not vulnerable to block withholding attack because it assumes only one pool in
the network. This design however is not adaptable in the Bitcoin network as it
does not use Smart Contract.

4



3 Related Works

3.1 Block Withholding Attack

Rosenfeld [20] showed the classical forms of block withholding attack. Two
forms are about block withholding by a miner in a pool. The first form is
Sabotage. An Attacker in a mining pool withholds blocks and can harm to his
pool. However, it is not profitable to attackers. The second form is Lie in wait.
An attacker postponed submitting blocks to increase his reward. Contrary to
Sabotage, it is profitable to the attacker.

In [14], Rosenfeld’s idea is more evolved. Unlike [20], [14] developed it as
an attack between a mining pool and a mining pool rather than an individual.
As a manager of the mining pool share reward by pPoW share, miners can
cheat their contribution. The pool can get the reward of block generation on
by publication of fPoW. If miners do not submit fPoW on purpose, they can
get share though they do not contribute to the pool in real. To implement
this attack, the manager of the block withholding pool works as a proxy to
infiltration miners. Concrete algorithm of the attack is 3 in Section 4. In
this paper, we suggest a countermeasure against this kind of block withholding
attack.

In block withholding attack, the reward of the attacker is as follows when
we assume the total mining power of the network is 1.

α = computational power of the block withholding mining pool A
β = computational power of the victim mining pool B
τ = a proportion of the attacker pool A’s infiltration mining power

Theorem 3.1. The block withholding attacker pool’s reward

Rβ(τ) =
(1− τ)α

1− τα
+

β

1− τα
τα

β + τα

The reward is maximized when τ is

β − αβ −
√
β2 − αβ2 − αβ3

−α+ α2 + αβ

Kwon [17] showed that the attacker can earn more revenue if he releases
fPoW of infiltration in specific situations. When the infiltration miners have
already mined fPoW, and a third party unrelated to the attack publishes a
valid block, the attacker can invoke a fork situation by submitting the pending
fPoW. Then the attacker can get the reward of publishing a block conditional
in competition with the valid block of others. This method does not increase
the total release of valid blocks in the long chain so that it does not affect to
total mining power.

5



3.2 Countermeasures

So far, researchers have suggested several countermeasures. Rosenfeld [20] and
Eyal [15] proposed the first countermeasures to prevent the block withholding
attack. Their methods are based on the idea that the attack is possible because
miners can distinguish between pPoW and fPoW. Both of two methods com-
monly change PoW into two steps of PoW. So it is called as ‘two-phase PoW’.
At first, Rosenfeld[20] modified the original PoW process with the secret value
so that the miners might not check whether the found block was a valid fPoW
or not. This method needs blocks to have three additional fields as follows.

• SecretSeed : The secret value of the mining pool manager

• ExtraHash : SHA256(SecretSeed)

• SecretHash : The secret difficulty value of the mining pool manager

ExtraHash is the hash value of SecretSeed. SecretHash is the hash value of
the concatenation of the block hash and SecretSeed. The pool manager only
provides ExtraHash to miners and require the hash value of blocks less then Se-
cretSeed. Instead of requiring that the block hash is less than specific difficulty,
it is required that the block hash is less than difficulty and that SecretHash
is less than some difficulty. Miners submit PoW without knowing SecretSeed.
They cannot know their block is valid. The pool operator calculates SecretHash
and checks if blocks submitted by miners are valid.

Second, another two-phase PoW by Eyal and Sirer [15] proceeds according
to the following process.

• The first condition for the block to be valid, the double hash of the header
SHA256(SHA256(header)) is smaller than a difficulty parameter X.

• The second condition for the block to be valid, the header is signed with
the coinbase transaction’s private key, and the hash SHA256(SIG(header,
privkey)) of that signature is smaller than a second difficulty parameter
Y.

Different from Rosenfeld’s method, it needs the private key and its signature
to divide the PoW process into the two-phase. Miners submit PoW without
knowing blocks satisfy the second condition. They cannot know it because they
do not know the coinbase transaction’s private key. A similar intention, but
using different technique is Bag[13]. He proposed a scheme that a mining pool
has own secret commitment value to prevent miners to distinguish pPoW and
fPoW. The most defection of their methods is that the original PoW process
should be modified and the common ASIC hardware which miners are using
cannot be applicable anymore.

