
Countering Block Withholding Attack Efficiently
Suhyeon Lee1,2 and Seungjoo Kim*1

1CIST(Center for Information Security Technologies), Korea University, Korea
1{orion-alpha, skim71}@korea.ac.kr

2ADD(Agency for Defense Development), Korea
2korea@add.re.kr

Abstract—Bitcoin, well-known cryptocurrency, selected Poof-
of-Work (PoW) for its security. PoW mechanism incentivizes
participants and deters attacks on the network. So far, Bitcoin’s
PoW has been adopted in many cryptocurrencies. Researchers
found, however, some vulnerabilities in PoW such as selfish
mining, block withholding attack, and so on. Especially, after
Rosenfeld suggested block withholding attack and Eyal made this
attack practical, many variants and countermeasures have been
proposed. However, most of countermeasures cause many changes
in the mining algorithm itself, which makes it impractical. In
this paper, we propose new countermeasure to prevent block
withholding attack effectively. Mining pools can adapt our
method without changing their mining environment.

Index Terms—Blockchain, Bitcoin, Mining pool, Security
analysis

I. INTRODUCTION

In Bitcoin [10] and Ethereum [3], Poof-of-Work (PoW)
is adapted to make its system secure, especially against Sybil
attack. Miners organize mining pools and join in mining pools
to mine blocks and share rewards efficiently. Bitcoin protocol
has a value and mining difficulty which is automatically
adjusted by block generation time. By adjusting this difficulty,
Bitcoin network generates a block every 10 minutes, and a
miner who generates the block gets a reward. Sometimes
miners work together to maximize profits, which we call
mining pool.

Researchers have shown several vulnerabilities of PoW.
At first, selfish mining makes incentive incompatible with the
blockchain reward design. If a miner has enough power, he can
keep a block he mined and mining the next block in secret. By
releasing more than one blocks when other miners generate a
block, he can make other miners waste their power. Hence,
he earns more reward than he mines honestly. Eyal [7] proved
that his selfish mining is useful even if a miner has over 25%
of total mining power.

Second, Block Withholding (BWH) attack is related to
competition between mining pools. Mining pools compete
with each other to get Bitcoin reward. The concept difficulty,
numerical value, means that only blocks which have hash
values less than difficulty are credited as legal blocks.
Because, in most time, miners cannot find legal blocks (full
Proof-of-Work; fPoW). They can prove the tact they are
mining by submitting partial blocks (partial Proof-of-Work;

∗ Corresponding author

pPoW). pPoW has a bigger hash value than the difficulty in
Bitcoin protocol. Eyal [5] proposed the effective algorithm to
implement block withholding attack. In his paper, one mining
pool can attack other mining pools to get more reward than
its mining power by submitting only pPoW and keeping
fPoW in other mining pools.

Contributions
• Method to detect block withholding attack. If there is no

bad intent, miners have no reason to infiltrate and mine
in other pools. Thus, for preventing block withholding
attack, our method tries to detect the infiltration of mining
pool first. Existing research papers do not treat methods
to detect the attack or refer that it is hard to detect the
attack [8]. If a pool is under block withholding attack,
the pool can check whether other pools are attacking it
by infiltration to other pools. Because block withholding
attack shares task from the victim pool to miners, it is
inevitable to expose where attacks.

• Compatible method to counter attack. Our method con-
sists of two phases to detect and punish the attack.
The punishment phase is the process of eliminating the
damage to the attack by reducing the stake taken by the
attacker. Our method does not need to alter the mining
algorithm, and it can be applied not only to Bitcoin but
also to other cryptocurrencies using PoW. Furthermore,
our countermeasure works well against other variants of
block withholding attack.

II. PRELIMINARY

A. Proof-of-Work of Bitcoin

Bitcoin uses PoW for its security property. PoW verifies
time-consuming work spent on data. It needs to be verified
easily by others. On the contrary, PoW is a mathematical
puzzle challenging to produce. Blockchain network gives
revenue (generally, a type of coin) to miners who find PoW
to motivate them to generate blocks. Blockchain system uses
PoW to profit specific miner. Thus the block should depend
on the miner’s unique value.

In Bitcoin, difficulty is a specific numeric value, and means
the difficulty of mathematical puzzle. Miners who try to gen-
erate a block should find nonce which makes a hash value of
a block less than the difficulty of the current Bitcoin protocol.



The hash value is calculated by double iteration of the SHA256
hash algorithm. Miners try to find a nonce satisfyinh the
hash value of 6 headers (Version, Time, Bits, Nonce (ctr in
our algorithms), hashPrevBlock, hashMerkleRoot) is less than
difficulty. This random process to find nonce is very more
time-consuming work when difficulty is smaller.

Now let’s look at the Bitcoin block structure. In particular,
we need to focus on the following values, merkleRootHash
and coinbase transaction. The merkleRootHash value depends
on all transactions in the block, and the first transaction in
the block must be the coinbase transaction. The coinbase
transaction, or generation transaction, is a special transaction
in the Bitcoin protocol that differs from a standard transaction
as it creates coins from nothing. While regular transactions
use the ’inputs’ section to refer to their parent transaction
outputs, a coinbase transaction has no parent (i.e., sender),
and creates new coins from nothing. Coinbase transactions are
always constructed by a miner and will contain a reward for
efforts expended during the PoW mining process. Because it
is directly related to miners’ reward, the coinbase transaction
is the basis for identifying who has mined a block.

B. Mining Pool

Since a PoW requires a very big mining power, a pooled
mining is a dominant approach to generate a block. In the
mining pool, multiple client miners contribute to generate
a block and share their reward as much as they contribute.
This method makes the reward of block generation spread to
multiple miners. Also, miners can reduce their risk of absent
mining.

Even though miners work hard, there is a possibility that
small miners cannot find any block in the whole time. Even
though they did not find anything, but to prove that they
worked hard, they submit pPoW to the mining pool. pPoW
is a block that meets the smaller value than the protocol
specified in the current protocol. fPoW is a valid block that
meets protocol difficulty. Even though pPoW does not help
in obtaining Bitcoin reward for mining pools, it is useful as a
basis for sharing the total rewards within a mining pool. Based
on pPoW, each mining pools have a slightly different sharing
algorithm for each mining pool in detail [2, 4].

III. RELATED WORKS

A. Block Withholding Attack

Rosenfeld [11] showed the classical forms of block with-
holding attack. Two forms are about block withholding by a
miner in a pool. The first form is Sabotage. An Attacker in
a mining pool withholds blocks and can harm to his pool.
However, it is not profitable to attackers. The second form
is Lie in wait. An attacker postponed submitting blocks to
increase his reward. Contrary to Sabotage, it is profitable to
the attacker.

Eyal [5] advanced Rosenfeld’s idea. He developed it as
an attack between a mining pool and a mining pool rather
than an individual. As a manager of the mining pool share
reward by pPoW share, miners can cheat their contribution.

The pool can get the reward of block generation by publication
of fPoW. If miners do not submit fPoW on purpose, they
can get share though they do not contribute to the pool in
real. To implement this attack, the manager of the block
withholding pool works as a proxy to infiltration miners.
Concrete algorithm of the attack is 2 in section IV. In this
paper, we suggest a countermeasure against this kind of block
withholding attack.

Kwon [8] showed that the attacker can earn more revenue
if he releases fPoW of infiltration in a specific situation.
When the infiltration miners have already mined fPoW, and a
third party unrelated to the attack publishes a valid block, the
attacker can invoke a fork situation by submitting the pending
fPoW. Then the attacker can get the reward of publishing a
block conditional in competition with the valid block of others.

B. Countermeasures

So far, researchers have suggested several counter methods.
Main idea of previous research is based on the idea that
the attack is possible providing that miners can distinguish
between pPoW and fPoW. So they commonly change PoW
into two steps of PoW. So it is called as ‘two-phase PoW’.
At first, Rosenfeld [11] modified the original PoW process
with the secret value so that the miners might not check
the validity of his block. Bag et al. [1] also suggested
PoW schemes using secret values with rigorous definitions
of security properties. Secondly, another two-phase PoW by
Eyal and Sirer [6] employs new condition in order to decide
PoW is valid. The condition is that the block which has
the hash SHA256(SIG(header, privkey)) of that signature is
smaller than a second difficulty parameter Y is valid. Different
from Rosenfeld’s method, it needs the private key and its
signature to divide the PoW process into the two-phase. Miners
cannot know the validity of their block because they do not
know the coinbase transaction’s private key. There are another
approaches. Luu [9] suggested the changing payoff scheme
of mining pools. He suggested that the pool gives a direct
reward to the miners who submit fPoW. His method however
is not proper for small miners who rarely find fPoW. Eyal
[5] suggested pool fees to make pools less attractive to block
withholding attack. Fees add a friction element to the flow of
revenue among infiltrated and infiltrating pools. This method
makes pools not flexible for miners since miners do not want
to pay fees of course.