In [18], Luu analyzed the changing payoff scheme of mining pools. He sug-
gested that the pool gives a direct reward to the miners who submit fPoW. His

6



method however is not proper for small miners who rarely find fPoW. Eyal[14]
suggested pool fees to make pools less attractive to block withholding attack.
Fees add a friction element to the flow of revenue among infiltrated and infil-
trating pools. However, this method makes pools not flexible for miners since
miners do not want to pay fees of course.

3.3 Necessary Conditions for BWH Countermeasure

Countermeasures against the attack should be practical. Luu[18] discussed seven
desired properties to review countermeasures. Kwon[17] also discussed draw-
backs of existing countermeasures. Through the comprehensive analysis of [18]
and [17], we will suggest below three necessary conditions for the countermea-
sure against block withholding attack. Also, we use these criteria for comparing
all the proposed methods including ours at Section 6.2.

• No Loss: The countermeasure is a defense method against attacks and
action to reduce loss due to attacks. It should not do any damage to the
revenue of honest pools or honest miners as well as the pool who uses the
method.

• Compatibility: A countermeasure should be adaptable in existing blockchain
environment. This condition can be satisfied by minimizing the change of
the entire blockchain mechanism. It means not only about the protocol
but also about hardware compatibility. We conjecture a lot of big Bitcoin
miners use ASIC hardware as ASIC structure is very efficient in specific
calculation [9]. So a countermeasure should be adaptable in existing ASIC
miners. If a method does not have it, big Bitcoin miners who have a big
amount of ASIC mining machine will not adopt this method.

• Fairness: A pool should treat miners only by their contribution, not by
their scale or other perspectives when the pool adopts a method. For
example, if a pool can give a better share to miners who generate more
valid blocks(fPoW), this is a disadvantage for small miners who rarely
produce a valid block because of their mining power. If a method does
not have a fair policy, some miners do not want to join the pool because
of unfair treatment.

4 Model of Mining Pool

We modeled the elements of the mining pool by referring to the model of Eyal
[14]. The format and some of the contents of the algorithms have been modified
to make it easier to understand.

4.1 Assumption

We assumed two items in our model.

7



1. Public Pools: At least two pools exist in the network. All mining pools
are public pools that every miner can join and leave to any pools freely.
In real, some mining pools can be private. Even public pools can have
their royal miners who do not leave.

2. Task with Coinbase Transaction: The mining pool sends PoW task con-
taining coinbase to the miners. To solve the PoW problem, at least the
information we need to know is the header value. Even if a miner does not
know the transaction information, he can solve the PoW task if he knows
only the merkleRootHash value. It is assumed here that the transaction
information is also passed to miners to clarify the algorithm.

4.2 Elements of Mining Pool

4.2.1 Honest Miner

Algorithm 1 shows how Honest Miner Mi works. Miners get a new task from
their mining pool. They work for finding PoW which is less then difficulty of the
mining pool. They send both pPoW and fPoW if they find. They get revenue
from the mining pool based on their share of PoW.

Algorithm 1 Honest Miner Mi

1: procedure Mining . start mining
2: tast← newTask(w)
3: (pPoW, fPoW )← work(task)
4: send(i, (pPoW, fPoW ))
5: revenue← revenue+ recv(i)

4.2.2 Honest Pool

Our pool model is the simple model which has a centralized pool manager.
Algorithm 2 shows how Honest Pool Pi operates with miners. It has the list of
miner(workers) and the list of their amount pPoW share(jotRate). The manager
of Pi gives a task to miners. When miners submit their PoW, the manager checks
validity and records their amount of PoW. The manager publishes all fPoW to
the Bitcoin network and gets a reward from the network. He shares this reward
based on each miner’s job list(jobRate).