C. Necessary Conditions for Practical BWH Countermeasure

Countermeasures against the attack should be practical.
Luu [9] discussed seven desired properties to review coun-
termeasures. Kwon [8] also discussed drawbacks of existing
countermeasures. Through the comprehensive analysis, we
will suggest below three necessary conditions for the coun-
termeasure against the block withholding attack. Also, we use
these criteria for comparing all the previous methods including
ours at Section VI-B.



• No loss: A counter method should not do any damage to
the revenue of honest pools or honest miners as well as
the pool who uses the method.

• Compatibility: A countermeasure should be adaptable
in the existing blockchain environment. This condition
can be satisfied by minimizing the change of the entire
blockchain mechanism. It means not only about the proto-
col but also about hardware compatibility. We conjecture
a lot of big Bitcoin miners use ASIC hardware. Thus, if
a countermeasure is adaptable in existing ASIC miners,
it is a better countermeasure.

• Fairness: A pool should treat miners only by their
contribution, not by their scale or other perspectives when
the pool adopts a method. If a method does not have a fair
policy, some miners do not want to join the pool because
of unfair treatment.

IV. MODEL OF MINING POOL

We modeled the elements of the mining pool by referring
to the model of Eyal [5]. The format and some contents of the
algorithms is little bit modified for readability. In this paper,
the parameters indicate as follows.

H is the SHA256 Hash function
T is the difficulty of the Bitcoin protocol
D is the difficulty of the mining pools for contribution
ctr is nonce
workers is the registered miners
contribution is the amount of submitted pPoW
rev is the total revenue of mining pool
isInfilt is the list of miners for infiltration mining
isSensor is the registered miners for sensing

A. Assumption

We assumed two items in this paper.
1) Public Pools: At least two pools exist in the network. All

mining pools are public pools that every miner can join
and leave to any pools freely.

2) Task with Coinbase Transaction: The mining pool sends
PoW task containing its coinbase to the miners.

B. Elements of Mining Pool

1) Honest Miner: Honest miners get a new task from their
mining pool. They work for finding PoW which is less then
difficulty of the mining pool. They send PoW value which
includes nonce value if it meets the difficulty condition. They
get revenue from the mining pool based on their share of PoW.

2) Honest Pool: Our pool model is the simple model
which has a centralized pool manager. Algorithm 1 shows
how Honest Pool Pi operates with miners. It has the list
of miners(workers) and the list of their amount of pPoW
share(jotRate). The manager of Pi gives a task to its miners.
When miners submit their PoW, the manager checks validity
and records their amount of PoW. The manager publishes all
fPoW to the Bitcoin network and gets a reward from the
network. He shares this reward based on each miner’s job
list(contribution).

Algorithm 1 Mining Pool Pi

1: procedure MANAGE POOLED MINING
2: reward← 0
3: w ← CreateTask()
4: for each a ∈ Workers do
5: send(a,w)

6: for each a ∈ Workers do
7: (ctr ‖ w)← recv(a)
8: if (H(ctr ‖ w) < T ) then . only full PoW
9: rev ← rev + publish(ctr ‖ w)

10: . publish a block and get Bitcoin
11: contribution[a].add()
12: . add contribution to PoW
13: totalPoW ← each contribution(a)
14: for each a ∈ Workers do
15: pay(a, rev × contribution(a)

totalPoW )
16: . distribute revenue to miners

C. Elements of Block Withholding Pool

1) Honest Miner: In [5], they modeled an honest miner
and a block withholding miner respectively. To perform the
block withholding attack proposed initially by Rosenfeld [11],
we need a model of the block withholding miner. However, as
we mentioned in section III-A, this paper deals with the block
withholding attack between pools proposed by Eyal [5]. That
is, like Eyan’s scenario, we assume that miners in the block
withholding pool are honest as miners in the honest pool.

2) Block Withholding Pool: Figure 1 shows this attack in
visual way. The mining pool Pk attacks mining pool Pi. The
manager of mining pool Pk joins to Mining Pool Pi as a miner.
Mining pool Pi gives PoW task to mining pool Pk. Then, the
manager of mining pool Pk tosses to its miner who is in the
gray box in Figure 1. These miners work as infiltration miners
for block withholding attack though they work honestly. Even
though they normally work for a given task, the manager of
mining pool Pk does not submit fPoW to mining pool Pi.