4.3 Elements of Block Withholding Pool

4.3.1 Honest Miner

In [14], they modeled an honest miner and a block withholding miner respec-
tively. To perform the block withholding attack proposed initially by Rosenfeld
[20], we need a model of the block withholding miner. However, as we mentioned
in section 3.1, this paper deals with the block withholding attack between pools

8



Algorithm 2 Honest Pool Pi
1: variables
2: List workers . registered miners
3: List jobRate . amount of submitted PPoW
4: Float revenue . total reward of mining pool
5: end variables
6:

7: procedure manage mining
8: revenue← 0
9: for each a ∈ Workers do

10: task(a)← newTask(i)
11: send(a, tasks(a))

12: for each a ∈ Workers do . get PoW from workers
13: (pPoW, fPoW )← recv(a)
14: revenue← revenue+ publish(tasks(a), fPoW )
15: jobRate(a)← pPoW

16: totalPoW ← each jobRate(a)
17: for each a ∈ Workers do . do payment
18: pay(a, revenue× jobRate(a)/totalPoW )

proposed by Eyal [14]. We assume miners are honest in the block withholding
pool as they are in the honest pool.

4.3.2 Block Withholding Pool

Figure 3 shows this attack in visual way. The mining pool Pk attacks mining
pool Pi. The manager of mining pool Pk joins to Mining Pool Pi as a miner of
miners. Mining pool Pi gives PoW task to mining pool Pk. Then, the manager
of mining pool Pk tosses to its miner who is in the gray box in Figure 2. These
miners work as infiltration miners for block withholding attack though they
work honestly. Even though they normally work for a given task, the manager
of mining pool Pk doesn’t submit fPoW to mining pool Pi.

Algorithm 3 shows the block withholding attack controlled by a mining pool
manager.

5 Our Method against Block Withholding At-
tack

Our proposal consists of two phases: detecting an infiltration and punishing an
attacker.

9



Figure 3: Block Withholding Attack

5.1 Phase 1: Detection of Infiltration

We took note of the structure of block withholding attack. The manager of the
block withholding pool joins to the victim pool as a miner or miners. The miners
under the attacker pool work for infiltration. In Figure 4, the miner in the grey
box work as infiltration power. The role of the attack manager is a sort of proxy
of PoW task. Then, if the victim pool joins to the block withholding pool, in the
same way, the victim pool can investigate what PoW task the attacker pool send
to miners. In figure 4, the miner with dotted line joins the attacker pool and
works as a sensor of the attack. Since this join is for detection, this infiltration
mining power honestly works. That is, it sends both pPoW and fPoW. We can
call this infiltration mining power as sensor mining power. Consequently, two
pools’ task is shared with each other. By investigating PoW task in the attacker
pool, the detective pool can find its task in the middle of the attacker’s task. In
Figure 4, PoW task is circulating in mining pools which are infiltrating to each
other.

We can detect the infiltration in a way similar to a block withholding attack.
A detective pool puts sensor miners in other pools. If the detective pool finds
task including detective pool’s coinbase transaction in infiltration miners, it
can determine that the mining pool in which the task is found is infiltrating
to the pool which uses the sensor. Because the infiltration creates a severe
burden on the attacker, if there is no evil intent, there is no reason to infiltrate
and mine in other pools. More specifically, the block withholding attack can
be implemented by the proxy mining structure as Alogirhtm 3 and Figure 2.
This structure is accompanied with overhead to toss PoW task, and also the
infiltrator(i.e., manager) must give up the ancillary fee(Transaction fee, PPS
fee, etc.)[5] that he can obtain by honest mining in his pool. Thus we choose to

10



Algorithm 3 Block Withholding Pool Pk against Mining Pool Pi
1: variables
2: List workers . registered miners
3: List isInfilt . registered miners for infiltration mining
4: List infiltID . registered miners’ ID in target pool
5: List jobRate . amount of submitted PPoW
6: Float revenue . total reward of mining pool
7: Float infiltRevenue . total reward of target mining pool
8: end variables
9:

10: procedure manage mining
11: for each a ∈ Workers do
12: if isInfilt(a) then
13: task(a)← taskFromPool(infiltID(a), t)
14: else
15: task(a)← newTask(i)

16: send(a, tasks(a))

17:

18: totalPoW ← 0
19: revenue← 0
20: infiltRevenue← 0
21:

22: for each a ∈ Workers do . get PoW from workers
23: (pPoW, fPoW )← recv(a)
24: jobRate(a)← pPoW
25: if isInfilt(a) then
26: SendPoWtoPool(infiltID(a), pPoW,Null)
27: else
28: revenue← revenue+ publish(tasks(a), fPoW )

29: for each a ∈ Workers do . do payment
30: if isInfilt(a) then
31: infiltRevenue← infiltRevenue+ recv(a)

32: revenue← revenue+ infiltRevenue
33: totalPoW ← each jobRate(a)
34: for each a ∈ Workers do
35: pay(a, revenue× jobRate(a)/totalPoW )

detect the infiltration of mining pool to prevent block withholding attack.
Our detection method consumes little resource because a pool does not need

to put a lot of mining power to sensors.

11



Figure 4: Sensing of Block Withholding Attack

5.2 Phase 2: Punishment on Infiltration

In this subsection, we propose the action after detection. Despite the detection
of the block withholding attack, the detection itself does not change the fact
that the attack continues to cause damage to the mining pool. For this reason,
we need to deal with the attacker we detected.

Since the detective pool knows which mining pool is attacking it, it can react
by adjusting the compensation he sends to the pool. That is, a pool can modify
share of block withholding attack miners to punish the attacker. We set this
punishment coefficient value as h. The loss from block withholding attack is zero
when h value is as below Theorem 5.1. The reason why the detective pool does
not need to disconnect the attack miners is about Public Pools assumption in
Section 4.1. With this assumption, the attackers can join again to other pools
whenever they want. Hence, disconnection is not a proper solution. Instead of
disconnection, we propose a method to modify share of attacker miners.

Algorithm 5 Punishment function

1: procedure punishRate(workers, totalPoW, jobRate)
2: for each a ∈ Workers do
3: if isAttacker(a) then
4: jobRate(a)← h× jobRate(a)

5: totalPoW ← eachjobRate(a)

Theorem 5.1. When the detecting pool finds the attack, the pool should modify

12



Hashrate of the Attacker Hashrate of the Detective Punishment Range
0.2 0.3 h ≤ 0.33614
0.2 0.2 h ≤ 0.223927
0.1 0.2 h ≤ 0.210881
0.1 0.1 h ≤ 0.105425

Table 1: Punishment Coefficient Range of Several Context

the reward of suspicious miners less than the proportional value below.

h = −
(1− ατ)(β + ατ)(1− 1

ατ )

ατ

Proof. h value can be solved by below equation. In this calculation, we assumed
sensor mining power is zero.

β =
β

1− ατ
(1− h ατ

β + ατ
)

When the attacker’s mining power is 0.2, proportional to total mining power
1, the modifying border value h varies by the mining power of the detecting pool.
Additionally, we assumed the attacker uses optimal infiltration mining power to
maximize revenue. Table 5.2 shows several sample values.

6 Analysis

To demonstrate the validity of our method, at first, we investigate security
analysis. Secondly, We compare our method with other countermeasures. In
order to compare, we use three viewpoints for PoW ecosystem.

6.1 Security Analysis

We should consider the possibility that Attackers can detour or exploit our
method. This subsection checks the various attack scenarios to defeat our
method. If need, we consider attackers even cross our assumptions(Section
4.1) for rigorous analysis.

Task without Coinbase Transaction To detour our method by hiding
Coinbase transaction information, we can consider Task with Coinbase Trans-
action in Section 4.1 is broken. The attacker can set all transactions in the
block to mine and calculate all header value except nonce in Figure 1. Then he
sends PoW task to his miners without exposing coinbase transaction. In this
case, Algorithm 4 cannot check the attack. However, hashMerkleRoot must be
exposed to PoW in the header. This value is dependent on transactions in the

13



block. Thus, even if we check hashMerkleRoot or all transaction in PoW, this
variation is also detectable.

Anonymized Infiltration Miners Even though the attacker is detected,
loss by attack continues without punishment or proper measures. That is why
we suggested punishment share strategy in Section 5.2. The theorem 5.1 as-
sumed we could control all share of infiltration miners when we detected. The
attacker can however hide information of the infiltration miners into a lot of
miner IDs and many source addresses. Then, we cannot control all share of
infiltration IDs even though we detect the block withholding attack. This strat-
egy occurs quite significant overhead to anonymize and manage the source of
infiltration miners. For this reason, we assume that the attacker is less likely to
try anonymization of infiltration miners.