Figure 1. Block Withholding Attack

Algorithm 2 shows the block withholding attack controlled
by a mining pool manager.



Algorithm 2 Block Withholding Pool Pk against Pool Pi

1: procedure MANAGE MINING
2: for each a ∈ Workers do
3: if isInfilt(a) then
4: task(a)← taskFromPool(i)
5: else
6: task(a)← createTask()

7: send(a, tasks(a))

8: for each a ∈ Workers do
9: (ctr ‖ w)← recv(a)

10: check ← H(ctr ‖ w)
11: if isInfilt(a) then
12: if (check > T & check < D) then
13: SendPoWtoPool(pPoW,Null)

14: if (H(ctr ‖ w) < T ) then
15: rev ← rev + publish(ctr ‖ w)
16: contribution[a].add()

17: for each a ∈ Workers do
18: if isInfilt(a) then
19: rev ← rev + recv(a)

20: totalPoW ← each contribution(a)
21: for each a ∈ Workers do
22: pay(a, rev × contribution(a)/totalPoW )

V. OUR METHOD AGAINST BLOCK WITHHOLDING
ATTACK

Our algorithm consists of two steps, ‘detection of infiltra-
tion’ and ‘punishment of attacker’.

A. Phase 1. Detection of Infiltration

The manager of the block withholding attacker pool K
joins to the victim pool D as a miner. The miners under the
attacker pool work for infiltration without their knowing. In
Figure 2, the miner in the gray box work as infiltration power.
The role of the attack manager is a sort of PoW proxy.

But at this very moment, if the victim pool D joins to the
block withholding attacker pool K, in the same way, the victim
pool can investigate which PoW task the attacker pool send
to miners. In figure 2, we assume the miner with dotted line
joins the block withholding attacker pool. Then it works as
a sensor of the attack. This infiltrating miner works honestly,
that is, it sends both pPoW and fPoW like other miners of the
pool. We call this infiltration mining power as sensor mining
power. Consequently, two pools’ task is shared with each other.
By investigating PoW task in the attacker pool, the detective
pool can find its task in the middle of the attacker’s task. In
Figure 2, PoW task is circulating in mining pools which are
infiltrating to each other.

We can detect the infiltration in a way similar to a block
withholding attack. A detective pool can put sensor miners
in other pools. If the detective pool finds the task including
its own coinbase transaction in the tasks of infiltrating sensor
miners, it can conclude that the attack has begun. More

Figure 2. Sensing of Block Withholding Attack

specifically, the block withholding attack can be implemented
by the proxy mining structure as algorithm 2 and figure 2.
Our detection method consumes little resource because a pool
does not need to put a lot of mining power to sensors.

Algorithm 3 Detective Pool Pd against Mining Pool Pk

1: procedure MANAGE MINING
2: for each a ∈ Workers do
3: if isSensor(a) then
4: task(a)← taskFromPool(k)
5: if isMyTask(task(a), coinbase) then
6: isDetect← True
7: else
8: task(a)← newTask(i)

9: send(a, tasks(a))

10: for each a ∈ Workers do
11: (ctr ‖ w)← recv(a)
12: if isSensor(a) then
13: SendPoWtoPool(sensorID(a), (ctr ‖ w))
14: else(H(ctr ‖ w) < T )
15: rev ← rev + publish(ctr ‖ w)
16: contribution[a].add()

17: for each a ∈ Workers do
18: if isSensor(a) then
19: rev ← rev + recv(a)

20: if isDetect then . Punish the reward of the attacker
21: punish(workers, totalPoW, contribution)

22: totalPoW ← each contribution(a)
23: for each a ∈ Workers do
24: pay(a, rev × contribution(a)/totalPoW )

B. Phase 2. Punishment on Infiltration

In this subsection, we propose the action after detection.
Despite the detection of the block withholding attack, the de-
tection itself does not change the fact that the attack continues
to cause damage to the mining pool. For this reason, we need
to deal with the attacker after detection.

Since the detective pool knows which mining pool is
attacking it, it can react by adjusting the compensation which



he sends to the pool. That is, a pool can modify the share
of block withholding attack miners in order to punish that
attacker. We set the punishment parameter as h. The loss
from block withholding attack is zero when h value is as
below theorem V.1. The reason why the detective pool does
not need to disconnect the attack miners is about Public
Pools assumption in section IV-A. With this assumption, the
attackers can join again to other pools whenever they want.
Hence, disconnection is not a proper solution. Instead of
disconnection, we propose a method to punish the share of
attacker miners.