Attack with Private Infiltration In practice, unlike public pool assump-
tions in Sections 4.1, closed pools exist in the real world. The closed pool means
the pools mine with their private mining power and does not allow random join
of miners. For this reason, the block withholding attack is not possible to them
since infiltration to the closed pools is impossible. For example, BTC.TOP and
Bitfury are known as pools cannot be joined.[1]. Between the concepts of the
public pool and the closed pool, we can conjecture that the existence of an inter-
mediate pool with a big proportion of private mining powers in its pool. Here,
we can consider an attacker who cannot be infiltrated to detect. If the closed
pool tries block withholding attack, our method is not valid as the detective
pool cannot join to the closed pool. Also, if the intermediate form of the pool
performs this attack and distributes the task of victim pool only to its mining
power, our method is not valid because the infiltration miners of the detective
pool cannot get block withholding task. We leave it as an open problem that
when some pools have enough private mining power, they can act asymmetric
capability in the mining game.

Misunderstanding as an Attack If two pools try to detect the block
withholding attack against each other, they share their tasks and decide that
their opponent is attacking each pool. Our method involves a punishment pro-
cess. However, it does not operate the block withholding attack. Then we only
reduce the share to each other, so there is no dilemma situation that Eyal [14]
showed. To be more specific, as they infiltrate each other and work honestly, the
total hashrate is conserved. Then the effect of reducing each other’s interests is
negligible.

6.2 Comparison with other methods

Based on the six conditions in Section 3.3, we evaluate our method and compare
other countermeasures as below Table 6.2.

The two-phase method by Rosenfeld [20] does not meet Condition 2 Com-
paibility because they changed the mining process and need additional fields.

14



Properties Our Method [20] [15] [13] [14] [18]
1. No Loss O O O O X O
2. Compatibility O X X X O O
5. Fairness O O O O O X

Also, another two-phase method by Eyal [15] is not proper with Condition 2
Compaibility since miners should solve additional and different hash calculation.
Another scheme in [13] using the secret value of mining pools need to modify
overall Bitcoin protocol. Although it is not explicit, their methods even can oc-
cur considerable overhead on additional calculation. If it is severe so that mining
pool should waste their resource on overhead, they cannot meet Condition 1 No
Loss.

Pools fee method by Eyal [14] is improper to Condition 1 No Loss. This
method directly gives new miners penalty, even though the mining pool does
not get a disadvantage. This fee gives a negative impact on the participation of
new minors.

In [18], the policy to give more compensation to fPoW was discussed. This
policy does not meet Condition 3 Fairness on Miners as it is hard to find fPoW
for small miners.

Lastly, our method seems to satisfy all conditions we suggested in Section
3.3. It does not mean our method is an optimal solution. As we referred
to Section 6.1, this method can have some drawbacks in a real environment
without assumptions.

6.3 Adaptibility

This method is using the fact that PoW task (valid blocks) always includes
a beneficiary address of its miner to give a reward of PoW. This method
can be adapted to almost PoW blockchains. We can use it in Bitcoin-based
blockchains(Bitcoin Gold, Bitcoin Cash, Litecoin) for sure. In Ethereum [8],
it is adaptable as its header contains a beneficiary address directly. Besides,
our method applies to other cryptocurrencies, for example, Ethereum [10] and
Dogecoin [7], using PoW.

7 Conclusion

In this paper, we propose a two-phase attack against the attack. Our method
exploits the structure in which block withholding attacks share the work of the
victim pool within its pool. Initially, the detective pool infiltrates the attacker
pool to check that its task is shared. If the attack is detected by confirming
the infiltration, it decreases the damage by reducing the profits shared by the
attacker pool.

This method has broad compatibility and applicability because PoW min-
ing takes advantage of the essential characteristics of generating beneficiary-

15



dependent blocks. It seems to be safe against modified block withholding at-
tacks. Besides, it is challenging to detour even if the format of the task that
the attacker delivers to miners is changed. Since it uses features common to
blockchains using PoW, it applies to other cryptocurrencies using PoW. While
other existing countermeasures do not meet various conditions to be a useful
method, our method seems to meet all the conditions we proposed.

References

[1] 10 best and biggest bitcoin pools. https://www.buybitcoinworldwide.

com/mining/pools/. Accessed: 2018-10-04.

[2] Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/

bitcoin.pdf. Accessed: 2018-10-04.

[3] Bitcoin protocol documentation. https://en.bitcoin.it/wiki/

Protocol_documentation. Accessed: 2018-10-04.

[4] Bitcoin wiki : Coinbase. https://en.bitcoin.it/wiki/Coinbase. Ac-
cessed: 2018-10-04.

[5] Bitcoin wiki : Comparison of mining pool. https://en.bitcoin.it/wiki/
Comparison_of_mining_pools. Accessed: 2018-10-04.

[6] Bitcoin wiki : Pooled mining. https://en.bitcoin.it/wiki/Pooled_

mining. Accessed: 2018-10-04.

[7] Dogecoin project. https://dogecoin.org/. Accessed: 2018-10-04.

[8] Ethereum: A secure decentralised generalised transaction ledger byzan-
tium version. https://ethereum.github.io/yellowpaper/paper.pdf.
Accessed: 2018-10-04.

[9] Mining hardware comparison. https://en.bitcoin.it/wiki/Mining_

hardware_comparison. Accessed: 2018-10-04.

[10] A next-generation smart contract and decentralized application plat-
form. https://github.com/ethereum/wiki/wiki/White-Paper. Ac-
cessed: 2018-10-04.

[11] P2p pool: Decentralized bitcoin mining pool. http://p2pool.org/. Ac-
cessed: 2018-10-04.

[12] Wikipedia free encyclopedia: Mining pool. https://en.wikipedia.org/

wiki/Mining_pool. Accessed: 2018-10-04.

[13] Samiran Bag, Sushmita Ruj, and Kouichi Sakurai. Bitcoin block withhold-
ing attack: Analysis and mitigation. IEEE Transactions on Information
Forensics and Security, 12(8):1967–1978, 2017.

16



[14] Ittay Eyal. The miner’s dilemma. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 89–103. IEEE, 2015.

[15] Ittay Eyal and Emin Gün Sirer. How to disincentivize large bitcoin min-
ing pools. Blog post: http://hackingdistributed. com/2014/06/18/how-to-
disincentivize-large-bitcoin-mining-pools, 2014.

[16] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. Communications of the ACM, 61(7):95–102, 2018.

[17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yong-
dae Kim. Be selfish and avoid dilemmas: Fork after withholding (faw)
attacks on bitcoin. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 195–209. ACM, 2017.

[18] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas
Hobor. On power splitting games in distributed computation: The case
of bitcoin pooled mining. In Computer Security Foundations Symposium
(CSF), 2015 IEEE 28th, pages 397–411. IEEE, 2015.

[19] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. Smart pool:
Practical decentralized pooled mining. IACR Cryptology ePrint Archive,
2017:19, 2017.

[20] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv
preprint arXiv:1112.4980, 2011.

17



Algorithm 4 Detective Pool Pd against Mining Pool Pk
1: variables
2: List workers . registered miners
3: List isSensor . registered miners for sensing
4: List sensorID . registered miners’ ID in target pool
5: List jobRate . amount of submitted PPoW
6: Float revenue . total reward of mining pool
7: Float infiltRevenue . total reward of target mining pool
8: Bool isDetect
9: String coinbase . coinbase transaction string of mining Pi

10: end variables
11:

12: procedure manage mining
13: for each a ∈ Workers do
14: if isSensor(a) then
15: task(a)← taskFromPool(sensorID(a), i)
16: if isMyTask(task(a), coinbase) then . check sensors
17: isDetect← True
18: else
19: task(a)← newTask(i)

20: send(a, tasks(a))

21:

22: totalPoW ← 0
23: revenue← 0
24: infiltRevenue← 0
25:

26: for each a ∈ Workers do . get PoW from workers
27: (pPoW, fPoW )← recv(a)
28: jobRate(a)← pPoW
29: if isSensor(a) then
30: SendPoWtoPool(sensorID(a), pPoW, fPoW )
31: else
32: revenue← revenue+ publish(tasks(a), fPoW )

33:

34: for each a ∈ Workers do
35: if isSensor(a) then
36: infiltRevenue← infiltRevenue+ recv(a)

37: revenue← revenue+ infiltRevenue
38:

39: if isDetect then . Punish the reward of the attacker
40: punishRate(workers, totalPoW, jobRate)

41:

42: totalPoW ← each jobRate(a) . do payment
43: for each a ∈ Workers do
44: pay(a, revenue× jobRate(a)/totalPoW )

18