Algorithm 4 Punishment function
1: procedure PUNISH(workers, totalPoW, contribution)
2: for each a ∈ Workers do
3: if isAttacker(a) then
4: contribution(a)← h× contribution(a)
5: totalPoW ← eachcontribution(a)

Theorem V.1. When the detecting pool detects the attack, the
pool should modify the reward of suspicious miners less than
the proportional parameter value below.

h = β + ατ

where
α is hashrate of the selfish pool
β is hashrate of the detecting pool
τ is a proportion of infiltration of the selfish pool

Proof. The parameter h can be solved by below equation. In
this calculation, we assumed sensor mining power is negligi-
ble.

β =
β

1− ατ
(1− h ατ

β + ατ
)

When the attacker’s mining power is 0.2, proportional to
total mining power 1, the modified border value h varies by the
mining power of the detecting pool. In addition, we assume the
attacker uses optimal infiltration mining power to maximize
revenue. Table I shows several sample values.

Table I
PUNISHMENT COEFFICIENT RANGE OF SEVERAL CONTEXT

α β Valid punishment value
0.2 0.3 h ≤ 0.33614
0.2 0.2 h ≤ 0.223927
0.1 0.2 h ≤ 0.210881
0.1 0.1 h ≤ 0.105425

VI. ANALYSIS

To demonstrate the validity of our method, at first, we in-
vestigate security analysis. Secondly, We compare our method
with other previous countermeasures. In order to compare, we
use three viewpoints for PoW ecosystem.

A. Security Analysis

We should consider the possibility that attackers can detour
or exploit our method. It is to check the various attack scenar-
ios to defeat our method. If need, we consider attackers even
cross our assumptions (section IV-A) for rigorous analysis.

Task without Coinbase Transaction To detour our
method by hiding coinbase transaction information, we can
consider Task with coinbase Transaction in section IV-A is
broken. The attacker can set all transactions in the block to
mine and calculate all header value except nonce. Then he
sends PoW task to his miners without exposing the coinbase
transaction. In this case, algorithm 3 cannot check the attack.
However, merkleRootHash value must be exposed to PoW
in the header. This value is dependent on transactions in the
block. Thus, providing that we check merkleRootHash or all
transaction in PoW, this variation is also detectable.

Anonymized Infiltration Miners Even though the attacker
is detected, loss by attack continues without punishment or
proper measures. That is why we suggested punishment strat-
egy in section V-B. The theorem V.1 assumed we could control
all share of infiltration miners when we detected. The attacker
can, however, hide information of the infiltrating miners into a
lot of miner IDs and many source addresses. Then, we cannot
control all share of infiltration IDs even though we detect the
block withholding attack. This strategy occurs quite significant
overhead to anonymize and manage the source of infiltration
miners. For this reason, we assume that the attacker is less
likely to try anonymization of infiltration miners.

Attack with Private Infiltration In practice, unlike public
pool assumptions in Sections IV-A, closed private pools exist
in the real world. The closed pool means the pools mine with
their private mining power. It does not allow free join/leave
of miners. For example, BTC.TOP and Bitfury are known as
pools cannot be joined freely [12]. For this reason, the block
withholding attack is not possible to the closed pool.

Between the concepts of the public pool and the closed
pool, we can conjecture that the existence of an intermediate
hybrid pool with a big proportion of private mining powers in
its public pool. Here, we can consider an attacker who cannot
be infiltrated to detect. If a closed pool tries block withholding
attack, our method is not valid as the detective pool cannot
join to the closed pool. We leave it as an open problem that
when some pools have enough private mining power, they can
act asymmetric capability in the mining game.

B. Comparison with other methods

Table II
COMPARISON OF COUNTERMEASURES

Properties Our Method [11] [6] [1] [5] [9]

1. No Loss O O O O X O

2. Compatibility O X X X O O

3. Fairness O O O O O X



Based on the conditions in Section III-C, we evaluate our
method and compare other countermeasures as shown in table
II. The two-phase method by Rosenfeld [11] does not meet
Condition 2 compatibility. Because they changed the mining
process and need additional fields. Also, another two-phase
method by Eyal [6] is not proper with Condition 2 compati-
bility since miners should solve additional and different hash
calculation. The scheme in [1] using the secret value of mining
pools need to modify overall Bitcoin protocol. Although it
is not explicit, their methods even can occur considerable
overhead on additional calculation. If mining pools should
waste their resource on overhead, they cannot meet Condition
1 No Loss.

Pools fee method by Eyal [5] is improper to Condition 1
No Loss. This method directly gives new miners penalty, even
though the mining pool does not get a disadvantage. This fee
gives a negative impact on the participation of new minors.

In [9], the policy to give more compensation to fPoW was
discussed. It does not meet Condition 3 Fairness on Miners
for that it is hard to find fPoW for small miners.

Lastly, our method seems to satisfy all condition. It does
not mean our method is an optimal solution. As we referred
to section VI-A, it can have some drawbacks in a real
environment without assumptions.

C. Adaptibility

Our method is using the fact that PoW task (valid blocks)
always includes a beneficiary address of its miner to give
a reward of PoW. Thus it can be adapted to almost PoW
blockchains. We can use it in Bitcoin-based blockchains
(Bitcoin Gold, Bitcoin Cash, Litecoin) for sure. In Ethereum
[13], it is adaptable as its header contains a beneficiary
address directly. Besides, our method can applies to other
cryptocurrencies if they use PoW.

VII. CONCLUSION

In this paper, we propose the efficient countermeasure
against the block withholding attack. Our method exploits the
structure of the block withholding attack which shares the
work of the victim pool. Initially, the detective pool infiltrates
the attacker pool to check that its task is shared. If the attack
is detected by checking PoW task, it decreases the damage by
reducing the profits shared by the attacker pool. Furthermore,
it can earn more revenue than before.

Our method provides broad compatibility and applicability
as PoW mining takes advantage of the essential characteristics
of generating beneficiary-dependent blocks. It seems to be safe
against variants of block withholding attacks. Besides, it is
challenging to detour even if the format of the task that the
attacker delivers to miners is changed. Due to using common
features of PoW blockchains, we believe it can be applied
to other cryptocurrencies using PoW. While other existing
countermeasures do not meet the various conditions to be a
useful method, our method seems to meet all the conditions
we suggested.

ACKNOWLEDGEMENT

This work was supported by Institue for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No.2018-0-00532, Devel-
opment of High-Assurance (≥ EAL6) Secure Microkernel)

REFERENCES

[1] Samiran Bag, Sushmita Ruj, and Kouichi Sakurai. Bit-
coin block withholding attack: Analysis and mitigation.
IEEE Transactions on Information Forensics and Secu-
rity, 12(8):1967–1978, 2017.

[2] BitcoinWiki contributors. Bitcoin wiki : Comparison of
mining pool. https://en.bitcoin.it/wiki/Comparison of
mining pools. Accessed: 2018-10-04.

[3] Buterin. A next-generation smart contract and decentral-
ized application platform. https://github.com/ethereum/
wiki/wiki/White-Paper. Accessed: 2018-10-04.

[4] Wikipedia contributors. Wikipedia free encyclopedia:
Mining pool. https://en.wikipedia.org/wiki/Mining pool.
Accessed: 2018-10-04.

[5] Ittay Eyal. The miner’s dilemma. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 89–103. IEEE,
2015.

[6] Ittay Eyal and Emin Gün Sirer. How to
disincentivize large bitcoin mining pools. Blog
post: http://hackingdistributed. com/2014/06/18/how-to-
disincentivize-large-bitcoin-mining-pools, 2014.

[7] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[8] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasser-
man, and Yongdae Kim. Be selfish and avoid dilemmas:
Fork after withholding (faw) attacks on bitcoin. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 195–209.
ACM, 2017.

[9] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek
Saxena, and Aquinas Hobor. On power splitting games
in distributed computation: The case of bitcoin pooled
mining. In Computer Security Foundations Symposium
(CSF), 2015 IEEE 28th, pages 397–411. IEEE, 2015.

[10] Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. https://bitcoin.org/bitcoin.pdf. Accessed: 2018-10-
04.

[11] Meni Rosenfeld. Analysis of bitcoin pooled mining
reward systems. arXiv preprint arXiv:1112.4980, 2011.

[12] Tuwiner. 10 best and biggest bitcoin pools. https:
//www.buybitcoinworldwide.com/mining/pools/. Ac-
cessed: 2018-10-04.

[13] Wood. Ethereum: A secure decentralised generalised
transaction ledger byzantium version. https://ethereum.
github.io/yellowpaper/paper.pdf. Accessed: 2018-10-04.


